101
|
Persky RW, Liu F, Xu Y, Weston G, Levy S, Roselli CE, McCullough LD. Neonatal testosterone exposure protects adult male rats from stroke. Neuroendocrinology 2013; 97:271-82. [PMID: 23051877 PMCID: PMC3617085 DOI: 10.1159/000343804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/27/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Men have a higher stroke incidence compared to women until advanced age. The contribution of hormones to these sex differences has been extensively debated. In experimental stroke, estradiol is neuroprotective, whereas androgens are detrimental. However, prior studies have only examined the effects of acute treatment paradigms; therefore, the timing and mechanism by which ischemic sexual dimorphism arises are unknown. METHODS The effects of exogenous neonatal androgen exposure on subsequent injury induced by middle cerebral artery occlusion in adulthood in male rats were examined. Rats were administered vehicle (oil), testosterone propionate (TP) or the non-aromatizable androgen dihydrotestosterone (DHT) for 5 days after birth. At 3 months of age, a focal stroke was induced. RESULTS Testosterone-treated rats (but not DHT-treated animals) had decreased infarct volumes (20 vs. 33%, p < 0.05) as well as increased estradiol levels (39.4 vs. 18.6 pg/ml, p < 0.0001) compared to oil-treated animals. TP-injected males had increased testicular aromatase (P450arom) levels (3.6 vs. 0.2 ng/ml, p < 0.0001) compared to oil-treated males. The level of X-linked inhibitor of apoptosis, the primary endogenous inhibitor of caspase-induced apoptosis, was increased in TP-treated rats compared with the oil-treated males. CONCLUSIONS Neonatal exposure to exogenous testosterone upregulates testicular aromatase expression in male rats and leads to adult neuroprotection secondary to changes in serum estradiol levels and cell death proteins. This study suggests that early exposure to gonadal hormones can have dramatic effects on the response to adult cerebrovascular injury.
Collapse
Affiliation(s)
- Rebecca W. Persky
- Department of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Fudong Liu
- Department of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Yan Xu
- Department of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Gillian Weston
- Department of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephanie Levy
- Department of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Charles E. Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| | - Louise D. McCullough
- Department of Neuroscience and Neurology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
102
|
Joel D. Genetic-gonadal-genitals sex (3G-sex) and the misconception of brain and gender, or, why 3G-males and 3G-females have intersex brain and intersex gender. Biol Sex Differ 2012; 3:27. [PMID: 23244600 PMCID: PMC3584732 DOI: 10.1186/2042-6410-3-27] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/10/2012] [Indexed: 12/21/2022] Open
Abstract
The categorization of individuals as "male" or "female" is based on chromosome complement and gonadal and genital phenotype. This combined genetic-gonadal-genitals sex, here referred to as 3G-sex, is internally consistent in ~99% of humans (i.e., one has either the "female" form at all levels, or the "male" form at all levels). About 1% of the human population is identified as "intersex" because of either having an intermediate form at one or more levels, or having the "male" form at some levels and the "female" form at other levels. These two types of "intersex" reflect the facts, respectively, that the different levels of 3G-sex are not completely dimorphic nor perfectly consistent. Using 3G-sex as a model to understand sex differences in other domains (e.g., brain, behavior) leads to the erroneous assumption that sex differences in these other domains are also highly dimorphic and highly consistent. But parallel lines of research have led to the conclusion that sex differences in the brain and in behavior, cognition, personality, and other gender characteristics are for the most part not dimorphic and not internally consistent (i.e., having one brain/gender characteristic with the "male" form is not a reliable predictor for the form of other brain/gender characteristics). Therefore although only ~1% percent of humans are 3G-"intersex", when it comes to brain and gender, we all have an intersex gender (i.e., an array of masculine and feminine traits) and an intersex brain (a mosaic of "male" and "female" brain characteristics).
Collapse
Affiliation(s)
- Daphna Joel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel-Aviv University, Jerusalem, Israel.
