101
|
Li P, Chen SW. Molecular basis of Ca(2)+ activation of the mouse cardiac Ca(2)+ release channel (ryanodine receptor). J Gen Physiol 2001; 118:33-44. [PMID: 11429443 PMCID: PMC2233748 DOI: 10.1085/jgp.118.1.33] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of the cardiac ryanodine receptor (RyR2) by Ca(2)+ is an essential step in excitation-contraction coupling in heart muscle. However, little is known about the molecular basis of activation of RyR2 by Ca(2)+. In this study, we investigated the role in Ca(2)+ sensing of the conserved glutamate 3987 located in the predicted transmembrane segment M2 of the mouse RyR2. Single point mutation of this conserved glutamate to alanine (E3987A) reduced markedly the sensitivity of the channel to activation by Ca(2)+, as measured by using single-channel recordings in planar lipid bilayers and by [(3)H]ryanodine binding assay. However, this mutation did not alter the affinity of [(3)H]ryanodine binding and the single-channel conductance. In addition, the E3987A mutant channel was activated by caffeine and ATP, was inhibited by Mg(2)+, and was modified by ryanodine in a fashion similar to that of the wild-type channel. Coexpression of the wild-type and mutant E3987A RyR2 proteins in HEK293 cells produced individual single channels with intermediate sensitivities to activating Ca(2)+. These results are consistent with the view that glutamate 3987 is a major determinant of Ca(2)+ sensitivity to activation of the mouse RyR2 channel, and that Ca(2)+ sensing by RyR2 involves the cooperative action between ryanodine receptor monomers. The results of this study also provide initial insights into the structural and functional properties of the mouse RyR2, which should be useful for studying RyR2 function and regulation in genetically modified mouse models.
Collapse
Affiliation(s)
- Pin Li
- Cardiovascular Research Group, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - S.R. Wayne Chen
- Cardiovascular Research Group, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
102
|
|
103
|
O'Sullivan GH, McIntosh JM, Heffron JJ. Abnormal uptake and release of Ca 2+ ions from human malignant hyperthermia-susceptible sarcoplasmic reticulum 1 1Abbreviations: CICR, Ca2+-induced Ca2+ release; HEK-293, human embryonic kidney; HSR, heavy sarcoplasmic reticulum; IVCT, in vitro caffeine halothane contracture test; MH, malignant hyperthermia; MHS, malignant hyperthermia-susceptible; MHN, malignant hyperthermia normal; MOPS, 3-[N-Morpholino]propanesulphonic acid; RYR1, ryanodine receptor skeletal muscle gene; and TFP, trifluoperazine. Biochem Pharmacol 2001; 61:1479-85. [PMID: 11377377 DOI: 10.1016/s0006-2952(01)00604-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic myopathy that occurs in humans and several other mammalian species. There has been limited investigation of Ca2+ transport by human heavy sarcoplasmic reticulum (HSR) vesicles despite the fact that mutations of the ryanodine receptor Ca2+ release channel have been linked to inheritance of MH. In this study, the Ca2+ release and uptake mechanisms in human MH-susceptible HSR (MHS) vesicles were investigated and the kinetics and sensitivity compared to normal vesicles. Alterations in Ca2+ regulation were thereby elucidated. HSR vesicles from 6 normal (MHN) and 5 MHS patients were compared using a dual-wavelength continuous Ca2+ flux assay in the presence of pyrophosphate. The loading capacity and loading rate of Ca2+ in MHS vesicles were reduced by almost 50%. These parameters were restored to normal when the Ca2+ channel blocker ruthenium red was added. Calcium-induced calcium release, halothane-induced calcium release, and trifluoperazine-induced calcium release were clearly elevated in MHS HSR vesicles compared to MHN vesicles. The results suggest that MH ryanodine receptors exist in a more open resting state than those in normal muscle.
