101
|
Catching on it early: Bodily and brain anticipatory mechanisms for excellence in sport. PROGRESS IN BRAIN RESEARCH 2017; 234:53-67. [DOI: 10.1016/bs.pbr.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
102
|
Blair NF, Frith TJR, Barbaric I. Regenerative Medicine: Advances from Developmental to Degenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:225-239. [PMID: 28840560 DOI: 10.1007/978-3-319-60733-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic tissue and organ failure caused by an injury, disease, ageing or congenital defects represents some of the most complex therapeutic challenges and poses a significant financial healthcare burden. Regenerative medicine strategies aim to fulfil the unmet clinical need by restoring the normal tissue function either through stimulating the endogenous tissue repair or by using transplantation strategies to replace the missing or defective cells. Stem cells represent an essential pillar of regenerative medicine efforts as they provide a source of progenitors or differentiated cells for use in cell replacement therapies. Whilst significant leaps have been made in controlling the stem cell fates and differentiating them to cell types of interest, transitioning bespoke cellular products from an academic environment to off-the-shelf clinical treatments brings about a whole new set of challenges which encompass manufacturing, regulatory and funding issues. Notwithstanding the need to resolve such issues before cell replacement therapies can benefit global healthcare, mounting progress in the field has highlighted regenerative medicine as a realistic prospect for treating some of the previously incurable conditions.
Collapse
Affiliation(s)
- Nicholas F Blair
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Thomas J R Frith
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
103
|
Copenhaver PF, Ramaker JM. Neuronal migration during development and the amyloid precursor protein. CURRENT OPINION IN INSECT SCIENCE 2016; 18:1-10. [PMID: 27939704 PMCID: PMC5157842 DOI: 10.1016/j.cois.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
The Amyloid Precursor Protein (APP) is the source of amyloid peptides that accumulate in Alzheimer's disease. However, members of the APP family are strongly expressed in the developing nervous systems of invertebrates and vertebrates, where they regulate neuronal guidance, synaptic remodeling, and injury responses. In contrast to mammals, insects express only one APP ortholog (APPL), simplifying investigations into its normal functions. Recent studies have shown that APPL regulates neuronal migration in the developing insect nervous system, analogous to the roles ascribed to APP family proteins in the mammalian cortex. The comparative simplicity of insect systems offers new opportunities for deciphering the signaling mechanisms by which this enigmatic class of proteins contributes to the formation and function of the nervous system.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
104
|
A Novel Zebrafish ret Heterozygous Model of Hirschsprung Disease Identifies a Functional Role for mapk10 as a Modifier of Enteric Nervous System Phenotype Severity. PLoS Genet 2016; 12:e1006439. [PMID: 27902697 PMCID: PMC5130169 DOI: 10.1371/journal.pgen.1006439] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Hirschsprung disease (HSCR) is characterized by absence of enteric neurons from the distal colon and severe intestinal dysmotility. To understand the pathophysiology and genetics of HSCR we developed a unique zebrafish model that allows combined genetic, developmental and in vivo physiological studies. We show that ret mutant zebrafish exhibit cellular, physiological and genetic features of HSCR, including absence of intestinal neurons, reduced peristalsis, and varying phenotype expressivity in the heterozygous state. We perform live imaging experiments using a UAS-GAL4 binary genetic system to drive fluorescent protein expression in ENS progenitors. We demonstrate that ENS progenitors migrate at reduced speed in ret heterozygous embryos, without changes in proliferation or survival, establishing this as a principal pathogenic mechanism for distal aganglionosis. We show, using live imaging of actual intestinal movements, that intestinal motility is severely compromised in ret mutants, and partially impaired in ret heterozygous larvae, and establish a clear correlation between neuron position and organised intestinal motility. We exploited the partially penetrant ret heterozygous phenotype as a sensitised background to test the influence of a candidate modifier gene. We generated mapk10 loss-of-function mutants, which show reduced numbers of enteric neurons. Significantly, we show that introduction of mapk10 mutations into ret heterozygotes enhanced the ENS deficit, supporting MAPK10 as a HSCR susceptibility locus. Our studies demonstrate that ret heterozygous zebrafish is a sensitized model, with many significant advantages over existing murine models, to explore the pathophysiology and complex genetics of HSCR. Hirschsprung Disease (HSCR) is a common congenital intestinal motility disorder diagnosed at birth by absence of enteric neurons in the distal gut, leading to intestinal obstruction that requires life-saving surgery. HSCR exhibits complex inheritance patterns and its genetic basis is not fully understood. Although well studied by human geneticists, and modelled using mouse, significant questions remain about the cellular and genetic causes of the disease and the relationship between neuron loss and defective intestinal motility. Here we use accessible, transparent zebrafish to address these outstanding questions. We establish that ret mutant zebrafish display key features of HSCR, including absence of intestinal neurons, reduced gut motility and varying phenotype expressivity. Using live imaging, possible in zebrafish but not in mouse, we demonstrate that decreased migration speed of enteric neuron progenitors colonising the gut is the principal defect leading to neuron deficits. By direct examination of gut motility in zebrafish larvae, we establish a clear correlation between neurons and motility patterns. Finally, we show that mapk10 mutations worsen the enteric neuron deficit of ret mutants, indicating that mutations in MAPK10 may increase susceptibility to HSCR. We show many benefits of modelling human genetic diseases in zebrafish and advance our understanding of HSCR.
Collapse
|
105
|
Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med 2016; 23:49-59. [PMID: 27869805 DOI: 10.1038/nm.4233] [Citation(s) in RCA: 428] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023]
Abstract
The enteric nervous system (ENS) of the gastrointestinal tract controls many diverse functions, including motility and epithelial permeability. Perturbations in ENS development or function are common, yet there is no human model for studying ENS-intestinal biology and disease. We used a tissue-engineering approach with embryonic and induced pluripotent stem cells (PSCs) to generate human intestinal tissue containing a functional ENS. We recapitulated normal intestinal ENS development by combining human-PSC-derived neural crest cells (NCCs) and developing human intestinal organoids (HIOs). NCCs recombined with HIOs in vitro migrated into the mesenchyme, differentiated into neurons and glial cells and showed neuronal activity, as measured by rhythmic waves of calcium transients. ENS-containing HIOs grown in vivo formed neuroglial structures similar to a myenteric and submucosal plexus, had functional interstitial cells of Cajal and had an electromechanical coupling that regulated waves of propagating contraction. Finally, we used this system to investigate the cellular and molecular basis for Hirschsprung's disease caused by a mutation in the gene PHOX2B. This is, to the best of our knowledge, the first demonstration of human-PSC-derived intestinal tissue with a functional ENS and how this system can be used to study motility disorders of the human gastrointestinal tract.
Collapse
|
106
|
Heuckeroth RO, Schäfer KH. Gene-environment interactions and the enteric nervous system: Neural plasticity and Hirschsprung disease prevention. Dev Biol 2016; 417:188-97. [PMID: 26997034 PMCID: PMC5026873 DOI: 10.1016/j.ydbio.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
Abstract
Intestinal function is primarily controlled by an intrinsic nervous system of the bowel called the enteric nervous system (ENS). The cells of the ENS are neural crest derivatives that migrate into and through the bowel during early stages of organogenesis before differentiating into a wide variety of neurons and glia. Although genetic factors critically underlie ENS development, it is now clear that many non-genetic factors may influence the number of enteric neurons, types of enteric neurons, and ratio of neurons to glia. These non-genetic influences include dietary nutrients and medicines that may impact ENS structure and function before or after birth. This review summarizes current data about gene-environment interactions that affect ENS development and suggests that these factors may contribute to human intestinal motility disorders like Hirschsprung disease or irritable bowel syndrome.
Collapse
Affiliation(s)
- Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, USA; The Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Karl-Herbert Schäfer
- ENS Group, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany; University of Heidelberg, Paediatric Surgery Mannheim, Germany
| |
Collapse
|
107
|
Ascl1 Is Required for the Development of Specific Neuronal Subtypes in the Enteric Nervous System. J Neurosci 2016; 36:4339-50. [PMID: 27076429 DOI: 10.1523/jneurosci.0202-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The enteric nervous system (ENS) is organized into neural circuits within the gastrointestinal wall where it controls the peristaltic movements, secretion, and blood flow. Although proper gut function relies on the complex neuronal composition of the ENS, little is known about the transcriptional networks that regulate the diversification into different classes of enteric neurons and glia during development. Here we redefine the role of Ascl1 (Mash1), one of the few regulatory transcription factors described during ENS development. We show that enteric glia and all enteric neuronal subtypes appear to be derived from Ascl1-expressing progenitor cells. In the gut of Ascl1(-/-) mutant mice, neurogenesis is delayed and reduced, and posterior gliogenesis impaired. The ratio of neurons expressing Calbindin, TH, and VIP is selectively decreased while, for instance, 5-HT(+) neurons, which previously were believed to be Ascl1-dependent, are formed in normal numbers. Essentially the same differentiation defects are observed in Ascl1(KINgn2) transgenic mutants, where the proneural activity of Ngn2 replaces Ascl1, demonstrating that Ascl1 is required for the acquisition of specific enteric neuronal subtype features independent of its role in neurogenesis. In this study, we provide novel insights into the expression and function of Ascl1 in the differentiation process of specific neuronal subtypes during ENS development. SIGNIFICANCE STATEMENT The molecular mechanisms underlying the generation of different neuronal subtypes during development of the enteric nervous system are poorly understood despite its pivotal function in gut motility and involvement in gastrointestinal pathology. This report identifies novel roles for the transcription factor Ascl1 in enteric gliogenesis and neurogenesis. Moreover, independent of its proneurogenic activity, Ascl1 is required for the normal expression of specific enteric neuronal subtype characteristics. Distinct enteric neuronal subtypes are formed in a temporally defined order, and we observe that the early-born 5-HT(+) neurons are generated in Ascl1(-/-) mutants, despite the delayed neurogenesis. Enteric nervous system progenitor cells may therefore possess strong intrinsic control over their specification at the initial waves of neurogenesis.