| |
Collapse
|
103
|
Schwartz CE, Kunwar PS, Greve DN, Kagan J, Snidman NC, Bloch RB. A phenotype of early infancy predicts reactivity of the amygdala in male adults. Mol Psychiatry 2012; 17:1042-50. [PMID: 21894151 PMCID: PMC3241859 DOI: 10.1038/mp.2011.96] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 01/18/2023]
Abstract
One of the central questions that has occupied those disciplines concerned with human development is the nature of continuities and discontinuities from birth to maturity. The amygdala has a central role in the processing of novelty and emotion in the brain. Although there is considerable variability among individuals in the reactivity of the amygdala to novel and emotional stimuli, the origin of these individual differences is not well understood. Four-month old infants called high reactive (HR) demonstrate a distinctive pattern of vigorous motor activity and crying to specific unfamiliar visual, auditory and olfactory stimuli in the laboratory. Low-reactive infants show the complementary pattern. Here, we demonstrate that the HR infant phenotype predicts greater amygdalar reactivity to novel faces almost two decades later in adults. A prediction of individual differences in brain function at maturity can be made on the basis of a single behavioral assessment made in the laboratory at 4 months of age. This is the earliest known human behavioral phenotype that predicts individual differences in patterns of neural activity at maturity. These temperamental differences rooted in infancy may be relevant to understanding individual differences in vulnerability and resilience to clinical psychiatric disorder. Males who were HR infants showed particularly high levels of reactivity to novel faces in the amygdala that distinguished them as adults from all other sex/temperament subgroups, suggesting that their amygdala is particularly prone to engagement by unfamiliar faces. These findings underline the importance of taking gender into account when studying the developmental neurobiology of human temperament and anxiety disorders. The genetic study of behavioral and biologic intermediate phenotypes (or 'endophenotypes') indexing anxiety-proneness offers an important alternative to examining phenotypes based on clinically defined disorder. As the HR phenotype is characterized by specific patterns of reactivity to elemental visual, olfactory and auditory stimuli, well before complex social behaviors such as shyness or fearful interaction with strangers can be observed, it may be closer to underlying neurobiological mechanisms than behavioral profiles observed later in life. This possibility, together with the fact that environmental factors have less time to impact the 4-month phenotype, suggests that this temperamental profile may be a fruitful target for high-risk genetic studies.
Collapse
Affiliation(s)
- C E Schwartz
- Developmental Neuroimaging and Psychopathology Laboratory, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
104
|
Neumann ID, Landgraf R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci 2012; 35:649-59. [PMID: 22974560 DOI: 10.1016/j.tins.2012.08.004] [Citation(s) in RCA: 666] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 05/24/2012] [Accepted: 08/13/2012] [Indexed: 02/07/2023]
Abstract
Oxytocin and vasopressin are regulators of anxiety, stress-coping, and sociality. They are released within hypothalamic and limbic areas from dendrites, axons, and perikarya independently of, or coordinated with, secretion from neurohypophysial terminals. Central oxytocin exerts anxiolytic and antidepressive effects, whereas vasopressin tends to show anxiogenic and depressive actions. Evidence from pharmacological and genetic association studies confirms their involvement in individual variation of emotional traits extending to psychopathology. Based on their opposing effects on emotional behaviors, we propose that a balanced activity of both brain neuropeptide systems is important for appropriate emotional behaviors. Shifting the balance between the neuropeptide systems towards oxytocin, by positive social stimuli and/or psychopharmacotherapy, may help to improve emotional behaviors and reinstate mental health.
Collapse
Affiliation(s)
- Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
105
|
Taylor PV, Veenema AH, Paul MJ, Bredewold R, Isaacs S, de Vries GJ. Sexually dimorphic effects of a prenatal immune challenge on social play and vasopressin expression in juvenile rats. Biol Sex Differ 2012; 3:15. [PMID: 22697211 PMCID: PMC3420237 DOI: 10.1186/2042-6410-3-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022] Open
Abstract
Background Infectious diseases and inflammation during pregnancy increase the offspring’s risk for behavioral disorders. However, how immune stress affects neural circuitry during development is not well known. We tested whether a prenatal immune challenge interferes with the development of social play and with neural circuits implicated in social behavior. Methods Pregnant rats were given intraperitoneal injections of the bacterial endotoxin lipopolysaccharide (LPS – 100 μg /kg) or saline on the 15th day of pregnancy. Offspring were tested for social play behaviors between postnatal days 26–40. Brains were harvested on postnatal day 45 and processed for arginine vasopressin (AVP) mRNA in situ hybridization. Results In males, LPS treatment reduced the frequency of juvenile play behavior and reduced AVP mRNA expression in the medial amygdala and bed nucleus of the stria terminalis. These effects were not found in females. LPS treatment did not change AVP mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, or supraoptic nucleus of either sex, nor did it affect the sex difference in the size of the sexually dimorphic nucleus of the preoptic area. Conclusions Given AVP’s central role in regulating social behavior, the sexually dimorphic effects of prenatal LPS treatment on male AVP mRNA expression may contribute to the sexually dimorphic effect of LPS on male social play and may, therefore, increase understanding of factors that contribute to sex differences in social psychopathology.
