101
|
Yang L, Dolan EM, Tan SK, Lin T, Sontag ED, Khare SD. Computation‐Guided Design of a Stimulus‐Responsive Multienzyme Supramolecular Assembly. Chembiochem 2017; 18:2000-2006. [DOI: 10.1002/cbic.201700425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Lu Yang
- Department of Chemistry and Chemical Biology Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Center for Integrative Proteomics Research Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Elliott M. Dolan
- Department of Chemistry and Chemical Biology Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Center for Integrative Proteomics Research Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Sophia K. Tan
- Center for Integrative Proteomics Research Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Tianyun Lin
- Center for Integrative Proteomics Research Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Eduardo D. Sontag
- Institute for Quantitative Biomedicine Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Center for Integrative Proteomics Research Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Department of Mathematics Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Sagar D. Khare
- Department of Chemistry and Chemical Biology Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Computational Biology & Molecular Biophysics Program Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Institute for Quantitative Biomedicine Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Center for Integrative Proteomics Research Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| |
Collapse
|
102
|
Lin JL, Zhu J, Wheeldon I. Synthetic Protein Scaffolds for Biosynthetic Pathway Colocalization on Lipid Droplet Membranes. ACS Synth Biol 2017; 6:1534-1544. [PMID: 28497697 DOI: 10.1021/acssynbio.7b00041] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Eukaryotic biochemistry is organized throughout the cell in and on membrane-bound organelles. When engineering metabolic pathways this organization is often lost, resulting in flux imbalance and a loss of kinetic advantages from enzyme colocalization and substrate channeling. Here, we develop a protein-based scaffold for colocalizing multienzyme pathways on the membranes of intracellular lipid droplets. Scaffolds based on the plant lipid droplet protein oleosin and cohesin-dockerin interaction pairs recruited upstream enzymes in yeast ester biosynthesis to the native localization of the terminal reaction step, alcohol-O-acetyltransferase (Atf1). The native localization is necessary for high activity and pathway assembly in close proximity to Atf1 increased pathway flux. Screening a library of scaffold variants further showed that pathway structure can alter catalysis and revealed an optimized scaffold and pathway expression levels that produced ethyl acetate at a rate nearly 2-fold greater than unstructured pathways. This strategy should prove useful in spatially organizing other metabolic pathways with key lipid droplet-localized and membrane-bound reaction steps.
Collapse
Affiliation(s)
- Jyun-Liang Lin
- Department of Chemical and
Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jie Zhu
- Department of Chemical and
Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Ian Wheeldon
- Department of Chemical and
Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
103
|
Affiliation(s)
- Yifei Zhang
- Department of Biomedical
Engineering, Columbia University, New York, New York 10027, United States
| | - Henry Hess
- Department of Biomedical
Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
104
|
Young EJ, Burton R, Mahalik JP, Sumpter BG, Fuentes-Cabrera M, Kerfeld CA, Ducat DC. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications. Front Microbiol 2017; 8:1441. [PMID: 28824573 PMCID: PMC5534457 DOI: 10.3389/fmicb.2017.01441] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as "building blocks" for a range of customized intracellular scaffolds. We summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.
Collapse
Affiliation(s)
- Eric J. Young
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
| | - Rodney Burton
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
| | - Jyoti P. Mahalik
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak RidgeTN, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Bobby G. Sumpter
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak RidgeTN, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Miguel Fuentes-Cabrera
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak RidgeTN, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Cheryl A. Kerfeld
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
- Molecular Biophysics and Integrated Bioimaging Division, Berkeley National Laboratory, BerkeleyCA, United States
| | - Daniel C. Ducat
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- MSU-DOE Plant Research Laboratory, East LansingMI, United States
| |
Collapse
|
105
|
Abstract
The organization of metabolic multienzyme complexes has been hypothesized to benefit metabolic processes and provide a coordinated way for the cell to regulate metabolism. Historically, their existence has been supported by various in vitro techniques. However, it is only recently that the existence of metabolic complexes inside living cells has come to light to corroborate this long-standing hypothesis. Indeed, subcellular compartmentalization of metabolic enzymes appears to be widespread and highly regulated. On the other hand, it is still challenging to demonstrate the functional significance of these enzyme complexes in the context of the cellular milieu. In this review, we discuss the current understanding of metabolic enzyme complexes by primarily focusing on central carbon metabolism and closely associated metabolic pathways in a variety of organisms, as well as their regulation and functional contributions to cells.
Collapse
Affiliation(s)
- Danielle L Schmitt
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC) , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC) , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
106
|
Wang Y, Heermann R, Jung K. CipA and CipB as Scaffolds To Organize Proteins into Crystalline Inclusions. ACS Synth Biol 2017; 6:826-836. [PMID: 28186716 DOI: 10.1021/acssynbio.6b00323] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Natural and synthetic scaffolds support enzyme organization in complexes, and they regulate their function and activity. Here we report that CipA and CipB, two small proteins that form protein crystalline inclusions (PCIs) in the cytoplasm of Photorhabdus luminescens, can be utilized as scaffolds to efficiently incorporate exogenous proteins into PCIs. We demonstrate that Cip-tagged GFP is assembled into fluorescent PCIs in P. luminescens and that in Escherichia coli Cip scaffolds can organize GFP or/and LacZ into bioactive PCIs, which could easily be isolated for in vitro catalysis. To explore its in vivo application further, we used CipA to bring together multiple enzymes (Vio enzymes) of the violacein biosynthetic pathway. The resulting complexes were found to produce significantly higher yields of violacein and fewer byproducts than did Vio enzymes in solution. Hence, Cip scaffolds should be widely applicable to biotechnological processes both in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Wang
- Munich Center for Integrated Protein
Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Ralf Heermann
- Munich Center for Integrated Protein
Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Kirsten Jung
- Munich Center for Integrated Protein
Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| |
Collapse
|
107
|
Jakobson CM, Tullman-Ercek D, Slininger MF, Mangan NM. A systems-level model reveals that 1,2-Propanediol utilization microcompartments enhance pathway flux through intermediate sequestration. PLoS Comput Biol 2017; 13:e1005525. [PMID: 28475631 PMCID: PMC5438192 DOI: 10.1371/journal.pcbi.1005525] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 05/19/2017] [Accepted: 04/20/2017] [Indexed: 11/29/2022] Open
Abstract
The spatial organization of metabolism is common to all domains of life. Enteric and other bacteria use subcellular organelles known as bacterial microcompartments to spatially organize the metabolism of pathogenicity-relevant carbon sources, such as 1,2-propanediol. The organelles are thought to sequester a private cofactor pool, minimize the effects of toxic intermediates, and enhance flux through the encapsulated metabolic pathways. We develop a mathematical model of the function of the 1,2-propanediol utilization microcompartment of Salmonella enterica and use it to analyze the function of the microcompartment organelles in detail. Our model makes accurate estimates of doubling times based on an optimized compartment shell permeability determined by maximizing metabolic flux in the model. The compartments function primarily to decouple cytosolic intermediate concentrations from the concentrations in the microcompartment, allowing significant enhancement in pathway flux by the generation of large concentration gradients across the microcompartment shell. We find that selective permeability of the microcompartment shell is not absolutely necessary, but is often beneficial in establishing this intermediate-trapping function. Our findings also implicate active transport of the 1,2-propanediol substrate under conditions of low external substrate concentration, and we present a mathematical bound, in terms of external 1,2-propanediol substrate concentration and diffusive rates, on when active transport of the substrate is advantageous. By allowing us to predict experimentally inaccessible aspects of microcompartment function, such as intra-microcompartment metabolite concentrations, our model presents avenues for future research and underscores the importance of carefully considering changes in external metabolite concentrations and other conditions during batch cultures. Our results also suggest that the encapsulation of heterologous pathways in bacterial microcompartments might yield significant benefits for pathway flux, as well as for toxicity mitigation. Many bacterial species, such as Salmonella enterica (responsible for over 1 million illnesses per year in the United States) and Yersinia pestis (the causative agent of bubonic plague), have a suite of unique metabolic capabilities allowing them to proliferate in the hostile environment of the host gut. Bacterial microcompartments are the subcellular organelles that contain the enzymes responsible for these special metabolic pathways. In this study, we use a mathematical model to explore the possible reasons why Salmonella enclose the 1,2-propanediol utilization metabolic pathway within these sophisticated organelle structures. Using our model, we can examine experimentally inaccessible aspects of the system and make predictions to be tested in future experiments. The metabolic benefits that bacteria gain from the microcompartment system may also prove helpful in enhancing bacterial production of fuels, pharmaceuticals, and specialty chemicals.
