101
|
Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta Gen Subj 2014; 1840:2414-40. [PMID: 24608030 DOI: 10.1016/j.bbagen.2014.02.030] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Articular cartilage defects are a veritable therapeutic problem because therapeutic options are very scarce. Due to the poor self-regeneration capacity of cartilage, minor cartilage defects often lead to osteoarthritis. Several surgical strategies have been developed to repair damaged cartilage. Autologous chondrocyte implantation (ACI) gives encouraging results, but this cell-based therapy involves a step of chondrocyte expansion in a monolayer, which results in the loss in the differentiated phenotype. Thus, despite improvement in the quality of life for patients, reconstructed cartilage is in fact fibrocartilage. Successful ACI, according to the particular physiology of chondrocytes in vitro, requires active and phenotypically stabilized chondrocytes. SCOPE OF REVIEW This review describes the unique physiology of cartilage, with the factors involved in its formation, stabilization and degradation. Then, we focus on some of the most recent advances in cell therapy and tissue engineering that open up interesting perspectives for maintaining or obtaining the chondrogenic character of cells in order to treat cartilage lesions. MAJOR CONCLUSIONS Current research involves the use of chondrocytes or progenitor stem cells, associated with "smart" biomaterials and growth factors. Other influential factors, such as cell sources, oxygen pressure and mechanical strain are considered, as are recent developments in gene therapy to control the chondrocyte differentiation/dedifferentiation process. GENERAL SIGNIFICANCE This review provides new information on the mechanisms regulating the state of differentiation of chondrocytes and the chondrogenesis of mesenchymal stem cells that will lead to the development of new restorative cell therapy approaches in humans. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
102
|
Nyamandi VZ, Johnsen VL, Hughey CC, Hittel DS, Khan A, Newell C, Shearer J. Enhanced stem cell engraftment and modulation of hepatic reactive oxygen species production in diet-induced obesity. Obesity (Silver Spring) 2014; 22:721-9. [PMID: 23894091 DOI: 10.1002/oby.20580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The impact of dietary-induced obesity (DIO) on stem cell engraftment and the respective therapeutic potential of stem cell engraftment in DIO have not been reported. The objectives of this study were to examine the impact of DIO on the survival and efficacy of intravenous bone marrow-derived mesenchymal stem cell (MSC) administration in the conscious C57BL/6 mouse. METHODS Male mice consumed either a chow (CH) or high fat (HF, 60% kcal) diet for 18 weeks and were subsequently treated with MSC over a 6-day period. Key measurements included tissue-specific cell engraftment, glucose and insulin sensitivity, inflammation, and oxidative stress. RESULTS MSC administration had no effect on inflammatory markers, glucose, or insulin sensitivity. DIO mice showed increases in MSC engraftment in multiple tissues compared with their CH counterparts. Engraftment was increased in the HF liver where MSC administration attenuated DIO-induced oxidative stress. These liver-specific alterations in HF-MSC were associated with increases in stanniocalcin-1 (STC1) and uncoupling protein 2 (UCP2), which contribute to cell survival and modulate mitochondrial bioenergetics. CONCLUSION Results suggest that MSC administration in DIO promotes engraftment and mitigates hepatic oxidative stress. These data invite further exploration into the therapeutic potential of stem cells for the treatment of DIO oxidative stress in the liver.
Collapse
Affiliation(s)
- Vongai Z Nyamandi
- Department of Biomedical Engineering Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
103
|
Brückner S, Tautenhahn HM, Winkler S, Stock P, Jonas S, Dollinger M, Christ B. Isolation and hepatocyte differentiation of mesenchymal stem cells from porcine bone marrow--"surgical waste" as a novel MSC source. Transplant Proc 2014; 45:2056-8. [PMID: 23769107 DOI: 10.1016/j.transproceed.2013.01.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/15/2013] [Accepted: 01/31/2013] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSC) isolated from bone marrow and differentiated into hepatocyte-like cells have increasingly gained attention for clinical cell therapy of liver diseases because of their high regenerative capacity. They are available from bone marrow aspirates of the os coxae after puncture of the crista iliaca or from bone marrow "surgical waste" gained from amputations or knee and hip operations. Thus, the aim of the study was to demonstrate whether these pBM-MSC (porcine bone marrow-derived mesenchymal stem cells) displayed mesenchymal features and hepatocyte differentiation potential. MSC were isolated either from crista iliaca punctures or after sampling and collagenase digestion of bone marrow from the os femoris. Mesenchymal features were assessed by flow cytometry for specific surface antigens and their ability to differentiate into at least 3 lineages. Functional properties, such as urea or glycogen synthesis and cytochrome P450 activity, as well as the cell morphology were examined during hepatocyte differentiation. pBM-MSC from both sources lacked the hematopoietic markers CD14 and CD45 but expressed the typical mesenchymal markers CD44, CD29, CD90, and CD105. Both cell types could differentiate into adipocyte, osteocyte, and hepatocyte lineages. After hepatocyte differentiation, CD105 expression decreased significantly and cells changed morphology from fibroblastoid into polygonal, displaying significantly increased glycogen storage, urea synthesis, and cytochrome activity. pBM-MSC from various sources were identical in respect to their mesenchymal features and their hepatocyte differentiation potential. Hence, long bones might be a particularly useful resource to isolate bone marrow mesenchymal stem cells for transplantation.
Collapse
Affiliation(s)
- S Brückner
- University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
104
|
Gao L, Liu F, Tan L, Liu T, Chen Z, Shi C. The immunosuppressive properties of non-cultured dermal-derived mesenchymal stromal cells and the control of graft-versus-host disease. Biomaterials 2014; 35:3582-8. [PMID: 24468404 DOI: 10.1016/j.biomaterials.2014.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/07/2014] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs) have been developed for the prevention and treatment of graft-versus-host disease (GVHD). Non-cultured natural MSCs are considered ideal, as they better maintain their biological and therapeutic properties. The skin is the largest organ in the body and constitutes an interesting alternative to bone marrow for the generation of MSCs. Large numbers of dermal-derived-MSCs (DMSCs) can be easily generated without culturing in vitro, but their therapeutic effects still remain unclear. In this study, we described for the first time the use of non-cultured DMSCs for controlling GVHD in an MHC-mismatched mouse model and investigated their immunomodulatory effects. Our results showed that non-cultured mouse DMSCs decreased the incidence and severity of acute GVHD during MHC-mismatched stem cell transplantation in mice. This effect was mediated by the inhibition of splenic cell (SPC) proliferation and the enhancement of Treg cells. Consistent with the results in vivo, the results in vitro showed that human DMSCs inhibited the proliferation of peripheral blood mononuclear cells (PBMCs) by inhibiting the proliferation of CD3(+) T cells. hDMSCs prevented PBMCs from entering S phase, suppressed the activation of CD3(+) T cells and increased Treg proportions. In conclusion, DMSCs should be considered as a novel MSC source for the control of refractory GVHD.
Collapse
Affiliation(s)
- Li Gao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China; Department of Hematology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Fei Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Li Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Tao Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Zelin Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China.
| |
Collapse
|
105
|
Hematopoietic and mesenchymal stem cells for the treatment of chronic respiratory diseases: role of plasticity and heterogeneity. ScientificWorldJournal 2014; 2014:859817. [PMID: 24563632 PMCID: PMC3916026 DOI: 10.1155/2014/859817] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/20/2013] [Indexed: 12/21/2022] Open
Abstract
Chronic lung diseases, such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD) are incurable and represent a very high social burden. Stem cell-based treatment may represent a hope for the cure of these diseases. In this paper, we revise the overall knowledge about the plasticity and engraftment of exogenous marrow-derived stem cells into the lung, as well as their usefulness in lung repair and therapy of chronic lung diseases. The lung is easily accessible and the pathophysiology of these diseases is characterized by injury, inflammation, and eventually by remodeling of the airways. Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal (stem) cells (MSCs), encompass a wide array of cell subsets with different capacities of engraftment and injured tissue regenerating potential. Proof-of-principle that marrow cells administered locally may engraft and give rise to specialized epithelial cells has been given, but the efficiency of this conversion is too limited to give a therapeutic effect. Besides the identification of plasticity mechanisms, the characterization/isolation of the stem cell subpopulations represents a major challenge to improving the efficacy of transplantation protocols used in regenerative medicine for lung diseases.
Collapse
|
106
|
Vasandan AB, Shankar SR, Prasad P, Sowmya Jahnavi V, Bhonde RR, Jyothi Prasanna S. Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament. J Cell Mol Med 2014; 18:344-54. [PMID: 24393246 PMCID: PMC3930420 DOI: 10.1111/jcmm.12192] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/23/2013] [Indexed: 12/21/2022] Open
Abstract
Clinically reported reparative benefits of mesenchymal stromal cells (MSCs) are majorly attributed to strong immune-modulatory abilities not exactly shared by fibroblasts. However, MSCs remain heterogeneous populations, with unique tissue-specific subsets, and lack of clear-cut assays defining therapeutic stromal subsets adds further ambiguity to the field. In this context, in-depth evaluation of cellular characteristics of MSCs from proximal oro-facial tissues: dental pulp (DPSCs) and periodontal ligament (PDLSCs) from identical donors provides an opportunity to evaluate exclusive niche-specific influences on multipotency and immune-modulation. Exhaustive cell surface profiling of DPSCs and PDLSCs indicated key differences in expression of mesenchymal (CD105) and pluripotent/multipotent stem cell–associated cell surface antigens: SSEA4, CD117, CD123 and CD29. DPSCs and PDLSCs exhibited strong chondrogenic potential, but only DPSCs exhibited adipogenic and osteogenic propensities. PDLSCs expressed immuno-stimulatory/immune-adhesive ligands like HLA-DR and CD50, upon priming with IFNγ, unlike DPSCs, indicating differential response patterns to pro-inflammatory cytokines. Both DPSCs and PDLSCs were hypo-immunogenic and did not elicit robust allogeneic responses despite exposure to IFNγ or TNFα. Interestingly, only DPSCs attenuated mitogen-induced lympho-proliferative responses and priming with either IFNγ or TNFα enhanced immuno-modulation capacity. In contrast, primed or unprimed PDLSCs lacked the ability to suppress polyclonal T cell blast responses. This study indicates that stromal cells from even topographically related tissues do not necessarily share identical MSC properties and emphasizes the need for a thorough functional testing of MSCs from diverse sources with respect to multipotency, immune parameters and response to pro-inflammatory cytokines before translational usage.