Collapse
|
108
|
Dos Santos-Júnior EF, Gonçalves-Pimentel C, de Araújo LCC, da Silva TG, de Melo-Júnior MR, Moura-Neto V, Andrade-da-Costa BLDS. Malnutrition increases NO production and induces changes in inflammatory and oxidative status in the distal colon of lactating rats. Neurogastroenterol Motil 2016; 28:1204-16. [PMID: 26951039 DOI: 10.1111/nmo.12820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Epidemiological studies have indicated the lack of breast feeding as a risk factor associated with later development of inflammatory bowel disease. Nevertheless, the repercussion of little feeding during suckling on large intestine inflammatory response and anti-oxidant resources has not yet been completely understood. This study hypothesized that unfavorable lactation is able to induce oxidative stress and release of inflammatory mediators modifying the integrity of the colon epithelium in weanling rats. METHODS Wistar rats were reared under different early nutritional conditions according to litter size in two groups: N6 (6 pups/dam) and N15 (15 pups/dam) until the 25th postnatal day. The distal colon was removed and processed for biochemical, morphometric, and immunohistochemical analyzes. Lipoperoxidation, nitric oxide (NO), reduced (GSH) and oxidized (GSSG) glutathione, tumor necrosis factor-alpha (TNF-α), interleukins-1β, 4 and 10 (IL-1β; IL-4; IL-10) levels, and total superoxide dismutase (tSOD), and catalase (CAT) activities were assessed. Morphometric analysis was carried out using paraffin sections and wholemount myenteric plexus preparations. KEY RESULTS Increased lipoperoxidation, NO, TNF-α and IL-1b levels, reduced tSOD and increased CAT activities were found in the N15 compared to N6 group. No intergroup difference was detected for IL-10, while lower levels of IL-4, GSH and GSSG and lower neuronal size and density were induced by undernutrition. CONCLUSIONS & INFERENCES Reduced feeding during suckling changed the inflammatory response and oxidative status in the colon of weanling rats. These data suggest potential mechanisms by which malnutrition early in life may increase the vulnerability of the large intestine to insults.
Collapse
Affiliation(s)
- E F Dos Santos-Júnior
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - C Gonçalves-Pimentel
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - L C C de Araújo
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - T G da Silva
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - M R de Melo-Júnior
- Departamento de Patologia e Laboratório de Imunopatologia Keizo Asami, LIKA, Universidade Federal de Pernambuco, Recife, Brazil
| | - V Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Centro de Estudo e Pesquisa, Rio de Janeiro, RJ, Brazil
| | - B L D S Andrade-da-Costa
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
109
|
Agarwalla PK, Koch MJ, Mordes DA, Codd PJ, Coumans JV. Pigmented Lesions of the Nervous System and the Neural Crest: Lessons From Embryology. Neurosurgery 2016; 78:142-55. [PMID: 26355366 DOI: 10.1227/neu.0000000000001010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurosurgeons encounter a number of pigmented tumors of the central nervous system in a variety of locations, including primary central nervous system melanoma, blue nevus of the spinal cord, and melanotic schwannoma. When examined through the lens of embryology, pigmented lesions share a unifying connection: They occur in structures that are neural crest cell derivatives. Here, we review the important progress made in the embryology of neural crest cells, present 3 cases of pigmented tumors of the nervous system, and discuss these clinical entities in the context of the development of melanoblasts. Pigmented lesions of the nervous system arise along neural crest cell migration routes and from neural crest-derived precursors. Awareness of the evolutionary clues of vertebrate pigmentation by the neurosurgical and neuro-oncological community at large is valuable for identifying pathogenic or therapeutic targets and for designing future research on nervous system pigmented lesions. When encountering such a lesion, clinicians should be aware of the embryological basis to direct additional evaluation, including genetic testing, and to work with the scientific community in better understanding these lesions and their relationship to neural crest developmental biology.
Collapse
Affiliation(s)
- Pankaj K Agarwalla
- Departments of *Neurosurgery and‡Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
110
|
Brosens E, Burns AJ, Brooks AS, Matera I, Borrego S, Ceccherini I, Tam PK, García-Barceló MM, Thapar N, Benninga MA, Hofstra RMW, Alves MM. Genetics of enteric neuropathies. Dev Biol 2016; 417:198-208. [PMID: 27426273 DOI: 10.1016/j.ydbio.2016.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022]
Abstract
Abnormal development or disturbed functioning of the enteric nervous system (ENS), the intrinsic innervation of the gastrointestinal tract, is associated with the development of neuropathic gastrointestinal motility disorders. Here, we review the underlying molecular basis of these disorders and hypothesize that many of them have a common defective biological mechanism. Genetic burden and environmental components affecting this common mechanism are ultimately responsible for disease severity and symptom heterogeneity. We believe that they act together as the fulcrum in a seesaw balanced with harmful and protective factors, and are responsible for a continuum of symptoms ranging from neuronal hyperplasia to absence of neurons.
Collapse
Affiliation(s)
- Erwin Brosens
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Alan J Burns
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands; Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Ivana Matera
- UOC Medical Genetics, Istituto Giannina Gaslini, Genova, Italy
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | | | - Paul K Tam
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine of the University of Hong Kong, Hong Kong, China
| | - Maria-Mercè García-Barceló
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Marc A Benninga
- Pediatric Gastroenterology, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands; Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
111
|
Abstract
The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
112
|
Heanue TA, Shepherd IT, Burns AJ. Enteric nervous system development in avian and zebrafish models. Dev Biol 2016; 417:129-38. [PMID: 27235814 DOI: 10.1016/j.ydbio.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023]
Abstract
Our current understanding of the developmental biology of the enteric nervous system (ENS) and the genesis of ENS diseases is founded almost entirely on studies using model systems. Although genetic studies in the mouse have been at the forefront of this field over the last 20 years or so, historically it was the easy accessibility of the chick embryo for experimental manipulations that allowed the first descriptions of the neural crest origins of the ENS in the 1950s. More recently, studies in the chick and other non-mammalian model systems, notably zebrafish, have continued to advance our understanding of the basic biology of ENS development, with each animal model providing unique experimental advantages. Here we review the basic biology of ENS development in chick and zebrafish, highlighting conserved and unique features, and emphasising novel contributions to our general understanding of ENS development due to technical or biological features.
Collapse
Affiliation(s)
| | | | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
113
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
114
|
Uesaka T, Young HM, Pachnis V, Enomoto H. Development of the intrinsic and extrinsic innervation of the gut. Dev Biol 2016; 417:158-67. [PMID: 27112528 DOI: 10.1016/j.ydbio.2016.04.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/09/2016] [Accepted: 04/21/2016] [Indexed: 12/16/2022]
Abstract
The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic efferent and afferent nerves. The enteric (intrinsic) nervous system (ENS) in most regions of the gut consists of two main ganglionated layers; myenteric and submucosal ganglia, containing numerous types of enteric neurons and glial cells. Axons arising from the ENS and from extrinsic neurons innervate most layers of the gut wall and regulate many gut functions. The majority of ENS cells are derived from vagal neural crest cells (NCCs), which proliferate, colonize the entire gut, and first populate the myenteric region. After gut colonization by vagal NCCs, the extrinsic nerve fibers reach the GI tract, and Schwann cell precursors (SCPs) enter the gut along the extrinsic nerves. Furthermore, a subpopulation of cells in myenteric ganglia undergoes a radial (inward) migration to form the submucosal plexus, and the intrinsic and extrinsic innervation to the mucosal region develops. Here, we focus on recent progress in understanding the developmental processes that occur after the gut is colonized by vagal ENS precursors, and provide an up-to-date overview of molecular mechanisms regulating the development of the intrinsic and extrinsic innervation of the GI tract.