Collapse
Affiliation(s)
- Patrick V Taylor
- Center for Neuroendocrine Studies and Department of Psychology, University of Massachusetts, Amherst, MA, 01003, USA.
| | | | | | | | | | | |
Collapse
|
106
|
Mowrey WR, Portman DS. Sex differences in behavioral decision-making and the modulation of shared neural circuits. Biol Sex Differ 2012; 3:8. [PMID: 22436578 PMCID: PMC3352037 DOI: 10.1186/2042-6410-3-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/21/2012] [Indexed: 11/10/2022] Open
Abstract
Animals prioritize behaviors according to their physiological needs and reproductive goals, selecting a single behavioral strategy from a repertoire of possible responses to any given stimulus. Biological sex influences this decision-making process in significant ways, differentiating the responses animals choose when faced with stimuli ranging from food to conspecifics. We review here recent work in invertebrate models, including C. elegans, Drosophila, and a variety of insects, mollusks and crustaceans, that has begun to offer intriguing insights into the neural mechanisms underlying the sexual modulation of behavioral decision-making. These findings show that an animal's sex can modulate neural function in surprisingly diverse ways, much like internal physiological variables such as hunger or thirst. In the context of homeostatic behaviors such as feeding, an animal's sex and nutritional status may converge on a common physiological mechanism, the functional modulation of shared sensory circuitry, to influence decision-making. Similarly, considerable evidence suggests that decisions on whether to mate or fight with conspecifics are also mediated through sex-specific neuromodulatory control of nominally shared neural circuits. This work offers a new perspective on how sex differences in behavior emerge, in which the regulated function of shared neural circuitry plays a crucial role. Emerging evidence from vertebrates indicates that this paradigm is likely to extend to more complex nervous systems as well. As men and women differ in their susceptibility to a variety of neuropsychiatric disorders affecting shared behaviors, these findings may ultimately have important implications for human health.
Collapse
Affiliation(s)
- William R Mowrey
- Center for Neural Development and Disease, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 645, Rochester, NY 14642, USA.
| | | |
Collapse
|
107
|
Abstract
Convincing evidence indicates that prenatal exposure to the gonadal hormone, testosterone, influences the development of children's sex-typical toy and activity interests. In addition, growing evidence shows that testosterone exposure contributes similarly to the development of other human behaviors that show sex differences, including sexual orientation, core gender identity, and some, though not all, sex-related cognitive and personality characteristics. In addition to these prenatal hormonal influences, early infancy and puberty may provide additional critical periods when hormones influence human neurobehavioral organization. Sex-linked genes could also contribute to human gender development, and most sex-related characteristics are influenced by socialization and other aspects of postnatal experience, as well. Neural mechanisms underlying the influences of gonadal hormones on human behavior are beginning to be identified. Although the neural mechanisms underlying experiential influences remain largely uninvestigated, they could involve the same neural circuitry as that affected by hormones.
Collapse
Affiliation(s)
- Melissa Hines
- Department of Social and Developmental Psychology, University of Cambridge, Cambridge, CB2 3RQ, United Kingdom.
| |
Collapse
|
108
|
Abstract
The underlying assumption in popular and scientific publications on sex differences in the brain is that human brains can take one of two forms “male” or “female,” and that the differences between these two forms underlie differences between men and women in personality, cognition, emotion, and behavior. Documented sex differences in brain structure are typically taken to support this dimorphic view of the brain. However, neuroanatomical data reveal that sex interacts with other factors in utero and throughout life to determine the structure of the brain, and that because these interactions are complex, the result is a multi-morphic, rather than a dimorphic, brain. More specifically, here I argue that human brains are composed of an ever-changing heterogeneous mosaic of “male” and “female” brain characteristics (rather than being all “male” or all “female”) that cannot be aligned on a continuum between a “male brain” and a “female brain.” I further suggest that sex differences in the direction of change in the brain mosaic following specific environmental events lead to sex differences in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daphna Joel
- Department of Psychology, Tel-Aviv University Tel-Aviv, Israel
| |
Collapse
|
109
|
Hardies K. The NeverEnding Story of “Hard-Wired” Gender Differences. SEX ROLES 2011. [DOI: 10.1007/s11199-011-9976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
110
|
Raskin K, Mhaouty-Kodja S. Testostérone et contrôle central de l’érection. Basic Clin Androl 2011. [DOI: 10.1007/s12610-011-0135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Résumé
La testostérone orchestre l’organisation périnatale et l’activation adulte des structures nerveuses cérébrales et spinales impliquées dans l’expression du comportement sexuel mâle. Cette revue décrit brièvement les différents effets de la testostérone dans la régulation de la motivation sexuelle et de l’érection, et les modèles génétiques générés, jusqu’à présent, dans le but d’élucider ses mécanismes d’action centraux.