Collapse
Affiliation(s)
- Christopher M. Jakobson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Marilyn F. Slininger
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Niall M. Mangan
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
- * E-mail:
| |
Collapse
|
108
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
109
|
Wang SZ, Zhang YH, Ren H, Wang YL, Jiang W, Fang BS. Strategies and perspectives of assembling multi-enzyme systems. Crit Rev Biotechnol 2017; 37:1024-1037. [PMID: 28423958 DOI: 10.1080/07388551.2017.1303803] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multi-enzyme complexes have the potential to achieve high catalytic efficiency for sequence reactions due to their advantages in eliminating product inhibition, facilitating intermediate transfer and in situ regenerating cofactors. Constructing functional multi-enzyme systems to mimic natural multi-enzyme complexes is of great interest for multi-enzymatic biosynthesis and cell-free synthetic biotransformation, but with many challenges. Currently, various assembly strategies have been developed based on the interaction of biomacromolecules such as DNA, peptide and scaffolding protein. On the other hand, chemical-induced assembly is based on the affinity of enzymes with small molecules including inhibitors, cofactors and metal ions has the advantage of simplicity, site-to-site oriented structure control and economy. This review summarizes advances and progresses employing these strategies. Furthermore, challenges and perspectives in designing multi-enzyme systems are highlighted.
Collapse
Affiliation(s)
- Shi-Zhen Wang
- a Department of Chemical and Biochemical Engineering , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China.,b The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University , Xiamen , China.,c State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University , Xiamen , China
| | - Yong-Hui Zhang
- a Department of Chemical and Biochemical Engineering , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| | - Hong Ren
- a Department of Chemical and Biochemical Engineering , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| | - Ya-Li Wang
- a Department of Chemical and Biochemical Engineering , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| | - Wei Jiang
- a Department of Chemical and Biochemical Engineering , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| | - Bai-Shan Fang
- a Department of Chemical and Biochemical Engineering , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China.,b The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University , Xiamen , China.,d The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University , Xiamen , China
| |
Collapse
|
110
|
Lee SQE, Tan TS, Kawamukai M, Chen ES. Cellular factories for coenzyme Q 10 production. Microb Cell Fact 2017; 16:39. [PMID: 28253886 PMCID: PMC5335738 DOI: 10.1186/s12934-017-0646-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/10/2017] [Indexed: 04/20/2023] Open
Abstract
Coenzyme Q10 (CoQ10), a benzoquinone present in most organisms, plays an important role in the electron-transport chain, and its deficiency is associated with various neuropathies and muscular disorders. CoQ10 is the only lipid-soluble antioxidant found in humans, and for this, it is gaining popularity in the cosmetic and healthcare industries. To meet the growing demand for CoQ10, there has been considerable interest in ways to enhance its production, the most effective of which remains microbial fermentation. Previous attempts to increase CoQ10 production to an industrial scale have thus far conformed to the strategies used in typical metabolic engineering endeavors. However, the emergence of new tools in the expanding field of synthetic biology has provided a suite of possibilities that extend beyond the traditional modes of metabolic engineering. In this review, we cover the various strategies currently undertaken to upscale CoQ10 production, and discuss some of the potential novel areas for future research.
Collapse
Affiliation(s)
- Sean Qiu En Lee
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Tsu Soo Tan
- School of Chemical & Life Sciences, Nanyang Polytechnic, Singapore, Singapore
| | - Makoto Kawamukai
- Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Japan
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Singapore, Singapore. .,National University Health System (NUHS), Singapore, Singapore. .,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
111
|
Hinzpeter F, Gerland U, Tostevin F. Optimal Compartmentalization Strategies for Metabolic Microcompartments. Biophys J 2017; 112:767-779. [PMID: 28256236 PMCID: PMC5340097 DOI: 10.1016/j.bpj.2016.11.3194] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022] Open
Abstract
Intracellular compartmentalization of cooperating enzymes is a strategy that is frequently used by cells. Segregation of enzymes that catalyze sequential reactions can alleviate challenges such as toxic pathway intermediates, competing metabolic reactions, and slow reaction rates. Inspired by nature, synthetic biologists also seek to encapsulate engineered metabolic pathways within vesicles or proteinaceous shells to enhance the yield of industrially and pharmaceutically useful products. Although enzymatic compartments have been extensively studied experimentally, a quantitative understanding of the underlying design principles is still lacking. Here, we study theoretically how the size and enzymatic composition of compartments should be chosen so as to maximize the productivity of a model metabolic pathway. We find that maximizing productivity requires compartments larger than a certain critical size. The enzyme density within each compartment should be tuned according to a power-law scaling in the compartment size. We explain these observations using an analytically solvable, well-mixed approximation. We also investigate the qualitatively different compartmentalization strategies that emerge in parameter regimes where this approximation breaks down. Our results suggest that the different sizes and enzyme packings of α- and β-carboxysomes each constitute an optimal compartmentalization strategy given the properties of their respective protein shells.
Collapse
Affiliation(s)
- Florian Hinzpeter
- Department of Physics, Technische Universität München, Garching, Germany.
| | - Ulrich Gerland
- Department of Physics, Technische Universität München, Garching, Germany
| | - Filipe Tostevin
- Department of Physics, Technische Universität München, Garching, Germany
| |
Collapse
|
112
|
Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions. Nat Commun 2017; 8:14472. [PMID: 28205515 PMCID: PMC5316895 DOI: 10.1038/ncomms14472] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA–protein conjugation still limit true emulation of natural host–guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA–protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host–guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging. Current strategies for protein encapsulation in DNA vessels for controlled enzymatic catalysis or therapeutic delivery rely on formation of covalent complexes. Here, the authors design a system that mimics natural reversible non-covalent host–guest interactions between a DNA host and the protein DegP.