Collapse
Affiliation(s)
- G H O'Sullivan
- Analytical Biochemistry and Toxicology Laboratory, Department of Biochemistry, National University of Ireland, Cork, Ireland
| | | | | |
Collapse
|
104
|
Zhao F, Li P, Chen SR, Louis CF, Fruen BR. Dantrolene inhibition of ryanodine receptor Ca2+ release channels. Molecular mechanism and isoform selectivity. J Biol Chem 2001; 276:13810-6. [PMID: 11278295 DOI: 10.1074/jbc.m006104200] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an inhibitor of Ca(2+) release through ryanodine receptor (RYR) channels, the skeletal muscle relaxant dantrolene has proven to be both a valuable experimental probe of intracellular Ca(2+) signaling and a lifesaving treatment for the pharmacogenetic disorder malignant hyperthermia. However, the molecular basis and specificity of the actions of dantrolene on RYR channels have remained in question. Here we utilize [(3)H]ryanodine binding to further investigate the actions of dantrolene on the three mammalian RYR isoforms. The inhibition of the pig skeletal muscle RYR1 by dantrolene (10 microm) was associated with a 3-fold increase in the K(d) of [(3)H]ryanodine binding to sarcoplasmic reticulum (SR) vesicles such that dantrolene effectively reversed the 3-fold decrease in the K(d) for [(3)H]ryanodine binding resulting from the malignant hyperthermia RYR1 Arg(615) --> Cys mutation. Dantrolene inhibition of the RYR1 was dependent on the presence of the adenine nucleotide and calmodulin and reflected a selective decrease in the apparent affinity of RYR1 activation sites for Ca(2+) relative to Mg(2+). In contrast to the RYR1 isoform, the cardiac RYR2 isoform was unaffected by dantrolene, both in native cardiac SR vesicles and when heterologously expressed in HEK-293 cells. By comparison, the RYR3 isoform expressed in HEK-293 cells was significantly inhibited by dantrolene, and the extent of RYR3 inhibition was similar to that displayed by the RYR1 in native SR vesicles. Our results thus indicate that both the RYR1 and the RYR3, but not the RYR2, may be targets for dantrolene inhibition in vivo.
Collapse
Affiliation(s)
- F Zhao
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
105
|
Gallant EM, Curtis S, Pace SM, Dulhunty AF. Arg(615)Cys substitution in pig skeletal ryanodine receptors increases activation of single channels by a segment of the skeletal DHPR II-III loop. Biophys J 2001; 80:1769-82. [PMID: 11259290 PMCID: PMC1301366 DOI: 10.1016/s0006-3495(01)76147-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The effect of peptides, corresponding to sequences in the skeletal muscle dihydropyridine receptor II-III loop, on Ca(2+) release from sarcoplasmic reticulum (SR) and on ryanodine receptor (RyR) calcium release channels have been compared in preparations from normal and malignant hyperthermia (MH)-susceptible pigs. Peptide A (Thr(671)-Leu(690); 36 microM) enhanced the rate of Ca(2+) release from normal SR (SR(N)) and from SR of MH-susceptible muscle (SR(MH)) by 10 +/- 3.2 nmole/mg/min and 76 +/- 9.7 nmole/mg/min, respectively. Ca (2+) release from SR(N) or SR(MH) was not increased by control peptide NB (Gly(689)-Lys(708)). AS (scrambled A sequence; 36 microM) did not alter Ca (2+) release from SR(N), but increased release from SR(MH) by 29 +/- 4.9 nmoles/mg/min. RyR channels from MH-susceptible muscle (RyR(MH)) were up to about fourfold more strongly activated by peptide A (> or =1 nM) than normal RyR channels (RyR(N)) at -40 mV. Neither NB or AS activated RyR(N). RyR(MH) showed an approximately 1.8-fold increase in mean current with 30 microM AS. Inhibition at +40 mV was stronger in RyR(MH) and seen with peptide A (> or = 0.6 microM) and AS (> or = 0.6 microM), but not NB. These results show that the Arg(615)Cys substitution in RyR(MH) has multiple effects on RyRs. We speculate that enhanced DHPR activation of RyRs may contribute to increased Ca(2+) release from SR in MH-susceptible muscle.
Collapse
Affiliation(s)
- E M Gallant
- Muscle Research Group, John Curtin School of Medical Research, P.O. Box 334, Canberra, ACT 2601, Australia
| | | | | | | |
Collapse
|
106
|
Abstract
Most congenital myopathies have been defined on account of the morphological findings in enzyme histochemical preparations. In effect, the diagnosis of this group of diseases continues to be made on the histological pattern of muscle biopsies. However, progress has been made in elucidating the molecular genetic background of several of the congenital myopathies. In this updated review we address those congenital myopathies for which gene defects and mutant proteins have been found (central core disease, nemaline myopathies, desminopathy, actinopathy, certain vacuolar myopathies, and myotubular myopathy) and the other disease with central nuclei (centronuclear myopathy).
