101
|
Ghasemi M, Hadipour-Niktarash A. Pathologic role of neuronal nicotinic acetylcholine receptors in epileptic disorders: implication for pharmacological interventions. Rev Neurosci 2016; 26:199-223. [PMID: 25565544 DOI: 10.1515/revneuro-2014-0044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022]
Abstract
Accumulating evidence suggests that neuronal nicotinic acetylcholine receptors (nAChRs) may play a key role in the pathophysiology of some neurological diseases such as epilepsy. Based on genetic studies in patients with epileptic disorders worldwide and animal models of seizure, it has been demonstrated that nAChR activity is altered in some specific types of epilepsy, including autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and juvenile myoclonic epilepsy (JME). Neuronal nAChR antagonists also have antiepileptic effects in pre-clinical studies. There is some evidence that conventional antiepileptic drugs may affect neuronal nAChR function. In this review, we re-examine the evidence for the involvement of nAChRs in the pathophysiology of some epileptic disorders, especially ADNFLE and JME, and provide an overview of nAChR antagonists that have been evaluated in animal models of seizure.
Collapse
|
102
|
Epigenetics of Epileptogenesis-Evoked Upregulation of Matrix Metalloproteinase-9 in Hippocampus. PLoS One 2016; 11:e0159745. [PMID: 27505431 PMCID: PMC4978505 DOI: 10.1371/journal.pone.0159745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/07/2016] [Indexed: 01/20/2023] Open
Abstract
Enhanced levels of Matrix Metalloproteinase-9 (MMP-9) have been implicated in the pathogenesis of epilepsy in humans and rodents. Lack of Mmp-9 impoverishes, whereas excess of Mmp-9 facilitates epileptogenesis. Epigenetic mechanisms driving the epileptogenesis-related upregulation of MMP-9 expression are virtually unknown. The aim of this study was to reveal these mechanisms. We analyzed hippocampi extracted from adult and pediatric patients with temporal lobe epilepsy as well as from partially and fully pentylenetetrazole kindled rats. We used a unique approach to the analysis of the kindling model results (inclusion in the analysis of rats being during kindling, and not only a group of fully kindled animals), which allowed us to separate the molecular effects exerted by the epileptogenesis from those related to epilepsy and epileptic activity. Consequently, it allowed for a disclosure of molecular mechanisms underlying causes, and not consequences, of epilepsy. Our data show that the epileptogenesis-evoked upregulation of Mmp-9 expression is regulated by removal from Mmp-9 gene proximal promoter of the two, interweaved potent silencing mechanisms–DNA methylation and Polycomb Repressive Complex 2 (PRC2)-related repression. Demethylation depends on a gradual dissociation of the DNA methyltransferases, Dnmt3a and Dnmt3b, and on progressive association of the DNA demethylation promoting protein Gadd45β to Mmp-9 proximal gene promoter in vivo. The PRC2-related mechanism relies on dissociation of the repressive transcription factor YY1 and the dissipation of the PRC2-evoked trimethylation on Lys27 of the histone H3 from the proximal Mmp-9 promoter chromatin in vivo. Moreover, we show that the DNA hydroxymethylation, a new epigenetic DNA modification, which is localized predominantly in the gene promoters and is particularly abundant in the brain, is not involved in a regulation of MMP-9 expression during the epileptogenesis in the rat hippocampus as well as in the hippocampi of pediatric and adult epileptic patients. Additionally, we have also found that despite of its transient nature, the histone modification H3S10ph is strongly and gradually accumulated during epileptogenesis in the cell nuclei and in the proximal Mmp-9 gene promoter in the hippocampus, which suggests that H3S10ph can be involved in DNA demethylation in mammals, and not only in Neurospora. The study identifies MMP-9 as the first protein coding gene which expression is regulated by DNA methylation in human epilepsy. We present a detailed epigenetic model of the epileptogenesis-evoked upregulation of MMP-9 expression in the hippocampus. To our knowledge, it is the most complex and most detailed mechanism of epigenetic regulation of gene expression ever revealed for a particular gene in epileptogenesis. Our results also suggest for the first time that dysregulation of DNA methylation found in epilepsy is a cause rather than a consequence of this condition.
Collapse
|
103
|
Kumar G, Patnaik R. Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: An in silico study. Med Hypotheses 2016; 92:35-43. [PMID: 27241252 DOI: 10.1016/j.mehy.2016.04.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/13/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) mediated excitotoxicity has been implicated in multi-neurodegenerative diseases. Due to lack of efficacy and adverse effects of NMDA receptor antagonists, search for herbal remedies that may act as therapeutic agents is an active area of research to combat these diseases. Withania somnifera (WS) is being used for centuries as a nerve tonic and Nootropic agents. The present study targets the in silico evaluation of the neuroprotective efficacy of W. somnifera phytochemicals by inhibition of NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B containing NMDARs. We predict Blood Brain Barrier (BBB) penetration, mutagenicity, drug-likeness and Human Intestinal Absorption properties of 25 WS phytochemicals. Further, molecular docking was performed to know whether these phytochemicals inhibit the GluN2B containing NMDARs or not. The results suggest that Anaferine, Beta-Sitosterol, Withaferin A, Withanolide A, Withanolide B and Withanolide D inhibit GluN2B containing NMDARs through allosteric mode similar to the well-known selective antagonist Ifenprodil. These phytochemicals have potential as an essentially useful oral drug to counter NMDARs mediated excitotoxicity and to treat multi-neurodegenerative diseases.
Collapse
Affiliation(s)
- Gaurav Kumar
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Ranjana Patnaik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|
104
|
Amiri S, Haj-Mirzaian A, Amini-khoei H, Momeny M, Shirzadian A, Rahimi-Balaei M, Zarrinrad G, Ghazi-Khansari M, Azizi R, Dehpour AR, Mehr SE. NMDA receptor antagonists attenuate the proconvulsant effect of juvenile social isolation in male mice. Brain Res Bull 2016; 121:158-68. [PMID: 26836272 DOI: 10.1016/j.brainresbull.2016.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 01/12/2023]
Abstract
Experiencing psychosocial stress in early life, such as social isolation stress (SIS), is known to have negative enduring effects on the development of the brain and behavior. In addition to anxiety and depressive-like behaviors, we previously showed that juvenile SIS increases susceptibility to pentylenetetrazole (PTZ)-induced seizures in mice through enhancing the nitrergic system activity in the hippocampus. In this study, we investigated the possible involvement of N-methyl-D-aspartate (NMDA) receptors in proconvulsant effects of juvenile SIS. Applying 4 weeks of SIS to juvenile male mice at postnatal day 21-23, we observed an increased susceptibility to PTZ as well as anxiety and depressive-like behaviors in adult mice. Intraperitoneal (i.p.) administration of NMDA receptor antagonists, MK-801 (0.05 mg/kg) and ketamine (0.5mg/kg), reversed the proconvulsant effects of SIS in Isolated (and not social) housed animals. Co-administration of non-effective doses of nitric oxide synthase (NOS) inhibitors, 7NI (25mg/kg) and L-NAME (10mg/kg), with NMDA receptor antagonists, MK-801 (0.01 mg/kg) and ketamine (0.1mg/kg) attenuated the proconvulsant effects of juvenile SIS only in isolated housed mice. Also, using real time RT-PCR, we showed that hippocampal upregulation of NR2B subunit of NMDA receptor may play a critical role in proconvulsant effects of juvenile SIS by dysregulation of NMDA/NO pathway. In conclusion, results of present study revealed that experiencing SIS during adolescence predisposes the co-occurrence of seizure disorders with psychiatric comorbidities and also, alteration of NMDA receptor structure and function in hippocampus plays a role in proconvulsant effects of juvenile SIS through enhancing the NMDA/NO pathway.
Collapse
Affiliation(s)
- Shayan Amiri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Amini-khoei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Armin Shirzadian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Ghazaleh Zarrinrad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Ghazi-Khansari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Romina Azizi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shahram Ejtemaei Mehr
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
105
|
Lentiviral Vector-Induced Overexpression of RGMa in the Hippocampus Suppresses Seizures and Mossy Fiber Sprouting. Mol Neurobiol 2016; 54:1379-1391. [PMID: 26843113 DOI: 10.1007/s12035-016-9744-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
Repulsive guidance molecule a (RGMa) is a membrane-bound protein that inhibits axon outgrowth in the central nervous system. Temporal lobe epilepsy (TLE) is a common neurological disorder characterized by recurrent spontaneous seizures. To explore the role of RGMa in epilepsy, we investigated the expression of RGMa in patients with TLE, pilocarpine-induced rat model, and pentylenetetrazol kindling model of epilepsy, and then we performed behavioral, histological, and electrophysiological analysis by lentivirus-mediated overexpression of RGMa in the hippocampus of animal model. We found that RGMa was significantly decreased in TLE patients and in experimental rats from 6 h to 60 days after pilocarpine-induced seizures. In two types of epileptic animal models, pilocarpine-induced model and pentylenetetrazol kindling model, overexpression of RGMa in the hippocampus of rats exerted seizure-suppressant effects. The reduced spontaneous seizures were accompanied by attenuation of hippocampal mossy fiber sprouting. In addition, overexpression of RGMa inhibited hyperexcitability of hippocampal neurons via suppressing NMDAR-mediated currents in Mg2+-free-induced organotypic slice model. Collectively, these results demonstrate that overexpression of RGMa could be an alternative strategy for epilepsy therapy.