Collapse
|
111
|
Voigt C, Gahr M. Social status affects the degree of sex difference in the songbird brain. PLoS One 2011; 6:e20723. [PMID: 21687671 PMCID: PMC3110770 DOI: 10.1371/journal.pone.0020723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 05/11/2011] [Indexed: 01/08/2023] Open
Abstract
It is thought that neural sex differences are functionally related to sex differences in the behaviour of vertebrates. A prominent example is the song control system of songbirds. Inter-specific comparisons have led to the hypothesis that sex differences in song nuclei size correlate with sex differences in song behaviour. However, only few species with similar song behaviour in both sexes have been investigated and not all data fit the hypothesis. We investigated the proposed structure – function relationship in a cooperatively breeding and duetting songbird, the white-browed sparrow weaver (Plocepasser mahali). This species lives in groups of 2–10 individuals, with a dominant breeding pair and male and female subordinates. While all male and female group members sing duet and chorus song, a male, once it has reached the dominant position in the group, sings an additional type of song that comprises a distinct and large syllable repertoire. Here we show for both types of male – female comparisons a male-biased sex difference in neuroanatomy of areas of the song production pathway (HVC and RA) that does not correlate with the observed polymorphism in song behaviour. In contrast, in situ hybridisation of mRNA of selected genes expressed in the song nucleus HVC reveals a gene expression pattern that is either similar between sexes in female – subordinate male comparisons or female-biased in female – dominant male comparisons. Thus, the polymorphic gene expression pattern would fit the sex- and status-related song behaviour. However, this implies that once a male has become dominant it produces the duetting song with a different neural phenotype than subordinate males.
Collapse
Affiliation(s)
- Cornelia Voigt
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | | |
Collapse
|
112
|
Okubo K, Takeuchi A, Chaube R, Paul-Prasanth B, Kanda S, Oka Y, Nagahama Y. Sex differences in aromatase gene expression in the medaka brain. J Neuroendocrinol 2011; 23:412-23. [PMID: 21332842 DOI: 10.1111/j.1365-2826.2011.02120.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The brain of teleost fish exhibits a significant degree of sexual plasticity, even in adulthood. This unique feature is almost certainly attributable to a teleost-specific sexual differentiation process of the brain, which remains largely unknown. To dissect the molecular basis of sexual differentiation of the teleost brain, we searched for genes differentially expressed between both sexes in the medaka brain. One gene identified in the screen, cyp19a1b, which encodes the steroidogenic enzyme aromatase, was selected for further analysis. As opposed to the situation in most vertebrates, medaka cyp19a1b is expressed at higher levels in the adult female brain than the male brain. The female-biased expression in the brain is consistent regardless of reproductive or diurnal cycle. Medaka cyp19a1b is expressed throughout the ventricular zones in wide areas of the brain, where, in most regions, females have a greater degree of expression compared to males, with the optic tectum exhibiting the most conspicuous predominance in females. Contrary to what is known in mammals, cyp19a1b expression exhibits neither a transient elevation nor a sex difference in medaka embryos. It is not until just before the onset of puberty that cyp19a1b expression in the medaka brain is sexually differentiated. Finally, cyp19a1b expression in the medaka brain is not under the direct control of sex chromosome genes but relies mostly, if not solely, on oestrogen derived from the gonad. These unique properties of aromatase expression in the brain probably contribute substantially to the less rigid sexual differentiation process, thus ensuring remarkable sexual plasticity in the teleost brain.
Collapse
Affiliation(s)
- K Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
113
|
The genetics of sex differences in brain and behavior. Front Neuroendocrinol 2011; 32:227-46. [PMID: 20951723 PMCID: PMC3030621 DOI: 10.1016/j.yfrne.2010.10.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 11/22/2022]
Abstract
Biological differences between men and women contribute to many sex-specific illnesses and disorders. Historically, it was argued that such differences were largely, if not exclusively, due to gonadal hormone secretions. However, emerging research has shown that some differences are mediated by mechanisms other than the action of these hormone secretions and in particular by products of genes located on the X and Y chromosomes, which we refer to as direct genetic effects. This paper reviews the evidence for direct genetic effects in behavioral and brain sex differences. We highlight the 'four core genotypes' model and sex differences in the midbrain dopaminergic system, specifically focusing on the role of Sry. We also discuss novel research being done on unique populations including people attracted to the same sex and people with a cross-gender identity. As science continues to advance our understanding of biological sex differences, a new field is emerging that is aimed at better addressing the needs of both sexes: gender-based biology and medicine. Ultimately, the study of the biological basis for sex differences will improve healthcare for both men and women.