Collapse
MESH Headings
- Actins/genetics
- Chromosome Mapping
- Desmin/genetics
- Humans
- Mutation
- Myopathies, Nemaline/genetics
- Myopathies, Nemaline/pathology
- Myopathies, Structural, Congenital/classification
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Myopathy, Central Core/genetics
- Myopathy, Central Core/pathology
Collapse
Affiliation(s)
- A Bornemann
- Institute of Brain Research, Eberhard-Karls University, Tübingen, Germany.
| | | |
Collapse
|
107
|
Melzer W, Dietze B. Malignant hyperthermia and excitation-contraction coupling. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 171:367-78. [PMID: 11412150 DOI: 10.1046/j.1365-201x.2001.00840.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malignant hyperthermia (MH) is a state of elevated skeletal muscle metabolism that may occur during general anaesthesia in genetically pre-disposed individuals. Malignant hyperthermia results from altered control of sarcoplasmic reticulum (SR) Ca2+ release. Mutations have been identified in MH-susceptible (MHS) individuals in two key proteins of excitation-contraction (EC) coupling, the Ca2+ release channel of the SR, ryanodine receptor type 1 (RyR1) and the alpha1-subunit of the dihydropyridine receptor (DHPR, L-type Ca2+ channel). During EC coupling, the DHPR senses the plasma membrane depolarization and transmits the information to the ryanodine receptor (RyR). As a consequence, Ca2+ is released from the terminal cisternae of the SR. One of the human MH-mutations of RyR1 (Arg614Cys) is also found at the homologous location in the RyR of swine (Arg615Cys). This animal model permits the investigation of physiological consequences of the homozygously expressed mutant release channel. Of particular interest is the question of whether voltage-controlled release of Ca2+ is altered by MH-mutations in the absence of MH-triggering substances. This question has recently been addressed in this laboratory by studying Ca2+ release under voltage clamp conditions in both isolated human skeletal muscle fibres and porcine myotubes.
Collapse
Affiliation(s)
- W Melzer
- Department of Applied Physiology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
108
|
Shirabe T. Muscle biopsy of a 15-year-old boy with muscle atrophy and weakness of the extremities from infancy. Neuropathology 2001; 21:95-6, 98. [PMID: 11304048 DOI: 10.1046/j.1440-1789.2001.00371.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- T Shirabe
- Division of Neuropathology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
109
|
Boehning D, Joseph SK. Direct association of ligand-binding and pore domains in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors. EMBO J 2000; 19:5450-9. [PMID: 11032812 PMCID: PMC313997 DOI: 10.1093/emboj/19.20.5450] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of intracellular Ca(2+) channels that exist as homo- or heterotetramers. In order to determine whether the N-terminal ligand-binding domain is in close physical proximity to the C-terminal pore domain, we prepared microsomal membranes from COS-7 cells expressing recombinant type I and type III IP(3)R isoforms. Trypsin digestion followed by cross-linking and co-immunoprecipitation of peptide fragments suggested an inter-subunit N- and C-terminal interaction in both homo- and heterotetramers. This observation was further supported by the ability of in vitro translated C-terminal peptides to interact specifically with an N-terminal fusion protein. Using a (45)Ca(2+) flux assay, we provide functional evidence that the ligand-binding domain of one subunit can gate the pore domain of an adjacent subunit. We conclude that common structural motifs are shared between the type I and type III IP(3)Rs and propose that the gating mechanism of IP(3)R Ca(2+) channels involves the association of the N-terminus of one subunit with the C-terminus of an adjacent subunit in both homo- and heterotetrameric complexes.
Collapse
MESH Headings
- Animals
- COS Cells
- Calcium/metabolism
- Calcium Channels/chemistry
- Calcium Channels/classification
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling
- Cross-Linking Reagents/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Ion Channel Gating/drug effects
- Ligands
- Membrane Proteins/chemistry
- Membrane Proteins/metabolism
- Microsomes/metabolism
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Precipitin Tests
- Protein Binding
- Protein Isoforms
- Protein Structure, Quaternary/drug effects
- Protein Structure, Tertiary/drug effects
- Quaternary Ammonium Compounds/pharmacology
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/classification
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Succinimides/metabolism
- Trypsin/metabolism
Collapse
Affiliation(s)
- D Boehning
- Department of Pathology and Cell Biology, Thomas Jefferson University School of Medicine, Philadelphia, PA 19107, USA
| | | |
Collapse
|
110
|
Silva HC, Bahia VS, Oliveira RA, Marchiori PE, Scaff M, Tsanaclis AM. [Malignant hyperthermia susceptibility in 3 patients with malignant neuroleptic syndrome]. ARQUIVOS DE NEURO-PSIQUIATRIA 2000; 58:713-9. [PMID: 10973114 DOI: 10.1590/s0004-282x2000000400018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperthermia, skeletal muscle rigidity, rhabdomyolysis, acidosis and multiple system insufficiency characterize malignant hyperthermia. Anaesthetic malignant hyperthermia follows halogenated volatile agents and/or depolarizing muscle relaxants utilization. Diagnosis is based on in vitro muscle contracture in response to halothane and/or caffeine exposure. Neuroleptic malignant syndrome affects patients taking neuroleptic drugs; clinical findings include hyperthermia, extrapyramidal rigidity, acidosis, neurovegetative instability and neurological signs. We report three neuroleptic malignant syndrome patients with positive muscle contracture tests which shows that muscle from neuroleptic malignant syndrome patients may in some instances show alterations similar to those of anaesthetic malignant hyperthermia.