Collapse
|
106
|
Abstract
Chronic pain is one of the most ubiquitous diseases in the world, but treatment is difficult with conventional methods, due to undesirable side effects of treatments and unknown mechanisms of pathological pain states. The endogenous peptide, dynorphin A has long been established as a target for the treatment of pain. Interestingly, this unique peptide has both inhibitory (opioid in nature) and excitatory activities (nonopioid) in the CNS. Both of these effects have been found to play a role in pain and much work has been done to develop therapeutics to enhance the inhibitory effects. Here we will review the dynorphin A compounds that have been designed for the modulation of pain and will discuss where the field stands today.
Collapse
|
107
|
Zhao J, Tao H, Xian W, Cai Y, Cheng W, Yin M, Liang G, Li K, Cui L, Zhao B. A Highly Selective Inhibitor of Glycine Transporter-1 Elevates the Threshold for Maximal Electroshock-Induced Tonic Seizure in Mice. Biol Pharm Bull 2016; 39:174-80. [DOI: 10.1248/bpb.b15-00501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jianghao Zhao
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Hua Tao
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Wenchuan Xian
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Wanwen Cheng
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Mingkang Yin
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Guocong Liang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Keshen Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| |
Collapse
|
108
|
Sun MY, Izumi Y, Benz A, Zorumski CF, Mennerick S. Endogenous 24S-hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices. J Neurophysiol 2015; 115:1263-72. [PMID: 26745248 DOI: 10.1152/jn.00890.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), a major subtype of glutamate receptors mediating excitatory transmission throughout the central nervous system (CNS), play critical roles in governing brain function and cognition. Because NMDAR dysfunction contributes to the etiology of neurological and psychiatric disorders including stroke and schizophrenia, NMDAR modulators are potential drug candidates. Our group recently demonstrated that the major brain cholesterol metabolite, 24S-hydroxycholesterol (24S-HC), positively modulates NMDARs when exogenously administered. Here, we studied whether endogenous 24S-HC regulates NMDAR activity in hippocampal slices. In CYP46A1(-/-) (knockout; KO) slices where endogenous 24S-HC is greatly reduced, NMDAR tone, measured as NMDAR-to-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) excitatory postsynaptic current (EPSC) ratio, was reduced. This difference translated into more NMDAR-driven spiking in wild-type (WT) slices compared with KO slices. Application of SGE-301, a 24S-HC analog, had comparable potentiating effects on NMDAR EPSCs in both WT and KO slices, suggesting that endogenous 24S-HC does not saturate its NMDAR modulatory site in ex vivo slices. KO slices did not differ from WT slices in either spontaneous neurotransmission or in neuronal intrinsic excitability, and exhibited LTP indistinguishable from WT slices. However, KO slices exhibited higher resistance to persistent NMDAR-dependent depression of synaptic transmission induced by oxygen-glucose deprivation (OGD), an effect restored by SGE-301. Together, our results suggest that loss of positive NMDAR tone does not elicit compensatory changes in excitability or transmission, but it protects transmission against NMDAR-mediated dysfunction. We expect that manipulating this endogenous NMDAR modulator may offer new treatment strategies for neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Ann Benz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
109
|
A Potential Role for Felbamate in TSC- and NF1-Related Epilepsy: A Case Report and Review of the Literature. Case Rep Neurol Med 2015; 2015:960746. [PMID: 26579319 PMCID: PMC4633543 DOI: 10.1155/2015/960746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/23/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
A 15-year-old girl with maternal inheritance of neurofibromatosis type 1 (NF1) and paternal inheritance of tuberous sclerosis complex (TSC) developed intractable epilepsy at age 5. Her seizures were refractory to adequate doses of four antiepileptic medications until felbamate was initiated at age 7. She has since remained seizure-free on felbamate monotherapy. Although felbamate has multiple mechanisms of action, it is thought to have its most potent antiepileptic effects through inhibition of the N-methyl-D-aspartate receptor (NMDAR). Previous studies have shown that the NMDAR is altered in varying epilepsy syndromes and notably in the cortical tubers found in TSC. The aim of this paper is to examine how felbamate monotherapy was able to achieve such robust antiepileptic effects in a unique patient and possibly offer a novel therapeutic approach to patients suffering from TSC- and NF-related epilepsy.
Collapse
|
110
|
Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun 2015; 5:3251. [PMID: 24504326 PMCID: PMC3934797 DOI: 10.1038/ncomms4251] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/13/2014] [Indexed: 12/21/2022] Open
Abstract
NMDA receptors (NMDARs), ligand-gated ion channels, play important roles in various neurological disorders, including epilepsy. Here we show the functional analysis of a de novo missense mutation (L812M) in a gene encoding NMDAR subunit GluN2A (GRIN2A). The mutation, identified in a patient with early-onset epileptic encephalopathy and profound developmental delay, is located in the linker region between the ligand-binding and transmembrane domains. Electrophysiological recordings revealed that the mutation enhances agonist potency, decreases sensitivity to negative modulators including magnesium, protons and zinc, prolongs the synaptic response time course and increases single-channel open probability. The functional changes of this amino acid apply to all other NMDAR subunits, suggesting an important role of this residue on the function of NMDARs. Taken together, these data suggest that the L812M mutation causes overactivation of NMDARs and drives neuronal hyperexcitability. We hypothesize that this mechanism underlies the patient's epileptic phenotype as well as cerebral atrophy.
Collapse
|
111
|
Zhou C, Sun H, Klein PM, Jensen FE. Neonatal seizures alter NMDA glutamate receptor GluN2A and 3A subunit expression and function in hippocampal CA1 neurons. Front Cell Neurosci 2015; 9:362. [PMID: 26441533 PMCID: PMC4585040 DOI: 10.3389/fncel.2015.00362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/31/2015] [Indexed: 12/02/2022] Open
Abstract
Neonatal seizures are commonly caused by hypoxic and/or ischemic injury during birth and can lead to long-term epilepsy and cognitive deficits. In a rodent hypoxic seizure (HS) model, we have previously demonstrated a critical role for seizure-induced enhancement of the AMPA subtype of glutamate receptor (GluA) in epileptogenesis and cognitive consequences, in part due to GluA maturational upregulation of expression. Similarly, as the expression and function of the N-Methyl-D-aspartate (NMDA) subtype of glutamate receptor (GluN) is also developmentally controlled, we examined how early life seizures during the critical period of synaptogenesis could modify GluN development and function. In a postnatal day (P)10 rat model of neonatal seizures, we found that seizures could alter GluN2/3 subunit composition of GluNs and physiological function of synaptic GluNs. In hippocampal slices removed from rats within 48–96 h following seizures, the amplitudes of synaptic GluN-mediated evoked excitatory postsynaptic currents (eEPSCs) were elevated in CA1 pyramidal neurons. Moreover, GluN eEPSCs showed a decreased sensitivity to GluN2B selective antagonists and decreased Mg2+ sensitivity at negative holding potentials, indicating a higher proportion of GluN2A and GluN3A subunit function, respectively. These physiological findings were accompanied by a concurrent increase in GluN2A phosphorylation and GluN3A protein. These results suggest that altered GluN function and expression could potentially contribute to future epileptogenesis following neonatal seizures, and may represent potential therapeutic targets for the blockade of future epileptogenesis in the developing brain.
Collapse
Affiliation(s)
- Chengwen Zhou
- Department of Neurology, Division of Neuroscience, Boston Children's Hospital Boston, MA, USA ; Program in Neurobiology, Harvard Medical School Boston, MA, USA
| | - Hongyu Sun
- Department of Neurology, Division of Neuroscience, Boston Children's Hospital Boston, MA, USA ; Program in Neurobiology, Harvard Medical School Boston, MA, USA ; Department of Neurology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Peter M Klein
- Department of Neurology, Division of Neuroscience, Boston Children's Hospital Boston, MA, USA
| | - Frances E Jensen
- Department of Neurology, Division of Neuroscience, Boston Children's Hospital Boston, MA, USA ; Program in Neurobiology, Harvard Medical School Boston, MA, USA ; Department of Neurology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
112
|
Differential Effects of D-Cycloserine and ACBC at NMDA Receptors in the Rat Entorhinal Cortex Are Related to Efficacy at the Co-Agonist Binding Site. PLoS One 2015; 10:e0133548. [PMID: 26193112 PMCID: PMC4507855 DOI: 10.1371/journal.pone.0133548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
Partial agonists at the NMDA receptor co-agonist binding site may have potential therapeutic efficacy in a number of cognitive and neurological conditions. The entorhinal cortex is a key brain area in spatial memory and cognitive processing. At synapses in the entorhinal cortex, NMDA receptors not only mediate postsynaptic excitation but are expressed in presynaptic terminals where they tonically facilitate glutamate release. In a previous study we showed that the co-agonist binding site of the presynaptic NMDA receptor is endogenously and tonically activated by D-serine released from astrocytes. In this study we determined the effects of two co-agonist site partial agonists on both presynaptic and postsynaptic NMDA receptors in layer II of the entorhinal cortex. The high efficacy partial agonist, D-cycloserine, decreased the decay time of postsynaptic NMDA receptor mediated currents evoked by electrical stimulation, but had no effect on amplitude or other kinetic parameters. In contrast, a lower efficacy partial agonist, 1-aminocyclobutane-1-carboxylic acid, decreased decay time to a greater extent than D-cycloserine, and also reduced the peak amplitude of the evoked NMDA receptor mediated postsynaptic responses. Presynaptic NMDA receptors, (monitored indirectly by effects on the frequency of AMPA receptor mediated spontaneous excitatory currents) were unaffected by D-cycloserine, but were reduced in effectiveness by 1-aminocyclobutane-1-carboxylic acid. We discuss these results in the context of the effect of endogenous regulation of the NMDA receptor co-agonist site on receptor gating and the potential therapeutic implications for cognitive disorders.
