101
|
Complete Genome Sequence of the Prototrophic Bacillus subtilis subsp. subtilis Strain SP1. Microbiol Resour Announc 2020; 9:9/32/e00825-20. [PMID: 32763948 PMCID: PMC7409865 DOI: 10.1128/mra.00825-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Here, we present the complete genome sequence of the Bacillus subtilis strain SP1. This strain is a descendant of the laboratory strain 168. The strain is suitable for biotechnological applications because the prototrophy for tryptophan has been restored. Due to laboratory cultivation, the strain has acquired 24 additional sequence variations. Here, we present the complete genome sequence of the Bacillus subtilis strain SP1. This strain is a descendant of the laboratory strain 168. The strain is suitable for biotechnological applications because the prototrophy for tryptophan has been restored. Due to laboratory cultivation, the strain has acquired 24 additional sequence variations.
Collapse
|
102
|
Xiang M, Kang Q, Zhang D. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell. Synth Syst Biotechnol 2020; 5:245-251. [PMID: 32775709 PMCID: PMC7394859 DOI: 10.1016/j.synbio.2020.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive model bacterium Bacillus subtilis, has been broadly applied in various fields because of its low pathogenicity and strong protein secretion ability, as well as its well-developed fermentation technology. B. subtilis is considered as an attractive host in the field of metabolic engineering, in particular for protein expression and secretion, so it has been well studied and applied in genetic engineering. In this review, we discussed why B. subtilis is a good chassis cell for metabolic engineering. We also summarized the latest research progress in systematic biology, synthetic biology and evolution-based engineering of B. subtilis, and showed systemic metabolic engineering expedite the harnessing B. subtilis for bioproduction.
Collapse
Affiliation(s)
- Mengjie Xiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qian Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
103
|
Zhang L, Li X, Zhan N, Sun T, Li J, Shan A. Maltose Induced Expression of Cecropin AD by SUMO Technology in Bacillus subtilis WB800N. Protein J 2020; 39:383-391. [PMID: 32661730 DOI: 10.1007/s10930-020-09908-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cecropin AD (CAD) is a hybrid peptide composed of 37 amino acids with the characters of strong antibacterial, antitumor properties and no hemolytic activity, which was regarded as a promising antibiotic candidate. Thus, a safe method to produce Cecropin AD is necessary to be found. In the study, Bacillus subtilis WB800N was employed as host strain. The CAD coding sequence fused with the signal peptide of SPsacB, the 6 × His gene and the gene of small ubiquitin-like modifier were cloned into the maltose-inducible vector pGJ148. Under the induction by 6% maltose, the recombinant fusion protein was successfully expressed and detected in culture substrate. An optimized amount (26.4 mg/L) of the recombinant CAD was purified of culture supernatant. After purification and digestion, the recombinant CAD was harvested about 4.5 mg/L with a purity of 93%. Recombinant CAD exhibited similar antimicrobial activity with synthetic CAD. This shows that the production of CAD in maltose-induced Bacillus subtilis expression system is a relatively safe method, which is vital for the application of CAD in animal husbandry production.
Collapse
Affiliation(s)
- Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xiaodan Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Zhan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Taotao Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
104
|
Microbial Chassis Development for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:779-796. [DOI: 10.1016/j.tibtech.2020.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
|
105
|
Wang N, Guan F, Lv X, Han D, Zhang Y, Wu N, Xia X, Tian J. Enhancing secretion of polyethylene terephthalate hydrolase PETase in
Bacillus subtilis
WB600 mediated by the SP
amy
signal peptide. Lett Appl Microbiol 2020; 71:235-241. [DOI: 10.1111/lam.13312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
Affiliation(s)
- N. Wang
- School of Biotechnology Jiangnan University Jiangsu Wuxi China
- Biotechnology Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - F. Guan
- Biotechnology Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - X. Lv
- School of Biotechnology Jiangnan University Jiangsu Wuxi China
| | - D. Han
- Institute of Environment and Sustainable Development in Agriculture Chinese Academy of Agricultural Sciences Beijing China
| | - Y. Zhang
- Biotechnology Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - N. Wu
- Biotechnology Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - X. Xia
- School of Biotechnology Jiangnan University Jiangsu Wuxi China
| | - J. Tian
- Biotechnology Research Institute Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
106
|
Bacillus subtilis Fermentation of Malva verticillata Leaves Enhances Antioxidant Activity and Osteoblast Differentiation. Foods 2020; 9:foods9050671. [PMID: 32456062 PMCID: PMC7278731 DOI: 10.3390/foods9050671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/18/2022] Open