Collapse
Affiliation(s)
- H C Silva
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | | | | | | | | | | |
Collapse
|
111
|
Abstract
Transient elevations of intracellular Ca2+ play a signalling role in such complex cellular functions as contraction, secretion, fertilization, proliferation, metabolism, heartbeat and memory. However, prolonged elevation of Ca2+ above about 10 microM is deleterious to a cell and can activate apoptosis. In muscle, there is a narrow window of Ca2+ dysregulation in which abnormalities in Ca2+ regulatory proteins can lead to disease, rather than apoptosis. Key proteins in the regulation of muscle Ca2+ are the voltage-dependent, dihydropyridine-sensitive, L-type Ca2+ channels located in the transverse tubule and Ca2+ release channels in the junctional terminal cisternae of the sarcoplasmic reticulum. Abnormalities in these proteins play a key role in malignant hyperthermia (MH), a toxic response to anesthetics, and in central core disease (CCD), a muscle myopathy. Sarco(endo)plasmic reticulum Ca2+ ATPases (SERCAs) return sarcoplasmic Ca2+ to the lumen of the sarcoplasmic reticulum. Loss of SERCA1a Ca2+ pump function is one cause of exercise-induced impairment of the relaxation of skeletal muscle, in Brody disease. Phospholamban expressed in cardiac muscle and sarcolipin expressed in skeletal muscle regulate SERCA activity. Studies with knockout and transgenic mice show that gain of inhibitory function of phospholamban alters cardiac contractility and could be a causal feature in some cardiomyopathies. Calsequestrin, calreticulin, and a series of other acidic, lumenal, Ca2+ binding proteins provide a buffer for Ca2+ stored in the sarcoplasmic reticulum. Overexpression of cardiac calsequestrin leads to cardiomyopathy and ablation of calreticulin alters cardiac development.
Collapse
Affiliation(s)
- D H MacLennan
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada.
| |
Collapse
|
112
|
Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H. Abnormal intracellular ca(2+)homeostasis and disease. Cell Calcium 2000; 28:1-21. [PMID: 10942700 DOI: 10.1054/ceca.2000.0131] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A whole range of cell functions are regulated by the free cytosolic Ca(2+)concentration. Activator Ca(2+)from the extracellular space enters the cell through various types of Ca(2+)channels and sometimes the Na(+)/Ca(2+)-exchanger, and is actively extruded from the cell by Ca(2+)pumps and Na(+)/Ca(2+)-exchangers. Activator Ca(2+)can also be released from internal Ca(2+)stores through inositol trisphosphate or ryanodine receptors and is taken up into these organelles by means of Ca(2+)pumps. The resulting Ca(2+)signal is highly organized in space, frequency and amplitude because the localization and the integrated free cytosolic Ca(2+)concentration over time contain specific information. Mutations or functional abnormalities in the various Ca(2+)transporters, which in vitro seem to induce trivial functional alterations, therefore, often lead to a plethora of diseases. Skeletal-muscle pathology can be caused by mutations in ryanodine receptors (malignant hyperthermia, porcine stress syndrome, central-core disease), dihydropyridine receptors (familial hypokalemic periodic paralysis, malignant hyperthermia, muscular dysgenesis) or Ca(2+)pumps (Brody disease). Ca(2+)-pump mutations in cutaneous epidermal keratinocytes and cochlear hair cells lead to, skin diseases (Darier and Hailey-Hailey) and hearing/vestibular problems respectively. Mutated Ca(2+)channels in the photoreceptor plasma membrane cause vision problems. Hemiplegic migraine, spinocerebellar ataxia type-6, one form of episodic ataxia and some forms of epilepsy can be due to mutations in plasma-membrane Ca(2+)channels, while antibodies against these channels play a pathogenic role in all patients with the Lambert-Eaton myasthenic syndrome and may be of significance in sporadic amyotrophic lateral sclerosis. Brain inositol trisphosphate receptors have been hypothesized to contribute to the pathology in opisthotonos mice, manic-depressive illness and perhaps Alzheimer's disease. Various abnormalities in Ca(2+)-handling proteins have been described in heart during aging, hypertrophy, heart failure and during treatment with immunosuppressive drugs and in diabetes mellitus. In some instances, disease-causing mutations or abnormalities provide us with new insights into the cell biology of the various Ca(2+)transporters.