Collapse
Affiliation(s)
- Anoop Babu Vasandan
- School of Regenerative Medicine (SORM), Manipal University, Bangalore, India
| | | | | | | | | | | |
Collapse
|
107
|
Dvořáková J, Kučera L, Kučera J, Švík K, Foglarová M, Muthný T, Pravda M, Němcová M, Velebný V, Kubala L. Chondrogenic differentiation of mesenchymal stem cells in a hydrogel system based on an enzymatically crosslinked tyramine derivative of hyaluronan. J Biomed Mater Res A 2013; 102:3523-30. [PMID: 24243864 DOI: 10.1002/jbm.a.35033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/24/2013] [Accepted: 11/01/2013] [Indexed: 12/12/2022]
Abstract
Hyaluronan-based tissue substitutes are promising materials in cartilage reconstruction surgery. Herein, the chondrogenesis of human mesenchymal stem cells (MSC) in a hydrogel based on a tyramine derivative of hyaluronan crosslinked by hydrogen peroxidase (HA-TA) was evaluated. Human MSC seeded in the scaffold were incubated in standard chondrogenic medium and medium enriched with bone morphogenetic protein-6 (BMP6). Cell viability, the gene expression of selected markers (collagen type II, aggrecan, SOX9, collagen type X, and osteopontin), and the histological characteristics were examined during three weeks of in vitro cultivation. The tissue reaction of both unseeded and MSC seeded HA-TA scaffolds were tested in vivo after subcutaneous application in rats for 12 weeks. The data showed that cells resisted the process of crosslinking and remained viable for the whole time while exhibiting changes in cell organization. Human MSC cultivated in HA-TA hydrogel expressed genes of both chondrogenic and osteogenic differentiation and the addition of BMP6 revealed a tendency to potentiate both processes. Histological analysis of HA-TA in vivo implants did not reveal a chronic inflammatory reaction. In both cases, in vivo HA-TA implants were continuously degraded and MSC-seeded hydrogels tended to form clusters similar to in vitro samples. In conclusion, MSC chondrogenic differentiation may proceed in a HA-TA scaffold that is biocompatible. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3523-3530, 2014.
Collapse
Affiliation(s)
- Jana Dvořáková
- Contipro Biotech s.r.o., 401, 561 02, Dolní Dobrouč, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Huang WH, Chen HL, Huang PH, Yew TL, Lin MW, Lin SJ, Hung SC. Hypoxic mesenchymal stem cells engraft and ameliorate limb ischaemia in allogeneic recipients. Cardiovasc Res 2013; 101:266-76. [PMID: 24220639 DOI: 10.1093/cvr/cvt250] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIMS Local injection of stem cells or endothelial progenitors directly into the ischaemic tissue remains an option for the management of arterial occlusion. Bone marrow-derived mesenchymal stem cells (MSCs) represent a promising alternative autologous cell source for ischaemic limb cell therapy. However, methods for applying MSCs in allogeneic transplantation remain to be developed. The purpose of this study was to evaluate the therapeutic potential of MSCs cultured under a different environment in ameliorating limb ischaemia in allogeneic recipients. METHODS AND RESULTS Here, we demonstrated that hypoxic MSCs from B6 mice ameliorate limb ischaemia of Balb/c mice compared with normoxic MSCs. We also demonstrated that hypoxic MSCs have an increased ability to engraft in allogeneic recipients by reducing natural killer (NK) cytotoxicity and decrease the accumulation of host-derived NK cells when transplanted in vivo. These allogeneic hypoxic MSCs gave rise to CD31+ endothelial cells and α-smooth muscle actin (SMA)+ and desmin+ muscle cells, thereby enhancing angiogenesis and restoring muscle structure. Moreover, application of anti-NK antibodies together with normoxic MSCs enhanced angiogenesis and prevented limb amputation in allogeneic recipients with limb ischaemia. CONCLUSION These results strongly suggest that hypoxic MSCs are intrinsically immunoprivileged and can serve as a 'universal donor cell' for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Wei-Hua Huang
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
109
|
Mesples A, Majeed N, Zhang Y, Hu X. Early immunotherapy using autologous adult stem cells reversed the effect of anti-pancreatic islets in recently diagnosed type 1 diabetes mellitus: preliminary results. Med Sci Monit 2013; 19:852-7. [PMID: 24121994 PMCID: PMC3808238 DOI: 10.12659/msm.889525] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Bone marrow stem cell treatment has been proven a promising therapeutic strategy and showed significant results given the strong immune modulating properties. We have investigated the safety and efficacy of autologous bone marrow stem cell transplantation through liver puncture in two patients with recently diagnosed type 1 diabetes mellitus. MATERIAL AND METHODS The procedure was approved by the Institutional Ethics Committee. In 2011, in three young patients, type 1 diabetes mellitus diagnosis was confirmed, with the presence of positive antibodies and ketoacidosis. Two patients was treated with autologous bone marrow stem cell stimulated with filgrastim and transplantation, through liver puncture, as immune modulators. One patients was treated with conventional treatment and participate in this experiment as a control group. The families of the patients signed the informed consent. No specific statistical analysis was performed. The patients had less than 8 years old, diagnosis of type 1 diabetes for less than 60 days, body mass index less than 22 kg/m2, normal complete blood count, coagulation and renal function, no lesions in target organs, glycosylated hemoglobin (HbA1c) level less than 13.70%, c-peptide level less than 0.67 ng/ml, positive results of Islets Cells Antibody (ICA), Glutamic Acid Decarboxylase (GAD) and insulin antibody. RESULTS In two patients treated, the follow up at 12 months showed negative value in ICA, GAD and anti insulin antibody levels, with an increased levels of c peptide and decreased levels of blood glucose and HbA1c. CONCLUSIONS Treatment with autologous bone marrow stem cells is easy and effective as it reversed the production and effect of anti pancreatic islet antibody and significantly resulted in an increased c-peptide concentration.
Collapse
|
110
|
Struys T, Ketkar-Atre A, Gervois P, Leten C, Hilkens P, Martens W, Bronckaers A, Dresselaers T, Politis C, Lambrichts I, Himmelreich U. Magnetic Resonance Imaging of Human Dental Pulp Stem Cells in Vitro and in Vivo. Cell Transplant 2013; 22:1813-29. [DOI: 10.3727/096368912x657774] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent advances in stem cell research have shown the promising nature of mesenchymal stem cells as plausible candidates for cell-based regenerative medicine. Many studies reported the use of human dental pulp stem cells (hDPSCs), which possess self-renewal capacity, high proliferation potential, and the ability to undergo multilineage differentiation. Together with this therapeutic approach, development of effective, noninvasive and nontoxic imaging techniques for visualizing and tracking the cells in vivo is crucial for the evaluation and improvement of stem cell therapy. Magnetic resonance imaging (MRI) is one of the most powerful diagnostic imaging techniques currently available for in vivo diagnosis and has been proposed as the most attractive modality for monitoring stem cell migration. The aim of this study was to investigate the labeling efficiency of hDPSCs using superparamagnetic iron oxide (SPIO) particles in order to allow visualization using in vitro and in vivo MRI without influencing cellular metabolism. MRI and transmission electron microscopy (TEM) showed optimal uptake with low SPIO concentrations of 15 μg/ml in combination with 0.75 μg/ml poly-l-lysine (PLL) resulting in more than 13 pg iron/cell and an in vitro detection limit of 50 labeled cells/μl. Very low SPIO concentrations in the culture medium resulted in extremely high labeling efficiency not reported before. For these conditions, tetrazolium salt assays showed no adverse effects on cell viability. Furthermore, in vivo MRI was performed to detect labeled hDPSCs transplanted into the brain of Rag 2-γ C immune-deficient mice. Transplanted cells did not show any signs of tumorgenecity or teratoma formation during the studied time course. We have reported on a labeling and imaging strategy to visualize human dental pulp stem cells in vivo using MRI. These data provide a solid base to allow cell tracking in future regenerative studies in the brain longitudinally.