Collapse
Affiliation(s)
- Toshihiro Uesaka
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, 3010 VIC, Australia
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Hideki Enomoto
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
115
|
Burns AJ, Goldstein AM, Newgreen DF, Stamp L, Schäfer KH, Metzger M, Hotta R, Young HM, Andrews PW, Thapar N, Belkind-Gerson J, Bondurand N, Bornstein JC, Chan WY, Cheah K, Gershon MD, Heuckeroth RO, Hofstra RMW, Just L, Kapur RP, King SK, McCann CJ, Nagy N, Ngan E, Obermayr F, Pachnis V, Pasricha PJ, Sham MH, Tam P, Vanden Berghe P. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol 2016; 417:229-51. [PMID: 27059883 DOI: 10.1016/j.ydbio.2016.04.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022]
Abstract
Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts' views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic.
Collapse
Affiliation(s)
- Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donald F Newgreen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Victoria, Australia
| | - Lincon Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karl-Herbert Schäfer
- University of Applied Sciences, Kaiserlautern, Germany; Clinic of Pediatric Surgery, University Hospital Mannheim, University Heidelberg, Germany
| | - Marco Metzger
- Fraunhofer-Institute Interfacial Engineering and Biotechnology IGB Translational Centre - Würzburg branch and University Hospital Würzburg - Tissue Engineering and Regenerative Medicine (TERM), Würzburg, Germany
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jaime Belkind-Gerson
- Division of Gastroenterology, Hepatology and Nutrition, Massachusetts General Hospital for Children, Harvard Medical School, Boston, USA
| | - Nadege Bondurand
- INSERM U955, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France; Université Paris-Est, UPEC, F-94000 Créteil, France
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kathryn Cheah
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, New York 10032, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Robert M W Hofstra
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lothar Just
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Germany
| | - Raj P Kapur
- Department of Pathology, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Sebastian K King
- Department of Paediatric and Neonatal Surgery, The Royal Children's Hospital, Melbourne, Australia
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elly Ngan
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Florian Obermayr
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, D-72076 Tübingen, Germany
| | | | | | - Mai Har Sham
- Department of Biochemistry, The University of Hong Kong, Hong Kong
| | - Paul Tam
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TARGID, University of Leuven, Belgium
| |
Collapse
|
116
|
Uribe RA, Gu T, Bronner ME. A novel subset of enteric neurons revealed by ptf1a:GFP in the developing zebrafish enteric nervous system. Genesis 2016; 54:123-8. [PMID: 26865080 DOI: 10.1002/dvg.22927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/04/2016] [Accepted: 02/09/2016] [Indexed: 02/01/2023]
Abstract
The enteric nervous system, the largest division of the peripheral nervous system, is derived from vagal neural crest cells that invade and populate the entire length of the gut to form diverse neuronal subtypes. Here, we identify a novel population of neurons within the enteric nervous system of zebrafish larvae that express the transgenic marker ptf1a:GFP within the midgut. Genetic lineage analysis reveals that enteric ptf1a:GFP(+) cells are derived from the neural crest and that most ptf1a:GFP(+) neurons express the neurotransmitter 5HT, demonstrating that they are serotonergic. This transgenic line, Tg(ptf1a:GFP), provides a novel neuronal marker for a subpopulation of neurons within the enteric nervous system, and highlights the possibility that Ptf1a may act as an important transcription factor for enteric neuron development.
Collapse
Affiliation(s)
- Rosa A Uribe
- California Institute of Technology, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Tiffany Gu
- California Institute of Technology, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Marianne E Bronner
- California Institute of Technology, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
117
|
In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety. PLoS One 2016; 11:e0147989. [PMID: 26824433 PMCID: PMC4732685 DOI: 10.1371/journal.pone.0147989] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 01/20/2023] Open
Abstract
Objectives Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs) into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety. Design Neurospheres generated from yellow fluorescent protein (YFP) expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B). Intestines were then assessed for ENCC integration and differentiation using immunohistochemistry, cell function using calcium imaging, and long-term safety using PCR to detect off-target YFP expression. Results YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within recipient ganglionic gut. Transplanted cells and their projections spread along the endogenous myenteric plexus to form branching networks. Electrical point stimulation of endogenous nerve fibres resulted in calcium transients (F/F0 = 1.16±0.01;43 cells, n = 6) in YFP+ transplanted ENCCs (abolished with TTX). Long-term follow-up (24 months) showed transplanted ENCCs did not give rise to tumours or spread to other organs (PCR negative in extraintestinal sites). In aganglionic gut ENCCs similarly spread and differentiated to form neuronal and glial networks with projections closely associated with endogenous neural networks of the transition zone. Conclusions Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut showing appropriate spread, localisation and, importantly, functional integration without any long-term safety issues. This study provides key support for the development and use of enteric neural stem cell therapies.
Collapse
|
118
|
Abstract
From the initial discovery of the neural crest over 150 years ago to the seminal studies of Le Douarin and colleagues in the latter part of the twentieth century, understanding of the neural crest has moved from the descriptive to the experimental. Now, in the twenty-first century, neural crest research has migrated into the genomic age. Here, we reflect upon the major advances in neural crest biology and the open questions that will continue to make research on this incredible vertebrate cell type an important subject in developmental biology for the century to come.
Collapse
Affiliation(s)
- Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| | - Marcos Simões-Costa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
119
|
Schill EM, Lake JI, Tusheva OA, Nagy N, Bery SK, Foster L, Avetisyan M, Johnson SL, Stenson WF, Goldstein AM, Heuckeroth RO. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol 2016; 409:473-88. [PMID: 26586201 PMCID: PMC4862364 DOI: 10.1016/j.ydbio.2015.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022]
Abstract
Hirschsprung Disease (HSCR) is a potentially deadly birth defect characterized by the absence of the enteric nervous system (ENS) in distal bowel. Although HSCR has clear genetic causes, no HSCR-associated mutation is 100% penetrant, suggesting gene-gene and gene-environment interactions determine HSCR occurrence. To test the hypothesis that certain medicines might alter HSCR risk we treated zebrafish with medications commonly used during early human pregnancy and discovered that ibuprofen caused HSCR-like absence of enteric neurons in distal bowel. Using fetal CF-1 mouse gut slice cultures, we found that ibuprofen treated enteric neural crest-derived cells (ENCDC) had reduced migration, fewer lamellipodia and lower levels of active RAC1/CDC42. Additionally, inhibiting ROCK, a RHOA effector and known RAC1 antagonist, reversed ibuprofen effects on migrating mouse ENCDC in culture. Ibuprofen also inhibited colonization of Ret+/- mouse bowel by ENCDC in vivo and dramatically reduced bowel colonization by chick ENCDC in culture. Interestingly, ibuprofen did not affect ENCDC migration until after at least three hours of exposure. Furthermore, mice deficient in Ptgs1 (COX 1) and Ptgs2 (COX 2) had normal bowel colonization by ENCDC and normal ENCDC migration in vitro suggesting COX-independent effects. Consistent with selective and strain specific effects on ENCDC, ibuprofen did not affect migration of gut mesenchymal cells, NIH3T3, or WT C57BL/6 ENCDC, and did not affect dorsal root ganglion cell precursor migration in zebrafish. Thus, ibuprofen inhibits ENCDC migration in vitro and bowel colonization by ENCDC in vivo in zebrafish, mouse and chick, but there are cell type and strain specific responses. These data raise concern that ibuprofen may increase Hirschsprung disease risk in some genetically susceptible children.
Collapse
Affiliation(s)
- Ellen Merrick Schill
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jonathan I Lake
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Olga A Tusheva
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA; Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Saya K Bery
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Lynne Foster
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Marina Avetisyan
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - William F Stenson
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
120
|
Young HM, Stamp LA, McKeown SJ. ENS Development Research Since 1983: Great Strides but Many Remaining Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:53-62. [PMID: 27379634 DOI: 10.1007/978-3-319-27592-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first enteric nervous system (ENS) conference, organized by Marcello Costa and John Furness, was held in Adelaide, Australia in 1983. In this article, we review what was known about the development of the ENS in 1983 and then summarize some of the major advances in the field since 1983.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
121
|
Foong JPP. Postnatal Development of the Mouse Enteric Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:135-43. [DOI: 10.1007/978-3-319-27592-5_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
122
|
Pohl CS, Medland JE, Moeser AJ. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications. Am J Physiol Gastrointest Liver Physiol 2015; 309:G927-41. [PMID: 26451004 PMCID: PMC4683303 DOI: 10.1152/ajpgi.00206.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/01/2015] [Indexed: 01/31/2023]
Abstract
Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted.