Abstract
Malva verticillata, also known as Chinese mallow, is an herbaceous plant with colorful flowers and has been used as a medicine for thousands of years. This study investigated this herb for potential antioxidant activity or an association with osteoblast differentiation. M. verticillate leaves were fermented with B. subtilis MV1 at 30 °C for 7 days to enhance their biological activities. The resultant aqueous extract (MVW) and the fermented leaves (MVB) were measured for antioxidant and osteoblast differentiation. The results showed that the total phenolic, flavonoid, and antioxidant activity, as well as the osteoblast differentiation of the MVB increased (2 to 6 times) compared with those of the MVW. MVB induced phosphorylation of p38, extracellular signal-regulated kinase in C3H10T1/2 cells, and the phosphorylation was attenuated via transforming growth factor-β (TGF-β) inhibitors. Moreover, runt-related transcription factor 2 and osterix in the nucleus increased in a time-dependent manner. The messenger RNA expression of alkaline phosphatase and bone sialoprotein increased about 9.4- and 65-fold, respectively, compared to the non-treated cells. MVB stimulated C3H10T1/2 cells in the osteoblasts via TGF-β signaling. Thus, fermented M. verticillata extract exhibited enhanced antioxidant activity and osteoblast differentiation.
Collapse
|
107
|
Wang S, Fu G, Li J, Wei X, Fang H, Huang D, Lin J, Zhang D. High-Efficiency Secretion and Directed Evolution of Chitinase BcChiA1 in Bacillus subtilis for the Conversion of Chitinaceous Wastes Into Chitooligosaccharides. Front Bioeng Biotechnol 2020; 8:432. [PMID: 32457893 PMCID: PMC7221128 DOI: 10.3389/fbioe.2020.00432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/15/2020] [Indexed: 01/02/2023] Open
Abstract
Limitations of enzyme production and activity pose a challenge for efficient degradation of chitinaceous wastes. To solve this problem, we engineered a system for high-yielding extracellular secretion of chitinase A1 from Bacillus circulans (BcChiA1) in B. subtilis. Furthermore, an innovative chitinase high-throughput screening method based on colloidal chitin stained with Remazol Brilliant Blue R (CC-RBB) was established and used to identify three mutants with improved chitinase activity: Y10A/R301A/E327A (Mu1), Y10A/D81A/E327A (Mu2), and F38A/K88A/R301A (Mu3). Their highest specific activity reached 1004.83 ± 0.87 U/mg, representing a 16.89-fold increase in activity compared to native BcChiA1. Additionally, we found that there is a synergistic effect between BcChiA1 and a lytic polysaccharide monooxygenase from Bacillus atrophaeus (BatLPMO10), which increased the chitin processing efficiency by 50% after combining the two enzymes. The yield of chitooligosaccharide (COS) production using the mutant Mu1 and BatLPMO10 reached 2885.25 ± 2.22 mg/L. Taken together, the results indicated that the CC-RBB high-throughput screening method is a useful tool for chitinase screening, and evolution of BcChiA1 in collaboration with BatLPMO10 has tremendous application potential in the biological treatment of chitinaceous wastes for COS production.
Collapse
Affiliation(s)
- Sijia Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jinlong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xunfan Wei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dawei Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Jianping Lin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,College of Pharmacy, Nankai University, Tianjin, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
108
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
109
|
Thomas GH. Microbial Musings – May 2020. Microbiology (Reading) 2020; 166:422-424. [PMID: 32482204 PMCID: PMC7376257 DOI: 10.1099/mic.0.000942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Gavin H. Thomas
- Department of Biology, University of York, York, UK
- *Correspondence: Gavin H. Thomas,
| |
Collapse
|
110
|
Zhang J, Xu C, Chen X, Ruan X, Zhang Y, Xu H, Guo Y, Xu J, Lv P, Wang Z. Engineered Bacillus subtilis harbouring gene of d-tagatose 3-epimerase for the bioconversion of d-fructose into d-psicose through fermentation. Enzyme Microb Technol 2020; 136:109531. [DOI: 10.1016/j.enzmictec.2020.109531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/08/2020] [Accepted: 02/03/2020] [Indexed: 12/30/2022]
|
111
|
Sun L, Alper HS. Non-conventional hosts for the production of fuels and chemicals. Curr Opin Chem Biol 2020; 59:15-22. [PMID: 32348879 DOI: 10.1016/j.cbpa.2020.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
Biotechnology offers a green alternative for the production of fuels and chemicals using microbes. Although traditional model hosts such as Escherichia coli and Saccharomyces cerevisiae have been widely studied and used, they may not be the best hosts for industrial application. In this review, we explore recent advances in the use of nonconventional hosts for the production of a variety of fuel, cosmetics, perfumes, food, and pharmaceuticals. Specifically, we highlight twenty-seven popular molecules with a special focus on recent progress and metabolic engineering strategies to enable improved production of fuels and chemicals. These examples demonstrate the promise of nonconventional host engineering.