Collapse
Affiliation(s)
- T. Struys
- Biomedical MRI Unit-MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Biomedical Research Institute, Lab of Histology, Hasselt University, Diepenbeek, Belgium
| | - A. Ketkar-Atre
- Biomedical MRI Unit-MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - P. Gervois
- Biomedical Research Institute, Lab of Histology, Hasselt University, Diepenbeek, Belgium
| | - C. Leten
- Biomedical MRI Unit-MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - P. Hilkens
- Biomedical Research Institute, Lab of Histology, Hasselt University, Diepenbeek, Belgium
| | - W. Martens
- Biomedical Research Institute, Lab of Histology, Hasselt University, Diepenbeek, Belgium
| | - A. Bronckaers
- Biomedical Research Institute, Lab of Histology, Hasselt University, Diepenbeek, Belgium
| | - T. Dresselaers
- Biomedical MRI Unit-MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - C. Politis
- Ziekenhuis Oost-Limburg (ZOL), Genk, Belgium
| | - I. Lambrichts
- Biomedical Research Institute, Lab of Histology, Hasselt University, Diepenbeek, Belgium
| | - U. Himmelreich
- Biomedical MRI Unit-MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
111
|
Pesmatzoglou M, Dimitriou H, Stiakaki E. Could mesenchymal stromal cells have a role in childhood autoimmune diseases? Immunol Invest 2013; 42:639-56. [PMID: 24004061 DOI: 10.3109/08820139.2013.822393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs) comprise a promising source for cellular therapy due to their ability to be readily isolated from various tissues and expand ex vivo. A unique property of these cells is the modulation of immune responses, making them attractive candidates for the treatment of autoimmune diseases. Recently, several clinical trials, mainly in adults, suggest the use of MSCs for therapy of refractory autoimmune diseases. There are a very limited number of reports in the literature addressing the cellular therapy options for pediatric patients with autoimmune diseases refractory to standard therapy. This review discusses the possible mechanisms underlying the immunosuppressive effects of MSCs on almost all cell types, and also the recent advances in cellular therapy of autoimmune diseases using MSCs as modulators of immune response, especially in children.
Collapse
Affiliation(s)
- Margarita Pesmatzoglou
- University of Crete, Medical School, Pediatric Hematology-Oncology, Heraklion Crete, Greece
| | | | | |
Collapse
|
112
|
Yuan Y, Lin S, Guo N, Zhao C, Shen S, Bu X, Ye H. Marrow mesenchymal stromal cells reduce methicillin-resistant Staphylococcus aureus infection in rat models. Cytotherapy 2013; 16:56-63. [PMID: 23993644 DOI: 10.1016/j.jcyt.2013.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/01/2013] [Accepted: 06/08/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND AIMS Staphylococci account for a large proportion of hospital-acquired infections, especially among patients with indwelling devices. These infections are often caused by biofilm-producing strains, which are difficult to eradicate and may eventually cause bacteremia and metastatic infections. Recent evidence suggests that mesenchymal stem cells can enhance bacterial clearance in vivo. METHODS In this study, a rat model with carboxymethyl cellulose pouch infection was used to analyze the efficacy of bone marrow-derived mesenchymal stromal cells (BMSCs) against the methicillin-resistant Staphylococcus aureus. RESULTS The results showed that the administration of BMSCs effectively reduced the number of bacterial colonies and the expression of many cytokines and chemokines (such as interleukin [IL]-6, IL-1β, IL-10 and CCL5). Unlike the fibroblast control groups, the pouch tissues from the BMSC-treated rats showed the formation of granulations, suggesting that the healing of the wound was in progress. CONCLUSIONS The results indicate that the treatment of BMSCs can reduce methicillin-resistant S aureus infection in vivo, thereby reducing the inflammatory response.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Food Quality and Safety, College of Agriculture, Jilin University, Changchun, China
| | - Songyi Lin
- Department of Food Quality and Safety, College of Agriculture, Jilin University, Changchun, China
| | - Na Guo
- Department of Food Quality and Safety, College of Agriculture, Jilin University, Changchun, China
| | - Chengcheng Zhao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Suxia Shen
- Department of Food Quality and Safety, College of Agriculture, Jilin University, Changchun, China
| | - Xiujuan Bu
- Department of Food Quality and Safety, College of Agriculture, Jilin University, Changchun, China
| | - Haiqing Ye
- Department of Food Quality and Safety, College of Agriculture, Jilin University, Changchun, China.
| |
Collapse
|
113
|
Kuçi Z, Seiberth J, Latifi-Pupovci H, Wehner S, Stein S, Grez M, Bönig H, Köhl U, Klingebiel T, Bader P, Kuçi S. Clonal analysis of multipotent stromal cells derived from CD271+ bone marrow mononuclear cells: functional heterogeneity and different mechanisms of allosuppression. Haematologica 2013; 98:1609-16. [PMID: 23975178 DOI: 10.3324/haematol.2013.092700] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous reports demonstrated a relationship between proliferation potential and trilineage differentiation in mesenchymal stromal cell-derived clones generated using plastic adherence (PA-MSCs). However, there are no reports presenting a clonal analysis of the proliferative potential, differentiation potential and allosuppressive effects of human mesenchymal stromal cell subsets. In this study, we performed a clonal analysis of mesenchymal stromal cells generated from human CD271(+) bone marrow mononuclear cells (CD271-MSCs). After transfection with the gene encoding green fluorescent protein, the cells were single-cell sorted and cultured for 2-4 weeks. A population doubling analysis demonstrated that 25% of CD271-MSC clones are fast-proliferating clones compared to only 10% of PA-MSC clones. Evaluation of the allosuppressive potential demonstrated that 81.8% of CD271-MSC clones were highly allosuppressive compared to only 58% of PA-MSC clones. However, no consistent correlation was observed between allosuppression and proliferative potential. Prostaglandin E2 levels were positively correlated with the allosuppressive activity of individual clones, suggesting that this molecule may be a useful predictive biomarker for the allosuppressive potential of mesenchymal stromal cells. In contrast, inhibitory studies of indoleamine 2,3 dioxygenase indicated that none of the clones used this enzyme to mediate their allosuppressive effect. Differentiation studies revealed the presence of tripotent, bipotent and unipotent CD271-MSC and PA-MSC clones which suppressed the allogeneic reaction to differing extents in vitro. In conclusion, our findings demonstrate differences between CD271-MSCs and PA-MSCs and indicate that neither proliferation potential nor differentiation potential represents a consistent predictive parameter for the immunomodulatory effects of either type of mesenchymal stromal cells.
Collapse
|
114
|
Lee JH, Jeon EJ, Kim N, Nam YS, Im KI, Lim JY, Kim EJ, Cho ML, Han KT, Cho SG. The synergistic immunoregulatory effects of culture-expanded mesenchymal stromal cells and CD4(+)25(+)Foxp3+ regulatory T cells on skin allograft rejection. PLoS One 2013; 8:e70968. [PMID: 23940676 PMCID: PMC3733648 DOI: 10.1371/journal.pone.0070968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 06/26/2013] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are seen as an ideal source of cells to induce graft acceptance; however, some reports have shown that MSCs can be immunogenic rather than immunosuppressive. We speculate that the immunomodulatory effects of regulatory T cells (Tregs) can aid the maintenance of immunoregulatory functions of MSCs, and that a combinatorial approach to cell therapy can have synergistic immunomodulatory effects on allograft rejection. After preconditioning with Fludarabine, followed by total body irradiation and anti-asialo-GM-1(ASGM-1), tail skin grafts from C57BL/6 (H-2kb) mice were grafted onto the lateral thoracic wall of BALB/c (H-2kd) mice. Group A mice (control group, n = 9) did not receive any further treatment after preconditioning, whereas groups B and C (n = 9) received cell therapy with MSCs or Tregs, respectively, on days −1, +6 and +13 relative to the skin transplantation. Group D (n = 10) received cell therapy with MSCs and Tregs on days −1, +6 and +13. Cell suspensions were obtained from the spleens of five randomly chosen mice from each group on day +7, and the immunomodulatory effects of the cell therapy were evaluated by flow cytometry and real-time PCR. Our results show that allograft survival was significantly longer in group D compared to the control group (group A). Flow cytometric analysis and real-time PCR for splenocytes revealed that the Th2 subpopulation in group D increased significantly compared to the group B. Also, the expression of Foxp3 and STAT 5 increased significantly in group D compared to the conventional cell therapy groups (B and C). Taken together, these data suggest that a combined cell therapy approach with MSCs and Tregs has a synergistic effect on immunoregulatory function in vivo, and might provide a novel strategy for improving survival in allograft transplantation.
Collapse
Affiliation(s)
- Jung Ho Lee
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
- Department of Plastic and Reconstructive Surgery, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Eun-Joo Jeon
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Nayoun Kim
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Young-Sun Nam
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Keon-Il Im
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jung-Yeon Lim
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Eun-Jung Kim
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Institutes of Medical Science, Seoul, Korea
| | - Ki Taik Han
- Department of Plastic and Reconstructive Surgery, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Seok-Goo Cho
- Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
- Catholic Blood and Marrow Transplantation Center, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
115
|
Abstract
BACKGROUND Adult stem cells come from many sources and have the capacity to differentiate into many cell types, including those of the skin. The most commonly studied stem cells are those termed mesenchymal stem cells (MSCs), which are easily isolated from bone marrow and adipose tissue. Mesenchymal stem cells are known to produce a wide array of cytokines that modulate the regeneration process. The ease of collection, propagation and use of these MSCs in therapy of traumatic, ischaemic and immune-mediated skin conditions is emerging. APPROACH AND EVIDENCE In traumatic and ischaemic skin damage, MSCs are used in tissue-engineered skin and by direct injection into damaged tissue. For immune-mediated diseases, systemic administration of stem cells can modulate the immune system. The earliest clinical work has been with autologous stem cell sources, such as adipose tissue and bone marrow. In immune-mediated diseases, the MSCs are used to downregulate production of inflammatory cytokines and to block T-cell activation. Cells are generally given intravenously. Multiple sclerosis, rheumatoid arthritis and lupus have been successfully treated in human clinical trials. Mesenchymal stem cells can also stimulate resident local cells, such as keratinocytes and progenitor cells, to proliferate, migrate and repair skin injury and disease. LOOKING AHEAD The discovery of the MSC in adipose tissue has spawned a global effort to utilize these cells in therapy of a wide range of diseases of the skin. Reconstructive surgery, scar blocking and resolution and skin regeneration have all been shown to be possible in human and animal studies.