Collapse
|
114
|
Sexual differentiation of human behavior: effects of prenatal and pubertal organizational hormones. Front Neuroendocrinol 2011; 32:183-200. [PMID: 21397624 DOI: 10.1016/j.yfrne.2011.03.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/26/2011] [Accepted: 03/04/2011] [Indexed: 01/10/2023]
Abstract
A key question concerns the extent to which sexual differentiation of human behavior is influenced by sex hormones present during sensitive periods of development (organizational effects), as occurs in other mammalian species. The most important sensitive period has been considered to be prenatal, but there is increasing attention to puberty as another organizational period, with the possibility of decreasing sensitivity to sex hormones across the pubertal transition. In this paper, we review evidence that sex hormones present during the prenatal and pubertal periods produce permanent changes to behavior. There is good evidence that exposure to high levels of androgens during prenatal development results in masculinization of activity and occupational interests, sexual orientation, and some spatial abilities; prenatal androgens have a smaller effect on gender identity, and there is insufficient information about androgen effects on sex-linked behavior problems. There is little good evidence regarding long-lasting behavioral effects of pubertal hormones, but there is some suggestion that they influence gender identity and perhaps some sex-linked forms of psychopathology, and there are many opportunities to study this issue.
Collapse
|
115
|
Majdic G, Tobet S. Cooperation of sex chromosomal genes and endocrine influences for hypothalamic sexual differentiation. Front Neuroendocrinol 2011; 32:137-45. [PMID: 21338619 PMCID: PMC3085655 DOI: 10.1016/j.yfrne.2011.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/11/2011] [Accepted: 02/15/2011] [Indexed: 02/04/2023]
Abstract
There is little debate that mammalian sexual differentiation starts from the perspective of two primary sexes that correspond to differential sex chromosomes (X versus Y) that lead to individuals with sex typical characteristics. Sex steroid hormones account for most aspects of brain sexual differentiation, however, a growing literature has raised important questions about the role of sex chromosomal genes separate from sex steroid actions. Several important model animals are being used to address these issues and, in particular, they are taking advantage of molecular genetic approaches using different mouse strains. The current review examines the cooperation of genetic and endocrine influences from the perspective of behavioral and morphological hypothalamic sexual differentiation, first in adults and then in development. In the final analysis, there is an ongoing need to account for the influence of hormones in the context of underlying genetic circumstances and null hormone conditions.
Collapse
Affiliation(s)
- Gregor Majdic
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia and Medical Faculty, University of Maribor, Maribor, Slovenia
| | | |
Collapse
|
116
|
McCarthy MM. A lumpers versus splitters approach to sexual differentiation of the brain. Front Neuroendocrinol 2011; 32:114-23. [PMID: 21296103 PMCID: PMC3085725 DOI: 10.1016/j.yfrne.2011.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/22/2011] [Accepted: 01/31/2011] [Indexed: 12/17/2022]
Abstract
Over 50 years of rigorous empirical attention to the study of sexual differentiation of the brain has produced sufficient data to reveal fundamental guiding principles, but has also required the generation of new hypotheses to explain non-conforming observations. An early emphasis on the powerful impact and essential role of gonadal steroids is now complemented by an appreciation for genetic contributions to sex differences in the brain. The organizing effects of early steroid hormones on reproductively relevant brain regions and endpoints are largely dependent upon neuronal aromatization of androgens to estrogens. The effect of estradiol is mediated via estrogen receptors (ER). The presence or absence of ER can restrict hormone action to select cells and either prevent or invoke cell death. Alternatively, ER activation can initiate signaling cascades that induce cell-to-cell communication and thereby transduce organizational steroid effects to large numbers of cells. However, the specific details by which cell death and cell-to-cell communication are achieved appear to be locally, even cellularly, unique and specific to that particular subpopulation. As the field moves forward the increasingly specific and detailed elucidation of mechanism challenges us to generate new guiding principles in order to gain a holistic understanding of how the brain develops in males and females.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore St. Baltimore, MD 21201, USA.
| |
Collapse
|
117
|
Wojniusz S, Vögele C, Ropstad E, Evans N, Robinson J, Sütterlin S, Erhard HW, Solbakk AK, Endestad T, Olberg DE, Haraldsen IRH. Prepubertal gonadotropin-releasing hormone analog leads to exaggerated behavioral and emotional sex differences in sheep. Horm Behav 2011; 59:22-7. [PMID: 20934426 DOI: 10.1016/j.yhbeh.2010.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
In mammals, sex specialization is reflected by differences in brain anatomy and function. Measurable differences are documented in reproductive behavior, cognition, and emotion. We hypothesized that gonadotropin-releasing hormone (GnRH) plays a crucial role in controlling the extent of the brain's sex specificity and that changes in GnRH action during critical periods of brain development, such as puberty, will result in altered sex-specific behavioral and physiological patterns. We blocked puberty in half of the 48 same-sex Scottish mule Texel cross sheep twins with GnRH analog (GnRHa) goserelin acetate every 3 weeks, beginning just before puberty. To determine the effects of GnRHa treatment on sex-specific behavior and emotion regulation in different social contexts, we employed the food acquisition task (FAT) and measurement of heart rate variability (HRV). ANOVA revealed significant sex and sex×treatment interaction effects, suggesting that treated males were more likely to leave their companions to acquire food than untreated, while the opposite effect was observed in females. Concordant results were seen in HRV; treated males displayed higher HRV than untreated, while the reverse pattern was found in females, as shown by significant sex and sex×treatment interaction effects. We conclude that long-term prepubertal GnRHa treatment significantly affected sex-specific brain development, which impacted emotion and behavior regulation in sheep. These results suggest that GnRH is a modulator of cognitive function in the developing brain and that the sexes are differentially affected by GnRH modulation.