Collapse
Affiliation(s)
- Lichao Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, United States; McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, United States.
| |
Collapse
|
112
|
Xu L, Han F, Dong Z, Wei Z. Engineering Improves Enzymatic Synthesis of L-Tryptophan by Tryptophan Synthase from Escherichia coli. Microorganisms 2020; 8:microorganisms8040519. [PMID: 32260519 PMCID: PMC7232222 DOI: 10.3390/microorganisms8040519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022] Open
Abstract
To improve the thermostability of tryptophan synthase, the molecular modification of tryptophan synthase was carried out by rational molecular engineering. First, B-FITTER software was used to analyze the temperature factor (B-factor) of each amino acid residue in the crystal structure of tryptophan synthase. A key amino acid residue, G395, which adversely affected the thermal stability of the enzyme, was identified, and then, a mutant library was constructed by site-specific saturation mutation. A mutant (G395S) enzyme with significantly improved thermal stability was screened from the saturated mutant library. Error-prone PCR was used to conduct a directed evolution of the mutant enzyme (G395S). Compared with the parent, the mutant enzyme (G395S /A191T) had a Km of 0.21 mM and a catalytic efficiency kcat/Km of 5.38 mM−1∙s−1, which was 4.8 times higher than that of the wild-type strain. The conditions for L-tryptophan synthesis by the mutated enzyme were a L-serine concentration of 50 mmol/L, a reaction temperature of 40 °C, pH of 8, a reaction time of 12 h, and an L-tryptophan yield of 81%. The thermal stability of the enzyme can be improved by using an appropriate rational design strategy to modify the correct site. The catalytic activity of tryptophan synthase was increased by directed evolution.
Collapse
Affiliation(s)
- Lisheng Xu
- Department of Life and Food Science, Suzhou University, Suzhou 234000, China; (F.H.); (Z.D.)
- Correspondence: ; Tel.: +86-557-287-1681
| | - Fangkai Han
- Department of Life and Food Science, Suzhou University, Suzhou 234000, China; (F.H.); (Z.D.)
| | - Zeng Dong
- Department of Life and Food Science, Suzhou University, Suzhou 234000, China; (F.H.); (Z.D.)
| | - Zhaojun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China;
| |
Collapse
|
113
|
Wu Y, Liu Y, Lv X, Li J, Du G, Liu L. CAMERS‐B: CRISPR/Cpf1 assisted multiple‐genes editing and regulation system for
Bacillus subtilis. Biotechnol Bioeng 2020; 117:1817-1825. [DOI: 10.1002/bit.27322] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| |
Collapse
|
114
|
Efficient production of surfactin from xylose-rich corncob hydrolysate using genetically modified Bacillus subtilis 168. Appl Microbiol Biotechnol 2020; 104:4017-4026. [DOI: 10.1007/s00253-020-10528-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/28/2020] [Accepted: 03/05/2020] [Indexed: 01/04/2023]
|
115
|
Karpov DS, Domashin AI, Kotlov MI, Osipova PG, Kiseleva SV, Seregina TA, Goncharenko AV, Mironov AS, Karpov VL, Poddubko SV. Biotechnological Potential of the Bacillus subtilis 20 Strain. Mol Biol 2020. [DOI: 10.1134/s0026893320010082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
116
|
Zhou C, Zhou H, Li D, Zhang H, Wang H, Lu F. Optimized expression and enhanced production of alkaline protease by genetically modified Bacillus licheniformis 2709. Microb Cell Fact 2020; 19:45. [PMID: 32093734 PMCID: PMC7041084 DOI: 10.1186/s12934-020-01307-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bacillus licheniformis 2709 is extensively applied as a host for the high-level production of heterologous proteins, but Bacillus cells often possess unfavorable wild-type properties, such as production of viscous materials and foam during fermentation, which seriously influenced the application in industrial fermentation. How to develop it from a soil bacterium to a super-secreting cell factory harboring less undomesticated properties always plays vital role in industrial production. Besides, the optimal expression pattern of the inducible enzymes like alkaline protease has not been optimized by comparing the transcriptional efficiency of different plasmids and genomic integration sites in B. licheniformis. RESULT Bacillus licheniformis 2709 was genetically modified by disrupting the native lchAC genes related to foaming and the eps cluster encoding the extracellular mucopolysaccharide via a markerless genome-editing method. We further optimized the expression of the alkaline protease gene (aprE) by screening the most efficient expression system among different modular plasmids and genomic loci. The results indicated that genomic expression of aprE was superior to plasmid expression and finally the transcriptional level of aprE greatly increased 1.67-fold through host