Collapse
Affiliation(s)
- Robert J Harman
- Vet-Stem, Inc., 12860 Danielson Court, Poway, CA 82064, USA.
| |
Collapse
|
116
|
Haines DD, Juhasz B, Tosaki A. Management of multicellular senescence and oxidative stress. J Cell Mol Med 2013; 17:936-57. [PMID: 23789967 PMCID: PMC3780549 DOI: 10.1111/jcmm.12074] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/18/2013] [Indexed: 12/15/2022] Open
Abstract
Progressively sophisticated understanding of cellular and molecular processes that contribute to age-related physical deterioration is being gained from ongoing research into cancer, chronic inflammatory syndromes and other serious disorders that increase with age. Particularly valuable insight has resulted from characterization of how senescent cells affect the tissues in which they form in ways that decrease an organism's overall viability. Increasingly, the underlying pathophysiology of ageing is recognized as a consequence of oxidative damage. This leads to hyperactivity of cell growth pathways, prominently including mTOR (mammalian target of rapamycin), that contribute to a build-up in cells of toxic aggregates such as progerin (a mutant nuclear cytoskeletal protein), lipofuscin and other cellular debris, triggering formation of senescent cellular phenotypes, which interact destructively with surrounding tissue. Indeed, senescent cell ablation dramatically inhibits physical deterioration in progeroid (age-accelerated) mice. This review explores ways in which oxidative stress creates ageing-associated cellular damage and triggers induction of the cell death/survival programs' apoptosis, necrosis, autophagy and 'necroapoptophagy'. The concept of 'necroapoptophagy' is presented here as a strategy for varying tissue oxidative stress intensity in ways that induce differential activation of death versus survival programs, resulting in enhanced and sustained representation of healthy functional cells. These strategies are discussed in the context of specialized mesenchymal stromal cells with the potential to synergize with telocytes in stabilizing engrafted progenitor cells, thereby extending periods of healthy life. Information and concepts are summarized in a hypothetical approach to suppressing whole-organism senescence, with methods drawn from emerging understandings of ageing, gained from Cnidarians (jellyfish, corals and anemones) that undergo a unique form of cellular regeneration, potentially conferring open-ended lifespans.
Collapse
Affiliation(s)
- David D Haines
- Department of Pharmacology, Faculty of Pharmacy, Health and Science Center, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
117
|
Lv SS, Liu G, Wang JP, Wang WW, Cheng J, Sun AL, Liu HY, Nie HB, Su MR, Guan GJ. Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting macrophage infiltration. Int Immunopharmacol 2013; 17:275-82. [PMID: 23791972 DOI: 10.1016/j.intimp.2013.05.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/13/2013] [Accepted: 05/27/2013] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) treatment has been shown to be effective in diabetic nephropathy (DN). However, the mechanisms involved in the renoprotective effects of MSCs have not been clearly demonstrated. Especially, there was no study on the relationship of MSCs and macrophages in diabetic kidney. To explore the effect of MSCs on macrophages in DN, streptozotocin-induced diabetes animals received no treatment or treatment with MSCs (2×10(6), via tail vein) for two continuous weeks. Eight weeks after treatment, physical, biochemical and morphological parameters were measured. Immunohistochemistry for fibronectin (FN), CollagenI, ED-1, monocyte chemoattractant protein-1 (MCP-1) was performed. Expressions of pro-inflammatory cytokines and hepatocyte growth factor (HGF) at gene level and protein level were determined by real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Blood glucose, urinary albumin excretion, creatinine clearance were significantly reduced after MSCs treatment. The glomerulosclerosis as revealed by periodic acid Schiff stain and expression of FN and CollagenI was also dramatically attenuated. Most importantly, the expression of MCP-1 and the number of infiltrated macrophages in kidney were effectively suppressed by MSCs treatment. The expression of HGF in MSCs group was up-regulated. Meanwhile, the expressions of IL-1β, IL-6 and TNFα were significantly down-regulated by MSCs treatment. Our study suggest that MSCs treatment ameliorates DN via inhibition of MCP-1 expression by secreting HGF, thus reducing macrophages infiltration, down-regulating IL-1β, IL-6, TNFα expression in renal tissue in diabetic rats.
Collapse
Affiliation(s)
- Sha-Sha Lv
- Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Plotnikov EY, Pulkova NV, Pevzner IB, Zorova LD, Silachev DN, Morosanova MA, Sukhikh GT, Zorov DB. Inflammatory pre-conditioning of mesenchymal multipotent stromal cells improves their immunomodulatory potency in acute pyelonephritis in rats. Cytotherapy 2013; 15:679-89. [DOI: 10.1016/j.jcyt.2013.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/24/2012] [Accepted: 02/02/2013] [Indexed: 12/22/2022]
|
119
|
Conese M, Carbone A, Castellani S, Di Gioia S. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases. Cells Tissues Organs 2013; 197:445-73. [PMID: 23652321 DOI: 10.1159/000348831] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders.
Collapse
Affiliation(s)
- Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | |
Collapse
|
120
|
Li Q, Zhou X, Shi Y, Li J, Zheng L, Cui L, Zhang J, Wang L, Han Z, Han Y, Fan D. In vivo tracking and comparison of the therapeutic effects of MSCs and HSCs for liver injury. PLoS One 2013; 8:e62363. [PMID: 23638052 PMCID: PMC3640058 DOI: 10.1371/journal.pone.0062363] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/20/2013] [Indexed: 01/18/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) have been studied for damaged liver repair; however, the conclusions drawn regarding their homing capacity to the injured liver are conflicting. Besides, the relative utility and synergistic effects of these two cell types on the injured liver remain unclear. Methodology/Principal Findings MSCs, HSCs and the combination of both cells were obtained from the bone marrow of male mice expressing enhanced green fluorescent protein(EGFP)and injected into the female mice with or without liver fibrosis. The distribution of the stem cells, survival rates, liver function, hepatocyte regeneration, growth factors and cytokines of the recipient mice were analyzed. We found that the liver content of the EGFP-donor cells was significantly higher in the MSCs group than in the HSCs or MSCs+HSCs group. The survival rate for the MSCs group was significantly higher than that of the HSCs or MSCs+HSCs group; all surpassed the control group. After MSC-transplantation, the injured livers were maximally restored, with less collagen than the controls. The fibrotic areas had decreased to a lesser extent in the mice transplanted with HSCs or MSCs+HSCs. Compared with mice in the HSCs group, the mice that received MSCs had better improved liver function. MSCs exhibited more remarkable paracrine effects and immunomodulatory properties on hepatic stellate cells and native hepatocytes in the treatment of the liver pathology. Synergistic actions of MSCs and HSCs were most likely not observed because the stem cells in liver were detected mostly as single cells, and single MSCs are insufficient to provide a beneficial niche for HSCs. Conclusions/Significance MSCs exhibited a greater homing capability for the injured liver and modulated fibrosis and inflammation more effectively than did HSCs. Synergistic effects of MSCs and HSCs were not observed in liver injury.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jinge Li
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Linhua Zheng
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Lina Cui
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jun Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Lu Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zheyi Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Ying Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
- * E-mail:
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
121
|
Guo Z, Zhou X, Li J, Meng Q, Cao H, Kang L, Ni Y, Fan H, Liu Z. Mesenchymal stem cells reprogram host macrophages to attenuate obliterative bronchiolitis in murine orthotopic tracheal transplantation. Int Immunopharmacol 2013; 15:726-34. [DOI: 10.1016/j.intimp.2013.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/04/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023]
|
122
|
Li Z, Jiang CM, An S, Cheng Q, Huang YF, Wang YT, Gou YC, Xiao L, Yu WJ, Wang J. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. Oral Dis 2013; 20:25-34. [PMID: 23463961 DOI: 10.1111/odi.12086] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/20/2013] [Accepted: 02/09/2013] [Indexed: 12/13/2022]
Abstract
In addition to their well-established self-renewal and multipotent differentiation properties, mesenchymal stem cells (MSCs) also possess potent immunomodulatory functions both in vitro and in vivo, which render them a potential novel immunotherapeutic tool for a variety of autoimmune and inflammation-related diseases. The major mechanisms may involve (1) the secretion of an array of soluble factors such as prostaglandin E2 (PGE2 ), indoleamine 2, 3-dioxygenase (IDO), transforming growth factor-β (TGF-β), and human leukocyte antigen G5 (HLA-G5); (2) interactions between MSCs and immune cells such as T cells, B cells, macrophages, and dendritic cells. Recently, increasing evidence has supported that MSCs derived from dental tissues are promising alternative sources of multipotent MSCs. We here provide a thorough and extensive review about new findings in the immunomodulatory functions of MSCs derived from several dental tissues, including dental pulp, periodontal ligament, gingiva, exfoliated deciduous teeth, apical papilla, and dental follicle, respectively. The immunomodulatory properties of dental MSCs place them as a more accessible cell source than bone marrow-derived MSCs for cell-based therapy of immune and inflammation-related diseases.