Collapse
|
113
|
Chitrakar I, Kim-Holzapfel DM, Zhou W, French JB. Higher order structures in purine and pyrimidine metabolism. J Struct Biol 2017; 197:354-364. [PMID: 28115257 DOI: 10.1016/j.jsb.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
The recent discovery of several forms of higher order protein structures in cells has shifted the paradigm of how we think about protein organization and metabolic regulation. These dynamic and controllable protein assemblies, which are composed of dozens or hundreds of copies of an enzyme or related enzymes, have emerged as important players in myriad cellular processes. We are only beginning to appreciate the breadth of function of these types of macromolecular assemblies. These higher order structures, which can be assembled in response to varied cellular stimuli including changing metabolite concentrations or signaling cascades, give the cell the capacity to modulate levels of biomolecules both temporally and spatially. This provides an added level of control with distinct kinetics and unique features that can be harnessed as a subtle, yet powerful regulatory mechanism. Due, in large part, to advances in structural methods, such as crystallography and cryo-electron microscopy, and the advent of super-resolution microscopy techniques, a rapidly increasing number of these higher order structures are being identified and characterized. In this review, we detail what is known about the structure, function and control mechanisms of these mesoscale protein assemblies, with a particular focus on those involved in purine and pyrimidine metabolism. These structures have important implications both for our understanding of fundamental cellular processes and as fertile ground for new targets for drug discovery and development.
Collapse
Affiliation(s)
- Iva Chitrakar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Deborah M Kim-Holzapfel
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Weijie Zhou
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States
| | - Jarrod B French
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
114
|
Tippmann S, Anfelt J, David F, Rand JM, Siewers V, Uhlén M, Nielsen J, Hudson EP. Affibody Scaffolds Improve Sesquiterpene Production in Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:19-28. [PMID: 27560952 DOI: 10.1021/acssynbio.6b00109] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enzyme fusions have been widely used as a tool in metabolic engineering to increase pathway efficiency by reducing substrate loss and accumulation of toxic intermediates. Alternatively, enzymes can be colocalized through attachment to a synthetic scaffold via noncovalent interactions. Here we describe the use of affibodies for enzyme tagging and scaffolding. The scaffolding is based on the recognition of affibodies to their anti-idiotypic partners in vivo, and was first employed for colocalization of farnesyl diphosphate synthase and farnesene synthase in S. cerevisiae. Different parameters were modulated to improve the system, and the enzyme:scaffold ratio was most critical for its functionality. Ultimately, the yield of farnesene on glucose YSFar could be improved by 135% in fed-batch cultivations using a 2-site affibody scaffold. The scaffolding strategy was then extended to a three-enzyme polyhydroxybutyrate (PHB) pathway, heterologously expressed in E. coli. Within a narrow range of enzyme and scaffold induction, the affibody tagging and scaffolding increased PHB production 7-fold. This work demonstrates how the versatile affibody can be used for metabolic engineering purposes.
Collapse
Affiliation(s)
- Stefan Tippmann
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Josefine Anfelt
- Division
of Proteomics and Nanobiotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Science for Life Laboratory, SE171 21 Stockholm, Sweden
| | - Florian David
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jacqueline M. Rand
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Verena Siewers
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Mathias Uhlén
- Division
of Proteomics and Nanobiotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Science for Life Laboratory, SE171 21 Stockholm, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark
| | - Elton P. Hudson
- Division
of Proteomics and Nanobiotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Science for Life Laboratory, SE171 21 Stockholm, Sweden
| |
Collapse
|
115
|
Quin MB, Wallin KK, Zhang G, Schmidt-Dannert C. Spatial organization of multi-enzyme biocatalytic cascades. Org Biomol Chem 2017; 15:4260-4271. [DOI: 10.1039/c7ob00391a] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multi-enzyme cascades provide a wealth of valuable chemicals. Efficiency of reaction schemes can be improved by spatial organization of biocatalysts. This review will highlight various methods of spatial organization of biocatalysts: fusion, immobilization, scaffolding and encapsulation.
Collapse
Affiliation(s)
- M. B. Quin
- University of Minnesota
- Dept. of Biochemistry
- Molecular Biology and Biophysics
- St Paul
- USA
| | - K. K. Wallin
- University of Minnesota
- Dept. of Biochemistry
- Molecular Biology and Biophysics
- St Paul
- USA
| | - G. Zhang
- University of Minnesota
- Dept. of Biochemistry
- Molecular Biology and Biophysics
- St Paul
- USA
| | - C. Schmidt-Dannert
- University of Minnesota
- Dept. of Biochemistry
- Molecular Biology and Biophysics
- St Paul
- USA
| |
Collapse
|
116
|
Han GH, Seong W, Fu Y, Yoon PK, Kim SK, Yeom SJ, Lee DH, Lee SG. Leucine zipper-mediated targeting of multi-enzyme cascade reactions to inclusion bodies in Escherichia coli for enhanced production of 1-butanol. Metab Eng 2016; 40:41-49. [PMID: 28038953 DOI: 10.1016/j.ymben.2016.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 10/20/2022]
Abstract
Metabolons in nature have evolved to facilitate more efficient catalysis of multistep reactions through the co-localization of functionally related enzymes to cellular organelles or membrane structures. To mimic the natural metabolon architecture, we present a novel artificial metabolon that was created by targeting multi-enzyme cascade reactions onto inclusion body (IB) in Escherichia coli. The utility of this system was examined by co-localizing four heterologous enzymes of the 1-butanol pathway onto an IB that was formed in E. coli through overexpression of the cellulose binding domain (CBD) of Cellulomonas fimi exoglucanase. To target the 1-butanol pathway enzymes to the CBD IB, we utilized a peptide-peptide interaction between leucine zipper (LZ) peptides. We genetically fused the LZ peptide to the N-termini of four heterologous genes involved in the synthetic 1-butanol pathway, whereas an antiparallel LZ peptide was fused to the CBD gene. The in vivo activity of the CBD IB-based metabolon was examined through the determination of 1-butanol synthesis using E. coli transformed with two plasmids containing the LZ-fused CBD and LZ-fused 1-butanol pathway genes, respectively. In vivo synthesis of 1-butanol using the engineered E. coli yielded 1.98g/L of 1-butanol from glucose, representing a 1.5-fold increase over that obtained from E. coli expressing the LZ-fused 1-butanol pathway genes alone. In an attempt to examine the in vitro 1-butanol productivity, we reconstituted CBD IB-based metabolon using CBD IB and individual enzymes of 1-butanol pathway. The 1-butanol productivity of in vitro reconstituted CBD IB-based metabolon using acetoacetyl-CoA as the starting material was 2.29mg/L/h, 7.9-fold higher than that obtained from metabolon-free enzymes of 1-butanol pathway. Therefore, this novel CBD-based artificial metabolon may prove useful in metabolic engineering both in vivo and in vitro for the efficient production of desired products.