Collapse
|
113
|
Lipski WJ, DeStefino VJ, Stanslaski SR, Antony AR, Crammond DJ, Cameron JL, Richardson RM. Sensing-enabled hippocampal deep brain stimulation in idiopathic nonhuman primate epilepsy. J Neurophysiol 2015; 113:1051-62. [DOI: 10.1152/jn.00619.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a debilitating condition affecting 1% of the population worldwide. Medications fail to control seizures in at least 30% of patients, and deep brain stimulation (DBS) is a promising alternative treatment. A modified clinical DBS hardware platform was recently described (PC+S) allowing long-term recording of electrical brain activity such that effects of DBS on neural networks can be examined. This study reports the first use of this device to characterize idiopathic epilepsy and assess the effects of stimulation in a nonhuman primate (NHP). Clinical DBS electrodes were implanted in the hippocampus of an epileptic NHP bilaterally, and baseline local field potential (LFP) recordings were collected for seizure characterization with the PC+S. Real-time automatic detection of ictal events was demonstrated and validated by concurrent visual observation of seizure behavior. Seizures consisted of large-amplitude 8- to 25-Hz oscillations originating from the right hemisphere and quickly generalizing, with an average occurrence of 0.71 ± 0.15 seizures/day. Various stimulation parameters resulted in suppression of LFP activity or in seizure induction during stimulation under ketamine anesthesia. Chronic stimulation in the awake animal was studied to evaluate how seizure activity was affected by stimulation configurations that suppressed broadband LFPs in acute experiments. This is the first electrophysiological characterization of epilepsy using a next-generation clinical DBS system that offers the ability to record and analyze neural signals from a chronically implanted stimulating electrode. These results will direct further development of this technology and ultimately provide insight into therapeutic mechanisms of DBS for epilepsy.
Collapse
Affiliation(s)
- W. J. Lipski
- Brain Modulation Lab, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - V. J. DeStefino
- Brain Modulation Lab, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - A. R. Antony
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - D. J. Crammond
- Brain Modulation Lab, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - J. L. Cameron
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - R. M. Richardson
- Brain Modulation Lab, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for the Neural Basis of Cognition and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
114
|
Szczurowska E, Mareš P. Different action of a specific NR2B/NMDA antagonist Ro 25-6981 on cortical evoked potentials and epileptic afterdischarges in immature rats. Brain Res Bull 2015; 111:1-8. [DOI: 10.1016/j.brainresbull.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
|
115
|
Cheriyan J, Mezes C, Zhou N, Balsara RD, Castellino FJ. Heteromerization of ligand binding domains of N-methyl-D-aspartate receptor requires both coagonists, L-glutamate and glycine. Biochemistry 2015; 54:787-94. [PMID: 25544544 PMCID: PMC4310633 DOI: 10.1021/bi501437s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMDA receptors (NMDAR) are voltage- and glutamate-gated heteromeric ion channels found at excitatory neuronal synapses, the functions of which are to mediate the mechanisms of brain plasticity and, thereby, its higher order functions. In addition to Glu, the activation of these heteromeric receptors requires Gly or d-Ser as a coagonist. However, it is not fully known as to why coagonism is required for the opening of NMDAR ion channels. We show herein that the ligand binding domains (LBD) of the GluN1 and GluN2A subunits of the NMDAR heterodimerize only when both coagonists, Glu and Gly/d-Ser, bind to their respective sites on GluN2 and GluN1. In the agonist-free state, these domains form homomeric interactions, which are disrupted by binding of their respective agonists. Also, in a heteromer formed by the LBDs, GluN2A is more sensitized to bind Glu, while the affinity of Gly for GluN1 remains unchanged. We thus provide direct evidence to show that coagonism is necessary for heteromeric pairing of LBDs, which is an essential step in forming functional ion channels in NMDARs.
Collapse
Affiliation(s)
- John Cheriyan
- W. M. Keck Center for Transgene Research and the Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | | | |
Collapse
|
116
|
Zaitsev AV, Kim KK, Frolova EV, Lavrent’eva VV, Lukomskaya NY, Magazanik LG. Anticonvulsant activities of antagonists of NMDA and calcium-permeable AMPA receptors in a model of maximum electroshock in rats. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414040138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
117
|
Zaitsev AV, Kim KK, Vasilev DS, Lukomskaya NY, Lavrentyeva VV, Tumanova NL, Zhuravin IA, Magazanik LG. N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons. J Neurosci Res 2014; 93:454-65. [DOI: 10.1002/jnr.23500] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Kira Kh. Kim
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Dmitry S. Vasilev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Nera Ya. Lukomskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Valeria V. Lavrentyeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Natalia L. Tumanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Igor A. Zhuravin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Lev G. Magazanik
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
- Saint Petersburg State University; Saint Petersburg Russia
| |
Collapse
|
118
|
Feenstra B, Pasternak B, Geller F, Carstensen L, Wang T, Huang F, Eitson JL, Hollegaard MV, Svanström H, Vestergaard M, Hougaard DM, Schoggins JW, Jan LY, Melbye M, Hviid A. Common variants associated with general and MMR vaccine-related febrile seizures. Nat Genet 2014; 46:1274-82. [PMID: 25344690 PMCID: PMC4244308 DOI: 10.1038/ng.3129] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022]
Abstract
Febrile seizures represent a recognized serious adverse event following measles, mumps, and rubella (MMR) vaccination. We conducted a series of genome-wide association scans comparing children with MMR-related febrile seizures, children with febrile seizures unrelated to vaccination, and controls with no history of febrile seizures. Two loci were distinctly associated with MMR-related febrile seizures, harboring the interferon-stimulated gene IFI44L (rs273259; P = 5.9×10−12 vs. controls; P =1.2×10−9 vs. MMR-unrelated febrile seizures) and the measles virus receptor CD46 (rs1318653; P = 9.6×10−11 vs. controls; P = 1.6×10−9 vs. MMR-unrelated febrile seizures). Furthermore, four loci were associated with febrile seizures in general implicating the sodium channel genes SCN1A (rs6432860; P = 2.2×10−16) and SCN2A (rs3769955; P = 3.1×10−10), a TMEM16 family gene (TMEM16C; rs114444506; P = 3.7×10−20), and a region associated with magnesium levels (12q21.33; rs11105468; P = 3.4×10−11). Finally, functional relevance of TMEM16C was demonstrated with electrophysiological experiments in wild-type and knockout rats.
Collapse
Affiliation(s)
- Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Björn Pasternak
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Lisbeth Carstensen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Tongfei Wang
- 1] Department of Physiology, University of California, San Francisco, San Francisco, California, USA. [2] Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA. [3] Howard Hughes Medical Institute, San Francisco, California, USA
| | - Fen Huang
- 1] Department of Physiology, University of California, San Francisco, San Francisco, California, USA. [2] Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA. [3] Howard Hughes Medical Institute, San Francisco, California, USA
| | - Jennifer L Eitson
- Department of Microbiology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Mads V Hollegaard
- Danish Centre for Neonatal Screening, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Svanström
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mogens Vestergaard
- Research Unit and Section for General Practice, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - David M Hougaard
- Danish Centre for Neonatal Screening, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Lily Yeh Jan
- 1] Department of Physiology, University of California, San Francisco, San Francisco, California, USA. [2] Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA. [3] Howard Hughes Medical Institute, San Francisco, California, USA
| | - Mads Melbye
- 1] Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark. [2] Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. [3] Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
119
|
Dong C, Zhao W, Li W, Lv P, Dong X. Anti-epileptic effects of neuropeptide Y gene transfection into the rat brain. Neural Regen Res 2014; 8:1307-15. [PMID: 25206425 PMCID: PMC4107651 DOI: 10.3969/j.issn.1673-5374.2013.14.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 04/24/2013] [Indexed: 02/04/2023] Open
Abstract
Neuropeptide Y gene transfection into normal rat brain tissue can provide gene overexpression, which can attenuate the severity of kainic acid-induced seizures. In this study, a recombinant adeno-associated virus carrying the neuropeptide Y gene was transfected into brain tissue of rats with kainic acid-induced epilepsy through stereotactic methods. Following these transfections, we verified overexpression of the neuropeptide Y gene in the epileptic brain. Electroencephalograms showed that seizure severity was significantly inhibited and seizure latency was significantly prolonged up to 4 weeks after gene transfection. Moreover, quantitative fluorescent PCR and western blot assays revealed that the mRNA and protein expression of the N-methyl-D-aspartate receptor subunits NR1, NR2A, and NR2B was inhibited in the hippocampus of epileptic rats. These findings indicate that neuropeptide Y may inhibit seizures via down-regulation of the functional expression of N-methyl-D-aspartate receptors.