Collapse
Affiliation(s)
- Z Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells. Hum Immunol 2013; 74:267-76. [DOI: 10.1016/j.humimm.2012.12.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 12/29/2022]
|
124
|
Sayed SS, Abd El Aziz DH. The effect of mesenchymal stem cell therapy on ischemia–reperfusion-induced injury of the rat pancreas. THE EGYPTIAN JOURNAL OF HISTOLOGY 2013; 36:253-264. [DOI: 10.1097/01.ehx.0000426051.01947.cb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
125
|
Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells 2013; 30:1664-74. [PMID: 22644660 DOI: 10.1002/stem.1132] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that results from cell-mediated autoimmune destruction of insulin-producing cells. In T1DM animal models, it has been shown that the systemic administration of multipotent mesenchymal stromal cells, also referred as to mesenchymal stem cells (MSCs), results in the regeneration of pancreatic islets. Mechanisms underlying this effect are still poorly understood. Our aims were to assess whether donor MSCs (a) differentiate into pancreatic β-cells and (b) modify systemic and pancreatic pathophysiologic markers of T1DM. After the intravenous administration of 5 × 10(5) syngeneic MSCs, we observed that mice with T1DM reverted their hyperglycemia and presented no donor-derived insulin-producing cells. In contrast, 7 and 65 days post-transplantation, MSCs were engrafted into secondary lymphoid organs. This correlated with a systemic and local reduction in the abundance of autoaggressive T cells together with an increase in regulatory T cells. Additionally, in the pancreas of mice with T1DM treated with MSCs, we observed a cytokine profile shift from proinflammatory to antinflammatory. MSC transplantation did not reduce pancreatic cell apoptosis but recovered local expression and increased the circulating levels of epidermal growth factor, a pancreatic trophic factor. Therefore, the antidiabetic effect of MSCs intravenously administered is unrelated to their transdifferentiation potential but to their capability to restore the balance between Th1 and Th2 immunological responses along with the modification of the pancreatic microenvironment. Our data should be taken into account when designing clinical trials aimed to evaluate MSC transplantation in patients with T1DM since the presence of endogenous precursors seems to be critical in order to restore glycemic control.
Collapse
Affiliation(s)
- Fernando Ezquer
- Instituto de Ciencias, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
126
|
Voswinkel J, Francois S, Simon JM, Benderitter M, Gorin NC, Mohty M, Fouillard L, Chapel A. Use of mesenchymal stem cells (MSC) in chronic inflammatory fistulizing and fibrotic diseases: a comprehensive review. Clin Rev Allergy Immunol 2013. [PMID: 23296948 DOI: 10.1007/s12016-012-8347-6.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mesenchymal stem cells (MSC), multipotent adult stem cells, feature the potential to regenerate tissue damage and, in parallel, inhibit inflammation and fibrosis. MSC can be safely transplanted in autologous and allogeneic ways as they are non-immunogenic, and consequently represent a therapeutic option for refractory connective tissue diseases, fibrosing diseases like scleroderma and fistulizing colitis like in Crohn's disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, and 22 are on autoimmune diseases. In irradiation-induced colitis, MSC accelerate functional recovery of the intestine and dampen the systemic inflammatory response. In order to provide rescue therapy for accidentally over-irradiated prostate cancer patients who underwent radiotherapy, allogeneic bone marrow-derived MSC from family donors were intravenously infused to three patients with refractory and fistulizing colitis resembling fistulizing Crohn's disease. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhoea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets towards an increase of T regulatory cells and a decrease of activated effector T cells. The current data indicate that MSC represent a promising alternative strategy in the treatment of various immune-mediated diseases. Encouraging results have already been obtained from clinical trials in Crohn's disease and SLE as well as from case series in systemic sclerosis. MSC represent a safe therapeutic measure for patients who suffer from chronic and fistulizing colitis. These findings are instructional for the management of refractory inflammatory bowel diseases that are characterized by similar clinical and immunopathological features.
Collapse
Affiliation(s)
- Jan Voswinkel
- Department of Hematology, Saint Antoine Hospital APHP and UPMC University, UMRS 938, 184 rue Faubourg Saint Antoine, 75012, Paris, France,
| | | | | | | | | | | | | | | |
Collapse
|
127
|
MacFarlane RJ, Graham SM, Davies PSE, Korres N, Tsouchnica H, Heliotis M, Mantalaris A, Tsiridis E. Anti-inflammatory role and immunomodulation of mesenchymal stem cells in systemic joint diseases: potential for treatment. Expert Opin Ther Targets 2013; 17:243-54. [PMID: 23293906 DOI: 10.1517/14728222.2013.746954] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are multipotent stromal cells characterized by their ability to differentiate into adipocytes, chondrocytes, osteocytes and a number of other lineages. Investigation into their use has increased in recent years as characterization of their immunomodulatory properties has developed, and their role in the pathophysiology of joint disease has been suggested. AREAS COVERED MSCs demonstrate immunosuppressive functionality by suppressing T- and B-cell responses following activation by cytokines such as IL-6 and IL-1α. They also can be induced to exert pro-inflammatory effects in the presence of acute inflammatory environment due to the actions of TNF-α and IFN-γ. In inflammatory joint diseases such as rheumatoid arthritis, MSCs in bone marrow migrate to joints by a TNF-α-dependent mechanism and may be in part responsible for the disease process. MSCs have also been demonstrated in increased numbers in periarticular tissues in osteoarthritis, which may reflect an attempt at joint regeneration. EXPERT OPINION Clinical applications for MSCs have shown promise in a number of inflammatory and autoimmune disorders. Future work is likely to further reveal the immunosuppressive characteristics of MSCs, their role in the pathophysiology of joint diseases and provide the basis for new avenues for treatment.
Collapse
Affiliation(s)
- Robert J MacFarlane
- The Royal Liverpool University Hospital, Department of Trauma and Orthopaedics, Prescot Street, Liverpool, Merseyside L7 8XP, UK
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Stem cell transplantation is a promising approach for improving cardiac function after severe myocardial damage for which use of autologous cells have been preferred to avoid immune rejection. Recently, however, rodent as well as human mesenchymal stromal cells (MSCs) have been reported to be uniquely immune tolerant, both in in vitro as well as in vivo transplant models. In this chapter, we summarize the current understanding of the underlying immunologic mechanisms, which can facilitate the use of such cells as "universal donor cells."
Collapse
|
129
|
Moriguchi Y, Tateishi K, Ando W, Shimomura K, Yonetani Y, Tanaka Y, Kita K, Hart DA, Gobbi A, Shino K, Yoshikawa H, Nakamura N. Repair of meniscal lesions using a scaffold-free tissue-engineered construct derived from allogenic synovial MSCs in a miniature swine model. Biomaterials 2012; 34:2185-93. [PMID: 23261221 DOI: 10.1016/j.biomaterials.2012.11.039] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/22/2012] [Indexed: 12/22/2022]
Abstract
The menisci of the knee are fibro-cartilaginous tissues and play important roles in the joint, and the loss of the meniscus predisposes the knee to degenerative changes. However, the menisci have limited healing potential due to the paucity of vascularity. The purpose of the present study was to test the feasibility of a scaffold-free tissue-engineered construct (TEC) derived from synovial mesenchymal stem cells (MSCs) to repair incurable meniscal lesions. Porcine synovial MSCs were cultured in monolayers at high density in the presence of ascorbic acid followed by the suspension culture to develop a three-dimensional cell/matrix construct (TEC). A 4-mm cylindrical defect was created bilaterally in the medial meniscus of skeletally mature miniature pigs. The defects were implanted with an allogenic TEC or were left empty. After 6 months, the TEC-treated defects were consistently repaired by a fibro-cartilaginous tissue with good tissue integration to the adjacent host meniscal tissue, while the untreated were either partially or not repaired. The ratio of Safranin O positive area within the central body of the meniscus adjacent to the original defect was significantly higher in the TEC-treated group than in the control group. Moreover, TEC treatment significantly reduced the size and severity of post-traumatic chondral lesions on the tibial plateau. These results suggest that the TEC could be a promising stem cell-based implant to repair meniscal lesions with preventive effects from meniscal body degeneration and the development of post-traumatic arthritis.
Collapse
Affiliation(s)
- Yu Moriguchi
- Department of Orthopaedics, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Paraguassú-Braga FH, Alves APG, Andrade Santos IMA, Bonamino M, Bonomo A. An Ectopic Stromal Implant Model for Hematopoietic Reconstitution and in Vivo Evaluation of Bone Marrow Niches. Cell Transplant 2012; 21:2677-88. [DOI: 10.3727/096368912x636993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In adults, hematopoiesis takes places in the bone marrow, where specialized niches containing mesenchymal nonhematopoietic cells (stroma) harbor the hematopoietic stem cell (HSC). These niches are responsible and essential for the maintenance of HSCs. Attempts to expand HSCs fail to keep the general properties of stem cells, which depend on several niche components difficult to reproduce in in vitro culture systems. Here, we describe a methodology for in vivo study of hematopoietic stroma. We use stroma-loaded macroporous microcarriers implanted in the subcutaneous tissue of experimental animals and show that the ectopic stroma implant (ESI) is able to support hematopoiesis. Moreover, lethally irradiated mice can be rescued by ESI preloaded with HSCs, showing that they function as an ectopic bone marrow. ESI is also shown as a good system to study the role of different niche components. As an example, we used stromas lacking connexin 43 (Cx43) and confirm the importance of this molecule in the maintenance of the HSC niche in vivo. We believe ESI can work as an ectopic bone marrow allowing in vivo testing of different niches components and opening new avenues for the treatment of a variety of hematologic conditions particularly when stromal cell defects are the main cause of disease.