Collapse
Affiliation(s)
- Gui Hwan Han
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Wonjae Seong
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yaoyao Fu
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Paul K Yoon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seong Keun Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Soo-Jin Yeom
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
117
|
Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes. Appl Environ Microbiol 2016; 82:5730-40. [PMID: 27422837 DOI: 10.1128/aem.01192-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enthusiasm for mining advanced biofuels from microbial hosts has increased remarkably in recent years. Isoprenoids are one of the highly diverse groups of secondary metabolites and are foreseen as an alternative to petroleum-based fuels. Most of the prokaryotes synthesize their isoprenoid backbone via the deoxyxylulose-5-phosphate pathway from glyceraldehyde-3-phosphate and pyruvate, whereas eukaryotes synthesize isoprenoids via the mevalonate pathway from acetyl coenzyme A (acetyl-CoA). Microorganisms do not accumulate isoprenoids in large quantities naturally, which restricts their application for fuel purposes. Various metabolic engineering efforts have been utilized to overcome the limitations associated with their natural and nonnatural production. The introduction of heterologous pathways/genes and overexpression of endogenous/homologous genes have shown a remarkable increase in isoprenoid yield and substrate utilization in microbial hosts. Such modifications in the hosts' genomes have enabled researchers to develop commercially competent microbial strains for isoprenoid-based biofuel production utilizing a vast array of substrates. The present minireview briefly discusses the recent advancement in metabolic engineering efforts in prokaryotic hosts for the production of isoprenoid-based biofuels, with an emphasis on endogenous, homologous, and heterologous expression strategies.
Collapse
|
118
|
Wagner HJ, Capitain CC, Richter K, Nessling M, Mampel J. Engineering bacterial microcompartments with heterologous enzyme cargos. Eng Life Sci 2016; 17:36-46. [PMID: 32624727 DOI: 10.1002/elsc.201600107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/16/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023] Open
Abstract
Bacterial microcompartments (BMCs) are intracellular proteinaceous organelles devoid of a lipid membrane that encapsulates enzymes of metabolic pathways. Salmonella enterica synthesizes propanediol-utilization BMCs containing enzymes involved in the degradation of 1,2-propanediol. BMCs can be designed to enclose heterologous proteins, paving the way to engineered catalytic microreactors. Here, we investigate broader applicability of this design principle by directing three different enzymes to the BMC. We demonstrate that β-galactosidase, esterase Est5, and cofactor-dependent glycerol dehydrogenase can be directed to the BMC and copurified with the microcompartment shell in a catalytically active form. We show that the BMC shell protects enzymes from pH-dependent but not from temperature stress. Moreover, we provide evidence that the heterologously expressed BMCs act as a moderately selective diffusion barrier for lipophilic small molecules.
Collapse
Affiliation(s)
- Hanna J Wagner
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany.,Faculty of Biology and Spemann Graduate School of Biology and Medicine (SGBM) University of Freiburg Freiburg Germany
| | - Charlotte C Capitain
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany.,Department of Biotechnology Mannheim University of Applied Sciences Mannheim Germany
| | - Karsten Richter
- German Cancer Research Centre (DKFZ) Core Facility Electron Microscopy (W230) Heidelberg Germany
| | - Michelle Nessling
- German Cancer Research Centre (DKFZ) Core Facility Electron Microscopy (W230) Heidelberg Germany
| | - Jörg Mampel
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany
| |
Collapse
|
119
|
Lerchner A, Daake M, Jarasch A, Skerra A. Fusion of an alcohol dehydrogenase with an aminotransferase using a PAS linker to improve coupled enzymatic alcohol-to-amine conversion. Protein Eng Des Sel 2016; 29:557-562. [PMID: 27578886 DOI: 10.1093/protein/gzw039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 11/14/2022] Open
Abstract
To facilitate biocatalytic conversion of the biotechnologically accessible dicyclic dialcohol isosorbide into its industrially relevant diamines, we have designed a fusion protein between two homo-oligomeric enzymes: the levodione reductase (LR) from Leifsonia aquatica and the variant L417M of the ω-aminotransferase from Paracoccus denitrificans (PDωAT(L417M)), mutually connected by a short Pro/Ala/Ser linker sequence. The hybrid protein was produced in Escherichia coli in correctly folded state, comprising a tetrameric LR moiety and presumably two dimers of PDωAT(L417M), as proven by SDS-PAGE and size exclusion chromatography. The bifunctional enzyme revealed beneficial kinetics over the two-component system, in particular at low substrate concentration.
Collapse
Affiliation(s)
- Alexandra Lerchner
- Munich Center for integrated Protein Science (CiPSM) and Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Marina Daake
- Munich Center for integrated Protein Science (CiPSM) and Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Alexander Jarasch
- Munich Center for integrated Protein Science (CiPSM) and Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Arne Skerra
- Munich Center for integrated Protein Science (CiPSM) and Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| |
Collapse
|
120
|
Schmidt-Dannert C, Lopez-Gallego F. A roadmap for biocatalysis - functional and spatial orchestration of enzyme cascades. Microb Biotechnol 2016; 9:601-9. [PMID: 27418373 PMCID: PMC4993178 DOI: 10.1111/1751-7915.12386] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 12/23/2022] Open
Abstract
Advances in biological engineering and systems biology have provided new approaches and tools for the industrialization of biology. In the next decade, advanced biocatalytic systems will increasingly be used for the production of chemicals that cannot be made by current processes and/or where the use of enzyme catalysts is more resource efficient with a much reduced environmental impact. We expect that in the future, manufacture of chemicals and materials will utilize both biocatalytic and chemical synthesis synergistically. The realization of such advanced biomanufacturing processes currently faces a number of major challenges. Ready‐to‐deploy portfolios of biocatalysts for design to production must be created from biological diverse sources and through protein engineering. Robust and efficient multi‐step enzymatic reaction cascades must be developed that can operate simultaneously in one‐pot. For this to happen, bio‐orthogonal strategies for spatial and temporal control of biocatalyst activities must be developed. Promising approaches and technologies are emerging that will eventually lead to the design of in vitro biocatalytic systems that mimic the metabolic pathways and networks of cellular systems which will be discussed in this roadmap.