optimization and chromosomal integration in the vicinity of the origin of replication, while the enzyme activity significantly improved 62.19% compared with the wild-type alkaline protease-producing strain B. licheniformis. CONCLUSION We successfully engineered an AprE high-yielding strain free of undesirable properties and its fermentation traits could be applied to bulk-production by host genetic modification and expression optimization. In summary, host optimization is an enabling technology for improving enzyme production by eliminating the harmful traits of the host and optimizing expression patterns. We believe that these strategies can be applied to improve heterologous protein expression in other Bacillus species.
Collapse
Affiliation(s)
- Cuixia Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Huiying Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Dengke Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China.
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China.
| |
Collapse
|
117
|
Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch Microbiol 2019; 202:427-435. [PMID: 31773195 DOI: 10.1007/s00203-019-01757-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/05/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Beneficial microorganisms maintain the ecosystems, plants, animals and humans working in healthy conditions. In nature, around 95% of all microorganisms produce beneficial effects by increasing nutrients digestion and assimilation, preventing pathogens development and by improving environmental parameters. However, increase in human population and indiscriminate uses of antibiotics have been exerting a great pressure on agriculture, livestock, aquaculture, and also to the environment. This pressure has induced the decomposition of environmental parameters and the development of pathogenic strains resistant to most antibiotics. Therefore, all antibiotics have been restricted by corresponding authorities; hence, new and healthy alternatives to prevent or eliminate these pathogens need to be identified. Thus, probiotic bacteria utilization in aquaculture systems has emerged as a solution to prevent pathogens development, to enhance nutrients assimilation and to improve environmental parameters. In this sense, B. subtilis is an ideal multifunctional probiotic bacterium, with the capacity to solve these problems and also to increase aquaculture profitability.
Collapse
|
118
|
Yarrowia lipolytica: more than an oleaginous workhorse. Appl Microbiol Biotechnol 2019; 103:9251-9262. [DOI: 10.1007/s00253-019-10200-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
119
|
van Tilburg AY, Cao H, van der Meulen SB, Solopova A, Kuipers OP. Metabolic engineering and synthetic biology employing Lactococcus lactis and Bacillus subtilis cell factories. Curr Opin Biotechnol 2019; 59:1-7. [DOI: 10.1016/j.copbio.2019.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/05/2018] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
|
120
|
Soares A, Azevedo A, Gomes LC, Mergulhão FJ. Recombinant protein expression in biofilms. AIMS Microbiol 2019; 5:232-250. [PMID: 31663059 PMCID: PMC6787351 DOI: 10.3934/microbiol.2019.3.232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
Biofilm research is usually focused on the prevention or control of biofilm formation. Recently, the significance of the biofilm mode of growth in biotechnological applications received increased attention. Since biofilm reactors show many advantages over suspended cell reactors, especially in their higher biomass density and operational stability, bacterial biofilms have emerged as an interesting approach for the expression of specific proteins. Despite the potential of biofilm systems, recombinant protein production using biofilms has been scarcely investigated for the past 25 years. Our group has demonstrated that E. coli biofilms were able to produce a model recombinant protein, the enhanced green fluorescent protein (eGFP), at much higher levels than their planktonic counterparts. Even without optimization of cultivation conditions, an attractive productivity was obtained, indicating that biofilm cultures can be used as an alternative form of high cell density cultivation (HCDC). E. coli remains one of the favorite hosts for recombinant protein production and it has been successfully used in metabolic engineering for the synthesis of high value products. This review presents the advantages and concerns of using biofilms for the production of recombinant proteins and summarizes the different biofilm systems which have been described for this purpose. The relative advantages and disadvantages of the four microbial hosts tested for recombinant protein production in biofilms (two bacteria and two filamentous fungi) are also discussed.