Collapse
Affiliation(s)
- Flávio Henrique Paraguassú-Braga
- Banco de Sangue de Cordão Umbilical e Placentário, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Ana Paula G. Alves
- Programa de Medicina Experimental, Coordenação Geral Técnico-Científica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Martin Bonamino
- Programa de Medicina Experimental, Coordenação Geral Técnico-Científica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Programa de Medicina Experimental, Coordenação Geral Técnico-Científica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
131
|
Calderon D, Planat-Benard V, Bellamy V, Vanneaux V, Kuhn C, Peyrard S, Larghero J, Desnos M, Casteilla L, Pucéat M, Menasché P, Chatenoud L. Immune response to human embryonic stem cell-derived cardiac progenitors and adipose-derived stromal cells. J Cell Mol Med 2012; 16:1544-52. [PMID: 21895965 PMCID: PMC3823222 DOI: 10.1111/j.1582-4934.2011.01435.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transplantation of allogeneic human embryonic stem cell-derived cardiac progenitors triggers an immune response. We assessed whether this response could be modulated by the concomitant use of adipose-derived stromal cells (ADSC). Peripheral blood mononuclear cells were collected from 40 patients with coronary artery disease (CAD) and nine healthy controls. Cardiac progenitors (CD15+ Mesp1+) were generated as already reported from the I6 cell line treated with bone morphogenetic protein (BMP)-2. Adipose-derived stromal cells were obtained from abdominal dermolipectomies. We assessed the proliferative response of peripheral lymphocytes from patients and controls to cardiac progenitors cultured on a monolayer of ADSC, to allogeneic lymphocytes in mixed lymphocyte culture and to the T cell mitogen phytohemaglutin A in presence or absence of ADSC. Cardiac progenitors cultured on a monolayer of ADSC triggered a proliferation of lymphocytes from both patients and controls albeit lower than that induced by allogeneic lymphocytes. When cultured alone, ADSC did not induce any proliferation of allogeneic lymphocytes. When added to cultures of lymphocytes, ADSC significantly inhibited the alloantigen or mitogen-induced proliferative response. Compared to healthy controls, lymphocytes from patients presenting CAD expressed a decreased proliferative capacity, in particular to mitogen-induced stimulation. Adipose-derived stromal cells express an immunomodulatory effect that limits both alloantigen and mitogen-induced lymphocyte responses. Furthermore, lymphocytes from patients with CAD are low responders to conventional stimuli, possibly because of their age and disease-associated treatment regimens. We propose that, in combination, these factors may limit the in vivo immunogenicity of cardiac progenitors co-implanted with ADSC in patients with CAD.
Collapse
Affiliation(s)
- Damelys Calderon
- INSERM UMR 633, Laboratory of Surgical Research, Höopital Européen Georges Pompidou, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia. PLoS One 2012; 7:e47764. [PMID: 23144828 PMCID: PMC3489901 DOI: 10.1371/journal.pone.0047764] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 09/19/2012] [Indexed: 01/24/2023] Open
Abstract
Aplastic anemia (AA) is generally considered as an immune-mediated bone marrow failure syndrome with defective hematopoietic stem cells (HSCs) and marrow microenvironment. Previous studies have demonstrated the defective HSCs and aberrant T cellular-immunity in AA using a microarray approach. However, little is known about the overall specialty of bone marrow mesenchymal stem cells (BM-MSCs). In the present study, we comprehensively compared the biological features and gene expression profile of BM-MSCs between AA patients and healthy volunteers. In comparison with healthy controls, BM-MSCs from AA patients showed aberrant morphology, decreased proliferation and clonogenic potential and increased apoptosis. BM-MSCs from AA patients were susceptible to be induced to differentiate into adipocytes but more difficult to differentiate into osteoblasts. Consistent with abnormal biological features, a large number of genes implicated in cell cycle, cell division, proliferation, chemotaxis and hematopoietic cell lineage showed markedly decreased expression in BM-MSCs from AA patients. Conversely, more related genes with apoptosis, adipogenesis and immune response showed increased expression in BM-MSCs from AA patients. The gene expression profile of BM-MSCs further confirmed the abnormal biological properties and provided significant evidence for the possible mechanism of the destruction of the bone marrow microenvironment in AA.
Collapse
|
133
|
Treacy O, Ryan AE, Heinzl T, O'Flynn L, Cregg M, Wilk M, Odoardi F, Lohan P, O'Brien T, Nosov M, Ritter T. Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation. PLoS One 2012; 7:e42662. [PMID: 22880073 PMCID: PMC3412834 DOI: 10.1371/journal.pone.0042662] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/10/2012] [Indexed: 01/16/2023] Open
Abstract
Adult mesenchymal stem cells (MSCs) are non-hematopoietic cells with multi-lineage potential which makes them attractive targets for regenerative medicine applications. However, to date, therapeutic success of MSC-therapy is limited and the genetic modification of MSCs using viral vectors is one option to improve their therapeutic potential. Ex-vivo genetic modification of MSCs using recombinant adenovirus (Ad) could be promising to reduce undesired immune responses as Ad will be removed before cell/tissue transplantation. In this regard, we investigated whether Ad-modification of MSCs alters their immunological properties in vitro and in vivo. We found that Ad-transduction of MSCs does not lead to up-regulation of major histocompatibility complex class I and II and co-stimulatory molecules CD80 and CD86. Moreover, Ad-transduction caused no significant changes in terms of pro-inflammatory cytokine expression, chemokine and chemokine receptor and Toll-like receptor expression. In addition, Ad-modification of MSCs had no affect on their ability to suppress T cell proliferation in vitro. In vivo injection of Ad-transduced MSCs did not change the frequency of various immune cell populations (antigen presenting cells, T helper and cytotoxic T cells, natural killer and natural killer T cells) neither in the blood nor in tissues. Our results indicate that Ad-modification has no major influence on the immunological properties of MSCs and therefore can be considered as a suitable gene vector for therapeutic applications of MSCs.
Collapse
Affiliation(s)
- Oliver Treacy
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Aideen E. Ryan
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Teresa Heinzl
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Lisa O'Flynn
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Marese Cregg
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Mieszko Wilk
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Francesca Odoardi
- Institute for Multiple-Sclerosis Research, Department of Neuroimmunology, University Medicine, Göttingen, Germany
| | - Paul Lohan
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Timothy O'Brien
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Mikhail Nosov
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
134
|
Li J, Lu S, Yang S, Xing W, Feng J, Li W, Zhao Q, Wu H, Ge M, Ma F, Zhao H, Liu B, Zhang L, Zheng Y, Han ZC. Impaired immunomodulatory ability of bone marrow mesenchymal stem cells on CD4(+) T cells in aplastic anemia. RESULTS IN IMMUNOLOGY 2012; 2:142-7. [PMID: 24371578 DOI: 10.1016/j.rinim.2012.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/13/2012] [Accepted: 07/24/2012] [Indexed: 12/27/2022]
Abstract
Aplastic anemia (AA) is a marrow failure syndrome mediated by aberrant T-cell subsets. Mesenchymal stem cells (MSCs) play an important role in maintaining immune homeostasis through modulating a variety of immune cells. However, little is known about the immunomodulation potential of bone marrow MSCs (BM-MSCs) in AA. Here, we reported that BM-MSCs from AA patients were reduced in suppressing the proliferation and clonogenic potential of CD4(+) T cells and the production of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), which was associated with decreased prostaglandin E2 (PGE2). Meanwhile, BM-MSCs from AA patients were defective to promote CD4(+)CD25(+)FOXP3(+) regulatory T cells expansion through reduced transforming growth factor-β (TGF-β). No significant difference between AA and normal BM-MSCs was observed in affecting the production of interleukins (IL)-4, IL-10 and IL-17. Our data indicate that BM-MSCs were impaired in maintaining the immune homeostasis associated with CD4(+) T cells, which might aggravate the marrow failure in AA.