Collapse
Affiliation(s)
- Changzheng Dong
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Wenqing Zhao
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang 050051, Hebei Province, China ; Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Wenling Li
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Xiufang Dong
- Department of Neurology, First Hospital of Xingtai, Xingtai 054000, Hebei Province, China
| |
Collapse
|
120
|
The Calcineurin Inhibitor Ascomicin Interferes with the Early Stage of the Epileptogenic Process Induced by Latrunculin A Microperfusion in Rat Hippocampus. J Neuroimmune Pharmacol 2014; 9:654-67. [DOI: 10.1007/s11481-014-9558-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023]
|
121
|
Lozovaya N, Gataullina S, Tsintsadze T, Tsintsadze V, Pallesi-Pocachard E, Minlebaev M, Goriounova NA, Buhler E, Watrin F, Shityakov S, Becker AJ, Bordey A, Milh M, Scavarda D, Bulteau C, Dorfmuller G, Delalande O, Represa A, Cardoso C, Dulac O, Ben-Ari Y, Burnashev N. Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nat Commun 2014; 5:4563. [PMID: 25081057 PMCID: PMC4143949 DOI: 10.1038/ncomms5563] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC), caused by dominant mutations in either
TSC1 or
TSC2 tumour
suppressor genes is characterized by the presence of brain malformations, the
cortical tubers that are thought to contribute to the generation of
pharmacoresistant epilepsy. Here we report that tuberless heterozygote
Tsc1+/− mice show
functional upregulation of cortical GluN2C-containing N-methyl-D-aspartate receptors (NMDARs) in an
mTOR-dependent manner and exhibit recurrent, unprovoked seizures during early
postnatal life (<P19). Seizures are generated intracortically in the granular
layer of the neocortex. Slow kinetics of aberrant GluN2C-mediated currents in spiny stellate cells promotes
excessive temporal integration of persistent NMDAR-mediated recurrent excitation and
seizure generation. Accordingly, specific GluN2C/D antagonists block seizures in Tsc1+/− mice in vivo
and in vitro. Likewise, GluN2C expression is upregulated in TSC human surgical
resections, and a GluN2C/D
antagonist reduces paroxysmal hyperexcitability. Thus, GluN2C receptor constitutes a promising
molecular target to treat epilepsy in TSC patients. Tuberous sclerosis complex (TSC) is a rare genetic condition
characterized by epileptic seizures that start in infancy. Here, the authors show that
these seizures are modulated by GluN2C-containing NMDA receptors in the cortex of a
mouse model of TSC, and that suppressing their activity attenuates seizures.
Collapse
Affiliation(s)
- N Lozovaya
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [4]
| | - S Gataullina
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [4]
| | - T Tsintsadze
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3]
| | - V Tsintsadze
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - E Pallesi-Pocachard
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - M Minlebaev
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] Laboratory of Neurobiology, Kazan Federal University, Kremlevskaya street 18, 420000 Kazan, Russia
| | - N A Goriounova
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - E Buhler
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - F Watrin
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - S Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg, Josef-Schneider-Street 2, 97080 Würzburg, Germany
| | - A J Becker
- Department of Neuropathology, University of Bonn Medical Center, Sigmund Freud Street 25, D-53105 Bonn, Germany
| | - A Bordey
- Neurosurgery, and Cellular and Molecular Physiology Departments, Yale University School of Medicine, PO Box 208082, New Haven, Connecticut 06520-8082, USA
| | - M Milh
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, 264 Rue Saint-Pierre, 13385 Marseille Cedex 5, France
| | - D Scavarda
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, 264 Rue Saint-Pierre, 13385 Marseille Cedex 5, France
| | - C Bulteau
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - G Dorfmuller
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - O Delalande
- Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - A Represa
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - C Cardoso
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - O Dulac
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France [3] APHP, Necker Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Y Ben-Ari
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - N Burnashev
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| |
Collapse
|
122
|
Rojas DC. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. J Neural Transm (Vienna) 2014; 121:891-905. [PMID: 24752754 PMCID: PMC4134390 DOI: 10.1007/s00702-014-1216-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/06/2014] [Indexed: 12/11/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain and may be a key neurotransmitter involved in autism. Literature pertaining to glutamate and autism or related disorders (e.g., Fragile X syndrome) is reviewed in this article. Interest in glutamatergic dysfunction in autism is high due to increasing convergent evidence implicating the system in the disorder from peripheral biomarkers, neuroimaging, protein expression, genetics and animal models. Currently, there are no pharmaceutical interventions approved for autism that address glutamate deficits in the disorder. New treatments related to glutamatergic neurotransmission, however, are emerging. In addition, older glutamate-modulating medications with approved indications for use in other disorders are being investigated for re-tasking as treatments for autism. This review presents evidence in support of glutamate abnormalities in autism and the potential for translation into new treatments for the disorder.
Collapse
Affiliation(s)
- Donald C Rojas
- Department of Psychology, Campus Delivery 1876, Colorado State University, Fort Collins, CO, 80523, USA,
| |
Collapse
|
123
|
Zhu Z, Zeng XH, Turecek J, Han VZ, Welsh JP. RNA interference of GluN1 inhibits neuronal rhythmogenesis in the adult inferior olive. J Mol Neurosci 2014; 55:416-29. [PMID: 24930901 DOI: 10.1007/s12031-014-0353-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/10/2014] [Indexed: 11/25/2022]
Abstract
RNA interference (RNAi) to knockdown N-methyl-D-aspartate receptor (NMDAR) function is being investigated to address disorders associated with pathological brain rhythms. A motivating finding has been that pharmacological block of NMDARs inhibited oscillations in neuronal membrane potential that entrain rhythmic bursts of action potentials. To determine whether transient effects of NMDAR antagonist drugs to inhibit neuronal rhythmicity can be stably induced with genetic specificity, we examined the effects of RNAi of GluN1 protein on the subthreshold oscillations (STOs) of neurons in the inferior olive (IO), a pacemaking nucleus necessary for motor and cognitive timing. Western blot of dissociated neurons demonstrated 90% knockdown of GluN1 after a strong in vivo transduction by a dual-microRNA lentiviral vector. GluN1 RNAi in whole-cell-patched IO neurons blocked both membrane depolarization and STOs typically induced by NMDAR activation for up to 54 days without affecting input resistance, membrane capacitance, action potential firing, high-threshold Ca(2+) spikes, the hyperpolarization-activated current Ih, or the activation of the low-threshold Ca(2+) current I(T). Although an off-target effect on Cav3 expression was ruled out also by BlastN query, we found that GluN1 RNAi chronically eliminated I(T)-dependent STOs at resting membrane potential, well below the activation threshold of the NMDAR channel. In the context of a recent report showing that NMDAR activation induces STOs as it strengthens electrical coupling, the long-term block of STOs by GluN1 RNAi may relate to the loss of an essential support mechanism. Lentivector-mediated RNAi of GluN1 provides a novel technique for future investigations of NMDAR involvement in electrical oscillations and behavior.
Collapse
Affiliation(s)
- Zhiyi Zhu
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA, 98101, USA
| | | | | | | | | |
Collapse
|
124
|
Wilson SM, Ki Yeon S, Yang XF, Park KD, Khanna R. Differential regulation of collapsin response mediator protein 2 (CRMP2) phosphorylation by GSK3ß and CDK5 following traumatic brain injury. Front Cell Neurosci 2014; 8:135. [PMID: 24904280 PMCID: PMC4035569 DOI: 10.3389/fncel.2014.00135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/29/2014] [Indexed: 11/13/2022] Open
Abstract
Aberrant ion channel function has been heralded as a main underlying mechanism driving epilepsy and its symptoms. However, it has become increasingly clear that treatment strategies targeting voltage-gated sodium or calcium channels merely mask the symptoms of epilepsy without providing disease-modifying benefits. Ion channel function is likely only one important cog in a highly complex machine. Gross morphological changes, such as reactive sprouting and outgrowth, may also play a role in epileptogenesis. Mechanisms responsible for these changes are not well-understood. Here we investigate the potential involvement of the neurite outgrowth-promoting molecule collapsin response mediator protein 2 (CRMP2). CRMP2 activity, in this respect, is regulated by phosphorylation state, where phosphorylation by a variety of kinases, including glycogen synthase kinase 3 β (GSK3β) renders it inactive. Phosphorylation (inactivation) of CRMP2 was decreased at two distinct phases following traumatic brain injury (TBI). While reduced CRMP2 phosphorylation during the early phase was attributed to the inactivation of GSK3β, the sustained decrease in CRMP2 phosphorylation in the late phase appeared to be independent of GSK3β activity. Instead, the reduction in GSK3β-phosphorylated CRMP2 was attributed to a loss of priming by cyclin-dependent kinase 5 (CDK5), which allows for subsequent phosphorylation by GSK3β. Based on the observation that the proportion of active CRMP2 is increased for up to 4 weeks following TBI, it was hypothesized that it may drive neurite outgrowth, and therefore, circuit reorganization during this time. Therefore, a novel small-molecule tool was used to target CRMP2 in an attempt to determine its importance in mossy fiber sprouting following TBI. In this report, we demonstrate novel differential regulation of CRMP2 phosphorylation by GSK3β and CDK5 following TBI.