Collapse
Affiliation(s)
- Alexandra Soares
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Azevedo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C Gomes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J Mergulhão
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
121
|
Ma Y, McClure DD, Somerville MV, Proschogo NW, Dehghani F, Kavanagh JM, Coleman NV. Metabolic Engineering of the MEP Pathway in Bacillus subtilis for Increased Biosynthesis of Menaquinone-7. ACS Synth Biol 2019; 8:1620-1630. [PMID: 31250633 DOI: 10.1021/acssynbio.9b00077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin K is essential for blood coagulation and plays important roles in bone and cardiovascular health. Menaquinone-7 (MK-7) is one form of vitamin K that is especially useful due to its long half-life in the circulation. MK-7 is difficult to make via organic synthesis, and is thus commonly produced by fermentation. This study aimed to genetically modify Bacillus subtilis cultures to increase their MK-7 yield and reduce production costs. We constructed 12 different strains of B. subtilis 168 by overexpressing different combinations of the rate-limiting enzymes Dxs, Dxr, Idi, and MenA. We observed an 11-fold enhancement of production in the best-performing strain, resulting in 50 mg/L MK-7. Metabolite analysis revealed new bottlenecks in the pathway at IspG and IspH, which suggest avenues for further optimization. This work highlights the usefulness of Bacillus subtilis for industrial production of high value compounds.
Collapse
Affiliation(s)
- Yanwei Ma
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dale D. McClure
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark V. Somerville
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - John M. Kavanagh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nicholas V. Coleman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
122
|
Landon S, Rees-Garbutt J, Marucci L, Grierson C. Genome-driven cell engineering review: in vivo and in silico metabolic and genome engineering. Essays Biochem 2019; 63:267-284. [PMID: 31243142 PMCID: PMC6610458 DOI: 10.1042/ebc20180045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/04/2023]
Abstract
Producing 'designer cells' with specific functions is potentially feasible in the near future. Recent developments, including whole-cell models, genome design algorithms and gene editing tools, have advanced the possibility of combining biological research and mathematical modelling to further understand and better design cellular processes. In this review, we will explore computational and experimental approaches used for metabolic and genome design. We will highlight the relevance of modelling in this process, and challenges associated with the generation of quantitative predictions about cell behaviour as a whole: although many cellular processes are well understood at the subsystem level, it has proved a hugely complex task to integrate separate components together to model and study an entire cell. We explore these developments, highlighting where computational design algorithms compensate for missing cellular information and underlining where computational models can complement and reduce lab experimentation. We will examine issues and illuminate the next steps for genome engineering.
Collapse
Affiliation(s)
- Sophie Landon
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, U.K
| | - Joshua Rees-Garbutt
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, U.K
| | - Lucia Marucci
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K.
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, U.K
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1UB, U.K
| | - Claire Grierson
- BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K.
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, U.K
| |
Collapse
|
123
|
Dib W, Grar H, Gourine H, El Mecherfi KE, Negaoui H, Biscola V, Kaddouri H, Chobert JM, Haertlé T, Saidi D, Kheroua O. Prophylactic properties of Bacillus subtilis in a bovine β-lactoglobulin sensitized mice model. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
124
|
Yu L, Wu F, Chen G. Next‐Generation Industrial Biotechnology‐Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnol J 2019; 14:e1800437. [DOI: 10.1002/biot.201800437] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/01/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Lin‐Ping Yu
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
| | - Fu‐Qing Wu
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
| | - Guo‐Qiang Chen
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Manchester Institute of Biotechnology, Centre for Synthetic BiologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
125
|
Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis. Trends Biotechnol 2019; 37:548-562. [DOI: 10.1016/j.tibtech.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022]
|
126
|
Zhao L, Ye B, Zhang Q, Cheng D, Zhou C, Cheng S, Yan X. Construction of second generation protease-deficient hosts of Bacillus subtilis for secretion of foreign proteins. Biotechnol Bioeng 2019; 116:2052-2060. [PMID: 30989640 DOI: 10.1002/bit.26992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/18/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Although one of the major factors limiting the application of Bacillus subtilis as an expression host has been its production of at least eight extracellular proteases, researchers have also noticed that some proteases benefited the secretion of foreign proteins at times. Therefore, to maximize the yield of a foreign protein, the proteases should be selectively inactivated. This raises a new question that how to identify the favorable and unfavorable proteases for a target protein. Here, an evaluation system containing nine mutant strains of B. subtilis 168 was developed to address this question. The mutant strain PD8 has all the eight proteases inactivated whereas each of the other eight mutant strains expresses only one kind of these eight proteases. The target protein is secreted in these nine mutant strains; if the production of target protein in a mutant strain is higher than that in strain PD8, the corresponding protease is regarded as favorable. Accordingly, the optimal protease-deficient host is constructed through inactivating the unfavorable proteases. The effectiveness of this system was confirmed by expressing three foreign proteins. This study provides a strategy for improving the secretion of a foreign protein in B. subtilis through tailoring a personalized protease-deficient host.