Collapse
Affiliation(s)
- L Missiaen
- Laboratory of Physiology, K.U.Leuven Campus Gasthuisberg O/N, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that manifests in response to anesthetic triggering agents. Central core disease (CCD) is a myopathy closely associated with MH. Both MH and CCD are primarily disorders of calcium regulation in skeletal muscle. The ryanodine receptor (RYR1) gene encodes the key channel which mediates calcium release in skeletal muscle during excitation-contraction coupling, and mutations in this gene are considered to account for susceptibility to MH (MHS) in more than 50% of cases and in the majority of CCD cases. To date, 22 missense mutations in the 15,117 bp coding region of the RYR1 cDNA have been found to segregate with the MHS trait, while a much smaller number of these mutations is associated with CCD. The majority of RYR1 mutations appear to be clustered in the N-terminal amino acid residues 35-614 (MH/CCD region 1) and the centrally located residues 2163-2458 (MH/CCD region 2). The only mutation identified outside of these regions to date is a single mutation associated with a severe form of CCD in the highly conserved C-terminus of the gene. All of the RYR1 mutations result in amino acid substitutions in the myoplasmic portion of the protein, with the exception of the mutation in the C-terminus, which resides in the lumenal/transmembrane region. Functional analysis shows that MHS and CCD mutations produce RYR1 abnormalities that alter the channel kinetics for calcium inactivation and make the channel hyper- and hyposensitive to activating and inactivating ligands, respectively. The likely deciding factors in determining whether a particular RYR1 mutation results in MHS alone or MHS and CCD are: sensitivity of the RYR1 mutant proteins to agonists; the level of abnormal channel-gating caused by the mutation; the consequential decrease in the size of the releasable calcium store and increase in resting concentration of calcium; and the level of compensation achieved by the muscle with respect to maintaining calcium homeostasis. From a diagnostic point of view, the ultimate goal of development of a simple non-invasive test for routine diagnosis of MHS remains elusive. Attainment of this goal will require further detailed molecular genetic investigations aimed at solving heterogeneity and discordance issues in MHS; new initiatives aimed at identifying modulating factors that influence the penetrance of clinical MH in MHS individuals; and detailed studies aimed at describing the full epidemiological picture of in vitro responses of muscle to agents used in diagnosis of MH susceptibility.
Collapse
Affiliation(s)
- T V McCarthy
- Department of Biochemistry, University College, Cork, Ireland.
| | | | | |
Collapse
|
114
|
Shrager JB, Desjardins PR, Burkman JM, Konig SK, Stewart SK, Su L, Shah MC, Bricklin E, Tewari M, Hoffman R, Rickels MR, Jullian EH, Rubinstein NA, Stedman HH. Human skeletal myosin heavy chain genes are tightly linked in the order embryonic-IIa-IId/x-ILb-perinatal-extraocular. J Muscle Res Cell Motil 2000; 21:345-55. [PMID: 11032345 DOI: 10.1023/a:1005635030494] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myosin heavy chain (MyHC) is the major contractile protein of muscle. We report the first complete cosmid cloning and definitive physical map of the tandemly linked human skeletal MyHC genes at 17p13.1. The map provides new information on the order, size, and relative spacing of the genes. and it resolves uncertainties about the two fastest twitch isoforms. The physical order of the genes is demonstrated to contrast with the temporal order of their developmental expression. Furthermore, nucleotide sequence comparisons allow an approximation of the relative timing of five ancestral duplications that created distinct genes for the six isoforms. A firm foundation is provided for molecular analysis in patients with suspected primary skeletal myosinopathies and for detailed modelling of the hypervariable surface loops which dictate myosin's kinetic properties.