Collapse
Affiliation(s)
- Sarah M Wilson
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine Indianapolis, IN, USA
| | - Seul Ki Yeon
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology Seoul, Korea
| | - Xiao-Fang Yang
- Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Ki Duk Park
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology Seoul, Korea
| | - Rajesh Khanna
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine Indianapolis, IN, USA ; Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA
| |
Collapse
|
125
|
Age and activation determines the anticonvulsant effect of ifenprodil in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2014; 387:753-61. [DOI: 10.1007/s00210-014-0987-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
|
126
|
Zellinger C, Salvamoser JD, Soerensen J, van Vliet EA, Aronica E, Gorter J, Potschka H. Pre-treatment with the NMDA receptor glycine-binding site antagonist L-701,324 improves pharmacosensitivity in a mouse kindling model. Epilepsy Res 2014; 108:634-43. [DOI: 10.1016/j.eplepsyres.2014.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/06/2014] [Accepted: 02/20/2014] [Indexed: 01/16/2023]
|
127
|
Astroglial d-serine is the endogenous co-agonist at the presynaptic NMDA receptor in rat entorhinal cortex. Neuropharmacology 2014; 83:118-27. [PMID: 24747728 DOI: 10.1016/j.neuropharm.2014.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 03/17/2014] [Accepted: 04/07/2014] [Indexed: 12/17/2022]
Abstract
Presynaptic NMDA receptors facilitate the release of glutamate at excitatory cortical synapses and are involved in regulation of synaptic dynamics and plasticity. At synapses in the entorhinal cortex these receptors are tonically activated and provide a positive feedback modulation of the level of background excitation. NMDA receptor activation requires obligatory occupation of a co-agonist binding site, and in the present investigation we have examined whether this site on the presynaptic receptor is activated by endogenous glycine or d-serine. We used whole-cell patch clamp recordings of spontaneous AMPA receptor-mediated synaptic currents from rat entorhinal cortex neurones in vitro as a monitor of presynaptic glutamate release. Addition of exogenous glycine or d-serine had minimal effects on spontaneous release, suggesting that the co-agonist site was endogenously activated and likely to be saturated in our slices. This was supported by the observation that a co-agonist site antagonist reduced the frequency of spontaneous currents. Depletion of endogenous glycine by enzymatic breakdown with a bacterial glycine oxidase had little effect on glutamate release, whereas d-serine depletion with a yeast d-amino acid oxidase significantly reduced glutamate release, suggesting that d-serine is the endogenous agonist. Finally, the effects of d-serine depletion were mimicked by compromising astroglial cell function, and this was rescued by exogenous d-serine, indicating that astroglial cells are the provider of the d-serine that tonically activates the presynaptic NMDA receptor. We discuss the significance of these observations for the aetiology of epilepsy and possible targeting of the presynaptic NMDA receptor in anticonvulsant therapy.
Collapse
|
128
|
Pierson TM, Yuan H, Marsh ED, Fuentes-Fajardo K, Adams DR, Markello T, Golas G, Simeonov DR, Holloman C, Tankovic A, Karamchandani MM, Schreiber JM, Mullikin JC, Tifft CJ, Toro C, Boerkoel CF, Traynelis SF, Gahl WA. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol 2014; 1:190-198. [PMID: 24839611 PMCID: PMC4019449 DOI: 10.1002/acn3.39] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective Early-onset epileptic encephalopathies have been associated with de novo mutations of numerous ion channel genes. We employed techniques of modern translational medicine to identify a disease-causing mutation, analyze its altered behavior, and screen for therapeutic compounds to treat the proband. Methods Three modern translational medicine tools were utilized: (1) high-throughput sequencing technology to identify a novel de novo mutation; (2) in vitro expression and electrophysiology assays to confirm the variant protein's dysfunction; and (3) screening of existing drug libraries to identify potential therapeutic compounds. Results A de novo GRIN2A missense mutation (c.2434C>A; p.L812M) increased the charge transfer mediated by N-methyl-D-aspartate receptors (NMDAs) containing the mutant GluN2A-L812M subunit. In vitro analysis with NMDA receptor blockers indicated that GLuN2A-L812M-containing NMDARs retained their sensitivity to the use-dependent channel blocker memantine; while screening of a previously reported GRIN2A mutation (N615K) with these compounds produced contrasting results. Consistent with these data, adjunct memantine therapy reduced our proband's seizure burden. Interpretation This case exemplifies the potential for personalized genomics and therapeutics to be utilized for the early diagnosis and treatment of infantile-onset neurological disease.
Collapse
Affiliation(s)
- Tyler Mark Pierson
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, MD, USA ; Neurogenetics Branch, NINDS, NIH, Bethesda, MD, USA ; Department of Pediatrics and Neurology, and the Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hongjie Yuan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia and Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Karin Fuentes-Fajardo
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, MD, USA
| | - David R Adams
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, MD, USA ; Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Thomas Markello
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, MD, USA ; Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA
| | - Gretchen Golas
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, MD, USA ; Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA
| | - Dimitre R Simeonov
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, MD, USA
| | - Conisha Holloman
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, MD, USA ; Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA
| | - Anel Tankovic
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | - Cynthia J Tifft
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, MD, USA ; Division of Neurology, Children's Hospital of Philadelphia and Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, MD, USA ; Division of Neurology, Children's Hospital of Philadelphia and Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cornelius F Boerkoel
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, MD, USA ; Division of Neurology, Children's Hospital of Philadelphia and Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, NIH Office of Rare Diseases Research and NHGRI, Bethesda, MD, USA ; Division of Neurology, Children's Hospital of Philadelphia and Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
129
|
Ghasemi M, Kazemi MH, Yoosefi A, Ghasemi A, Paragomi P, Amini H, Afzali MH. Rapid antidepressant effects of repeated doses of ketamine compared with electroconvulsive therapy in hospitalized patients with major depressive disorder. Psychiatry Res 2014; 215:355-61. [PMID: 24374115 DOI: 10.1016/j.psychres.2013.12.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/05/2013] [Accepted: 12/05/2013] [Indexed: 12/23/2022]
Abstract
Accumulating evidence suggests that N-methyl-d-aspartate receptor (NMDAR) antagonists (e.g. ketamine) may exert rapid antidepressant effects in MDD patients. In the present study, we evaluated the rapid antidepressant effects of ketamine compared with the electroconvulsive therapy (ECT) in hospitalized patients with MDD. In this blind, randomized study, 18 patients with DSM-IV MDD were divided into two groups which received either three intravenous infusions of ketamine hydrochloride (0.5 mg/kg over 45 min) or ECT on 3 test days (every 48 h). The primary outcome measure was the Beck Depression Inventory (BDI) and Hamilton Depression Rating Scale (HDRS), which was used to rate overall depressive symptoms at baseline, 24 h after each treatment, 72 h and one week after the last (third) ketamine or ECT. Within 24 h, depressive symptoms significantly improved in subjects receiving the first dose of ketamine compared with ECT group. Compared to baseline level, this improvement remained significant throughout the study. Depressive symptoms after the second dose ketamine was also lower than the second ECT. This study showed that ketamine is as effective as ECT in improving depressive symptoms in MDD patients and have more rapid antidepressant effects compared with the ECT.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Psychiatry, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337-95914, Iran; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran; NeurExpand Brain Center, 1205 York Road, Lutherville, MD 21093, USA.
| | - Mohammad H Kazemi
- Department of Psychiatry, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337-95914, Iran; Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research (FIMR), Manhasset, NY, USA
| | - Abolghasem Yoosefi
- Department of Psychiatry, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337-95914, Iran; Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337, Iran
| | - Abbas Ghasemi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Pedram Paragomi
- Department of Psychiatry, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337-95914, Iran
| | - Homayoun Amini
- Department of Psychiatry, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337-95914, Iran; Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337, Iran
| | - Mohammad H Afzali
- Department of Psychiatry, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337-95914, Iran; Université de Toulouse-Le Mirail, Octogone, 5, Allées Antonio Machado, 31058 Toulouse Cedex 9, France
| |
Collapse
|
130
|
Zaccara G, Giovannelli F, Cincotta M, Iudice A. AMPA receptor inhibitors for the treatment of epilepsy: the role of perampanel. Expert Rev Neurother 2014; 13:647-55. [PMID: 23739002 DOI: 10.1586/ern.13.46] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the postsynaptic membrane are involved in fast excitatory signaling in the brain and their activation may lead to the firing of action potentials. Talampanel and perampanel were the first noncompetitive AMPA receptor antagonists to be tested as add-on drugs in patients with refractory partial seizures, and were found to be effective in improving seizure control. Due to an unfavorable kinetic and tolerability profile, talampanel clinical development in the field of epilepsy was discontinued early while perampanel has been recently approved in Europe and the USA as adjunctive therapy for adults with partial seizures with or without secondary generalization. The recommended perampanel starting dose is 2 mg/day once daily, which can be increased up to the recommended maintenance dose of 4-8 mg/day. Increments should be of 2 mg/day and based on clinical response and tolerability. Titration should be performed at 1-week intervals or at lower speed and a 12-mg daily dose should be considered after careful evaluation. To date, no serious and/or idiosyncratic adverse effects have been associated with this agent. Most frequently reported adverse effects are dizziness, ataxia, aggression, irritability, vertigo, somnolence, fatigue, headache and gait disturbance. Weight increase is the only non-neurological adverse effects associated with perampanel.
