101
|
Grubić Kezele T, Ćurko-Cofek B. Age-Related Changes and Sex-Related Differences in Brain Iron Metabolism. Nutrients 2020; 12:E2601. [PMID: 32867052 PMCID: PMC7551829 DOI: 10.3390/nu12092601] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential element that participates in numerous cellular processes. Any disruption of iron homeostasis leads to either iron deficiency or iron overload, which can be detrimental for humans' health, especially in elderly. Each of these changes contributes to the faster development of many neurological disorders or stimulates progression of already present diseases. Age-related cellular and molecular alterations in iron metabolism can also lead to iron dyshomeostasis and deposition. Iron deposits can contribute to the development of inflammation, abnormal protein aggregation, and degeneration in the central nervous system (CNS), leading to the progressive decline in cognitive processes, contributing to pathophysiology of stroke and dysfunctions of body metabolism. Besides, since iron plays an important role in both neuroprotection and neurodegeneration, dietary iron homeostasis should be considered with caution. Recently, there has been increased interest in sex-related differences in iron metabolism and iron homeostasis. These differences have not yet been fully elucidated. In this review we will discuss the latest discoveries in iron metabolism, age-related changes, along with the sex differences in iron content in serum and brain, within the healthy aging population and in neurological disorders such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke.
Collapse
Affiliation(s)
- Tanja Grubić Kezele
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Clinical Department for Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
102
|
Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, De Vries GJ, Epperson CN, Govindan R, Klein SL, Lonardo A, Maki PM, McCullough LD, Regitz-Zagrosek V, Regensteiner JG, Rubin JB, Sandberg K, Suzuki A. Sex and gender: modifiers of health, disease, and medicine. Lancet 2020; 396:565-582. [PMID: 32828189 PMCID: PMC7440877 DOI: 10.1016/s0140-6736(20)31561-0] [Citation(s) in RCA: 1241] [Impact Index Per Article: 248.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/09/2023]
Abstract
Clinicians can encounter sex and gender disparities in diagnostic and therapeutic responses. These disparities are noted in epidemiology, pathophysiology, clinical manifestations, disease progression, and response to treatment. This Review discusses the fundamental influences of sex and gender as modifiers of the major causes of death and morbidity. We articulate how the genetic, epigenetic, and hormonal influences of biological sex influence physiology and disease, and how the social constructs of gender affect the behaviour of the community, clinicians, and patients in the health-care system and interact with pathobiology. We aim to guide clinicians and researchers to consider sex and gender in their approach to diagnosis, prevention, and treatment of diseases as a necessary and fundamental step towards precision medicine, which will benefit men's and women's health.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Diabetes Discovery & Sex-Based Medicine Laboratory, Section of Endocrinology, John W Deming Department of Medicine, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, LA, USA.
| | - Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, USA
| | - Peter J Barnes
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Roberta D Brinton
- Department of Pharmacology and Department of Neurology, College of Medicine, Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - Juan-Jesus Carrero
- Department of Medical Epidemiology and Biostatistics and Center for Gender Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Geert J De Vries
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Sabra L Klein
- W Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amedeo Lonardo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| | - Pauline M Maki
- Department of Psychiatry, Department of Psychology, and Department of Obstetrics & Gynecology, University of Illinois at Chicago, Chicago, IL, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Vera Regitz-Zagrosek
- Berlin Institute of Gender Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Cardiology, University Hospital Zürich, University of Zürich, Switzerland
| | - Judith G Regensteiner
- Center for Women's Health Research, Divisions of General Internal Medicine and Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua B Rubin
- Department of Medicine, Department of Paediatrics, and Department of Neuroscience, Washington University School of Medicine St Louis, MO, USA
| | - Kathryn Sandberg
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC, USA
| | - Ayako Suzuki
- Division of Gastroenterology, Duke University Medical Center Durham, NC, USA; Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
103
|