Collapse
Affiliation(s)
- J B Shrager
- Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Du GG, Khanna VK, MacLennan DH. Mutation of divergent region 1 alters caffeine and Ca(2+) sensitivity of the skeletal muscle Ca(2+) release channel (ryanodine receptor). J Biol Chem 2000; 275:11778-83. [PMID: 10766801 DOI: 10.1074/jbc.275.16.11778] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replacement of amino acids 4187-4628 in the skeletal muscle Ca(2+) release channel (skeletal ryanodine receptor (RyR1)), including nearly all of divergent region 1 (amino acids 4254-4631), with the corresponding cardiac ryanodine receptor (RyR2) sequence leads to increased sensitivity of channel activation by caffeine and Ca(2+) and to decreased sensitivity of channel inactivation by elevated Ca(2+) (Du, G. G., and MacLennan, D. H. (1999) J. Biol. Chem. 274, 26120-26126). In further investigations, this region was subdivided by the construction of new chimeras, and alterations in channel function were detected by measurement of the caffeine dependence of in vivo Ca(2+) release and the Ca(2+) dependence of [(3)H]ryanodine binding. Chimera RF10a (amino acids 4187-4381) had a lower EC(50) value for activation by caffeine, and RF10c (4557-4628) had a higher EC(50) value, whereas the EC(50) value for chimera RF10b (4382-4556) was unchanged. Chimeras RF10b and RF10c were more sensitive to activation by Ca(2+), whereas RF10a was less sensitive to inactivation by Ca(2+), implicating RF10b and RF10c in Ca(2+) activation and RF10a in Ca(2+) inactivation. Deletion of much of divergent region 1 sequence to create mutant Delta4274-4535 led to higher caffeine and Ca(2+) sensitivity of channel activation and to lower Ca(2+) sensitivity for inactivation. Thus, deletion results demonstrate that caffeine, Ca(2+), and ryanodine binding sites are not located in amino acids 4274-4535. Nevertheless, the properties of the deletion and chimeric mutants demonstrate that amino acids 4274-4535 and three shorter sequences in this region (F10a, amino acids 4187-4381; F10b, 4382-4556; and F10c, 4557-4628) in RyR1 modulate Ca(2+) and caffeine sensitivity of the Ca(2+) release channel.
Collapse
Affiliation(s)
- G G Du
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | |
Collapse
|
116
|
Belia S, Vecchiet J, Vecchiet L, Fanó G. Modifications of Ca2+ transport induced by glutathione in sarcoplasmic reticulum membranes of frog skeletal muscle. J Muscle Res Cell Motil 2000; 21:279-83. [PMID: 10952175 DOI: 10.1023/a:1005689205862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Ca2+ transport across the membrane of vesicles purified from the sarcoplasmic reticulum (SR) of frog skeletal muscle is modified by raising the concentration of the reduced form of glutathione (GSH). Passive release of Ca2+ is inhibited through the direct action of GSH on ryanodine receptors while active uptake is increased by a dose-dependent stimulation of Ca2+ pumps (Ca2+ -ATPase). These effects are physiological since the concentrations of GSH utilised (0.01-10.0 mM) are compatible with the in vivo concentration of this antioxidant. They are independent of the external Ca2+ concentration and are specific for the reduced form of glutathione, since the disulphide form (GSSG) or other GSH-derivatives do not induce these effects.
Collapse
Affiliation(s)
- S Belia
- Laboratorio Interuniversitario di Miologia, Università di Perugia, Chieti, Ital
| | | | | | | |
Collapse
|
117
|
Ward TL, Valberg SJ, Gallant EM, Mickelson JR. Calcium regulation by skeletal muscle membranes of horses with recurrent exertional rhabdomyolysis. Am J Vet Res 2000; 61:242-7. [PMID: 10714513 DOI: 10.2460/ajvr.2000.61.242] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether an alteration in calcium regulation by skeletal muscle sarcoplasmic reticulum, similar to known defects that cause malignant hyperthermia (MH), could be identified in membrane vesicles isolated from the muscles of Thoroughbreds with recurrent exertional rhabdomyolysis (RER). SAMPLE POPULATION Muscle biopsy specimens from 6 Thoroughbreds with RER and 6 healthy (control) horses. PROCEDURES RER was diagnosed on the basis of a history of > 3 episodes of exertional rhabdomyolysis confirmed by increases in serum creatine kinase (CK) activity. Skeletal muscle membrane vesicles, prepared by differential centrifugation of muscle tissue homogenates obtained from the horses, were characterized for sarcoplasmic reticulum (SR) activities, including the Ca2+ release rate for the ryanodine receptor-Ca2+ release channel, [3H]ryanodine binding activities, and rate of SR Ca2+-ATPase activity and its activation by Ca2+. RESULTS Time course of SR Ca2+-induced Ca2+ release and [3H]ryanodine binding to the ryanodine receptor after incubation with varying concentrations of ryanodine, caffeine, and ionized calcium did not differ between muscle membranes obtained from control and RER horses. Furthermore, the maximal rate of SR Ca2+-ATPase activity and its affinity for Ca2+ did not differ between muscle membranes from control horses and horses with RER. CONCLUSIONS AND CLINICAL RELEVANCE Despite clinical and physiologic similarities between RER and MH, we concluded that RER in Thoroughbreds does not resemble the SR ryanodine receptor defect responsible for MH and may represent a novel defect in muscle excitation-contraction coupling, calcium regulation, or contractility.