Collapse
Affiliation(s)
- Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Fernando Lopez-Gallego
- Heterogeneous Biocatalysis Group, CIC BiomaGUNE, Pase Miramon 182, San Sebastian-Donostia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
121
|
Chado GR, Stoykovich MP, Kaar JL. Role of Dimension and Spatial Arrangement on the Activity of Biocatalytic Cascade Reactions on Scaffolds. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01302] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Garrett R. Chado
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Mark P. Stoykovich
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Joel L. Kaar
- Department of Chemical and
Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
122
|
Nielsen AZ, Mellor SB, Vavitsas K, Wlodarczyk AJ, Gnanasekaran T, Perestrello Ramos H de Jesus M, King BC, Bakowski K, Jensen PE. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:87-102. [PMID: 27005523 DOI: 10.1111/tpj.13173] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 05/20/2023]
Abstract
Chloroplasts in plants and algae and photosynthetic microorganisms such as cyanobacteria are emerging hosts for sustainable production of valuable biochemicals, using only inorganic nutrients, water, CO2 and light as inputs. In the past decade, many bioengineering efforts have focused on metabolic engineering and synthetic biology in the chloroplast or in cyanobacteria for the production of fuels, chemicals and complex, high-value bioactive molecules. Biosynthesis of all these compounds can be performed in photosynthetic organelles/organisms by heterologous expression of the appropriate pathways, but this requires optimization of carbon flux and reducing power, and a thorough understanding of regulatory pathways. Secretion or storage of the compounds produced can be exploited for the isolation or confinement of the desired compounds. In this review, we explore the use of chloroplasts and cyanobacteria as biosynthetic compartments and hosts, and we estimate the levels of production to be expected from photosynthetic hosts in light of the fraction of electrons and carbon that can potentially be diverted from photosynthesis. The supply of reducing power, in the form of electrons derived from the photosynthetic light reactions, appears to be non-limiting, but redirection of the fixed carbon via precursor molecules presents a challenge. We also discuss the available synthetic biology tools and the need to expand the molecular toolbox to facilitate cellular reprogramming for increased production yields in both cyanobacteria and chloroplasts.
Collapse
Affiliation(s)
- Agnieszka Zygadlo Nielsen
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Silas Busck Mellor
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Konstantinos Vavitsas
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Artur Jacek Wlodarczyk
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Thiyagarajan Gnanasekaran
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Maria Perestrello Ramos H de Jesus
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Brian Christopher King
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Kamil Bakowski
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Poul Erik Jensen
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
123
|
Chen M, Harris GG, Pemberton TA, Christianson DW. Multi-domain terpenoid cyclase architecture and prospects for proximity in bifunctional catalysis. Curr Opin Struct Biol 2016; 41:27-37. [PMID: 27285057 DOI: 10.1016/j.sbi.2016.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
Crystal structures of terpenoid cyclases reveal assemblies of three basic domains designated α, β, and γ. While the biosynthesis of cyclic monoterpenes (C10) and sesquiterpenes (C15) most often involves enzymes with α or αβ domain architecture, the biosynthesis of cyclic diterpenes (C20), sesterterpenes (C25), and triterpenes (C30) can involve enzymes with α, αα, βγ, or αβγ domain architecture. Indeed, some enzymes of terpenoid biosynthesis are bifunctional, with distinct active sites that catalyze sequential reactions. Interestingly, some of these enzymes oligomerize to form dimers, tetramers, and hexamers. Not only can such assemblies enable enzyme regulation by allostery, but they can also provide a modest enhancement of terpenoid product flux through proximity channeling or cluster channeling. The mixing and matching of functional terpenoid cyclase domains through tertiary and/or quaternary structure may also comprise an evolutionary strategy for facile product diversification.
Collapse
Affiliation(s)
- Mengbin Chen
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Golda G Harris
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Travis A Pemberton
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States; Radcliffe Institute for Advanced Study and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
124
|
Küchler A, Yoshimoto M, Luginbühl S, Mavelli F, Walde P. Enzymatic reactions in confined environments. NATURE NANOTECHNOLOGY 2016; 11:409-20. [PMID: 27146955 DOI: 10.1038/nnano.2016.54] [Citation(s) in RCA: 475] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/04/2016] [Indexed: 05/17/2023]
Abstract
Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.
Collapse
Affiliation(s)
- Andreas Küchler
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| | - Makoto Yoshimoto
- Department of Applied Molecular Bioscience, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Sandra Luginbühl
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| | - Fabio Mavelli
- Chemistry Department, University 'Aldo Moro', Via Orabona 4, 70125 Bari, Italy
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
125
|
Borek B, Hasty J, Tsimring L. Turing Patterning Using Gene Circuits with Gas-Induced Degradation of Quorum Sensing Molecules. PLoS One 2016; 11:e0153679. [PMID: 27148743 PMCID: PMC4858293 DOI: 10.1371/journal.pone.0153679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/01/2016] [Indexed: 01/30/2023] Open
Abstract
The Turing instability was proposed more than six decades ago as a mechanism leading to spatial patterning, but it has yet to be exploited in a synthetic biology setting. Here we characterize the Turing instability in a specific gene circuit that can be implemented in vitro or in populations of clonal cells producing short-range activator N-Acyl homoserine lactone (AHL) and long-range inhibitor hydrogen peroxide (H2O2) gas. Slowing the production rate of the AHL-degrading enzyme, AiiA, generates stable fixed states, limit cycle oscillations and Turing patterns. Further tuning of signaling parameters determines local robustness and controls the range of unstable wavenumbers in the patterning regime. These findings provide a roadmap for optimizing spatial patterns of gene expression based on familiar quorum and gas sensitive E. coli promoters. The circuit design and predictions may be useful for (re)programming spatial dynamics in synthetic and natural gene expression systems.
Collapse
Affiliation(s)
- Bartłomiej Borek
- BioCircuits Institute, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0328, United States of America
- San Diego Center for Systems Biology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0375, United States of America
| | - Jeff Hasty
- BioCircuits Institute, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0328, United States of America
- San Diego Center for Systems Biology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0375, United States of America
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0412, United States of America
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0116, United States of America
| | - Lev Tsimring
- BioCircuits Institute, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0328, United States of America
- San Diego Center for Systems Biology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0375, United States of America
| |
Collapse
|
126
|
Zhao C, Gao X, Liu X, Wang Y, Yang S, Wang F, Ren Y. Enhancing Biosynthesis of a Ginsenoside Precursor by Self-Assembly of Two Key Enzymes in Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3380-3385. [PMID: 27074597 DOI: 10.1021/acs.jafc.6b00650] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ginsenosides from the edible and medicinal plant ginseng have demonstrated various pharmacological activities. However, producing ginsenoside efficiently remains a challenge. Engineering metabolic pathways through protein assembly in yeast is a promising way for ginsenoside production. In the biosynthetic pathway of ginsenosides, dammarenediol-II synthase and squalene epoxidase are two key enzymes that determine the production rate of the dammarane-type ginsenoside precursor dammarenediol-II. In this work, a strategy to enhance the biosynthesis of dammarenediol-II in Pichia pastoris was developed by the self-assembly of the two key enzymes via protein-protein interaction. After being modified by interacting proteins, the two enzymes were successfully co-localized, resulting in a 2.1-fold enhancement in dammarenediol-II yields.