De Miranda BR, Fazzari M, Rocha EM, Castro S, Greenamyre JT. Sex Differences in Rotenone Sensitivity Reflect the Male-to-Female Ratio in Human Parkinson's Disease Incidence. Toxicol Sci 2020; 170:133-143. [PMID: 30907971 DOI: 10.1093/toxsci/kfz082] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is a critical need to include female subjects in disease research; however, in Parkinson's disease, where the male-to-female incidence is about 1.5-to-1, the majority of preclinical research is conducted in male animals. The mitochondrial complex I inhibitor, rotenone, is selectively toxic to dopaminergic neurons, and reproduces several neuropathological features of Parkinson's disease, including α-synuclein pathology. Rotenone has been primarily utilized in male Lewis rats; however, pilot studies in age-matched female Lewis rats revealed that our usual dose (2.8 mg/kg/day intraperitoneal [i.p.]) did not cause dopaminergic neurodegeneration. Therefore, we compared rotenone-treated males (2.8 mg/kg/day, i.p.) to females at increasing doses (2.8 mg/kg/day, 3.2 mg/kg/day, 3.6 mg/kg/day, and 1.6 mg/kg bis in die, i.p.). Female rats receiving 3.2 mg/kg, and 3.6 mg/kg rotenone displayed significant loss of dopaminergic neurons in the substantia nigra as assessed by stereology, which was accompanied by a loss of striatal dopaminergic terminals. Even at these higher doses, however, females showed less inflammation, and less accumulation of α-synuclein and transferrin, possibly as a result of preserved autophagy. Thus, the bias toward increased male incidence of human Parkinson's disease is reflected in the rotenone model. Whether such sex differences will translate into differences in responses to mechanism-driven therapeutic interventions remains to be determined.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Marco Fazzari
- Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, 15261.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261.,Fondazione Ri.MED, Via Bandiera 11, Palermo 90133, Italy
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Sandra Castro
- Pittsburgh Institute for Neurodegenerative Diseases.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| |
Collapse
|
104
|
Antecedent presentation of neurological phenotypes in the Collaborative Cross reveals four classes with complex sex-dependencies. Sci Rep 2020; 10:7918. [PMID: 32404926 PMCID: PMC7220920 DOI: 10.1038/s41598-020-64862-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/23/2020] [Indexed: 12/30/2022] Open
Abstract
Antecedent viral infection may contribute to increased susceptibility to several neurological diseases, such as multiple sclerosis and Parkinson’s disease. Variation in clinical presentations of these diseases is often associated with gender, genetic background, or a combination of these and other factors. The complicated etiologies of these virally influenced diseases are difficult to study in conventional laboratory mouse models, which display a very limited number of phenotypes. We have used the genetically and phenotypically diverse Collaborative Cross mouse panel to examine complex neurological phenotypes after viral infection. Female and male mice from 18 CC strains were evaluated using a multifaceted phenotyping pipeline to define their unique disease profiles following infection with Theiler’s Murine Encephalomyelitis Virus, a neurotropic virus. We identified 4 distinct disease progression profiles based on limb-specific paresis and paralysis, tremors and seizures, and other clinical signs, along with separate gait profiles. We found that mice of the same strain had more similar profiles compared to those of different strains, and also identified strains and phenotypic parameters in which sex played a significant role in profile differences. These results demonstrate the value of using CC mice for studying complex disease subtypes influenced by sex and genetic background. Our findings will be useful for developing novel mouse models of virally induced neurological diseases with heterogenous presentation, an important step for designing personalized, precise treatments.
Collapse
|
105
|
Microglial and Astrocytic Function in Physiological and Pathological Conditions: Estrogenic Modulation. Int J Mol Sci 2020; 21:ijms21093219. [PMID: 32370112 PMCID: PMC7247358 DOI: 10.3390/ijms21093219] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
There are sexual differences in the onset, prevalence, and outcome of numerous neurological diseases. Thus, in Alzheimer’s disease, multiple sclerosis, and major depression disorder, the incidence in women is higher than in men. In contrast, men are more likely to present other pathologies, such as amyotrophic lateral sclerosis, Parkinson’s disease, and autism spectrum. Although the neurological contribution to these diseases has classically always been studied, the truth is that neurons are not the only cells to be affected, and there are other cells, such as glial cells, that are also involved and could be key to understanding the development of these pathologies. Sexual differences exist not only in pathology but also in physiological processes, which shows how cells are differentially regulated in males and females. One of the reasons these sexual differences may occur could be due to the different action of sex hormones. Many studies have shown an increase in aromatase levels in the brain, which could indicate the main role of estrogens in modulating proinflammatory processes. This review will highlight data about sex differences in glial physiology and how estrogenic compounds, such as estradiol and tibolone, could be used as treatment in neurological diseases due to their anti-inflammatory effects and the ability to modulate glial cell functions.