Collapse
Affiliation(s)
- T L Ward
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Minnesota, St. Paul 55108, USA
| | | | | | | |
Collapse
|
118
|
Abstract
Calcium is an important intracellular signaling molecule, and altered calcium channel function can cause widespread cellular changes. Genetic mutations in calcium channels that cause what appear to be trivial alterations of calcium currents in vitro can result in serious diseases in muscles and the nervous system. This article reviews calcium channelopathies in humans and mice.
Collapse
Affiliation(s)
- N M Lorenzon
- Department of Anatomy & Neurobiology, Colorado State University, Fort Collins, USA
| | | |
Collapse
|
119
|
Baur CP, Bellon L, Felleiter P, Fiege M, Fricker R, Glahn K, Heffron JJ, Herrmann-Frank A, Jurkat-Rott K, Klingler W, Lehane M, Ording H, Tegazzin V, Wappler F, Georgieff M, Lehmann-Horn F. A multicenter study of 4-chloro-m-cresol for diagnosing malignant hyperthermia susceptibility. Anesth Analg 2000; 90:200-5. [PMID: 10625004 DOI: 10.1097/00000539-200001000-00040] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Standardization of the in vitro contracture test (IVCT) for malignant hyperthermia (MH) susceptibility has resulted in very rare false negative tests. However, false positive results stigmatizing the patient seem to be more frequent than false negative results and make supplementary tests desirable. This multicenter approach studied the usefulness of an IVCT with 4-chloro-m-cresol (4-CmC), a ryanodine receptor-specific agonist for a better definition of MH susceptibility. Diagnosis made by the standard IVCT was compared with the results of this 4-CmC test on muscle specimens of 202 individuals from 6 European MH centers. In the 4-CmC test, the results of the MH susceptible group differed significantly from both the MH normal and the MH equivocal group. 4-CmC revealed a qualitatively dose response-curve similar to caffeine. A correlation index of r = 0.79 for the concentration thresholds underlined the strong concordance of the caffeine and the 4-CmC effects. The optimal threshold concentration was determined to be 75 microM in the pooled data of all centers and is much lower than that of caffeine (2 mM), suggesting a more than 25-fold higher affinity of 4-CmC. The predictive value of 4-CmC is as high as that of caffeine and consequently higher than that of halothane. 4-CmC seems to be a suitable drug to refine diagnosis of MH susceptibility and could be used as an additional test substance. IMPLICATIONS Although in vitro contracture testing for malignant hyperthermia diagnosis is well standardized, with a relatively high sensitivity and specificity, false test results cannot be excluded and may be associated with serious disabilities for the concerned individuals. In this multicenter study, 4-chloro-m-cresol was evaluated as a new test substance for the in vitro contracture testing. Its use improves the accuracy of in vitro diagnosis of malignant hyperthermia susceptibility.
Collapse
Affiliation(s)
- C P Baur
- Department of Anesthesiology, University of Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Malignant hyperthermia (MH) is a potentially life-threatening event in response to anesthetic triggering agents, with symptoms of sustained uncontrolled skeletal muscle calcium homeostasis resulting in organ and systemic failure. Susceptibility to MH, an autosomal dominant trait, may be associated with congenital myopathies, but in the majority of the cases, no clinical signs of disease are visible outside of anesthesia. For diagnosis, a functional test on skeletal muscle biopsy, the in vitro contracture test (IVCT), is performed. Over 50% of the families show linkage of the IVCT phenotype to the gene encoding the skeletal muscle ryanodine receptor and over 20 mutations therein have been described. At least five other loci have been defined implicating greater genetic heterogeneity than previously assumed, but so far only one further gene encoding the main subunit of the voltage-gated dihydropyridine receptor has a confirmed role in MH. As a result of extensive research on the mechanisms of excitation-contraction coupling and recent functional characterization of several disease-causing mutations in heterologous expression systems, much is known today about the molecular etiology of MH.