Collapse
Affiliation(s)
- Gaetano Zaccara
- Unit of Neurology, Department of Medicine, Florence Health Authority, Firenze, Italy.
| | | | | | | |
Collapse
|
131
|
Lemke JR, Hendrickx R, Geider K, Laube B, Schwake M, Harvey RJ, James VM, Pepler A, Steiner I, Hörtnagel K, Neidhardt J, Ruf S, Wolff M, Bartholdi D, Caraballo R, Platzer K, Suls A, De Jonghe P, Biskup S, Weckhuysen S. GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann Neurol 2014; 75:147-54. [PMID: 24272827 PMCID: PMC4223934 DOI: 10.1002/ana.24073] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/10/2013] [Accepted: 11/18/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To identify novel epilepsy genes using a panel approach and describe the functional consequences of mutations. METHODS Using a panel approach, we screened 357 patients comprising a vast spectrum of epileptic disorders for defects in genes known to contribute to epilepsy and/or intellectual disability (ID). After detection of mutations in a novel epilepsy gene, we investigated functional effects in Xenopus laevis oocytes and screened a follow-up cohort. RESULTS We revealed de novo mutations in GRIN2B encoding the NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor in 2 individuals with West syndrome and severe developmental delay as well as 1 individual with ID and focal epilepsy. The patient with ID and focal epilepsy had a missense mutation in the extracellular glutamate-binding domain (p.Arg540His), whereas both West syndrome patients carried missense mutations within the NR2B ion channel-forming re-entrant loop (p.Asn615Ile, p.Val618Gly). Subsequent screening of 47 patients with unexplained infantile spasms did not reveal additional de novo mutations, but detected a carrier of a novel inherited GRIN2B splice site variant in close proximity (c.2011-5_2011-4delTC). Mutations p.Asn615Ile and p.Val618Gly cause a significantly reduced Mg(2+) block and higher Ca(2+) permeability, leading to a dramatically increased Ca(2+) influx, whereas p.Arg540His caused less severe disturbance of channel function, corresponding to the milder patient phenotype. INTERPRETATION We identified GRIN2B gain-of-function mutations as a cause of West syndrome with severe developmental delay as well as of ID with childhood onset focal epilepsy. Severely disturbed channel function corresponded to severe clinical phenotypes, underlining the important role of facilitated NMDA receptor signaling in epileptogenesis.
Collapse
MESH Headings
- Animals
- Child
- Child, Preschool
- Crystallography, X-Ray
- Epilepsies, Partial/complications
- Epilepsies, Partial/diagnosis
- Epilepsies, Partial/genetics
- Female
- Humans
- Infant, Newborn
- Intellectual Disability/complications
- Intellectual Disability/diagnosis
- Intellectual Disability/genetics
- Mutation/genetics
- Rats
- Receptors, N-Methyl-D-Aspartate/chemistry
- Receptors, N-Methyl-D-Aspartate/genetics
- Spasms, Infantile/complications
- Spasms, Infantile/diagnosis
- Spasms, Infantile/genetics
- Xenopus laevis
Collapse
Affiliation(s)
- Johannes R Lemke
- Division of Human Genetics, University Children’s
Hospital InselspitalBern, Switzerland
- Partners of EuroEPINOMICS, RES
consortium
| | - Rik Hendrickx
- Neurogenetics Group, Department of Molecular Genetics,
Vlaams Institute of BiotechnologyAntwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge,
University of AntwerpAntwerp, Belgium
| | - Kirsten Geider
- Department of Neurophysiology and Neurosensory Systems,
Technical University DarmstadtDarmstadt, Germany
| | - Bodo Laube
- Department of Neurophysiology and Neurosensory Systems,
Technical University DarmstadtDarmstadt, Germany
| | - Michael Schwake
- Biochemistry III, Faculty of Chemistry, University of
BielefeldBielefeld, Germany
| | - Robert J Harvey
- Department of Pharmacology, University College London
School of PharmacyLondon, United Kingdom
| | - Victoria M James
- Department of Pharmacology, University College London
School of PharmacyLondon, United Kingdom
| | - Alex Pepler
- Department of Pharmacology, University College London
School of PharmacyLondon, United Kingdom
- CeGaT GmbHTübingen, Germany
| | | | | | - John Neidhardt
- Institute of Medical Molecular Genetics, University of
ZurichSwitzerland
| | - Susanne Ruf
- Department of Neuropediatrics, University of
TübingenTübingen, Germany
| | - Markus Wolff
- Department of Neuropediatrics, University of
TübingenTübingen, Germany
| | - Deborah Bartholdi
- Institute of Clinical GeneticsKlinikum Stuttgart, Stuttgart, Germany
| | - Roberto Caraballo
- Department of Neurology, Juan P. Garrahan Pediatric
HospitalBuenos Aires, Argentina
| | - Konrad Platzer
- Department of Human Genetics, University of
LübeckLübeck, Germany
| | - Arvid Suls
- Partners of EuroEPINOMICS, RES
consortium
- Neurogenetics Group, Department of Molecular Genetics,
Vlaams Institute of BiotechnologyAntwerp, Belgium
| | - Peter De Jonghe
- Partners of EuroEPINOMICS, RES
consortium
- Neurogenetics Group, Department of Molecular Genetics,
Vlaams Institute of BiotechnologyAntwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge,
University of AntwerpAntwerp, Belgium
- Department of Neurology, Antwerp University
HospitalAntwerp, Belgium
| | - Saskia Biskup
- CeGaT GmbHTübingen, Germany
- Institute of Clinical GeneticsKlinikum Stuttgart, Stuttgart, Germany
- Hertie Institute of Clinical Brain Research and German
Center for Neurodegenerative Diseases, University of TübingenTübingen, Germany
| | - Sarah Weckhuysen
- Partners of EuroEPINOMICS, RES
consortium
- Neurogenetics Group, Department of Molecular Genetics,
Vlaams Institute of BiotechnologyAntwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge,
University of AntwerpAntwerp, Belgium
| |
Collapse
|
132
|
Are alterations in transmitter receptor and ion channel expression responsible for epilepsies? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:211-29. [PMID: 25012379 DOI: 10.1007/978-94-017-8914-1_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuronal voltage-gated ion channels and ligand-gated synaptic receptors play a critical role in maintaining the delicate balance between neuronal excitation and inhibition within neuronal networks in the brain. Changes in expression of voltage-gated ion channels, in particular sodium, hyperpolarization-activated cyclic nucleotide-gated (HCN) and calcium channels, and ligand-gated synaptic receptors, in particular GABA and glutamate receptors, have been reported in many types of both genetic and acquired epilepsies, in animal models and in humans. In this chapter we review these and discuss the potential pathogenic role they may play in the epilepsies.
Collapse
|
133
|
Two patients with a GRIN2A mutation and childhood-onset epilepsy. Pediatr Neurol 2013; 49:482-5. [PMID: 24125812 DOI: 10.1016/j.pediatrneurol.2013.08.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/14/2013] [Accepted: 08/21/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND N-methyl-D-aspartate is a key neurotransmitter within the central nervous system and its dysfunction can play an important role in epilepsy. Mutations of genes involving the N-methyl-D-aspartate receptor have been implicated in a wide variety of neuropsychiatric disorders including epilepsy, specifically, within the glutamate receptor ionotropic N-methyl-D-aspartate 2A (GRIN2A). PATIENTS We report two patients with a glutamate receptor ionotropic N-methyl-D-aspartate 2A mutation who presented with epilepsy. CONCLUSIONS Individuals with a glutamate receptor ionotropic N-methyl-D-aspartate 2A mutation exhibit a broad clinical spectrum.
Collapse
|
134
|
Effect of minocycline on pentylenetetrazol-induced chemical kindled seizures in mice. Neurol Sci 2013; 35:571-6. [PMID: 24122023 DOI: 10.1007/s10072-013-1552-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
Abstract
Inflammation is one of the mechanisms involved in seizure induction. In this study, the effect of minocycline, an anti-inflammatory drug, was investigated on kindling acquisition. Chemical kindling was induced by injection of a subthreshold dose of pentylenetetrazol (PTZ; 37.5 mg/kg) in mice on every other day. Two groups of animals received minocycline (25 mg/kg) at 1 h before or 1 h after PTZ injection. Following the last PTZ injection, the changes in gene expression of TNF-α receptor, γ2 subunit of GABAA receptor and NR2A subunit of NMDA receptor were assessed in the hippocampus and piriform cortex. Injection of minocycline before PTZ increased the latency to stage 4 seizure, and decreased the duration of stages 4 and 5 seizure. It also prevented the increase in the mRNA of NR2A subunit of NMDA receptor in the hippocampus and removed the PTZ-induced increase in mRNA of γ2 subunit of GABAA receptor in piriform cortex of PTZ kindled mice. Minocycline also prevented the increase in TNF-α receptor gene expression in both hippocampus and piriform cortex. Injection of minocycline after PTZ had no significant effect on measured parameters. Therefore, it can be concluded that minocycline may exert an anticonvulsant effect through preventing the increase in GABAA and NMDA receptor subunits. These effects are accompanied by a reduction in an important inflammation index, TNF-α receptor.