Collapse
Affiliation(s)
- Slawomir Wojniusz
- Department of Neuropsychiatry and Psychosomatic Medicine, Division of Surgery and Clinical Neuroscience, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0027 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Cell death and sexual differentiation of behavior: worms, flies, and mammals. Curr Opin Neurobiol 2010; 20:776-83. [PMID: 20934320 DOI: 10.1016/j.conb.2010.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 11/24/2022]
Abstract
Sex differences in the nervous system are found throughout the animal kingdom. Here, we discuss three prominent genetic models: nematodes, fruit flies, and mice. In all three, differential cell death is central to sexual differentiation and shared molecular mechanisms have been identified. Our knowledge of the precise function of neural sex differences lags behind. One fruitful approach to the 'function' question is to contrast sexual differentiation in standard laboratory animals with differentiation in species exhibiting unique social and reproductive organizations. Advanced genetic strategies are also addressing this question in worms and flies, and may soon be applicable to vertebrates.
Collapse
|
119
|
Schwarz JM, Nugent BM, McCarthy MM. Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span. Endocrinology 2010; 151:4871-81. [PMID: 20702577 PMCID: PMC2946142 DOI: 10.1210/en.2010-0142] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sexual differentiation of the rodent brain occurs during a perinatal critical period when androgen production from the male testis is locally converted to estradiol in neurons, resulting in masculinization of adult sexual behavior. Adult brain responses to hormones are programmed developmentally by estradiol exposure, but the mechanism(s) by which these changes are permanently organized remains poorly understood. Activation of steroid receptors plays a major role in organization of the brain, and we hypothesized that estradiol-induced alteration of steroid-receptor gene methylation is a critical component to this process. Estrogen receptor (ER)-α and ER-β and progesterone receptor are expressed at high levels within the preoptic area (POA) and the mediobasal hypothalamus, two brain regions critical for the expression of male and female sexual behavior. The percent methylation on the ER-α promoter increased markedly across development. During the critical period of sexual differentiation, females had significantly increased methylation than males or females masculinized with estradiol at two CpG sites. By adulthood, the neonatal sex difference and hormonal modulation of methylation were replaced with a new pattern at a different CpG site on the ER-α promoter. In contrast, the percent methylation on the progesterone receptor and ER-β promoter did not change developmentally but was modulated by hormones and exhibited only late emerging transient sex differences. These data indicate that sex differences in the methylation pattern of genes important for sexual behavior are epigenetically modified during development, but the specific changes observed do not endure and are not necessarily temporally associated with neonatal hormone exposure.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- Program in Neuroscience, Department of Physiology, University of Maryland, Baltimore, 655 West Baltimore Street, 5-015, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
120
|
Gagnidze K, Weil ZM, Pfaff DW. Histone modifications proposed to regulate sexual differentiation of brain and behavior. Bioessays 2010; 32:932-9. [DOI: 10.1002/bies.201000064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
121
|
Kauffman AS. Coming of age in the kisspeptin era: sex differences, development, and puberty. Mol Cell Endocrinol 2010; 324:51-63. [PMID: 20083160 PMCID: PMC2902563 DOI: 10.1016/j.mce.2010.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 01/01/2023]
Abstract
The status of the neuroendocrine reproductive axis differs dramatically during various stages of development, and also differs in several critical ways between the sexes, including its earlier pubertal activation in females than males and the presence of neural circuitry that generates preovulatory hormone surges in females but not males. The reproductive axis is controlled by various hormonal and neural pathways that converge upon forebrain gonadotropin-releasing hormone (GnRH) neurons, and many of the critical age and sex differences in the reproductive axis likely reflect differences in the "upstream" circuits and factors that regulate the GnRH system. Recently, the neural kisspeptin system has been implicated as an important regulator of GnRH neurons. Here I discuss the evidence supporting a critical role of kisspeptin signaling at different stages of life, including early postnatal and pubertal development, as well as in adulthood, focusing primarily on information gleaned from mammalian studies. I also evaluate key aspects of sexual differentiation and development of the brain as it relates to the Kiss1 system, with special emphasis on rodents. In addition to discussing recent advances in the field of kisspeptin biology, this paper will highlight a number of unanswered questions and future challenges for kisspeptin investigators, and will stress the importance of studying the kisspeptin system in both males and females, as well as in multiple species.