Collapse
Affiliation(s)
- Chengcheng Zhao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, China
| | - Xin Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, China
| | - Xinbin Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032, China
| | - Shengli Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, China
| | - Fengqing Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
127
|
DeLoache WC, Russ ZN, Dueber JE. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat Commun 2016; 7:11152. [PMID: 27025684 PMCID: PMC5476825 DOI: 10.1038/ncomms11152] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/23/2016] [Indexed: 11/29/2022] Open
Abstract
Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk and improving pathway efficiency, but improved tools and design rules are needed to make this strategy available to more engineered pathways. Here we focus on the Saccharomyces cerevisiae peroxisome and develop a sensitive high-throughput assay for peroxisomal cargo import. We identify an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly sequestering non-native cargo proteins. Additionally, we perform the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay. Finally, we apply these new insights to compartmentalize a two-enzyme pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titre. This work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal. Compartmentalization of enzymes into cellular organelles is a promising strategy for improving pathway efficiency. Here, the authors use a high-throughput assay to identify enhanced peroxisomal targeting signals in yeast, and study the effects of peroxisomal compartmentalization on the performance of a model pathway.
Collapse
Affiliation(s)
- William C DeLoache
- UC Berkeley and UCSF Graduate Program in Bioengineering, University of California, Berkeley (UC Berkeley), Berkeley, California 94720, USA.,Department of Bioengineering, UC Berkeley, Berkeley, California 94720, USA
| | - Zachary N Russ
- UC Berkeley and UCSF Graduate Program in Bioengineering, University of California, Berkeley (UC Berkeley), Berkeley, California 94720, USA.,Department of Bioengineering, UC Berkeley, Berkeley, California 94720, USA
| | - John E Dueber
- Department of Bioengineering, UC Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
128
|
Wheeldon I, Minteer SD, Banta S, Barton SC, Atanassov P, Sigman M. Substrate channelling as an approach to cascade reactions. Nat Chem 2016; 8:299-309. [DOI: 10.1038/nchem.2459] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/15/2016] [Indexed: 12/22/2022]
|
129
|
Lee MJ, Brown IR, Juodeikis R, Frank S, Warren MJ. Employing bacterial microcompartment technology to engineer a shell-free enzyme-aggregate for enhanced 1,2-propanediol production in Escherichia coli. Metab Eng 2016; 36:48-56. [PMID: 26969252 PMCID: PMC4909751 DOI: 10.1016/j.ymben.2016.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
Abstract
Bacterial microcompartments (BMCs) enhance the breakdown of metabolites such as 1,2-propanediol (1,2-PD) to propionic acid. The encapsulation of proteins within the BMC is mediated by the presence of targeting sequences. In an attempt to redesign the Pdu BMC into a 1,2-PD synthesising factory using glycerol as the starting material we added N-terminal targeting peptides to glycerol dehydrogenase, dihydroxyacetone kinase, methylglyoxal synthase and 1,2-propanediol oxidoreductase to allow their inclusion into an empty BMC. 1,2-PD producing strains containing the fused enzymes exhibit a 245% increase in product formation in comparison to un-tagged enzymes, irrespective of the presence of BMCs. Tagging of enzymes with targeting peptides results in the formation of dense protein aggregates within the cell that are shown by immuno-labelling to contain the vast majority of tagged proteins. It can therefore be concluded that these protein inclusions are metabolically active and facilitate the significant increase in product formation. Fusion of BMC targeting peptides to enzymes has a variable effect on activity. Tagged enzymes for 1,2-propanediol synthesis are localised to a BMC. BMC-targeted proteins localised within the BMC are protected from proteases. TEM reveals tagged enzymes form large intracellular protein aggregates. Strains with enzyme aggregates are shown to have enhanced 1,2-propanediol production.
Collapse
Affiliation(s)
- Matthew J Lee
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Ian R Brown
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Rokas Juodeikis
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Stefanie Frank
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
130
|
Ngo TA, Nakata E, Saimura M, Morii T. Spatially Organized Enzymes Drive Cofactor-Coupled Cascade Reactions. J Am Chem Soc 2016; 138:3012-21. [PMID: 26881296 DOI: 10.1021/jacs.5b10198] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report the construction of an artificial enzyme cascade based on the xylose metabolic pathway. Two enzymes, xylose reductase and xylitol dehydrogenase, were assembled at specific locations on DNA origami by using DNA-binding protein adaptors with systematic variations in the interenzyme distances and defined numbers of enzyme molecules. The reaction system, which localized the two enzymes in close proximity to facilitate transport of reaction intermediates, resulted in significantly higher yields of the conversion of xylose into xylulose through the intermediate xylitol with recycling of the cofactor NADH. Analysis of the initial reaction rate, regenerated amount of NADH, and simulation of the intermediates' diffusion indicated that the intermediates diffused to the second enzyme by Brownian motion. The efficiency of the cascade reaction with the bimolecular transport of xylitol and NAD(+) likely depends more on the interenzyme distance than that of the cascade reaction with unimolecular transport between two enzymes.
Collapse
Affiliation(s)
- Tien Anh Ngo
- Institute of Advanced Energy, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Masayuki Saimura
- Institute of Advanced Energy, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University , Uji, Kyoto 611-0011, Japan
| |
Collapse
|
131
|
Tools and Principles for Microbial Gene Circuit Engineering. J Mol Biol 2016; 428:862-88. [DOI: 10.1016/j.jmb.2015.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022]
|
132
|
Marx H, Pflügl S, Mattanovich D, Sauer M. Synthetic Biology Assisting Metabolic Pathway Engineering. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
133
|
Gene Expression in Filamentous Fungi: Advantages and Disadvantages Compared to Other Systems. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
134
|
Plug-and-Play Benzylisoquinoline Alkaloid Biosynthetic Gene Discovery in Engineered Yeast. Methods Enzymol 2016; 575:143-78. [DOI: 10.1016/bs.mie.2016.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
135
|
Li G, Zhang C, Xing XH. A kinetic model for analysis of physical tunnels in sequentially acting enzymes with direct proximity channeling. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
136
|
Synthetic scaffolds for pathway enhancement. Curr Opin Biotechnol 2015; 36:98-106. [DOI: 10.1016/j.copbio.2015.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 07/31/2015] [Accepted: 08/09/2015] [Indexed: 12/11/2022]
|
137
|
Magalon A, Alberge F. Distribution and dynamics of OXPHOS complexes in the bacterial cytoplasmic membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:198-213. [PMID: 26545610 DOI: 10.1016/j.bbabio.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Abstract
Oxidative phosphorylation (OXPHOS) is an essential process for most living organisms mostly sustained by protein complexes embedded in the cell membrane. In order to thrive, cells need to quickly respond to changes in the metabolic demand or in their environment. An overview of the strategies that can be employed by bacterial cells to adjust the OXPHOS outcome is provided. Regulation at the level of gene expression can only provide a means to adjust the OXPHOS outcome to long-term trends in the environment. In addition, the actual view is that bioenergetic membranes are highly compartmentalized structures. This review discusses what is known about the spatial organization of OXPHOS complexes and the timescales at which they occur. As exemplified with the commensal gut bacterium Escherichia coli, three levels of spatial organization are at play: supercomplexes, membrane microdomains and polar assemblies. This review provides a particular focus on whether dynamic spatial organization can fine-tune the OXPHOS through the definition of specialized functional membrane microdomains. Putative mechanisms responsible for spatio-temporal regulation of the OXPHOS complexes are discussed. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
Affiliation(s)
- Axel Magalon
- CNRS, Laboratoire de Chimie Bactérienne (UMR 7283), Institut de Microbiologie de la Méditerranée, 13009 Marseille, France; Aix-Marseille University, UMR 7283, 13009 Marseille, France.