Collapse
|
135
|
Tavassoli E, Saboory E, Teshfam M, Rasmi Y, Roshan‐Milani S, Ilkhanizadeh B, Hesari AK. Effect of prenatal stress on density of NMDA receptors in rat brain. Int J Dev Neurosci 2013; 31:790-5. [DOI: 10.1016/j.ijdevneu.2013.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 11/15/2022] Open
Affiliation(s)
- Elham Tavassoli
- Faculty of Veterinary SciencesIslamic Azad University, Science and Research CampusTehranIran
| | - Ehsan Saboory
- Neurophysiology Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Masood Teshfam
- Department of Physiology, Faculty of Veterinary SciencesIslamic Azad University, Science and Research CampusTehranIran
| | - Yusef Rasmi
- Department of BiochemistryFaculty of MedicineUrmia University of Medical SciencesUrmiaIran
| | - Shiva Roshan‐Milani
- Neurophysiology Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Behrooz Ilkhanizadeh
- Department of PathologyFaculty of MedicineUrmia University of Medical SciencesUrmiaIran
| | - Ali Kalantari Hesari
- Department of Histology, Faculty of Veterinary SciencesUrmia UniversityUrmiaIran
| |
Collapse
|
136
|
Astrocyte control of synaptic NMDA receptors contributes to the progressive development of temporal lobe epilepsy. Proc Natl Acad Sci U S A 2013; 110:17540-5. [PMID: 24101472 DOI: 10.1073/pnas.1311967110] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Astrocytes modulate neuronal activity, synaptic transmission, and behavior by releasing chemical transmitters in a process termed gliotransmission. Whether this process impacts epilepsy in vivo is not known. We show that genetic impairment of transmitter release from astrocytes by the expression of a glial dominant-negative SNARE domain in mice reduced epileptiform activity in situ, delayed seizure onset after pilocarpine-induced status epilepticus, and attenuated subsequent progressive increase in seizure frequency in vivo. The reduced seizure frequency was accompanied by attenuation of hippocampal damage and behavioral deficits. As the delay in seizure onset and the reduced seizure frequency were mimicked by intracerebroventricular delivery of the NMDA receptor (NMDAR) antagonist D-(-)-2-amino-5-phosphonopentanoate in WT littermates and because dominant-negative SNARE expression leads to a hypofunction of synaptic NMDARs, we conclude that astrocytes modulate epileptogenesis, recurrent spontaneous seizures, and pathophysiological consequences of epilepsy through a pathway involving NMDARs.
Collapse
|
137
|
Siddiqui N, Ahuja P, Malik S, Arya SK. Design of Benzothiazole-1,3,4-thiadiazole Conjugates: Synthesis and Anticonvulsant Evaluation. Arch Pharm (Weinheim) 2013; 346:819-31. [DOI: 10.1002/ardp.201300083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Nadeem Siddiqui
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Jamia Hamdard; Hamdard Nagar New Delhi India
| | - Priya Ahuja
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Jamia Hamdard; Hamdard Nagar New Delhi India
| | - Sachin Malik
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Jamia Hamdard; Hamdard Nagar New Delhi India
| | - Satish K. Arya
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Jamia Hamdard; Hamdard Nagar New Delhi India
| |
Collapse
|
138
|
Kazmierska P, Konopacki J. Development of NMDA-induced theta rhythm in hippocampal formation slices. Brain Res Bull 2013; 98:93-101. [DOI: 10.1016/j.brainresbull.2013.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/11/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
|
139
|
Van Liefferinge J, Massie A, Portelli J, Di Giovanni G, Smolders I. Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy? Front Cell Neurosci 2013; 7:139. [PMID: 24009559 PMCID: PMC3757300 DOI: 10.3389/fncel.2013.00139] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/11/2013] [Indexed: 12/18/2022] Open
Abstract
The vesicular neurotransmitter transporters (VNTs) are small proteins responsible for packing synaptic vesicles with neurotransmitters thereby determining the amount of neurotransmitter released per vesicle through fusion in both neurons and glial cells. Each transporter subtype was classically seen as a specific neuronal marker of the respective nerve cells containing that particular neurotransmitter or structurally related neurotransmitters. More recently, however, it has become apparent that common neurotransmitters can also act as co-transmitters, adding complexity to neurotransmitter release and suggesting intriguing roles for VNTs therein. We will first describe the current knowledge on vesicular glutamate transporters (VGLUT1/2/3), the vesicular excitatory amino acid transporter (VEAT), the vesicular nucleotide transporter (VNUT), vesicular monoamine transporters (VMAT1/2), the vesicular acetylcholine transporter (VAChT) and the vesicular γ-aminobutyric acid (GABA) transporter (VGAT) in the brain. We will focus on evidence regarding transgenic mice with disruptions in VNTs in different models of seizures and epilepsy. We will also describe the known alterations and reorganizations in the expression levels of these VNTs in rodent models for temporal lobe epilepsy (TLE) and in human tissue resected for epilepsy surgery. Finally, we will discuss perspectives on opportunities and challenges for VNTs as targets for possible future epilepsy therapies.
Collapse
|
140
|
Liang W, Lam WP, Tang HC, Leung PC, Yew DT. Current Evidence of Chinese Herbal Constituents with Effects on NMDA Receptor Blockade. Pharmaceuticals (Basel) 2013; 6:1039-54. [PMID: 24276380 PMCID: PMC3817734 DOI: 10.3390/ph6081039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/06/2013] [Accepted: 08/19/2013] [Indexed: 11/17/2022] Open
Abstract
NMDA receptor (NMDA-R) is an important molecular entity governing a wide range of functions in the central nervous system. For example, the NMDA-R is involved in memory and cognition, and impairment of both (as in Alzheimer's Disease) is attributed to NMDA-mediated neurotoxicity. With greater understanding of the NMDA-R structure, antagonists with varying degrees of binding-site and subtype selectivity have been developed and put into clinical use. Discovery of target-specific Chinese herbs have also been made in parallel. This article provides an overview of the known active sites on the NMDA-R, followed by a discussion of the relevant herbs and their constituents. Experimental evidence supporting the inhibitory role of the herbal compounds on the NMDA-R is highlighted. For some of the compounds, potential research directions are also proposed to further elucidate the underlying mechanisms of the herbs. It is envisaged that future investigations based on the present data will allow more clinically relevant herbs to be identified.
Collapse
Affiliation(s)
- Willmann Liang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong; E-Mails: (W.P.L.); (H.C.T.); (P.C.L.)
| | | | | | | | - David T. Yew
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong; E-Mails: (W.P.L.); (H.C.T.); (P.C.L.)
| |
Collapse
|
141
|
Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 2013; 45:1067-72. [PMID: 23933819 DOI: 10.1038/ng.2728] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 07/18/2013] [Indexed: 12/20/2022]
Abstract
Idiopathic focal epilepsy (IFE) with rolandic spikes is the most common childhood epilepsy, comprising a phenotypic spectrum from rolandic epilepsy (also benign epilepsy with centrotemporal spikes, BECTS) to atypical benign partial epilepsy (ABPE), Landau-Kleffner syndrome (LKS) and epileptic encephalopathy with continuous spike and waves during slow-wave sleep (CSWS). The genetic basis is largely unknown. We detected new heterozygous mutations in GRIN2A in 27 of 359 affected individuals from 2 independent cohorts with IFE (7.5%; P = 4.83 × 10(-18), Fisher's exact test). Mutations occurred significantly more frequently in the more severe phenotypes, with mutation detection rates ranging from 12/245 (4.9%) in individuals with BECTS to 9/51 (17.6%) in individuals with CSWS (P = 0.009, Cochran-Armitage test for trend). In addition, exon-disrupting microdeletions were found in 3 of 286 individuals (1.0%; P = 0.004, Fisher's exact test). These results establish alterations of the gene encoding the NMDA receptor NR2A subunit as a major genetic risk factor for IFE.