Collapse
Affiliation(s)
- Leizhen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Bin Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Qi Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Dan Cheng
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Chaoyang Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Shan Cheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.,Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
127
|
Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains. Appl Microbiol Biotechnol 2019; 103:4455-4465. [PMID: 30968162 DOI: 10.1007/s00253-019-09788-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
In this study, stress tolerance devices consisting of heat shock protein (HSP) genes from thermophiles Geobacillus and Parageobacillus were introduced into riboflavin-producing strain Bacillus subtilis 446 to improve its stress tolerance and riboflavin production. The 12 HSP homologs were selected from 28 Geobacillus and Parageobacillus genomes according to their sequence clustering and phylogenetically analysis which represents the diversity of HSPs from thermophilic bacillus. The 12 HSP genes and 2 combinations of them (PtdnaK-PtdnaJ-PtgrpE and PtgroeL-PtgroeS) were heterologously expressed in B. subtilis 446 under the control of a strong constitutive promoter P43. Most of the 14 engineered strains showed increased cell density at 44 to 48 °C and less cell death at 50 °C compared with the control strains. Among them, strains B.s446-HSP20-3, B.s446-HSP20-2, and B.s446-PtDnaK-PtDnaJ-PtGrpE increased their cell densities over 25% at 44 to 48 °C. They also showed 5-, 4-, and 4-fold improved cell survivals after the 10-h heat shock treatment at 50 °C, respectively. These three strains also showed reduced cell death rates under osmotic stress of 10% NaCl, indicating that the introduction of HSPs improved not only the heat tolerance of B. subtilis 446 but also its osmotic tolerance. Fermentation of these three strains at higher temperatures of 39 and 43 °C showed 23-66% improved riboflavin titers, as well as 24-h shortened fermentation period. These results indicated that implanting HSPs from thermophiles to B. subtilis 446 would be an efficient approach to improve its stress tolerance and riboflavin production.
Collapse
|
128
|
Chi H, Wang X, Shao Y, Qin Y, Deng Z, Wang L, Chen S. Engineering and modification of microbial chassis for systems and synthetic biology. Synth Syst Biotechnol 2019; 4:25-33. [PMID: 30560208 PMCID: PMC6290258 DOI: 10.1016/j.synbio.2018.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Engineering and modifying synthetic microbial chassis is one of the best ways not only to unravel the fundamental principles of life but also to enhance applications in the health, medicine, agricultural, veterinary, and food industries. The two primary strategies for constructing a microbial chassis are the top-down approach (genome reduction) and the bottom-up approach (genome synthesis). Research programs on this topic have been funded in several countries. The 'Minimum genome factory' (MGF) project was launched in 2001 in Japan with the goal of constructing microorganisms with smaller genomes for industrial use. One of the best examples of the results of this project is E. coli MGF-01, which has a reduced-genome size and exhibits better growth and higher threonine production characteristics than the parental strain [1]. The 'cell factory' project was carried out from 1998 to 2002 in the Fifth Framework Program of the EU (European Union), which tried to comprehensively understand microorganisms used in the application field. One of the outstanding results of this project was the elucidation of proteins secreted by Bacillus subtilis, which was summarized as the 'secretome' [2]. The GTL (Genomes to Life) program began in 2002 in the United States. In this program, researchers aimed to create artificial cells both in silico and in vitro, such as the successful design and synthesis of a minimal bacterial genome by John Craig Venter's group [3]. This review provides an update on recent advances in engineering, modification and application of synthetic microbial chassis, with particular emphasis on the value of learning about chassis as a way to better understand life and improve applications.