Collapse
Affiliation(s)
- Alexander S Kauffman
- University of California, San Diego, Department of Reproductive Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
122
|
Ho JM, Murray JH, Demas GE, Goodson JL. Vasopressin cell groups exhibit strongly divergent responses to copulation and male-male interactions in mice. Horm Behav 2010; 58:368-77. [PMID: 20382147 PMCID: PMC4195792 DOI: 10.1016/j.yhbeh.2010.03.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/16/2010] [Accepted: 03/31/2010] [Indexed: 11/26/2022]
Abstract
Arginine vasopressin (AVP) and its nonmammalian homolog arginine vasotocin influence social behaviors ranging from affiliation to resident-intruder aggression. Although numerous sites of action have been established for these behavioral effects, the involvement of specific AVP cell groups in the brain is poorly understood, and socially elicited Fos responses have not been quantified for many of the AVP cell groups found in rodents. Surprisingly, this includes the AVP population in the posterior part of the medial bed nucleus of the stria terminalis (BSTMP), which has been extensively implicated, albeit indirectly, in various aspects of affiliation and other social behaviors. We examined the Fos responses of eight hypothalamic and three extra-hypothalamic AVP-immunoreactive (-ir) cell groups to copulation, nonaggressive male-male interaction, and aggressive male-male interaction in both dominant and subordinate C57BL/6J mice. The BSTMP cells exhibited a response profile that was unlike all other cell groups: from a control baseline of approximately 5% of AVP-ir neurons colocalizing with Fos, colocalization increased significantly to approximately 12% following nonaggressive male-male interaction, and to approximately 70% following copulation. Aggressive interactions did not increase colocalization beyond the level observed in nonaggressive male mice. These results suggest that BSTMP neurons in mice may increase AVP-Fos colocalization selectively in response to affiliation-related stimuli, similar to findings in finches. In contrast, virtually all other cell groups were responsive to negative aspects of interaction, either through elevated AVP-Fos colocalization in subordinate animals, positive correlations of AVP-Fos colocalization with bites received, and/or negative correlations of AVP-Fos colocalization with dominance. These findings greatly expand what is known of the contributions of specific brain AVP cell groups to social behavior.
Collapse
Affiliation(s)
- Jacqueline M Ho
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
123
|
Bonthuis P, Cox K, Searcy B, Kumar P, Tobet S, Rissman E. Of mice and rats: key species variations in the sexual differentiation of brain and behavior. Front Neuroendocrinol 2010; 31:341-58. [PMID: 20457175 PMCID: PMC2910167 DOI: 10.1016/j.yfrne.2010.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 12/25/2022]
Abstract
Mice and rats are important mammalian models in biomedical research. In contrast to other biomedical fields, work on sexual differentiation of brain and behavior has traditionally utilized comparative animal models. As mice are gaining in popularity, it is essential to acknowledge the differences between these two rodents. Here we review neural and behavioral sexual dimorphisms in rats and mice, which highlight species differences and experimental gaps in the literature, that are needed for direct species comparisons. Moving forward, investigators must answer fundamental questions about their chosen organism, and attend to both species and strain differences as they select the optimal animal models for their research questions.
Collapse
Affiliation(s)
- P.J. Bonthuis
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - K.H. Cox
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - B.T. Searcy
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - P. Kumar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - S. Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - E.F. Rissman
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
124
|
Semaan SJ, Kauffman AS. Sexual differentiation and development of forebrain reproductive circuits. Curr Opin Neurobiol 2010; 20:424-31. [PMID: 20471241 DOI: 10.1016/j.conb.2010.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 11/19/2022]
Abstract
Males and females exhibit numerous anatomical and physiological differences in the brain that often underlie important sex differences in physiology or behavior, including aspects relating to reproduction. Neural sex differences are both region-specific and trait-specific and may consist of divergences in synapse morphology, neuron size and number, and specific gene expression levels. In most cases, sex differences are induced by the sex steroid hormonal milieu during early perinatal development. In rodents, the hypothalamic anteroventral periventricular nucleus (AVPV) is sexually differentiated as a result of postnatal sex steroids, and also specific neuronal populations in this nucleus are sexually dimorphic, with females possessing more kisspeptin, dopaminergic, and GABA/glutamate neurons than males. The ability of female rodents, but not males, to display an estrogen-induced luteinizing hormone (LH) surge is consistent with the higher levels of these neuropeptides in the AVPV of females. Of these AVPV populations, the recently identified kisspeptin system has been most strongly implicated as a crucial component of the sexually dimorphic LH surge mechanism, though GABA and glutamate have also received some attention. New findings have suggested that the sexual differentiation and development of kisspeptin neurons in the AVPV is mediated by developmental estradiol signaling. Although apoptosis is the most common process implicated in neuronal sexual differentiation, it is currently unknown how developmental estradiol acts to differentiate specific neuronal populations in the AVPV, such as kisspeptin or dopaminergic neurons.