Collapse
Affiliation(s)
- Calvin S. Pohl
- 1Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; ,2Gastrointestinal Stress Biology Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; and
| | - Julia E. Medland
- 3Comparative Biomedical Sciences Program, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Adam J. Moeser
- 1Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; ,2Gastrointestinal Stress Biology Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; and
| |
Collapse
|
123
|
Stathopoulou A, Natarajan D, Nikolopoulou P, Patmanidi AL, Lygerou Z, Pachnis V, Taraviras S. Inactivation of Geminin in neural crest cells affects the generation and maintenance of enteric progenitor cells, leading to enteric aganglionosis. Dev Biol 2015; 409:392-405. [PMID: 26658318 DOI: 10.1016/j.ydbio.2015.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 11/25/2022]
Abstract
Neural crest cells comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types, during vertebrate development. Enteric Nervous System controls the function of the gastrointestinal tract and is mainly derived from the vagal and sacral neural crest cells. Deregulation on self-renewal and differentiation of the enteric neural crest cells is evident in enteric nervous system disorders, such as Hirschsprung disease, characterized by the absence of ganglia in a variable length of the distal bowel. Here we show that Geminin is essential for Enteric Nervous System generation as mice that lacked Geminin expression specifically in neural crest cells revealed decreased generation of vagal neural crest cells, and enteric neural crest cells (ENCCs). Geminin-deficient ENCCs showed increased apoptosis and decreased cell proliferation during the early stages of gut colonization. Furthermore, decreased number of committed ENCCs in vivo and the decreased self-renewal capacity of enteric progenitor cells in vitro, resulted in almost total aganglionosis resembling a severe case of Hirschsprung disease. Our results suggest that Geminin is an important regulator of self-renewal and survival of enteric nervous system progenitor cells.
Collapse
Affiliation(s)
| | - Dipa Natarajan
- Division of Molecular Neurobiology, MRC/National Institute for Medical Research, London, United Kingdom
| | | | | | - Zoi Lygerou
- Department of Biology, Medical School, University of Patras, Patras, Greece
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC/National Institute for Medical Research, London, United Kingdom
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
124
|
Hepatocyte Growth Factor and MET Support Mouse Enteric Nervous System Development, the Peristaltic Response, and Intestinal Epithelial Proliferation in Response to Injury. J Neurosci 2015; 35:11543-58. [PMID: 26290232 DOI: 10.1523/jneurosci.5267-14.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Factors providing trophic support to diverse enteric neuron subtypes remain poorly understood. We tested the hypothesis that hepatocyte growth factor (HGF) and the HGF receptor MET might support some types of enteric neurons. HGF and MET are expressed in fetal and adult enteric nervous system. In vitro, HGF increased enteric neuron differentiation and neurite length, but only if vanishingly small amounts (1 pg/ml) of glial cell line-derived neurotrophic factor were included in culture media. HGF effects were blocked by phosphatidylinositol-3 kinase inhibitor and by MET-blocking antibody. Both of these inhibitors and MEK inhibition reduced neurite length. In adult mice, MET was restricted to a subset of calcitonin gene-related peptide-immunoreactive (IR) myenteric plexus neurons thought to be intrinsic primary afferent neurons (IPANs). Conditional MET kinase domain inactivation (Met(fl/fl); Wnt1Cre+) caused a dramatic loss of myenteric plexus MET-IR neurites and 1-1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyamine perchlorate (DiI) labeling suggested reduced MET-IR neurite length. In vitro, Met(fl/fl); Wnt1Cre+ mouse bowel had markedly reduced peristalsis in response to mucosal deformation, but normal response to radial muscle stretch. However, whole-bowel transit, small-bowel transit, and colonic-bead expulsion were normal in Met(fl/fl); Wnt1Cre+ mice. Finally, Met(fl/fl); Wnt1Cre+ mice had more bowel injury and reduced epithelial cell proliferation compared with WT animals after dextran sodium sulfate treatment. These results suggest that HGF/MET signaling is important for development and function of a subset IPANs and that these cells regulate intestinal motility and epithelial cell proliferation in response to bowel injury. SIGNIFICANCE STATEMENT The enteric nervous system has many neuronal subtypes that coordinate and control intestinal activity. Trophic factors that support these neuron types and enhance neurite growth after fetal development are not well understood. We show that a subset of adult calcitonin gene-related peptide (CGRP)-expressing myenteric neurons produce MET, the receptor for hepatocyte growth factor, and that loss of MET activity affects peristalsis in response to mucosal stroking, reduces MET-immunoreactive neurites, and increases susceptibility to dextran sodium sulfate-induced bowel injury. These observations may be relevant for understanding and treating intestinal motility disorders and also suggest that enhancing the activity of MET-expressing CGRP neurons might be a useful strategy to reduce bowel inflammation.
Collapse
|
125
|
Till H, Castellani C, Moissl-Eichinger C, Gorkiewicz G, Singer G. Disruptions of the intestinal microbiome in necrotizing enterocolitis, short bowel syndrome, and Hirschsprung's associated enterocolitis. Front Microbiol 2015; 6:1154. [PMID: 26528281 PMCID: PMC4607865 DOI: 10.3389/fmicb.2015.01154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
Next generation sequencing techniques are currently revealing novel insight into the microbiome of the human gut. This new area of research seems especially relevant for neonatal diseases, because the development of the intestinal microbiome already starts in the perinatal period and preterm infants with a still immature gut associated immune system may be harmed by a dysproportional microbial colonization. For most gastrointestinal diseases requiring pediatric surgery there is very limited information about the role of the intestinal microbiome. This review aims to summarize the current knowledge and outline future perspectives for important pathologies like necrotizing enterocolitis (NEC) of the newborn, short bowel syndrome (SBS), and Hirschsprung’s disease associated enterocolitis (HAEC). Only studies applying next generation sequencing techniques to analyze the diversity of the intestinal microbiome were included. In NEC patients intestinal dysbiosis could already be detected prior to any clinical evidence of the disease resulting in a reduction of the bacterial diversity. In SBS patients the diversity seems to be reduced compared to controls. In children with Hirschsprung’s disease the intestinal microbiome differs between those with and without episodes of enterocolitis. One common finding for all three diseases seems to be an overabundance of Proteobacteria. However, most human studies are based on fecal samples and experimental data question whether fecal samples actually represent the microbiome at the site of the diseased bowel and whether the luminal (transient) microbiome compares to the mucosal (resident) microbiome. In conclusion current studies already allow a preliminary understanding of the potential role of the intestinal microbiome in pediatric surgical diseases. Future investigations could clarify the interface between the intestinal epithelium, its immunological competence and mucosal microbiome. Advances in this field may have an impact on the understanding and non-operative treatment of such diseases in infancy.
Collapse
Affiliation(s)
- Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz Graz, Austria
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz Graz, Austria
| | | | | | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz Graz, Austria
| |
Collapse
|
126
|
Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice. Proc Natl Acad Sci U S A 2015; 112:E4929-38. [PMID: 26283356 DOI: 10.1073/pnas.1503911112] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by L-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice.
Collapse
|
127
|
Abstract
Acetylcholine-activating pentameric nicotinic receptors (nAChRs) are an essential mode of neurotransmission in the enteric nervous system (ENS). In this study, we examined the functional development of specific nAChR subtypes in myenteric neurons using Wnt1-Cre;R26R-GCaMP3 mice, where all enteric neurons and glia express the genetically encoded calcium indicator, GCaMP3. Transcripts encoding α3, α4, α7, β2, and β4 nAChR subunits were already expressed at low levels in the E11.5 gut and by E14.5 and, thereafter, α3 and β4 transcripts were the most abundant. The effect of specific nAChR subtype antagonists on evoked calcium activity in enteric neurons was investigated at different ages. Blockade of the α3β4 receptors reduced electrically and chemically evoked calcium responses at E12.5, E14.5, and P0. In addition to the α3β4 antagonist, antagonists to α3β2 and α4β2 also significantly reduced responses by P10-11 and in adult preparations. Therefore, there is an increase in the diversity of functional nAChRs during postnatal development. However, an α7 nAChR antagonist had no effect at any age. Furthermore, at E12.5 we found evidence for unconventional receptors that were responsive to the nAChR agonists 1-dimethyl-4-phenylpiperazinium and nicotine, but were insensitive to the general nicotinic blocker, hexamethonium. Migration, differentiation, and neuritogenesis assays did not reveal a role for nAChRs in these processes during embryonic development. In conclusion, there are significant changes in the contribution of different nAChR subunits to synaptic transmission during ENS development, even after birth. This is the first study to investigate the development of cholinergic transmission in the ENS.
Collapse
|
128
|
Draeger-Muenke R. Functional Abdominal Pain: "Get" the Function, Loose the Pain. AMERICAN JOURNAL OF CLINICAL HYPNOSIS 2015; 58:34-62. [PMID: 26046716 DOI: 10.1080/00029157.2015.1031208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Functional abdominal pain is a mind-body, psychosocial, and self-reinforcing experience with significant consequences for the sufferer and the surrounding support network. The occurrence of unpredictable symptoms and their severity add an element of dread and feeling out-of-control to daily life and often reduce overall functioning in a downward spiral. Two clinical presentations of functional abdominal pain are offered in this article (composites to protect confidentiality) dealing with abdominal pain syndrome and abdominal migraines. The treatment demonstrates the use of hypnotic principles for self-regulation, exploration, and meaning-making. Hypnosis treatment is conducted in combination with mindfulness-based interventions and Traditional Chinese Medicine's (TCM) teachings regarding abdominal health and illness. The clinical examples illustrate medical findings that suggest children with early life stress and an early onset of gastrointestinal somatization may not simply outgrow their functional abdominal pain but may suffer into adulthood.