Collapse
|
106
|
SAP97 polymorphisms associated with early onset Parkinson’s disease. Neurosci Lett 2020; 728:134931. [DOI: 10.1016/j.neulet.2020.134931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
|
107
|
|
108
|
Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors 2020; 46:5-20. [PMID: 31580521 DOI: 10.1002/biof.1566] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) result from progressive deterioration of selectively susceptible neuron populations in different central nervous system (CNS) regions. NDs are classified in accordance with the primary clinical manifestations (e.g., parkinsonism, dementia, or motor neuron disease), the anatomic basis of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), and fundamental molecular abnormalities (e.g., mutations, mitochondrial dysfunction, and its related molecular alterations). NDs include the Alzheimer disease and Parkinson disease, among others. There is a growing evidence that mitochondrial dysfunction and its related mutations in the form of oxidative/nitrosative stress and neurotoxic compounds play major roles in the pathogenesis of various NDs. Curcumin, a polyphenol and nontoxic compound, obtained from turmeric, has been shown to have a therapeutic beneficial effect in various disorders especially on the CNS cells. It has been shown that curcumin has considerable neuro- and mitochondria-protective properties against broad-spectrum neurotoxic compounds and diseases/injury-associating NDs. In this article, we have reviewed the various effects of curcumin on mitochondrial dysfunction in NDs.
Collapse
Affiliation(s)
- Hossein Bagheri
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rouhullah Rafiee
- Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
109
|
Mulak A. An overview of the neuroendocrine system in Parkinson's disease: what is the impact on diagnosis and treatment? Expert Rev Neurother 2019; 20:127-135. [PMID: 31829756 DOI: 10.1080/14737175.2020.1701437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: A growing body of evidence indicates that neuroendocrine interactions may occur at all levels of the brain-gut-microbiota axis, which is directly involved in the pathogenesis of Parkinson's disease (PD).Areas covered: The review presents some current and emerging concepts regarding the organization and functioning of the neuroendocrine system as well as the role of neuroendocrine disturbances in the pathophysiology and symptomatology of PD. The concept of the brain-gut-microbiota triad interactions in the neuroendocrine system and PD is proposed. In PD, dysregulation of the main neuroendocrine axes coordinated by the hypothalamus is accompanied by disruptions at the peripheral level, which involve enteroendocrine cells producing numerous neuropeptides. Moreover, the important role of the gut microbiota as a main coordinator of immune and neuroendocrine interactions is discussed. The potential diagnostic and therapeutic implications in the context of the recent developments in the fields of neuroendocrinology and neurodegeneration are also presented.Expert opinion: Unraveling complex neuroendocrine interactions in the course of PD may provide crucial diagnostic implications and novel therapeutic approaches including the application of gut neuropeptides and gut microbiota modification.
Collapse
Affiliation(s)
- Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
110
|
Oh Y‐S, Kim J‐S, Yoo S‐W, Hwang E‐J, Lyoo CH, Lee K‐S. Gender difference in the effect of uric acid on striatal dopamine in early Parkinson's disease. Eur J Neurol 2019; 27:258-264. [DOI: 10.1111/ene.14070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Y. ‐S. Oh
- Department of Neurology College of Medicine The Catholic University of Korea Seoul Korea
| | - J. ‐S. Kim
- Department of Neurology College of Medicine The Catholic University of Korea Seoul Korea
| | - S. ‐W. Yoo
- Department of Neurology College of Medicine The Catholic University of Korea Seoul Korea
| | - E. ‐J. Hwang
- Department of Radiology College of Medicine The Catholic University of Korea Seoul Korea
| | - C. H. Lyoo
- Department of Neurology Gangnam Severance Hospital Yonsei University College of Medicine Seoul Korea
| | - K. ‐S. Lee
- Department of Neurology College of Medicine The Catholic University of Korea Seoul Korea
| |
Collapse
|
111
|
Ethanol Extract of Centipeda minima Exerts Antioxidant and Neuroprotective Effects via Activation of the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9421037. [PMID: 31139305 PMCID: PMC6470452 DOI: 10.1155/2019/9421037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 12/31/2022]
Abstract
Oxidative stress is implicated in the pathogenesis of neurodegeneration and other aging-related diseases. Previous studies have found that the whole herb of Centipeda minima has remarkable antioxidant activities. However, there have been no reports on the neuroprotective effects of C. minima, and the underlying mechanism of its antioxidant properties is unclear. Here, we examined the underlying mechanism of the antioxidant activities of the ethanol extract of C. minima (ECM) both in vivo and in vitro and found that ECM treatment attenuated glutamate and tert-butyl hydroperoxide (tBHP)-induced neuronal death, reactive oxygen species (ROS) production, and mitochondria dysfunction. tBHP-induced phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinases (JNK) was reduced by ECM, and ECM sustained phosphorylation level of extracellular signal regulated kinase (ERK) in SH-SY5Y and PC12 cells. Moreover, ECM induced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the upregulation of phase II detoxification enzymes, including heme oxygenase-1 (HO-1), superoxide dismutase-2 (SOD2), and NAD(P)H quinone oxidoreductase-1 (NQO-1) in both two cell types. In a D-galactose (D-gal) and aluminum muriate (AlCl3)-induced neurodegenerative mouse model, administration of ECM improved the learning and memory of mice in the Morris water maze test and ameliorated the effects of neurodegenerative disorders. ECM sustained the expression level of postsynaptic density 95 (PSD95) and synaptophysin (SYN), activated the Nrf2 signaling pathway, and restored the levels of cellular antioxidants in the hippocampus of mice. In addition, four sesquiterpenoids were isolated from C. minima to identify the bioactive components responsible for the antioxidant activity of C. minima; 6-O-angeloylplenolin and arnicolide D were found to be the active compounds responsible for the activation of the Nrf2 signaling pathway and inhibition of ROS production. Our study examined the mechanism of C. minima and its active components in the amelioration of oxidative stress, which holds the promise for the treatment of neurodegenerative disease.