Collapse
Affiliation(s)
- Haotian Chi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaoli Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yue Shao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Ying Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| |
Collapse
|
129
|
Liu Q, Jin X, Fang F, Li J, Du G, Kang Z. Food-grade expression of an iron-containing acid urease in Bacillus subtilis. J Biotechnol 2019; 293:66-71. [PMID: 30703469 DOI: 10.1016/j.jbiotec.2019.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 12/01/2022]
Abstract
Enzymatic degradation of urea, the precursor of carcinogenic compound ethylcarbamate in rice wine, is always attractive. In the present study, we achieved high efficient production of Bacillus paralicheniformis iron-containing urease (Bp_Urease) in B. subtilis with the food-grade expression system. After reassembly of the urease gene cluster with inserting ribosome binding site (RBS), the production was increased from 38 U/L to 187 U/L. After altering the position of ureC and co-expressing the iron transporter encoding gene ureH, the activity was further increased to 1307 U/L. Eventually, the urease production was improved to 21,964 U/L in 3-L fermentor, which is the highest reported value to date. Food-grade production of the iron-containing urease would be favorable to the practical applications in food industries.
Collapse
Affiliation(s)
- Qingtao Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xuerong Jin
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fang Fang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jianghua Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Guocheng Du
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zhen Kang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
130
|
Calero P, Nikel PI. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol 2019; 12:98-124. [PMID: 29926529 PMCID: PMC6302729 DOI: 10.1111/1751-7915.13292] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The last few years have witnessed an unprecedented increase in the number of novel bacterial species that hold potential to be used for metabolic engineering. Historically, however, only a handful of bacteria have attained the acceptance and widespread use that are needed to fulfil the needs of industrial bioproduction - and only for the synthesis of very few, structurally simple compounds. One of the reasons for this unfortunate circumstance has been the dearth of tools for targeted genome engineering of bacterial chassis, and, nowadays, synthetic biology is significantly helping to bridge such knowledge gap. Against this background, in this review, we discuss the state of the art in the rational design and construction of robust bacterial chassis for metabolic engineering, presenting key examples of bacterial species that have secured a place in industrial bioproduction. The emergence of novel bacterial chassis is also considered at the light of the unique properties of their physiology and metabolism, and the practical applications in which they are expected to outperform other microbial platforms. Emerging opportunities, essential strategies to enable successful development of industrial phenotypes, and major challenges in the field of bacterial chassis development are also discussed, outlining the solutions that contemporary synthetic biology-guided metabolic engineering offers to tackle these issues.
Collapse
Affiliation(s)
- Patricia Calero
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| |
Collapse
|
131
|
Liu WQ, Zhang L, Chen M, Li J. Cell-free protein synthesis: Recent advances in bacterial extract sources and expanded applications. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
132
|
Tian J, Long X, Tian Y, Shi B. Enhanced extracellular recombinant keratinase activity in Bacillus subtilis SCK6 through signal peptide optimization and site-directed mutagenesis. RSC Adv 2019; 9:33337-33344. [PMID: 35529123 PMCID: PMC9073338 DOI: 10.1039/c9ra07866e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 11/21/2022] Open
Abstract
The extracellular recombinant keratinase activity in Bacillus subtilis SCK6 was enhanced by signal peptide optimization and site-directed mutagenesis.
Collapse
Affiliation(s)
- Jiewei Tian
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University)
- Department of Biomass and Leather Engineering
- Ministry of Education
- College of Biomass Science and Engineering (Sichuan University)
- Sichuan University
| | - Xiufeng Long
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University)
- Department of Biomass and Leather Engineering
- Ministry of Education
- College of Biomass Science and Engineering (Sichuan University)
- Sichuan University
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University)
- Department of Biomass and Leather Engineering
- Ministry of Education
- College of Biomass Science and Engineering (Sichuan University)
- Sichuan University
| | - Bi Shi
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University)
- Department of Biomass and Leather Engineering
- Ministry of Education
- College of Biomass Science and Engineering (Sichuan University)
- Sichuan University
| |
Collapse
|
133
|
Huang X, Cao L, Qin Z, Li S, Kong W, Liu Y. Tat-Independent Secretion of Polyethylene Terephthalate Hydrolase PETase in Bacillus subtilis 168 Mediated by Its Native Signal Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13217-13227. [PMID: 30465427 DOI: 10.1021/acs.jafc.8b05038] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Widespread utilization of polyethylene terephthalate (PET) has caused critical environmental pollution. The enzymatic degradation of PET is a promising solution to this problem. In this study, PETase, which exhibits much higher PET-hydrolytic activity than other enzymes, was successfully secreted into extracellular milieu from Bacillus subtilis 168 under the direction of its native signal peptide (named SPPETase). SPPETase is predicted to be a twin-arginine signal peptide. Intriguingly, inactivation of twin-arginine translocation (Tat) complexes improved the secretion amount by 3.8-fold, indicating that PETase was exported via Tat-independent pathway. To the best of our knowledge, this is the first report on the improvement of Tat-independent secretion by inactivating Tat components of B. subtilis 168 in LB medium. Furthermore, PET film degradation assay showed that the secreted PETase was fully active. This study paves the first step to construct an efficient engineered strain for PET degradation.