Collapse
|
129
|
Boesmans W, Hao MM, Vanden Berghe P. Optical Tools to Investigate Cellular Activity in the Intestinal Wall. J Neurogastroenterol Motil 2015; 21:337-51. [PMID: 26130630 PMCID: PMC4496899 DOI: 10.5056/jnm15096] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022] Open
Abstract
Live imaging has become an essential tool to investigate the coordinated activity and output of cellular networks. Within the last decade, 2 Nobel prizes have been awarded to recognize innovations in the field of imaging: one for the discovery, use, and optimization of the green fluorescent protein (2008) and the second for the development of super-resolved fluorescence microscopy (2014). New advances in both optogenetics and microscopy now enable researchers to record and manipulate activity from specific populations of cells with better contrast and resolution, at higher speeds, and deeper into live tissues. In this review, we will discuss some of the recent developments in microscope technology and in the synthesis of fluorescent probes, both synthetic and genetically encoded. We focus on how live imaging of cellular physiology has progressed our understanding of the control of gastrointestinal motility, and we discuss the hurdles to overcome in order to apply the novel tools in the field of neurogastroenterology and motility.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Marlene M Hao
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
130
|
Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung's Disease. PLoS One 2015; 10:e0128822. [PMID: 26061883 PMCID: PMC4465674 DOI: 10.1371/journal.pone.0128822] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/01/2015] [Indexed: 12/22/2022] Open
Abstract
Hirschsprung’s disease (HSCR) is characterized by aganglionosis from failure of neural crest cell (NCC) migration to the distal hindgut. Up to 40% of HSCR patients suffer Hirschsprung’s-associated enterocolitis (HAEC), with an incidence that is unchanged from the pre-operative to the post-operative state. Recent reports indicate that signaling pathways involved in NCC migration may also be involved in the development of secondary lymphoid organs. We hypothesize that gastrointestinal (GI) mucosal immune defects occur in HSCR that may contribute to enterocolitis. EdnrB was deleted from the neural crest (EdnrBNCC-/-) resulting in mutants with defective NCC migration, distal colonic aganglionosis and the development of enterocolitis. The mucosal immune apparatus of these mice was interrogated at post-natal day (P) 21–24, prior to histological signs of enterocolitis. We found that EdnrBNCC-/- display lymphopenia of their Peyer’s Patches, the major inductive site of GI mucosal immunity. EdnrBNCC-/- Peyer’s Patches demonstrate decreased B-lymphocytes, specifically IgM+IgDhi (Mature) B-lymphocytes, which are normally activated and produce IgA following antigen presentation. EdnrBNCC-/- animals demonstrate decreased small intestinal secretory IgA, but unchanged nasal and bronchial airway secretory IgA, indicating a gut-specific defect in IgA production or secretion. In the spleen, which is the primary source of IgA-producing Mature B-lymphocytes, EdnrBNCC-/- animals display decreased B-lymphocytes, but an increase in Mature B-lymphocytes. EdnrBNCC-/- spleens are also small and show altered architecture, with decreased red pulp and a paucity of B-lymphocytes in the germinal centers and marginal zone. Taken together, these findings suggest impaired GI mucosal immunity in EdnrBNCC-/- animals, with the spleen as a potential site of the defect. These findings build upon the growing body of literature that suggests that intestinal defects in HSCR are not restricted to the aganglionic colon but extend proximally, even into the ganglionated small intestine and immune cells.
Collapse
|
131
|
Wilkinson DJ, Bethell GS, Shukla R, Kenny SE, Edgar DH. Isolation of Enteric Nervous System Progenitor Cells from the Aganglionic Gut of Patients with Hirschsprung's Disease. PLoS One 2015; 10:e0125724. [PMID: 25992739 PMCID: PMC4436257 DOI: 10.1371/journal.pone.0125724] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
Enteric nervous system progenitor cells isolated from postnatal human gut and cultured as neurospheres can then be transplanted into aganglionic gut to restore normal patterns of contractility. These progenitor cells may be of future use to treat patients with Hirschprung’s disease, a congenital condition characterized by hindgut dysmotility due to the lack of enteric nervous system ganglia. Here we demonstrate that progenitor cells can also be isolated from aganglionic gut removed during corrective surgery for Hirschsprung’s disease. Although the enteric nervous system marker calretinin is not expressed in the aganglionic gut region, de novo expression is initiated in cultured neurosphere cells isolated from aganglionic Hirschsprung bowel. Furthermore, expression of the neural markers NOS, VIP and GFAP also increased during culture of aganglionic gut neurospheres which we show can be transplantation into cultured embryonic mouse gut explants to restore a normal frequency of contractility. To determine the origin of the progenitor cells in aganglionic region, we used fluorescence-activated cell sorting to demonstrate that only p75-positive neural crest-derived cells present in the thickened nerve trunks characteristic of the aganglionic region of Hirschsprung gut gave rise to neurons in culture. The derivation of enteric nervous system progenitors in the aganglionic gut region of Hirschprung’s patients not only means that this tissue is a potential source of cells for future autologous transplantation, but it also raises the possibility of inducing the differentiation of these endogenous cells in situ to compensate for the aganglionosis.
Collapse
Affiliation(s)
- David J. Wilkinson
- University of Liverpool Institute of Translational Medicine, Liverpool, United Kingdom
| | - George S. Bethell
- University of Liverpool Institute of Translational Medicine, Liverpool, United Kingdom
| | - Rajeev Shukla
- Department of Pathology, Alder Hey Children’s Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Simon E. Kenny
- University of Liverpool Institute of Translational Medicine, Liverpool, United Kingdom
- Department of Paediatric Surgery, Alder Hey Children’s Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - David H. Edgar
- University of Liverpool Institute of Translational Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
132
|
Du F, Liu S. Electroacupuncture with high frequency at acupoint ST-36 induces regeneration of lost enteric neurons in diabetic rats via GDNF and PI3K/AKT signal pathway. Am J Physiol Regul Integr Comp Physiol 2015; 309:R109-18. [PMID: 25972459 DOI: 10.1152/ajpregu.00396.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/08/2015] [Indexed: 12/16/2022]
Abstract
Background electroacupuncture (EA) at acupoint ST-36 (Zusanli) has been used to alleviate gastrointestinal symptoms and improve gastrointestinal motility, but the effects and mechanisms of EA on enteric nervous system (ENS) have scarcely been investigated. SD rats were randomly divided into eight groups: normal control group, diabetes mellitus group (DM), chronic high-frequency EA (C-HEA), chronic low-frequency EA (C-LEA), chronic sham stimulation group (C-SEA), acute high-frequency EA group (A-HEA), acute low-frequency EA group (A-LEA), and diabetic with acute sham stimulation group (A-SEA). The parameters of HEA included a frequency of 100 Hz and an amplitude of 1 mA, while the parameters for LEA were 10 Hz and 1 mA. The expressions of PGP9.5, neuronal nitric oxide synthase neurons, CHAT neurons, glia cell line-derived neurotrophic factor (GDNF) and p-Akt were measured by immunofluorescence or immunohistochemistry, real-time PCR, and Western blotting methods in colon tissues of each rat. The total neurons and the two types of enteric neurons (neuronal nitric oxide synthase and choline acetyl transferase neurons), together with GDNF and p-Akt in the mRNA and protein level were significantly decreased in DM group compared with the normal control group in colon (P < 0.01). Compared with DM or all other DM with EA groups, the chronic HEA could induce a more significant quantitative increase in the mRNA and protein level of the enteric neurons and GDNF and p-Akt in colon (P < 0.01). EA with high-frequency and long-term stimuli at acupoint ST-36 can induce regeneration of lost enteric neurons in diabetic rats, and GDNF and PI3K/Akt signal pathway may play an important role in EA-induced regeneration of impaired enteric neurons.