Collapse
|
112
|
Li T, Jiang S, Lu C, Yang W, Yang Z, Hu W, Xin Z, Yang Y. Melatonin: Another avenue for treating osteoporosis? J Pineal Res 2019; 66:e12548. [PMID: 30597617 DOI: 10.1111/jpi.12548] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 12/28/2022]
Abstract
Melatonin is a signal molecule that modulates the biological circadian rhythms of vertebrates. Melatonin deficiency is thought to be associated with several disorders, including insomnia, cancer, and cardiovascular and neurodegenerative diseases. Accumulating evidence has also indicated that melatonin may be involved in the homeostasis of bone metabolism. Age-related reductions in melatonin are considered to be critical factors in bone loss and osteoporosis with aging. Thus, serum melatonin levels might serve as a biomarker for the early detection and prevention of osteoporosis. Compared to conventional antiosteoporosis medicines, which primarily inhibit bone loss, melatonin both suppresses bone loss and promotes new bone formation. Mechanistically, by activating melatonin receptor 2 (MT2), melatonin upregulates the gene expression of alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2), BMP6, osteocalcin, and osteoprotegerin to promote osteogenesis while inhibiting the receptor activator of NF-kB ligand (RANKL) pathway to suppress osteolysis. In view of the distinct actions of melatonin on bone metabolism, we hypothesize that melatonin may be a novel remedy for the prevention and clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhi Yang
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zhenlong Xin
- Graduate School, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
113
|
Wei N, Pu Y, Yang Z, Pan Y, Liu L. Therapeutic effects of melatonin on cerebral ischemia reperfusion injury: Role of Yap-OPA1 signaling pathway and mitochondrial fusion. Biomed Pharmacother 2019; 110:203-212. [PMID: 30476721 DOI: 10.1016/j.biopha.2018.11.060] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/07/2023] Open
Abstract
The role of OPA1-related mitochondrial fusion in brain reperfusion stress has remained elusive. The aim of our study is to explore whether melatonin alleviates cerebral IR injury by modulating OPA1-related mitochondrial fusion. We found that melatonin reduced infarct area and suppressed neuron death during reperfusion stress. Biological studies have revealed that IR-inhibited mitochondrial fusion was largely reversed by melatonin via upregulated OPA1 expression. Knocking down OPA1 abrogated the protective effects of melatonin on mitochondrial energy metabolism and mitochondrial apoptosis. In addition, we also found that melatonin modified OPA1 expression via the Yap-Hippo pathway; blockade of the Yap-Hippo pathway induced neuron death and mitochondrial damage despite treatment with melatonin. Altogether, our data demonstrated that cerebral IR injury is closely associated with defective OPA1-related mitochondrial fusion. Melatonin supplementation enhances OPA1-related mitochondrial fusion by activating the Yap-Hippo pathway, ultimately reducing brain reperfusion stress.