| | - François Alberge
- CNRS, Laboratoire de Chimie Bactérienne (UMR 7283), Institut de Microbiologie de la Méditerranée, 13009 Marseille, France; Aix-Marseille University, UMR 7283, 13009 Marseille, France
| |
Collapse
|
138
|
Liu SP, Zhang L, Mao J, Ding ZY, Shi GY. Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives. Metab Eng 2015; 32:55-65. [DOI: 10.1016/j.ymben.2015.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022]
|
139
|
Peters G, Coussement P, Maertens J, Lammertyn J, De Mey M. Putting RNA to work: Translating RNA fundamentals into biotechnological engineering practice. Biotechnol Adv 2015; 33:1829-44. [PMID: 26514597 DOI: 10.1016/j.biotechadv.2015.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022]
Abstract
Synthetic biology, in close concert with systems biology, is revolutionizing the field of metabolic engineering by providing novel tools and technologies to rationally, in a standardized way, reroute metabolism with a view to optimally converting renewable resources into a broad range of bio-products, bio-materials and bio-energy. Increasingly, these novel synthetic biology tools are exploiting the extensive programmable nature of RNA, vis-à-vis DNA- and protein-based devices, to rationally design standardized, composable, and orthogonal parts, which can be scaled and tuned promptly and at will. This review gives an extensive overview of the recently developed parts and tools for i) modulating gene expression ii) building genetic circuits iii) detecting molecules, iv) reporting cellular processes and v) building RNA nanostructures. These parts and tools are becoming necessary armamentarium for contemporary metabolic engineering. Furthermore, the design criteria, technological challenges, and recent metabolic engineering success stories of the use of RNA devices are highlighted. Finally, the future trends in transforming metabolism through RNA engineering are critically evaluated and summarized.
Collapse
Affiliation(s)
- Gert Peters
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Pieter Coussement
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jeroen Lammertyn
- BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Louvain, Belgium
| | - Marjan De Mey
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
140
|
Pröschel M, Detsch R, Boccaccini AR, Sonnewald U. Engineering of Metabolic Pathways by Artificial Enzyme Channels. Front Bioeng Biotechnol 2015; 3:168. [PMID: 26557643 PMCID: PMC4617052 DOI: 10.3389/fbioe.2015.00168] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/06/2015] [Indexed: 11/13/2022] Open
Abstract
Application of industrial enzymes for production of valuable chemical compounds has greatly benefited from recent developments in Systems and Synthetic Biology. Both, in vivo and in vitro systems have been established, allowing conversion of simple into complex compounds. Metabolic engineering in living cells needs to be balanced which is achieved by controlling gene expression levels, translation, scaffolding, compartmentation, and flux control. In vitro applications are often hampered by limited protein stability/half-life and insufficient rates of substrate conversion. To improve stability and catalytic activity, proteins are post-translationally modified and arranged in artificial metabolic channels. Within the review article, we will first discuss the supramolecular organization of enzymes in living systems and second summarize current and future approaches to design artificial metabolic channels by additive manufacturing for the efficient production of desired products.
Collapse
Affiliation(s)
- Marlene Pröschel
- Department of Biology, Biochemistry Division, Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Uwe Sonnewald
- Department of Biology, Biochemistry Division, Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| |
Collapse
|
141
|
Glasgow JE, Asensio MA, Jakobson CM, Francis MB, Tullman-Ercek D. Influence of Electrostatics on Small Molecule Flux through a Protein Nanoreactor. ACS Synth Biol 2015; 4:1011-9. [PMID: 25893987 DOI: 10.1021/acssynbio.5b00037] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nature uses protein compartmentalization to great effect for control over enzymatic pathways, and the strategy has great promise for synthetic biology. In particular, encapsulation in nanometer-sized containers to create nanoreactors has the potential to elicit interesting, unexplored effects resulting from deviations from well-understood bulk processes. Self-assembled protein shells for encapsulation are especially desirable for their uniform structures and ease of perturbation through genetic mutation. Here, we use the MS2 capsid, a well-defined porous 27 nm protein shell, as an enzymatic nanoreactor to explore pore-structure effects on substrate and product flux during the catalyzed reaction. Our results suggest that the shell can influence the enzymatic reaction based on charge repulsion between small molecules and point mutations around the pore structure. These findings also lend support to the hypothesis that protein compartments modulate the transport of small molecules and thus influence metabolic reactions and catalysis in vitro.
Collapse
Affiliation(s)
- Jeff E. Glasgow
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical
and Biomolecular
Engineering, University of California, Berkeley, California 94720, United States
| | - Michael A. Asensio
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical
and Biomolecular
Engineering, University of California, Berkeley, California 94720, United States
| | - Christopher M. Jakobson
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical
and Biomolecular
Engineering, University of California, Berkeley, California 94720, United States
| | - Matthew B. Francis
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical
and Biomolecular
Engineering, University of California, Berkeley, California 94720, United States
| | - Danielle Tullman-Ercek
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical
and Biomolecular
Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
142
|
Jakobson CM, Kim EY, Slininger MF, Chien A, Tullman-Ercek D. Localization of proteins to the 1,2-propanediol utilization microcompartment by non-native signal sequences is mediated by a common hydrophobic motif. J Biol Chem 2015; 290:24519-33. [PMID: 26283792 DOI: 10.1074/jbc.m115.651919] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
Various bacteria localize metabolic pathways to proteinaceous organelles known as bacterial microcompartments (MCPs), enabling the metabolism of carbon sources to enhance survival and pathogenicity in the gut. There is considerable interest in exploiting bacterial MCPs for metabolic engineering applications, but little is known about the interactions between MCP signal sequences and the protein shells of different MCP systems. We found that the N-terminal sequences from the ethanolamine utilization (Eut) and glycyl radical-generating protein MCPs are able to target reporter proteins to the 1,2-propanediol utilization (Pdu) MCP, and that this localization is mediated by a conserved hydrophobic residue motif. Recapitulation of this motif by the addition of a single amino acid conferred targeting function on an N-terminal sequence from the ethanol utilization MCP system that previously did not act as a Pdu signal sequence. Moreover, the Pdu-localized signal sequences competed with native Pdu targeting sequences for encapsulation in the Pdu MCP. Salmonella enterica natively possesses both the Pdu and Eut operons, and our results suggest that Eut proteins might be localized to the Pdu MCP in vivo. We further demonstrate that S. enterica LT2 retained the ability to grow on 1,2-propanediol as the sole carbon source when a Pdu enzyme was replaced with its Eut homolog. Although the relevance of this finding to the native system remains to be explored, we show that the Pdu-localized signal sequences described herein allow control over the ratio of heterologous proteins encapsulated within Pdu MCPs.