Collapse
Affiliation(s)
- Xin Huang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Lichuang Cao
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zongmin Qin
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Shuifeng Li
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Wei Kong
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Yuhuan Liu
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
134
|
Gu Y, Lv X, Liu Y, Li J, Du G, Chen J, Rodrigo LA, Liu L. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metab Eng 2018; 51:59-69. [PMID: 30343048 DOI: 10.1016/j.ymben.2018.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 01/06/2023]
Abstract
One of the primary goals of microbial metabolic engineering is to achieve high titer, yield and productivity (TYP) of engineered strains. This TYP index requires optimized carbon flux toward desired molecule with minimal by-product formation. De novo redesign of central carbon and redox metabolism holds great promise to alleviate pathway bottleneck and improve carbon and energy utilization efficiency. The engineered strain, with the overexpression or deletion of multiple genes, typically can't meet the TYP index, due to overflow of central carbon and redox metabolism that compromise the final yield, despite a high titer or productivity might be achieved. To solve this challenge, we reprogramed the central carbon and redox metabolism of Bacillus subtilis and achieved high TYP production of N-acetylglucosamine. Specifically, a "push-pull-promote" approach efficiently reduced the overflown acetyl-CoA flux and eliminated byproduct formation. Four synthetic NAD(P)-independent metabolic routes were introduced to rewire the redox metabolism to minimize energy loss. Implementation of these genetic strategies led us to obtain a B. subtilis strain with superior TYP index. GlcNAc titer in shake flask was increased from 6.6 g L-1 to 24.5 g L-1, the yield was improved from 0.115 to 0.468 g GlcNAc g-1 glucose, and the productivity was increased from 0.274 to 0.437 g L-1 h-1. These titer and yield are the highest levels ever reported and, the yield reached 98% of the theoretical pathway yield (0.478 g g-1 glucose). The synthetic redesign of carbon metabolism and redox metabolism represent a novel and general metabolic engineering strategy to improve the performance of microbial cell factories.
Collapse
Affiliation(s)
- Yang Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | | | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
135
|
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 2018; 3:135-149. [PMID: 30345399 PMCID: PMC6190536 DOI: 10.1016/j.synbio.2018.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technologies have greatly reshaped the biology field. In this review, we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a, which have been most widely studied and used. We discuss the biological mechanisms of CRISPR-Cas as immune defense systems, recently-discovered anti-CRISPR-Cas systems, and the emerging Cas variants (such as xCas9 and Cas13) with unique characteristics. Then, we highlight various CRISPR-Cas biotechnologies, including nuclease-dependent genome editing, CRISPR gene regulation (including CRISPR interference/activation), DNA/RNA base editing, and nucleic acid detection. Last, we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Xiao Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
136
|
Abstract
Hirudin was discovered as an active anticoagulant in leech extracts almost 60 years ago. Since their initial discovery, hirudin and its variants have been produced with various anti-thrombotic, cancer cell inhibition, diabetic cataract treatment and anti-fatigue activities. Some hirudin variants have been approved for clinical use and released into the marketplace. Recent progress has seen made in relation to hirudin variants expressed in several well-established microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and others, with high levels of activity and yield. This review summarizes the current progress on hirudin production using microbial producers, and considers the outlook for future development.
Collapse
Affiliation(s)
- Jianguo Zhang
- a Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai , China
| | - Nana Lan
- a Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering , University of Shanghai for Science and Technology , Shanghai , China
| |
Collapse
|