Collapse
Affiliation(s)
- Na Wei
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Center of Stroke, Beijing Institute for Brain Disorders, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Yuehua Pu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Center of Stroke, Beijing Institute for Brain Disorders, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Zhonghua Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Center of Stroke, Beijing Institute for Brain Disorders, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Diseases, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Center of Stroke, Beijing Institute for Brain Disorders, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, No. 119, Nansihuan West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
114
|
Thomas N, Gurvich C, Kulkarni J. Sex Differences in Aging and Associated Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:57-76. [PMID: 31493222 DOI: 10.1007/978-3-030-25650-0_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aging is a natural process defined by the gradual, time-dependent decline of biological and behavioural functions, for which individuals of the same chronological age show variability. The capacity of biological systems to continuously adjust for optimal functioning despite ever changing environments is essential for healthy aging, and variability in these adaptive homeostatic mechanisms may reflect such heterogeneity in the aging process. With an ever-increasing aging population, interest in biomarkers of aging is growing. Although no universally accepted definition of biomarkers of healthy aging exists, mediators of homeostasis are consistently used as measures of the aging process. As important sex differences are known to underlie many of these systems, it is imperative to consider that this may reflect, to some extent, the sex differences observed in aging and age-related disease states. This chapter aims to outline sex differences in key homeostatic domains thought to be associated with the pathophysiology of aging, often proposed as biomarkers of aging and age-related disease states. This includes considering sex-based differences and hormonal status with regards to the gonadal and adrenal endocrine systems and immune function.
Collapse
Affiliation(s)
- Natalie Thomas
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
115
|
Loiola RA, Wickstead ES, Solito E, McArthur S. Estrogen Promotes Pro-resolving Microglial Behavior and Phagocytic Cell Clearance Through the Actions of Annexin A1. Front Endocrinol (Lausanne) 2019; 10:420. [PMID: 31297095 PMCID: PMC6607409 DOI: 10.3389/fendo.2019.00420] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
Local production of estrogen rapidly follows brain tissue injury, but the role this hormone plays in regulating the response to neural damage or in the modulation of mediators regulating inflammation is in many ways unclear. Using the murine BV2 microglia model as well as primary microglia from wild-type and annexin A1 (AnxA1) null mice, we have identified two related mechanisms whereby estradiol can modulate microglial behavior in a receptor specific fashion. Firstly, estradiol, via estrogen receptor β (ERβ), enhanced the phagocytic clearance of apoptotic cells, acting through increased production and release of the protein AnxA1. Secondly, stimulation of either ERβ or the G protein coupled estrogen receptor GPER promoted the adoption of an anti-inflammatory/pro-resolving phenotype, an action similarly mediated through AnxA1. Together, these data suggest the hypothesis that locally produced estrogen acts through AnxA1 to exert powerful pro-resolving actions, controlling and limiting brain inflammation and ultimately protecting this highly vulnerable organ. Given the high degree of receptor selectivity in evoking these responses, we suggest that the use of selective estrogen receptor ligands may hold therapeutic promise in the treatment of neuroinflammation, avoiding unwanted generalized effects.
Collapse
Affiliation(s)
- Rodrigo Azevedo Loiola
- John Vane Science Centre, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Laboratoire de la Barrière Hémato-Encéphalique, Faculty Jean Perrin, EA 2465, Université d'Artois, Arras, France
| | - Edward S. Wickstead
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, London, United Kingdom
- Barts and The London School of Medicine and Dentistry, Institute of Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Egle Solito
- John Vane Science Centre, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universitá degli Studi di Napoli Federico II, Naples, Italy
| | - Simon McArthur
- Barts and The London School of Medicine and Dentistry, Institute of Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Simon McArthur
| |
Collapse
|
116
|
Role of GTPases in the Regulation of Mitochondrial Dynamics in Alzheimer's Disease and CNS-Related Disorders. Mol Neurobiol 2018; 56:4530-4538. [PMID: 30338485 DOI: 10.1007/s12035-018-1397-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
Data obtained from several studies have shown that mitochondria are involved and play a central role in the progression of several distinct pathological conditions. Morphological alterations and disruptions on the functionality of mitochondria may be related to metabolic and energy deficiency in neurons in a neurodegenerative disorder. Several recent studies demonstrate the linkage between neurodegeneration and mitochondrial dynamics in the spectrum of a promising era called precision mitochondrial medicine. In this review paper, an analysis of the correlation between mitochondria, Alzheimer's disease, and other central nervous system (CNS)-related disorders like the Parkinson's disease and the autism spectrum disorder is under discussion. The role of GTPases like the mfn1, mfn2, opa1, and dlp1 in mitochondrial fission and fusion is also under investigation, influencing mitochondrial population and leading to oxidative stress and neuronal damage.