Collapse
Affiliation(s)
- Fan Du
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
133
|
Enteric neurospheres are not specific to neural crest cultures: implications for neural stem cell therapies. PLoS One 2015; 10:e0119467. [PMID: 25799576 PMCID: PMC4370605 DOI: 10.1371/journal.pone.0119467] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/27/2015] [Indexed: 12/15/2022] Open
Abstract
Objectives Enteric neural stem cells provide hope of curative treatment for enteric neuropathies. Current protocols for their harvesting from humans focus on the generation of ‘neurospheres’ from cultures of dissociated gut tissue. The study aims to better understand the derivation, generation and composition of enteric neurospheres. Design Gut tissue was obtained from Wnt1-Cre;Rosa26Yfp/Yfp transgenic mice (constitutively labeled neural crest cells) and paediatric patients. Gut cells were cultured either unsorted (mixed neural crest/non-neural crest), or following FACS selection into neural crest (murine-YFP+ve/human-p75+ve) or non-neural crest (YFP-ve/p75-ve) populations. Cultures and resultant neurospheres were characterized using immunolabelling in vitro and following transplantation in vivo. Results Cultures of (i) unsorted, (ii) neural crest, and (iii) non-neural crest cell populations generated neurospheres similar in numbers, size and morphology. Unsorted neurospheres were highly heterogeneous for neural crest content. Neural crest-derived (YFP+ve/p75+ve) neurospheres contained only neural derivatives (neurons and glia) and were devoid of non-neural cells (i.e. negative for SMA, c-Kit), with the converse true for non-neural crest-derived (YFP-ve/p75-ve) ‘neurospheres’. Under differentiation conditions only YFP+ve cells gave rise to neural derivatives. Both YFP+ve and YFP-ve cells displayed proliferation and spread upon transplantation in vivo, but YFP-ve cells did not locate or integrate within the host ENS. Conclusions Spherical accumulations of cells, so-called ‘neurospheres’ forming in cultures of dissociated gut contain variable proportions of neural crest-derived cells. If they are to be used for ENS cell replacement therapy then improved protocols for their generation, including cell selection, should be sought in order to avoid inadvertent transplantation of non-therapeutic, non-ENS cells.
Collapse
|
134
|
Coelho-Aguiar JDM, Bon-Frauches AC, Gomes ALT, Veríssimo CP, Aguiar DP, Matias D, Thomasi BBDM, Gomes AS, Brito GADC, Moura-Neto V. The enteric glia: identity and functions. Glia 2015; 63:921-35. [PMID: 25703790 DOI: 10.1002/glia.22795] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/07/2015] [Indexed: 01/04/2023]
Abstract
Enteric glial cells were first described at the end of the 19th century, but they attracted more interest from researchers only in the last decades of the 20th. Although, they have a different embryological origin, the enteric GLIA share many characteristics with astrocytes, the main glial cell type of the central nervous system (CNS), such as in their expression of the same markers and in their functions. Here we review the construction of the enteric nervous system (ENS), with a focus on enteric glia, and also the main studies that have revealed the action of enteric glia in different aspects of gastrointestinal tract homeostasis, such as in the intestinal barrier, in communications with neurons, and in their action as progenitor cells. We also discuss recent discoveries about the roles of enteric glia in different disorders that affect the ENS, such as degenerative pathologies including Parkinson's and prion diseases, and in cases of intestinal diseases and injury.
Collapse
Affiliation(s)
- Juliana de Mattos Coelho-Aguiar
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde do Rio de Janeiro - SES/RJ, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Sarlak G, Vincent B. The Roles of the Stem Cell-Controlling Sox2 Transcription Factor: from Neuroectoderm Development to Alzheimer's Disease? Mol Neurobiol 2015; 53:1679-1698. [PMID: 25691455 DOI: 10.1007/s12035-015-9123-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/04/2015] [Indexed: 12/23/2022]
Abstract
Sox2 is a component of the core transcriptional regulatory network which maintains the totipotency of the cells during embryonic preimplantation period, the pluripotency of embryonic stem cells, and the multipotency of neural stem cells. This maintenance is controlled by internal loops between Sox2 and other transcription factors of the core such as Oct4, Nanog, Dax1, and Klf4, downstream proteins of extracellular ligands, epigenetic modifiers, and miRNAs. As Sox2 plays an important role in the balance between stem cells maintenance and commitment to differentiated lineages throughout the lifetime, it is supposed that Sox2 could regulate stem cells aging processes. In this review, we provide an update concerning the involvement of Sox2 in neurogenesis during normal aging and discuss its possible role in Alzheimer's disease.
Collapse
Affiliation(s)
- Golmaryam Sarlak
- Research Center for Neuroscience, Mahidol University, Nakhon Pathom, 73170, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Research Center for Neuroscience, Mahidol University, Nakhon Pathom, 73170, Thailand. .,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand. .,Centre National de la Recherche Scientifique, 2 rue Michel Ange, 75016, Paris, France.
| |
Collapse
|
136
|
Barriga EH, Mayor R. Embryonic cell-cell adhesion: a key player in collective neural crest migration. Curr Top Dev Biol 2015; 112:301-23. [PMID: 25733144 DOI: 10.1016/bs.ctdb.2014.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration.
Collapse
Affiliation(s)
- Elias H Barriga
- Cell and Developmental Biology Department, University College London, London, United Kingdom
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, London, United Kingdom.
| |
Collapse
|
137
|
Avetisyan M, Schill EM, Heuckeroth RO. Building a second brain in the bowel. J Clin Invest 2015; 125:899-907. [PMID: 25664848 DOI: 10.1172/jci76307] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The enteric nervous system (ENS) is sometimes called the "second brain" because of the diversity of neuronal cell types and complex, integrated circuits that permit the ENS to autonomously regulate many processes in the bowel. Mechanisms supporting ENS development are intricate, with numerous proteins, small molecules, and nutrients that affect ENS morphogenesis and mature function. Damage to the ENS or developmental defects cause vomiting, abdominal pain, constipation, growth failure, and early death. Here, we review molecular mechanisms and cellular processes that govern ENS development, identify areas in which more investigation is needed, and discuss the clinical implications of new basic research.
Collapse
|
138
|
Masuda T, Taniguchi M. Congenital diseases and semaphorin signaling: overview to date of the evidence linking them. Congenit Anom (Kyoto) 2015; 55:26-30. [PMID: 25385160 DOI: 10.1111/cga.12095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/31/2014] [Indexed: 12/12/2022]
Abstract
Semaphorins and their receptors, neuropilins and plexins, were initially characterized as a modulator of axonal guidance during development, but are now recognized as a regulator of a wide range of developmental events including morphogenesis and angiogenesis, and activities of the immune system. Owing to the development of next-generation sequencing technologies together with other useful DNA assays, it has also become clear that semaphorin signaling plays a crucial role in many congenital diseases such as retinal degeneration and congenital heart defects. This review summarizes the recent knowledge about the relationship between a variety of congenital diseases and semaphorin signaling.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- Department of Neurobiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
139
|
Newbern JM. Molecular control of the neural crest and peripheral nervous system development. Curr Top Dev Biol 2015; 111:201-31. [PMID: 25662262 DOI: 10.1016/bs.ctdb.2014.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A transient and unique population of multipotent stem cells, known as neural crest cells (NCCs), generate a bewildering array of cell types during vertebrate development. An attractive model among developmental biologists, the study of NCC biology has provided a wealth of knowledge regarding the cellular and molecular mechanisms important for embryogenesis. Studies in numerous species have defined how distinct phases of NCC specification, proliferation, migration, and survival contribute to the formation of multiple functionally distinct organ systems. NCC contributions to the peripheral nervous system (PNS) are well known. Critical developmental processes have been defined that provide outstanding models for understanding how extracellular stimuli, cell-cell interactions, and transcriptional networks cooperate to direct cellular diversification and PNS morphogenesis. Dissecting the complex extracellular and intracellular mechanisms that mediate the formation of the PNS from NCCs may have important therapeutic implications for neurocristopathies, neuropathies, and certain forms of cancer.
Collapse
Affiliation(s)
- Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
140
|
Badizadegan K, Thomas AR, Nagy N, Ndishabandi D, Miller SA, Alessandrini A, Belkind-Gerson J, Goldstein AM. Presence of intramucosal neuroglial cells in normal and aganglionic human colon. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1002-12. [PMID: 25214400 PMCID: PMC7864228 DOI: 10.1152/ajpgi.00164.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The enteric nervous system (ENS) is composed of neural crest-derived neurons (also known as ganglion cells) the cell bodies of which are located in the submucosal and myenteric plexuses of the intestinal wall. Intramucosal ganglion cells are known to exist but are rare and often considered ectopic. Also derived from the neural crest are enteric glial cells that populate the ganglia and the associated nerves, as well as the lamina propria of the intestinal mucosa. In Hirschsprung disease (HSCR), ganglion cells are absent from the distal gut because of a failure of neural crest-derived progenitor cells to complete their rostrocaudal migration during embryogenesis. The fate of intramucosal glial cells in human HSCR is essentially unknown. We demonstrate a network of intramucosal cells that exhibit dendritic morphology typical of neurons and glial cells. These dendritic cells are present throughout the human gut and express Tuj1, S100, glial fibrillary acidic protein, CD56, synaptophysin, and calretinin, consistent with mixed or overlapping neuroglial differentiation. The cells are present in aganglionic colon from patients with HSCR, but with an altered immunophenotype. Coexpression of Tuj1 and HNK1 in this cell population supports a neural crest origin. These findings extend and challenge the current understanding of ENS microanatomy and suggest the existence of an intramucosal population of neural crest-derived cells, present in HSCR, with overlapping immunophenotype of neurons and glia. Intramucosal neuroglial cells have not been previously recognized, and their presence in HSCR poses new questions about ENS development and the pathobiology of HSCR that merit further investigation.