Collapse
Affiliation(s)
| | - Edward Y Kim
- From the Department of Chemical and Biomolecular Engineering and
| | | | - Alex Chien
- Biophysics Graduate Group, University of California, Berkeley, California 94720
| | | |
Collapse
|
143
|
Leibly DJ, Arbing MA, Pashkov I, DeVore N, Waldo GS, Terwilliger TC, Yeates TO. A Suite of Engineered GFP Molecules for Oligomeric Scaffolding. Structure 2015; 23:1754-1768. [PMID: 26278175 DOI: 10.1016/j.str.2015.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/08/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
Applications ranging from synthetic biology to protein crystallization could be advanced by facile systems for connecting multiple proteins together in predefined spatial relationships. One approach to this goal is to engineer many distinct assembly forms of a single carrier protein or scaffold, to which other proteins of interest can then be readily attached. In this work we chose GFP as a scaffold and engineered many alternative oligomeric forms, driven by either specific disulfide bond formation or metal ion addition. We generated a wide range of spatial arrangements of GFP subunits from 11 different oligomeric variants, and determined their X-ray structures in a total of 33 distinct crystal forms. Some of the oligomeric GFP variants show geometric polymorphism depending on conditions, while others show considerable geometric rigidity. Potential future applications of this system are discussed.
Collapse
Affiliation(s)
- David J Leibly
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Mark A Arbing
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Inna Pashkov
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Natasha DeVore
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | - Geoffrey S Waldo
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | - Thomas C Terwilliger
- Bioscience Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
144
|
Kremer F, Blank LM, Jones PR, Akhtar MK. A Comparison of the Microbial Production and Combustion Characteristics of Three Alcohol Biofuels: Ethanol, 1-Butanol, and 1-Octanol. Front Bioeng Biotechnol 2015; 3:112. [PMID: 26301219 PMCID: PMC4526805 DOI: 10.3389/fbioe.2015.00112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 07/21/2015] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, microbes have been engineered for the manufacture of a variety of biofuels. Saturated linear-chain alcohols have great potential as transport biofuels. Their hydrocarbon backbones, as well as oxygenated content, confer combustive properties that make it suitable for use in internal combustion engines. Herein, we compared the microbial production and combustion characteristics of ethanol, 1-butanol, and 1-octanol. In terms of productivity and efficiency, current microbial platforms favor the production of ethanol. From a combustion standpoint, the most suitable fuel for spark-ignition engines would be ethanol, while for compression-ignition engines it would be 1-octanol. However, any general conclusions drawn at this stage regarding the most superior biofuel would be premature, as there are still many areas that need to be addressed, such as large-scale purification and pipeline compatibility. So far, the difficulties in developing and optimizing microbial platforms for fuel production, particularly for newer fuel candidates, stem from our poor understanding of the myriad biological factors underpinning them. A great deal of attention therefore needs to be given to the fundamental mechanisms that govern biological processes. Additionally, research needs to be undertaken across a wide range of disciplines to overcome issues of sustainability and commercial viability.
Collapse
Affiliation(s)
- Florian Kremer
- Institute for Combustion Engines (VKA), RWTH Aachen University , Aachen , Germany
| | - Lars M Blank
- Aachen Biology and Biotechnology (ABBt), Institute of Applied Microbiology (iAMB), RWTH Aachen University , Aachen , Germany
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London , London , UK
| | - M Kalim Akhtar
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
145
|
Lai YT, Jiang L, Chen W, Yeates TO. On the predictability of the orientation of protein domains joined by a spanning alpha-helical linker. Protein Eng Des Sel 2015; 28:491-9. [DOI: 10.1093/protein/gzv035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/14/2022] Open
|
146
|
Gupta P, Phulara SC. Metabolic engineering for isoprenoid-based biofuel production. J Appl Microbiol 2015; 119:605-19. [PMID: 26095690 DOI: 10.1111/jam.12871] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 01/14/2023]
Abstract
Sustainable economic and industrial growth is the need of the hour and it requires renewable energy resources having better performance and compatibility with existing fuel infrastructure from biological routes. Isoprenoids (C ≥ 5) can be a potential alternative due to their diverse nature and physiochemical properties similar to that of petroleum based fuels. In the past decade, extensive research has been done to utilize metabolic engineering strategies in micro-organisms primarily, (i) to overcome the limitations associated with their natural and non-natural production and (ii) to develop commercially competent microbial strain for isoprenoid-based biofuel production. This review briefly describes the engineered isoprenoid biosynthetic pathways in well-characterized microbial systems for the production of several isoprenoid-based biofuels and fuel precursors.
Collapse
Affiliation(s)
- P Gupta
- National Institute of Technology, Raipur, Chhattisgarh, India
| | - S C Phulara
- National Institute of Technology, Raipur, Chhattisgarh, India
| |
Collapse
|
147
|
A trifunctional, triangular RNA-protein complex. FEBS Lett 2015; 589:2424-8. [DOI: 10.1016/j.febslet.2015.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/09/2015] [Accepted: 07/04/2015] [Indexed: 01/20/2023]
|
148
|
Lai A, Sato PM, Peisajovich SG. Evolution of synthetic signaling scaffolds by recombination of modular protein domains. ACS Synth Biol 2015; 4:714-22. [PMID: 25587847 DOI: 10.1021/sb5003482] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Signaling scaffolds are proteins that interact via modular domains with multiple partners, regulating signaling networks in space and time and providing an ideal platform from which to alter signaling functions. However, to better exploit scaffolds for signaling engineering, it is necessary to understand the full extent of their modularity. We used a directed evolution approach to identify, from a large library of randomly shuffled protein interaction domains, variants capable of rescuing the signaling defect of a yeast strain in which Ste5, the scaffold in the mating pathway, had been deleted. After a single round of selection, we identified multiple synthetic scaffold variants with diverse domain architectures, able to mediate mating pathway activation in a pheromone-dependent manner. The facility with which this signaling network accommodates changes in scaffold architecture suggests that the mating signaling complex does not possess a single, precisely defined geometry into which the scaffold has to fit. These relaxed geometric constraints may facilitate the evolution of signaling networks, as well as their engineering for applications in synthetic biology.
Collapse
Affiliation(s)
- Andicus Lai
- Department of Cell and Systems
Biology University of Toronto 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Paloma M. Sato
- Department of Cell and Systems
Biology University of Toronto 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Sergio G. Peisajovich
- Department of Cell and Systems
Biology University of Toronto 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
149
|
Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol 2015; 33:52-9. [DOI: 10.1016/j.copbio.2014.11.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022]
|
150
|
Chessher A, Breitling R, Takano E. Bacterial Microcompartments: Biomaterials for Synthetic Biology-Based Compartmentalization Strategies. ACS Biomater Sci Eng 2015; 1:345-351. [DOI: 10.1021/acsbiomaterials.5b00059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ashley Chessher
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|