Collapse
|
117
|
Lei H, Huang Z, Zhou F, Elazab A, Tan EL, Li H, Qin J, Lei B. Parkinson's Disease Diagnosis via Joint Learning From Multiple Modalities and Relations. IEEE J Biomed Health Inform 2018; 23:1437-1449. [PMID: 30183649 DOI: 10.1109/jbhi.2018.2868420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative progressive disease that mainly affects the motor systems of patients. To slow this disease deterioration, early and accurate diagnosis of PD is an effective way, which alleviates mental and physical sufferings by clinical intervention. In this paper, we propose a joint regression and classification framework for PD diagnosis via magnetic resonance and diffusion tensor imaging data. Specifically, we devise a unified multitask feature selection model to explore multiple relationships among features, samples, and clinical scores. We regress four clinical variables of depression, sleep, olfaction, cognition scores, as well as perform the classification of PD disease from the multimodal data. The multitask model explores the relationships at the level of clinical scores, image features, and subjects, to select the most informative and diseased-related features for diagnosis. The proposed method is evaluated on the public Parkinson's progression markers initiative dataset. The extensive experimental results show that the multitask framework can effectively boost the performance of regression and classification and outperforms other state-of-the-art methods. The computerized predictions of clinical scores and label for PD diagnosis may offer quantitative reference for decision support as well.
Collapse
|
118
|
Congdon EE. Sex Differences in Autophagy Contribute to Female Vulnerability in Alzheimer's Disease. Front Neurosci 2018; 12:372. [PMID: 29988365 PMCID: PMC6023994 DOI: 10.3389/fnins.2018.00372] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with over 5. 4 million cases in the US alone (Alzheimer's Association, 2016). Clinically, AD is defined by the presence of plaques composed of Aβ and neurofibrillary pathology composed of the microtubule associated protein tau. Another key feature is the dysregulation of autophagy at key steps in the pathway. In AD, disrupted autophagy contributes to disease progression through the failure to clear pathological protein aggregates, insulin resistance, and its role in the synthesis of Aβ. Like many psychiatric and neurodegenerative diseases, the risk of developing AD, and disease course are dependent on the sex of the patient. One potential mechanism through which these differences occur, is the effects of sex hormones on autophagy. In women, the loss of hormones with menopause presents both a risk factor for developing AD, and an obvious example of where sex differences in AD can stem from. However, because AD pathology can begin decades before menopause, this does not provide the full answer. We propose that sex-based differences in autophagy regulation during the lifespan contribute to the increased risk of AD, and greater severity of pathology seen in women.
Collapse
Affiliation(s)
- Erin E Congdon
- Neuroscience and Physiology, School of Medicine, New York University, New York City, NY, United States
| |
Collapse
|
119
|
Zore T, Palafox M, Reue K. Sex differences in obesity, lipid metabolism, and inflammation-A role for the sex chromosomes? Mol Metab 2018; 15:35-44. [PMID: 29706320 PMCID: PMC6066740 DOI: 10.1016/j.molmet.2018.04.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/26/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sex differences in obesity and related diseases are well established. Gonadal hormones are a major determinant of these sex differences. However, sex differences in body size and composition are evident prior to exposure to gonadal hormones, providing evidence for gonadal-independent contributions attributable to the XX or XY sex chromosome complement. Large-scale genetic studies have revealed male/female differences in the genetic architecture of adipose tissue amount and anatomical distribution. However, these studies have typically neglected the X and Y chromosomes. SCOPE OF THE REVIEW Here we discuss how the sex chromosome complement may influence obesity, lipid levels, and inflammation. Human sex chromosome anomalies such as Klinefelter syndrome (XXY), as well as mouse models with engineered alterations in sex chromosome complement, support an important role for sex chromosomes in obesity and metabolism. In particular, the Four Core Genotypes mouse model-consisting of XX mice with either ovaries or testes, and XY mice with either ovaries or testes-has revealed an effect of X chromosome dosage on adiposity, hyperlipidemia, and inflammation irrespective of male or female gonads. Mechanisms may include enhanced expression of genes that escape X chromosome inactivation. MAJOR CONCLUSIONS Although less well studied than effects of gonadal hormones, sex chromosomes exert independent and interactive effects on adiposity, lipid metabolism, and inflammation. In particular, the presence of two X chromosomes has been associated with increased adiposity and dyslipidemia in mouse models and in XXY men. The enhanced expression of genes that escape X chromosome inactivation may contribute, but more work is required.
Collapse
Affiliation(s)
- Temeka Zore
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Palafox
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|