Collapse
Affiliation(s)
- Kamran Badizadegan
- 1Department of Pathology and Laboratory Medicine, Nemours Children's Hospital, Orlando, Florida;
| | - Alyssa R. Thomas
- 2Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Nandor Nagy
- 2Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; ,3Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; and
| | - Dorothy Ndishabandi
- 2Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Sarah A. Miller
- 2Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Alessandro Alessandrini
- 2Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Jaime Belkind-Gerson
- 4Division of Pediatric Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Allan M. Goldstein
- 2Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
141
|
Abstract
Gastrointestinal motility causes movement of food during digestion through contractions of the gut smooth muscle. The enteric nervous system regulates these events, and Muller et al. now find that its interaction with the immune system, in concert with gut microbiota, provides an additional layer of regulation to this complex task.
Collapse
Affiliation(s)
| | - Marco Colonna
- Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
142
|
Natarajan D, Cooper J, Choudhury S, Delalande JM, McCann C, Howe SJ, Thapar N, Burns AJ. Lentiviral labeling of mouse and human enteric nervous system stem cells for regenerative medicine studies. Neurogastroenterol Motil 2014; 26:1513-8. [PMID: 25199909 PMCID: PMC4237145 DOI: 10.1111/nmo.12420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/06/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Reliable methods of labeling human enteric nervous system (ENS) stem cells for use in novel cell replacement therapies for enteric neuropathies are lacking. Here, we explore the possibility of using lentiviral vectors expressing fluorescent reporter genes to transduce, label, and trace mouse and human ENS stem cells following transplantation into mouse gut. METHODS Enteric nervous system precursors, including ENS stem cells, were isolated from enzymatically dissociated mouse and human gut tissues. Lentivirus containing eGFP or mCherry fluorescent reporter genes was added to gut cell cultures at a multiplicity of infection of 2-5. After fluorescence activated cell sorting for eGFP and subsequent analysis with markers of proliferation and cell phenotype, transduced mouse and human cells were transplanted into the gut of C57BL/6 and immune deficient Rag2-/gamma chain-/C5 mice, respectively and analyzed up to 60 days later. KEY RESULTS Mouse and human transduced cells survived in vitro, maintained intense eGFP expression, proliferated as shown by BrdU incorporation, and formed characteristic neurospheres. When transplanted into mouse gut in vivo and analyzed up to 2 months later, transduced mouse and human cells survived, strongly expressed eGFP and integrated into endogenous ENS networks. CONCLUSIONS & INFERENCES Lentiviral vectors expressing fluorescent reporter genes enable efficient, stable, long-term labeling of ENS stem cells when transplanted into in vivo mouse gut. This lentiviral approach not only addresses the need for a reliable fluorescent marker of human ENS stem cells for preclinical studies, but also raises the possibility of using lentiviruses for other applications, such as gene therapy.
Collapse
Affiliation(s)
- D Natarajan
- Stem Cells and Regenerative Medicine, UCL Institute of Child HealthLondon, UK
| | - J Cooper
- Stem Cells and Regenerative Medicine, UCL Institute of Child HealthLondon, UK
| | - S Choudhury
- Stem Cells and Regenerative Medicine, UCL Institute of Child HealthLondon, UK
| | - J-M Delalande
- Stem Cells and Regenerative Medicine, UCL Institute of Child HealthLondon, UK,Centre for Digestive Diseases, Barts & The London School of Medicine & Dentistry, Queen Mary, University of LondonLondon, UK
| | - C McCann
- Stem Cells and Regenerative Medicine, UCL Institute of Child HealthLondon, UK
| | - S J Howe
- Molecular and Cellular Immunology, UCL Institute of Child HealthLondon, UK
| | - N Thapar
- Stem Cells and Regenerative Medicine, UCL Institute of Child HealthLondon, UK
| | - A J Burns
- Stem Cells and Regenerative Medicine, UCL Institute of Child HealthLondon, UK,Department of Clinical Genetics, Erasmus MCRotterdam, The Netherlands
| |
Collapse
|
143
|
Findlay Q, Yap KK, Bergner AJ, Young HM, Stamp LA. Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon. Am J Physiol Gastrointest Liver Physiol 2014; 307:G741-8. [PMID: 25125684 DOI: 10.1152/ajpgi.00225.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gut motility disorders can result from an absent, damaged, or dysfunctional enteric nervous system (ENS). Cell therapy is an exciting prospect to treat these enteric neuropathies and restore gut motility. Previous studies have examined a variety of sources of stem/progenitor cells, but the ability of different sources of cells to generate enteric neurons has not been directly compared. It is important to identify the source of stem/progenitor cells that is best at colonizing the bowel and generating neurons following transplantation. The aim of this study was to compare the ability of central nervous system (CNS) progenitors and ENS progenitors to colonize the colon and differentiate into neurons. Genetically labeled CNS- and ENS-derived progenitors were cocultured with aneural explants of embryonic mouse colon for 1 or 2.5 wk to assess their migratory, proliferative, and differentiation capacities, and survival, in the embryonic gut environment. Both progenitor cell populations were transplanted in the postnatal colon of mice in vivo for 4 wk before they were analyzed for migration and differentiation using immunohistochemistry. ENS-derived progenitors migrated further than CNS-derived cells in both embryonic and postnatal gut environments. ENS-derived progenitors also gave rise to more neurons than their CNS-derived counterparts. Furthermore, neurons derived from ENS progenitors clustered together in ganglia, whereas CNS-derived neurons were mostly solitary. We conclude that, within the gut environment, ENS-derived progenitors show superior migration, proliferation, and neuronal differentiation compared with CNS progenitors.
Collapse
Affiliation(s)
- Quan Findlay
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Kiryu K Yap
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
144
|
Abstract
Solid-pseudopapillary neoplasm of the pancreas (SPN) is an uncommon low-grade malignant neoplasm occurring mostly in young women. In addition to its distinctive pathological appearance of pseudopapillae with poorly cohesive neoplastic cells, rare variants exist raising the differential diagnosis especially with neuroendocrine neoplasms. The overall prognosis for patients with SPNs is excellent after surgical resection. Nevertheless, 10% of cases may have malignant behavior characterized by tumor recurrence and/or metastasis. Despite numerous studies, the histogenesis of this neoplasm remains unclear. Distinctive molecular alterations such as the presence of CTNNB1 mutations are observed in nearly all cases, while mutations classically observed in ductal adenocarcinoma, such as KRAS, TP53, and SMAD4, are not observed in SPNs, reinforcing its distinct nature compared to all other pancreatic neoplasms. Recent transcriptional studies have shown that activation of the Wnt/beta-catenin pathway in these tumors is associated with the upregulation of genes belonging to Notch, Hedgehog, and androgen receptor signaling pathways.
Collapse
Affiliation(s)
- Benoît Terris
- Service de Pathologie, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, Hôpitaux universitaires Paris-Centre, Site Cochin, Paris, France.
| | | |
Collapse
|
145
|
Boesmans W, Lasrado R, Vanden Berghe P, Pachnis V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 2014; 63:229-41. [PMID: 25161129 DOI: 10.1002/glia.22746] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/05/2014] [Indexed: 12/24/2022]
Abstract
Enteric glial cells are vital for the autonomic control of gastrointestinal homeostasis by the enteric nervous system. Several different functions have been assigned to enteric glial cells but whether these are performed by specialized subtypes with a distinctive phenotype and function remains elusive. We used Mosaic Analysis with Double Markers and inducible lineage tracing to characterize the morphology and dynamic molecular marker expression of enteric GLIA in the myenteric plexus. Functional analysis in individually identified enteric glia was performed by Ca(2+) imaging. Our experiments have identified four morphologically distinct subpopulations of enteric glia in the gastrointestinal tract of adult mice. Marker expression analysis showed that the majority of glia in the myenteric plexus co-express glial fibrillary acidic protein (GFAP), S100β, and Sox10. However, a considerable fraction (up to 80%) of glia outside the myenteric ganglia, did not label for these markers. Lineage tracing experiments suggest that these alternative combinations of markers reflect dynamic gene regulation rather than lineage restrictions. At the functional level, the three myenteric glia subtypes can be distinguished by their differential response to adenosine triphosphate. Together, our studies reveal extensive heterogeneity and phenotypic plasticity of enteric glial cells and set a framework for further investigations aimed at deciphering their role in digestive function and disease.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), TARGID, Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
146
|
Bergner AJ, Stamp LA, Gonsalvez DG, Allison MB, Olson DP, Myers MG, Anderson CR, Young HM. Birthdating of myenteric neuron subtypes in the small intestine of the mouse. J Comp Neurol 2014; 522:514-27. [PMID: 23861145 DOI: 10.1002/cne.23423] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 12/31/2022]
Abstract
There are many different types of enteric neurons. Previous studies have identified the time at which some enteric neuron subtypes are born (exit the cell cycle) in the mouse, but the birthdates of some major enteric neuron subtypes are still incompletely characterized or unknown. We combined 5-ethynynl-2'-deoxyuridine (EdU) labeling with antibody markers that identify myenteric neuron subtypes to determine when neuron subtypes are born in the mouse small intestine. We found that different neurochemical classes of enteric neuron differed in their birthdates; serotonin neurons were born first with peak cell cycle exit at E11.5, followed by neurofilament-M neurons, calcitonin gene-related peptide neurons (peak cell cycle exit for both at embryonic day [E]12.5-E13.5), tyrosine hydroxylase neurons (E15.5), nitric oxide synthase 1 (NOS1) neurons (E15.5), and calretinin neurons (postnatal day [P]0). The vast majority of myenteric neurons had exited the cell cycle by P10. We did not observe any EdU+/NOS1+ myenteric neurons in the small intestine of adult mice following EdU injection at E10.5 or E11.5, which was unexpected, as previous studies have shown that NOS1 neurons are present in E11.5 mice. Studies using the proliferation marker Ki67 revealed that very few NOS1 neurons in the E11.5 and E12.5 gut were proliferating. However, Cre-lox-based genetic fate-mapping revealed a small subpopulation of myenteric neurons that appears to express NOS1 only transiently. Together, our results confirm a relationship between enteric neuron subtype and birthdate, and suggest that some enteric neurons exhibit neurochemical phenotypes during development that are different from their mature phenotype.