Collapse
|
142
|
Lasoń W, Chlebicka M, Rejdak K. Research advances in basic mechanisms of seizures and antiepileptic drug action. Pharmacol Rep 2013; 65:787-801. [DOI: 10.1016/s1734-1140(13)71060-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/11/2013] [Indexed: 10/25/2022]
|
143
|
Ryley Parrish R, Albertson AJ, Buckingham SC, Hablitz JJ, Mascia KL, Davis Haselden W, Lubin FD. Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus. Neuroscience 2013; 248:602-19. [PMID: 23811393 DOI: 10.1016/j.neuroscience.2013.06.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
Status epilepticus (SE) triggers abnormal expression of genes in the hippocampus, such as glutamate receptor subunit epsilon-2 (Grin2b/Nr2b) and brain-derived neurotrophic factor (Bdnf), that is thought to occur in temporal lobe epilepsy (TLE). We examined the underlying DNA methylation mechanisms and investigated whether these mechanisms contribute to the expression of these gene targets in the epileptic hippocampus. Experimental TLE was provoked by kainic acid-induced SE. Bisulfite sequencing analysis revealed increased Grin2b/Nr2b and decreased Bdnf DNA methylation levels that corresponded to decreased Grin2b/Nr2b and increased Bdnf mRNA and protein expression in the epileptic hippocampus. Blockade of DNA methyltransferase (DNMT) activity with zebularine decreased global DNA methylation levels and reduced Grin2b/Nr2b, but not Bdnf, DNA methylation levels. Interestingly, we found that DNMT blockade further decreased Grin2b/Nr2b mRNA expression whereas GRIN2B protein expression increased in the epileptic hippocampus, suggesting that a posttranscriptional mechanism may be involved. Using chromatin immunoprecipitation analysis we found that DNMT inhibition restored the decreases in AP2alpha transcription factor levels at the Grin2b/Nr2b promoter in the epileptic hippocampus. DNMT inhibition increased field excitatory postsynaptic potential in hippocampal slices isolated from epileptic rats. Electroencephalography (EEG) monitoring confirmed that DNMT inhibition did not significantly alter the disease course, but promoted the latency to seizure onset or SE. Thus, DNA methylation may be an early event triggered by SE that persists late into the epileptic hippocampus to contribute to gene expression changes in TLE.
Collapse
Affiliation(s)
- R Ryley Parrish
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - A J Albertson
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - S C Buckingham
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - J J Hablitz
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - K L Mascia
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - W Davis Haselden
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - F D Lubin
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
144
|
Albus K, Heinemann U, Kovács R. Network activity in hippocampal slice cultures revealed by long-term in vitro recordings. J Neurosci Methods 2013; 217:1-8. [PMID: 23639918 DOI: 10.1016/j.jneumeth.2013.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/21/2013] [Accepted: 04/16/2013] [Indexed: 01/19/2023]
Abstract
Organotypic hippocampal slice cultures (OHSCs) are widely used for anatomical, molecular and electrophysiological studies of the development of neuronal networks. Electrophysiological recordings are usually limited to a single time point during development, and recording conditions differ greatly based on culture conditions. Consequently, little is known about the maturation of neuronal network activity in vitro. Here, we describe a simple method that allows long-term electrophysiological recordings during culture maintenance in a CO2 incubator. We compared the occurrence of spontaneous network activity, including epileptiform activity, in OHSCs (maintained in Neurobasal/B27 serum-free medium) prepared at different postnatal days and investigated the effects of changes in osmolality and pH. Recordings over 48 h revealed spontaneous network activity culminating in seizure-like events (SLEs) in 65.4% of the OHSCs (n=78). SLE incidence peaked during the first 6h following implantation of the microelectrodes and a secondary increase in SLE-incidence began after 9h of recording and averaged 2.65SLEs/h. The initial peak was likely initiated by transient alkalosis induced by the low pCO2 during the positioning of the electrodes, whereas successive changes in the composition of the culture medium might explain the secondary increase in SLE incidence. Notably, changes in osmolality had no effect on SLE induction. In conclusion, long-term recordings in OHSCs will help to reveal changes in spontaneous network activity during maturation. The extent to which the axonal reorganization known to occur in OHSCs contributes to the susceptibility to epileptogenesis remains to be determined.
Collapse
Affiliation(s)
- Klaus Albus
- Institute of Neurophysiology, Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | | | | |
Collapse
|
145
|
d-Cycloserine administered directly to infralimbic medial prefrontal cortex enhances extinction memory in sucrose-seeking animals. Neuroscience 2013; 230:24-30. [DOI: 10.1016/j.neuroscience.2012.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/01/2012] [Accepted: 11/03/2012] [Indexed: 01/13/2023]
|
146
|
Majer A, Medina SJ, Niu Y, Abrenica B, Manguiat KJ, Frost KL, Philipson CS, Sorensen DL, Booth SA. Early mechanisms of pathobiology are revealed by transcriptional temporal dynamics in hippocampal CA1 neurons of prion infected mice. PLoS Pathog 2012; 8:e1003002. [PMID: 23144617 PMCID: PMC3493483 DOI: 10.1371/journal.ppat.1003002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/13/2012] [Indexed: 12/23/2022] Open
Abstract
Prion diseases typically have long pre-clinical incubation periods during which time the infectious prion particle and infectivity steadily propagate in the brain. Abnormal neuritic sprouting and synaptic deficits are apparent during pre-clinical disease, however, gross neuronal loss is not detected until the onset of the clinical phase. The molecular events that accompany early neuronal damage and ultimately conclude with neuronal death remain obscure. In this study, we used laser capture microdissection to isolate hippocampal CA1 neurons and determined their pre-clinical transcriptional response during infection. We found that gene expression within these neurons is dynamic and characterized by distinct phases of activity. We found that a major cluster of genes is altered during pre-clinical disease after which expression either returns to basal levels, or alternatively undergoes a direct reversal during clinical disease. Strikingly, we show that this cluster contains a signature highly reminiscent of synaptic N-methyl-D-aspartic acid (NMDA) receptor signaling and the activation of neuroprotective pathways. Additionally, genes involved in neuronal projection and dendrite development were also altered throughout the disease, culminating in a general decline of gene expression for synaptic proteins. Similarly, deregulated miRNAs such as miR-132-3p, miR-124a-3p, miR-16-5p, miR-26a-5p, miR-29a-3p and miR-140-5p follow concomitant patterns of expression. This is the first in depth genomic study describing the pre-clinical response of hippocampal neurons to early prion replication. Our findings suggest that prion replication results in the persistent stimulation of a programmed response that is mediated, at least in part, by synaptic NMDA receptor activity that initially promotes cell survival and neurite remodelling. However, this response is terminated prior to the onset of clinical symptoms in the infected hippocampus, seemingly pointing to a critical juncture in the disease. Manipulation of these early neuroprotective pathways may redress the balance between degeneration and survival, providing a potential inroad for treatment. Neurodegenerative diseases affect an ever-increasing proportion of the population; therefore, there is an urgent need to develop treatments. Prion disorders belong to this group of diseases and although rare and uniquely transmissible, share many features on a sub-cellular level. Central to disease is progressive synaptic impairment that invariably leads to the irreversible loss of neurons. Understanding this process is undoubtedly essential for rational drug discovery. In this study we looked at neurons very early in disease, when prions are barely detectable and there are no clinical symptoms observed. Specifically, we performed a comprehensive analysis of transcriptional changes within a particularly dense area of neurons, the CA1 hippocampus region, from prion-infected and control mice. In this way we were able to enrich our data for molecular changes unique to neurons and minimize those changes characteristic of support cells such as astrocytes and microglia. We detected the activation of a transcriptional program indicative of a protective mechanism within these neurons early in disease. This mechanism diminished as disease progressed and was lost altogether, concurrently with the onset of clinical symptoms. These findings demonstrate the ability of neurons to mount an initial neuroprotective response to prions that could be exploited for therapy development.
Collapse
Affiliation(s)
- Anna Majer
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sarah J. Medina
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yulian Niu
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Bernard Abrenica
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy J. Manguiat
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy L. Frost
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Clark S. Philipson
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Debra L. Sorensen
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stephanie A. Booth
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
147
|
Lemoine D, Jiang R, Taly A, Chataigneau T, Specht A, Grutter T. Ligand-gated ion channels: new insights into neurological disorders and ligand recognition. Chem Rev 2012; 112:6285-318. [PMID: 22988962 DOI: 10.1021/cr3000829] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Damien Lemoine
- Laboratoire de Biophysicochimie des Récepteurs Canaux, UMR 7199 CNRS, Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Université de Strasbourg , 67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|
148
|
Abstract
(−)-Huperzine A (1) is an alkaloid isolated from a Chinese club moss. Due to its potent neuroprotective activities, it has been investigated as a candidate for the treatment of neurodegenerative diseases, including Alzheimer’s disease. In this review, we will discuss the pharmacology and therapeutic potential of (−)-huperzine A (1). Synthetic studies of (−)-huperzine A (1) aimed at enabling its development as a pharmaceutical will be described.
Collapse
Affiliation(s)
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
149
|
Gulati V, Wallace R. Rafts, Nanoparticles and Neural Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2012; 2:217-250. [PMID: 28348305 PMCID: PMC5304588 DOI: 10.3390/nano2030217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/17/2022]
Abstract
This review examines the role of membrane rafts in neural disease as a rationale for drug targeting utilizing lipid-based nanoparticles. The article begins with an overview of methodological issues involving the existence, sizes, and lifetimes of rafts, and then examines raft function in the etiologies of three major neural diseases-epilepsy, Parkinson's disease, and Alzheimer's disease-selected as promising candidates for raft-based therapeutics. Raft-targeting drug delivery systems involving liposomes and solid lipid nanoparticles are then examined in detail.
Collapse
Affiliation(s)
- Vishal Gulati
- Ross University School of Medicine, Miami Beach Community Health Center, 11645 Biscayne Boulevard, North Miami, FL 33181, USA.
| | - Ron Wallace
- Department of Anthropology, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|