Collapse
Affiliation(s)
- Jianping Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China ; Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Shihong Lu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shaoguang Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianming Feng
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Wenqian Li
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Qinjun Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hao Wu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Bin Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhong Chao Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
135
|
Gene expression profile reveals that STAT2 is involved in the immunosuppressive function of human bone marrow-derived mesenchymal stem cells. Gene 2012; 497:131-9. [PMID: 22523757 DOI: 10.1016/j.gene.2012.01.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Emerging evidence of the potent immunosuppressive activity of mesenchymal stem cells (MSCs) by modulation of both innate and adaptive immune responses enables MSCs to be developed as a promising therapeutic modality for immune-related or inflammatory diseases. However, it is not clearly understood how MSCs exert their immunosuppressive effects on immune cells under inflammatory conditions. Using human bone marrow (BM)-derived clonal MSCs (hcMSCs), we obtained and analyzed a differentially expressed gene profile when stimulated with the inflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) to find novel candidate factors responsible for MSC immunomodulation. Microarray analysis showed that 5650 genes were upregulated and 5862 genes were downregulated with the cutoff of 2-fold expression change. Among these, the ICOSLG and STAT2 genes were drastically upregulated 173-fold and 154-fold, respectively. Reverse transcription-polymerase chain reaction analysis confirmed the microarray data. To evaluate whether their increased expression is related to MSC-mediated immunosuppression,siRNA-induced ICOSLG- or STAT2-knockdown hcMSCs were assessed for their T cell suppressive activity. We demonstrated that STAT2 but not ICOSLG is functionally involved in the immunosuppressive activity of hcMSCs as a novel regulator under inflammatory conditions. Gene ontology and pathway analyses further support the immunomodulatory function of hcMSCs when inflammatory stimulation was provided.Taken together, this study provides an informative genome-wide gene expression profile and molecular evidence for understanding the mechanisms underlying the modulation of immune cells by human BM-derived MSCs under inflammatory conditions.
Collapse
|
136
|
Human mesenchymal stem cells protect neutrophils from serum-deprived cell death. Cell Biol Int 2012; 35:1247-51. [PMID: 21649586 DOI: 10.1042/cbi20110070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have previously shown that human MSC (mesenchymal stem cells) inhibit the proliferation of most of the immune cells. However, there are innate immune cells such as neutrophils and other PMN (polymorphonuclear) cells that do not require an extensive proliferation prior to their effector function. In this study, the effect of MSC on neutrophils in the presence of complete and serum-deprived culture media was investigated. In the presence of MSC, the viability of neutrophils increase as measured in 24 h of incubation at various supplementation of serum concentration. We have utilized Annexin V and PI (propidium iodide) staining to confirm whether the enhancement of neutrophil's viability is due to a reduction in PCD (programmed cell death). MSC significantly rescue neutrophils from apoptosis at 1, 5 and 10% of FBS (fetal bovine serum) supplementation. The fractions of viable and dead cells were increased and decreased respectively in the presence of MSC. Our results indicate MSC rescue neutrophils from nutrient- or serum-deprived cell death. However, whether this effect is exerted through a specific signalling pathway or confining neutrophils in resting state by MSC requires further investigation.
Collapse
|
137
|
Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther 2012; 3:20. [PMID: 22668751 PMCID: PMC3392767 DOI: 10.1186/scrt111] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Scars are a consequence of cutaneous wound healing that can be both unsightly and detrimental to the function of the tissue. Scar tissue is generated by excessive deposition of extracellular matrix tissue by wound healing fibroblasts and myofibroblasts, and although it is inferior to the uninjured skin, it is able to restore integrity to the boundary between the body and its environment. Scarring is not a necessary process to repair the dermal tissues. Rather, scar tissue forms due to specific mechanisms that occur during the adult wound healing process and are modulated primarily by the inflammatory response at the site of injury. Adult tissue-derived mesenchymal stem cells, which participate in normal wound healing, are trophic mediators of tissue repair. These cells participate in attenuating inflammation in the wound and reprogramming the resident immune and wound healing cells to favor tissue regeneration and inhibit fibrotic tissue formation. As a result, these cells have been considered and tested as a likely candidate for a cellular therapy to promote scar-less wound healing. This review identifies specific mechanisms by which mesenchymal stem cells can limit tissue fibrosis and summarizes recent in vivo studies where these cells have been used successfully to limit scar formation.
Collapse
Affiliation(s)
- Wesley M Jackson
- Clinical and Experimental Orthopaedics Laboratory, Department of SurgeryUniformed Services University, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
138
|
Jung S, Panchalingam KM, Rosenberg L, Behie LA. Ex vivo expansion of human mesenchymal stem cells in defined serum-free media. Stem Cells Int 2012; 2012:123030. [PMID: 22645619 PMCID: PMC3356989 DOI: 10.1155/2012/123030] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/31/2012] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are presently being evaluated for their therapeutic potential in clinical studies to treat various diseases, disorders, and injuries. To date, early-phase studies have indicated that the use of both autologous and allogeneic hMSCs appear to be safe; however, efficacy has not been demonstrated in recent late-stage clinical trials. Optimized cell bioprocessing protocols may enhance the efficacy as well as safety of hMSC therapeutics. Classical media used for generating hMSCs are typically supplemented with ill-defined supplements such as fetal bovine serum (FBS) or human-sourced alternatives. Ideally, culture media are desired to have well-defined serum-free formulations that support the efficient production of hMSCs while maintaining their therapeutic and differentiation capacity. Towards this objective, we review here current cell culture media for hMSCs and discuss medium development strategies.
Collapse
Affiliation(s)
- Sunghoon Jung
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Krishna M. Panchalingam
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, Canada T2N 1N4
| | | | - Leo A. Behie
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
139
|
Kyurkchiev S, Gandolfi F, Hayrabedyan S, Brevini TAL, Dimitrov R, Fitzgerald JS, Jabeen A, Mourdjeva M, Photini SM, Spencer P, Fernández N, Markert UR. Stem Cells in the Reproductive System. Am J Reprod Immunol 2012; 67:445-62. [DOI: 10.1111/j.1600-0897.2012.01140.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 03/16/2012] [Indexed: 01/01/2023] Open
Affiliation(s)
- Stanimir Kyurkchiev
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences; Sofia; Bulgaria
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, UNISTEM; Università degli Studi di Milano; Milan; Italy
| | - Soren Hayrabedyan
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences; Sofia; Bulgaria
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology, UNISTEM; Università degli Studi di Milano; Milan; Italy
| | - Roumen Dimitrov
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences; Sofia; Bulgaria
| | | | - Asma Jabeen
- School of Biological Sciences; University of Essex; Colchester; Essex; UK
| | | | - Stella M. Photini
- Placenta , Department of Obstetrics; University Hospital Jena; Jena; Germany
| | - Patrick Spencer
- School of Biological Sciences; University of Essex; Colchester; Essex; UK
| | - Nelson Fernández
- School of Biological Sciences; University of Essex; Colchester; Essex; UK
| | - Udo R. Markert
- Placenta , Department of Obstetrics; University Hospital Jena; Jena; Germany
| |
Collapse
|
140
|
Claros S, Rodríguez-Losada N, Cruz E, Guerado E, Becerra J, Andrades JA. Characterization of adult stem/progenitor cell populations from bone marrow in a three-dimensional collagen gel culture system. Cell Transplant 2012; 21:2021-32. [PMID: 22472743 DOI: 10.3727/096368912x636939] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stem cell transplantation therapy using mesenchymal stem cells (MSCs) is considered a useful strategy. Although MSCs are commonly isolated by exploiting their plastic adherence, several studies have suggested that there are other populations of stem and/or osteoprogenitor cells that are removed from primary culture during media replacement. Therefore, we developed a three-dimensional (3D) culture system in which adherent and nonadherent stem cells are selected and expanded. Here, we described the characterization of 3D culture-derived cell populations in vitro and the capacity of these cells to differentiate into bone and/or cartilage tissue when placed inside of demineralized bone matrix (DBM) cylinders, implanted subcutaneously into the backs of rat for 2, 4, and 8 weeks. Our results demonstrates that 3D culture cells were a heterogeneous population of uncommitted cells that express pluripotent-, hematopoietic-, mesenchymal-, and endothelial-specific markers in vitro and can undergo osteogenic differentiation in vivo.
Collapse
Affiliation(s)
- Silvia Claros
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Málaga, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
141
|
Baiguera S, Jungebluth P, Mazzanti B, Macchiarini P. Mesenchymal stromal cells for tissue-engineered tissue and organ replacements. Transpl Int 2012; 25:369-82. [PMID: 22248229 DOI: 10.1111/j.1432-2277.2011.01426.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs), a rare heterogeneous subset of pluripotent stromal cells that can be easily isolated from different adult tissues, in vitro expanded and differentiated into multiple lineages, are immune privileged and, more important, display immunomodulatory capacities. Because of this, they are the preferred cell source in tissue-engineered replacements, not only in autogeneic conditions, where they do not evoke any immune response, but especially in the setting of allogeneic organ and tissue replacements. However, more preclinical and clinical studies are requested to completely understand MSC's immune biology and possible clinical applications. We herein review the immunogenicity and immunomodulatory properties of MSCs, their possible mechanisms and potential clinical use for tissue-engineered organ and tissue replacement.