Collapse
Affiliation(s)
- Annette J Bergner
- Department of Anatomy & Neuroscience, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Pierre JF, Barlow-Anacker AJ, Erickson CS, Heneghan AF, Leverson GE, Dowd SE, Epstein ML, Kudsk KA, Gosain A. Intestinal dysbiosis and bacterial enteroinvasion in a murine model of Hirschsprung's disease. J Pediatr Surg 2014; 49:1242-51. [PMID: 25092084 PMCID: PMC4122863 DOI: 10.1016/j.jpedsurg.2014.01.060] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND/PURPOSE Hirschsprung's disease (HSCR), characterized by the absence of ganglia in the distal colon, results in functional obstruction. Despite surgical resection of the aganglionic segment, around 40% of patients suffer recurrent life threatening Hirschsprung's-associated enterocolitis (HAEC). The aim of this study was to investigate whether gut microbiota and intestinal immunity changes contribute to the HAEC risk in an HSCR model. METHODS Mice with neural crest conditional deletion of Endothelin receptor B (EdnrB) and their littermate controls were used (EdnrB-null and EdnrB-het). Bacterial DNA was prepared from cecal contents of P16-18 and P21-24 animals and pyrosequencing employed for microbiome analysis. Ileal tissue was isolated and secretory phospholipase A2 (sPLA2) expression and activity determined. Enteroinvasion of Escherichia coli into ileal explants was measured using an ex vivo organ culture system. RESULTS EdnrB-het and EdnrB-nulls displayed similar flora, sPLA2 expression and activity at P16-18. However, by P21-24, EdnrB-hets demonstrated increased Lactobacillus and decreased Bacteroides and Clostridium, while EdnrB-nulls exhibited reciprocal changes. EdnrB-nulls also showed reduced sPLA2 expression and luminal activity at this stage. Functionally, EdnrB-nulls were more susceptible to enteroinvasion with E. coli ex vivo and released less sPLA2 than EdnrB-hets. CONCLUSIONS Initially, EdnrB-het and EdnrB-nulls contain similar cecal flora but then undergo reciprocal changes. EdnrB-nulls display dysbiosis, demonstrate impaired mucosal defense, decreased luminal sPLA2 and increased enteroinvasion of E. coli just prior to robust colonic inflammation and death. These findings suggest a role for the intestinal microbiome in the development of HAEC.
Collapse
Affiliation(s)
- Joseph F. Pierre
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Amanda J. Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Christopher S. Erickson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Aaron F. Heneghan
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Glen E. Leverson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Scot E. Dowd
- Research and Testing Laboratory, Lubbock, Texas, United States of America
| | - Miles L. Epstein
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kenneth A. Kudsk
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America,Veteran Administration Surgical Service, William S. Middleton Memorial Veterans Hospital, Madison, United States of America
| | - Ankush Gosain
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
148
|
Isolation, expansion and transplantation of postnatal murine progenitor cells of the enteric nervous system. PLoS One 2014; 9:e97792. [PMID: 24871092 PMCID: PMC4037209 DOI: 10.1371/journal.pone.0097792] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/24/2014] [Indexed: 01/17/2023] Open
Abstract
Neural stem or progenitor cells have been proposed to restore gastrointestinal function in patients suffering from congenital or acquired defects of the enteric nervous system. Various, mainly embryonic cell sources have been identified for this purpose. However, immunological and ethical issues make a postnatal cell based therapy desirable. We therefore evaluated and quantified the potential of progenitor cells of the postnatal murine enteric nervous system to give rise to neurons and glial cells in vitro. Electrophysiological analysis and BrdU uptake studies provided direct evidence that generated neurons derive from expanded cells in vitro. Transplantation of isolated and expanded postnatal progenitor cells into the distal colon of adult mice demonstrated cell survival for 12 weeks (end of study). Implanted cells migrated within the gut wall and differentiated into neurons and glial cells, both of which were shown to derive from proliferated cells by BrdU uptake. This study indicates that progenitor cells isolated from the postnatal enteric nervous system might have the potential to serve as a source for a cell based therapy for neurogastrointestinal motility disorders. However, further studies are necessary to provide evidence that the generated cells are capable to positively influence the motility of the diseased gastrointestinal tract.
Collapse
|
149
|
Abstract
The enteric nervous system is vulnerable to a range of congenital and acquired disorders that disrupt the function of its neurons or lead to their loss. The resulting enteric neuropathies are some of the most challenging clinical conditions to manage. Neural stem cells offer the prospect of a cure given their potential ability to replenish missing or dysfunctional neurons. This article discusses diseases that might be targets for stem cell therapies and the barriers that could limit treatment application. We explore various sources of stem cells and the proof of concept for their use. The critical steps that remain to be addressed before these therapies can be used in patients are also discussed. Key milestones include the harvesting of neural stem cells from the human gut and the latest in vivo transplantation studies in animals. The tremendous progress in the field has brought experimental studies exploring the potential of stem cell therapies for the management of enteric neuropathies to the cusp of clinical application.
Collapse
Affiliation(s)
- Alan J Burns
- Neural Development and Gastroenterology Units, Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Nikhil Thapar
- 1] Neural Development and Gastroenterology Units, Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK. [2] Division of Neurogastroenterology and Motility, Department of Paediatric Gastroenterology, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
150
|
Young HM, Bergner AJ, Simpson MJ, McKeown SJ, Hao MM, Anderson CR, Enomoto H. Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol 2014; 12:23. [PMID: 24670214 PMCID: PMC4101823 DOI: 10.1186/1741-7007-12-23] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/21/2014] [Indexed: 12/15/2022] Open
Abstract
Background Directed cell migration is essential for normal development. In most of the migratory cell populations that have been analyzed in detail to date, all of the cells migrate as a collective from one location to another. However, there are also migratory cell populations that must populate the areas through which they migrate, and thus some cells get left behind while others advance. Very little is known about how individual cells behave to achieve concomitant directional migration and population of the migratory route. We examined the behavior of enteric neural crest-derived cells (ENCCs), which must both advance caudally to reach the anal end and populate each gut region. Results The behavior of individual ENCCs was examined using live imaging and mice in which ENCCs express a photoconvertible protein. We show that individual ENCCs exhibit very variable directionalities and speed; as the migratory wavefront of ENCCs advances caudally, each gut region is populated primarily by some ENCCs migrating non-directionally. After populating each region, ENCCs remain migratory for at least 24 hours. Endothelin receptor type B (EDNRB) signaling is known to be essential for the normal advance of the ENCC population. We now show that perturbation of EDNRB principally affects individual ENCC speed rather than directionality. The trajectories of solitary ENCCs, which occur transiently at the wavefront, were consistent with an unbiased random walk and so cell-cell contact is essential for directional migration. ENCCs migrate in close association with neurites. We showed that although ENCCs often use neurites as substrates, ENCCs lead the way, neurites are not required for chain formation and neurite growth is more directional than the migration of ENCCs as a whole. Conclusions Each gut region is initially populated by sub-populations of ENCCs migrating non-directionally, rather than stopping. This might provide a mechanism for ensuring a uniform density of ENCCs along the growing gut.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy & Neuroscience, University of Melbourne, Melbourne 3010 VIC, Australia.
| | | | | | | | | | | | | |
Collapse
|