Collapse
Affiliation(s)
- Sheila J Semaan
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
125
|
Meyer-Bahlburg HFL. From mental disorder to iatrogenic hypogonadism: dilemmas in conceptualizing gender identity variants as psychiatric conditions. ARCHIVES OF SEXUAL BEHAVIOR 2010; 39:461-76. [PMID: 19851856 PMCID: PMC2844928 DOI: 10.1007/s10508-009-9532-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The categorization of gender identity variants (GIVs) as "mental disorders" in the Diagnostic and Statistical Manual of Mental Disorders (DSM) of the American Psychiatric Association is highly controversial among professionals as well as among persons with GIV. After providing a brief history of GIV categorizations in the DSM, this paper presents some of the major issues of the ongoing debate: GIV as psychopathology versus natural variation; definition of "impairment" and "distress" for GID; associated psychopathology and its relation to stigma; the stigma impact of the mental-disorder label itself; the unusual character of "sex reassignment surgery" as a psychiatric treatment; and the consequences for health and mental-health services if the disorder label is removed. Finally, several categorization options are examined: Retaining the GID category, but possibly modifying its grouping with other syndromes; narrowing the definition to dysphoria and taking "disorder" out of the label; categorizing GID as a neurological or medical rather than a psychiatric disorder; removing GID from both the DSM and the International Classification of Diseases (ICD); and creating a special category for GIV in the DSM. I conclude that-as also evident in other DSM categories-the decision on the categorization of GIVs cannot be achieved on a purely scientific basis, and that a consensus for a pragmatic compromise needs to be arrived at that accommodates both scientific considerations and the service needs of persons with GIVs.
Collapse
Affiliation(s)
- Heino F L Meyer-Bahlburg
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University, 1051 Riverside Drive, Unit 15, New York, NY 10032, USA.
| |
Collapse
|
126
|
Frye CA, Petralia SM, Rhodes ME, DeBold JF. 6-hydroxydopamine lesions enhance progesterone-facilitated lordosis of rats and hamsters, independent of effects on motor behavior. Physiol Behav 2010; 99:218-24. [PMID: 19778544 PMCID: PMC3608211 DOI: 10.1016/j.physbeh.2009.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 06/02/2009] [Accepted: 09/11/2009] [Indexed: 01/14/2023]
Abstract
The Ventral Tegmental Area (VTA) is an important brain area for progesterone (P(4))'s effects to facilitate female sexual behavior of rodents. We investigated the importance of dopaminergic neurons in the VTA, and two dopaminergic projection sites, the Nucleus Accumbens (NAc), and Caudate Nucleus of the Striatum (CN), in modulating P(4)-facilitated sex and motor behavior. Ovariectomized (ovx) rats and hamsters, administered estradiol benzoate (10 microg) and P(4) (0, 50, 100, 200, or 500 microg), were tested for motor behavior in a chamber that automatically records horizontal beam breaks, and for sexual behavior in response to a sexually-experienced male. Animals were tested once a week until each P(4) dosage was received; animals then had bilateral 6-hydroxydopamine (6-OHDA) or sham lesions to the VTA, NAc, or CN and were re-tested at each P(4) dosage on subsequent weeks. Fixed brains were stained with cresyl violet and processed for dopamine transporter (DAT) immunoreactivity. The number of cresyl violet stained cells was significantly lower in all 6-OHDA infusion sites compared to non-6-OHDA infusion sites of rats and hamsters. Also, in rats, the number of DAT-immunoreactive neurons was lower in all 6-OHDA infusion sites compared to non-6-OHDA infusion sites. In rats, 6-OHDA but not sham, lesions to the VTA, NAc, or CN produced P(4)-dependent increases in lordosis quotients and resulted in modest increases in motor behavior. In hamsters, 6-OHDA, but not sham, lesions to the VTA, NAc, or CN produced P(4)-dependent increases in total lordosis durations and produced modest decreases in motor behavior. This suggests that the dopaminergic output neurons of midbrain VTA may play an important role in modulation of P(4)-facilitated sexual lordosis among rodents.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | | | |
Collapse
|