Collapse
Affiliation(s)
- Silvia Baiguera
- BIOAIRlab, European Center of Thoracic Research (CERT), University Hospital Careggi, Florence, Italy
| | | | | | | |
Collapse
|
142
|
Kapoor S, Patel SA, Kartan S, Axelrod D, Capitle E, Rameshwar P. Tolerance-like mediated suppression by mesenchymal stem cells in patients with dust mite allergy–induced asthma. J Allergy Clin Immunol 2012; 129:1094-101. [DOI: 10.1016/j.jaci.2011.10.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/16/2011] [Accepted: 10/21/2011] [Indexed: 12/29/2022]
|
143
|
Qi Y, Wang Y, Yan W, Li H, Shi Z, Pan Z. Combined Mesenchymal Stem Cell Sheets and rhBMP-2-Releasing Calcium Sulfate–rhBMP-2 Scaffolds for Segmental Bone Tissue Engineering. Cell Transplant 2012; 21:693-705. [PMID: 22236577 DOI: 10.3727/096368911x623844] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Repair of segmental bone defects remains a major challenge for orthopedic surgeons. This study aimed to investigate whether recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded calcium sulfate (CS) combined with mesenchymal stem cell (MSC) sheets could accelerate bone regeneration in ulnar segmental defects of rabbits. In vitro, the osteogenic differentiation of MSCs cultured on rhBMP-2-loaded CS was investigated. Forty complete 1.2-cm bone defects were treated with CS (group A), rhBMP-2-loaded CS (group B), MSC sheet-wrapped CS (group C), and MSC sheet-wrapped rhBMP-2-loaded CS (group D). At 4 and 8 weeks after implantation, the samples were treated by X-ray, microcomputed tomography, and histological observation. The rhBMP-2 could be released from the rhBMP-2-loaded CS scaffolds and maintain its bioactivity. The alkaline phosphatase (ALP) of MSCs cultured on rhBMP-2-loaded CS was significantly higher than that of CS at both 7 and 14 days ( p < 0.05). The defects treated with MSC sheet-wrapped rhBMP-2-loaded CS showed significantly higher scores by X-ray analysis and more bone formation determined by both histology and microcomputed tomography than the other three groups at both 4 and 8 weeks after implantation ( p < 0.05). No significant difference in X-ray score and bone formation was found between groups B and C, both significantly higher than group A ( p < 0.05). The results suggested that MSC sheet-wrapped rhBMP-2-loaded CS may be an effective approach to promote the repair of segmental bone defects and has great potential for repairing large segmental bone defects in clinic.
Collapse
Affiliation(s)
- Yiying Qi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yulu Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital, Baotou Medical School, Baotou, China
| | - Weiqi Yan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongli Shi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhijun Pan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
144
|
Spherical bullet formation via E-cadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Mol Ther 2012; 20:1424-33. [PMID: 22453767 DOI: 10.1038/mt.2012.58] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The beneficial effects of stem cells in clinical applications to date have been modest, and studies have reported that poor engraftment might be an important reason. As a strategy to overcome such a hurdle, we developed the spheroid three dimensional (3D) bullet as a delivery method for human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) through the maintenance of cell-cell interactions without additional xenofactors, cytokines, or matrix. We made spheroid 3D-bullets from hUCB-MSCs at 24 hours' anchorage-deprived suspension culture. To investigate the in vivo therapeutic efficacy of 3D-bullets, we used rat myocardial infarction (MI) model. Transplantation of 3D-bullet was better than that of single cells from monolayer culture or from 3D-bullet in improving left ventricular (LV) contractility [LV ejection fraction (LVEF) or LV fractional shortening (LVFS)] and preventing pathologic LV dilatation [LV end-systolic diameter (LVESD) or LV end-diastolic diameter (LVEDD)] at 8 weeks. In the mechanism study of 3D-bullet formation, we found that calcium-dependent cell-cell interaction was essential and that E-cadherin is a key inducer mediating hUCB-MSC 3D-bullet formation among several calcium-dependent adhesion molecules which were nominated as candidates after cDNA array analysis. In more specific experiments with E-cadherin overexpression using adenoviral vector or with E-cadherin neutralization using blocking antibody, we found that E-cadherin regulates vascular endothelial growth factor (VEGF) secretion via extracellular signal-regulated kinase (ERK)/v-akt murine thymoma viral oncogene homolog1 (AKT) pathways. During formation of spheroid 3D-bullets, activation of E-cadherin in association with cell-cell interaction turns on ERK/AKT signaling pathway that are essential to proliferative and paracrine activity of MSCs leading to the enhanced therapeutic efficacy.
Collapse
|
145
|
Atoui R, Chiu RCJ. Concise review: immunomodulatory properties of mesenchymal stem cells in cellular transplantation: update, controversies, and unknowns. Stem Cells Transl Med 2012. [PMID: 23197779 DOI: 10.5966/sctm.2011-0012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stem cell transplantation is a promising approach for improving cardiac function after severe myocardial damage, for which the use of autologous donor cells has been preferred to avoid immune rejection. Recently, however, rodent as well as human mesenchymal stem cells have been reported to be uniquely immune-tolerant, in both in vitro and in vivo transplant models. In this review, we explore in detail the current understanding of the underlying immunologic mechanisms, which can facilitate the use of such cells as "universal donor cells" with fascinating clinical implications.
Collapse
Affiliation(s)
- Rony Atoui
- Division of Cardiac Surgery, Sudbury Regional Hospital, Ontario, Canada.
| | | |
Collapse
|
146
|
Haag M, Stolk M, Ringe J, Linthout SV, Tschöpe C, Sittinger M, Seifert M. Immune attributes of cardiac-derived adherent proliferating (CAP) cells in cardiac therapy. J Tissue Eng Regen Med 2012; 7:362-70. [DOI: 10.1002/term.531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/06/2011] [Accepted: 09/26/2011] [Indexed: 12/21/2022]
Affiliation(s)
| | - Meaghan Stolk
- Berlin-Brandenburg Centre for Regenerative Therapies; Charité-Universitätsmedizin Berlin; Germany
| | | | | | | | | | | |
Collapse
|
147
|
|
148
|
Protective effects of bone marrow mononuclear cell therapy on lung and heart in an elastase-induced emphysema model. Respir Physiol Neurobiol 2012; 182:26-36. [PMID: 22266352 DOI: 10.1016/j.resp.2012.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 01/07/2012] [Accepted: 01/08/2012] [Indexed: 12/21/2022]
Abstract
We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 × 10(6), CELL) intravenously 3h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-β, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema.
Collapse
|
149
|
Wang H, Chen T, Ding T, Zhu P, Xu X, Yu L, Xie Y. Adipogenic differentiation alters the immunoregulatory property of mesenchymal stem cells through BAFF secretion. ACTA ACUST UNITED AC 2012; 16:313-23. [PMID: 21902897 DOI: 10.1179/102453311x13085644679944] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although it has been widely demonstrated that mesenchymal stem cells (MSCs) exert potent immunosuppressive effect, there is little information as to whether adipogenic-differentiated MSCs (adi-MSCs) share the same property. Here, adi-MSCs enhanced alloantigen or mitogen-stimulated lymphocyte proliferation, whereas undifferentiated MSCs (ud-MSCs) inhibited the proliferation. Transwell experiment showed that the stimulatory effect of adi-MSCs was cell-cell contact-independent, and required soluble factors. Furthermore, the supernatant of cultured adi-MSCs could effectively costimulate T and B-lymphocyte proliferation and activation in the presence of anti-CD3 and anti-mu chain treatment, respectively. Production of cytokines interferon-gamma and tumor necrosis factor-alpha by T cells, and Ig secretion by B cells also were increased by the supernatant of cultured adi-MSCs. Mechanism conducted showed that the mRNA and protein expression of costimulatory molecule B-cell activating factor (BAFF) was upregulated, and soluble BAFF was secreted in MSCs after adipogenic differentiation. By blocking the BAFF molecule with specific monoclonal antibody in the culture, T and B-lymphocyte proliferation and activation was stimulated by adi-MSCs or the supernatants were greatly reduced. In conclusion, adipogenic differentiation may alter the immunoregulatory property of MSCs, leading to stimulation of lymphocytes response. The BAFF molecule secreted by the adi-MSCs was responsible for this event.
Collapse
Affiliation(s)
- Haiyan Wang
- Huashan Hospital, Fudan University, 12 Wu Lu Mu Qui Road, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
150
|
Ingenito EP, Tsai L, Murthy S, Tyagi S, Mazan M, Hoffman A. Autologous Lung-Derived Mesenchymal Stem Cell Transplantation in Experimental Emphysema. Cell Transplant 2012; 21:175-89. [DOI: 10.3727/096368910x550233] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autologous lung-derived mesenchymal stem cells (LMSCs) were transplanted endoscopically into sheep with experimental emphysema to assess their capacity to regenerate functional tissue. LMSC lines were derived from transbronchial biopsies, cloned at passage 2, expanded in culture, and labeled. A delivery scaffold containing 1% fibrinogen, 20 μg/ml of fibronectin, and 20 μg/ml of poly-L-lysine was used to promote cell attachment and spreading. Treatment animals received scaffold containing 5–10 × 106 cells/site; control animals received scaffold alone. Phenotypic markers, differentiation capacity, extracellular matrix protein expression, and paracrine function of LMSCs were characterized in vitro. Responses to LMSC transplantation in vivo were assessed in terms of clinical toxicity, lung physiology, change in tissue mass (measured by CT scanning) and perfusion (measured by scintigraphy scanning), and tissue histology. At 4-week follow-up, transplants were well tolerated and associated with increased tissue mass and lung perfusion compared to control treatment. Histology confirmed cell retention, increased cellularity, and increased extracellular matrix content following LMSC treatment. Labeled cells were distributed in the alveolar septum and peribronchiolar interstitium. Some label was also present within phagocytes, indicating that a fraction of autologous LMSCs do not survive transplantation. These results suggest that endobronchial delivery of autologous LMSCs has potential therapeutic utility for regenerating functional lung in emphysema.
Collapse
Affiliation(s)
- Edward P. Ingenito
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Larry Tsai
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Shankar Murthy
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Shivraj Tyagi
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Melissa Mazan
- Tufts Cummings School of Veterinary Medicine, N. Grafton, MA, USA
| | - Andrew Hoffman
- Tufts Cummings School of Veterinary Medicine, N. Grafton, MA, USA
| |
Collapse
|