Collapse
Affiliation(s)
- K Jurkat-Rott
- Department of Applied Physiology, University of Ulm, D-89081 Ulm, Germany
| | | | | |
Collapse
|
121
|
Tuvia S, Buhusi M, Davis L, Reedy M, Bennett V. Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+ homeostasis proteins. J Cell Biol 1999; 147:995-1008. [PMID: 10579720 PMCID: PMC2169334 DOI: 10.1083/jcb.147.5.995] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This report describes a congenital myopathy and major loss of thymic lymphocytes in ankyrin-B (-/-) mice as well as dramatic alterations in intracellular localization of key components of the Ca(2+) homeostasis machinery in ankyrin-B (-/-) striated muscle and thymus. The sarcoplasmic reticulum (SR) and SR/T-tubule junctions are apparently preserved in a normal distribution in ankyrin-B (-/-) skeletal muscle based on electron microscopy and the presence of a normal pattern of triadin and dihydropyridine receptor. Therefore, the abnormal localization of SR/ER Ca ATPase (SERCA) and ryanodine receptors represents a defect in intracellular sorting of these proteins in skeletal muscle. Extrapolation of these observations suggests defective targeting as the basis for abnormal localization of ryanodine receptors, IP3 receptors and SERCA in heart, and of IP3 receptors in the thymus of ankyrin-B (-/-) mice. Mis-sorting of SERCA 2 and ryanodine receptor 2 in ankyrin-B (-/-) cardiomyocytes is rescued by expression of 220-kD ankyrin-B, demonstrating that lack of the 220-kD ankyrin-B polypeptide is the primary defect in these cells. Ankyrin-B is associated with intracellular vesicles, but is not colocalized with the bulk of SERCA 1 or ryanodine receptor type 1 in skeletal muscle. These data provide the first evidence of a physiological requirement for ankyrin-B in intracellular targeting of the calcium homeostasis machinery of striated muscle and immune system, and moreover, support a catalytic role that does not involve permanent stoichiometric complexes between ankyrin-B and targeted proteins. Ankyrin-B is a member of a family of adapter proteins implicated in restriction of diverse proteins to specialized plasma membrane domains. Similar mechanisms involving ankyrins may be essential for segregation of functionally defined proteins within specialized regions of the plasma membrane and within the Ca(2+) homeostasis compartment of the ER.
Collapse
Affiliation(s)
- Shmuel Tuvia
- Howard Hughes Medical Institute and Departments of Cell Biology and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Mona Buhusi
- Howard Hughes Medical Institute and Departments of Cell Biology and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Lydia Davis
- Howard Hughes Medical Institute and Departments of Cell Biology and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Mary Reedy
- Howard Hughes Medical Institute and Departments of Cell Biology and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Vann Bennett
- Howard Hughes Medical Institute and Departments of Cell Biology and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
122
|
Abstract
By the introduction of technological advancement in methods of structural analysis, electronics, and recombinant DNA techniques, research in physiology has become molecular. Additionally, focus of interest has been moving away from classical physiology to become increasingly centered on mechanisms of disease. A wonderful example for this development, as evident by this review, is the field of ion channel research which would not be nearly as advanced had it not been for human diseases to clarify. It is for this reason that structure-function relationships and ion channel electrophysiology cannot be separated from the genetic and clinical description of ion channelopathies. Unique among reviews of this topic is that all known human hereditary diseases of voltage-gated ion channels are described covering various fields of medicine such as neurology (nocturnal frontal lobe epilepsy, benign neonatal convulsions, episodic ataxia, hemiplegic migraine, deafness, stationary night blindness), nephrology (X-linked recessive nephrolithiasis, Bartter), myology (hypokalemic and hyperkalemic periodic paralysis, myotonia congenita, paramyotonia, malignant hyperthermia), cardiology (LQT syndrome), and interesting parallels in mechanisms of disease emphasized. Likewise, all types of voltage-gated ion channels for cations (sodium, calcium, and potassium channels) and anions (chloride channels) are described together with all knowledge about pharmacology, structure, expression, isoforms, and encoding genes.
Collapse
Affiliation(s)
- F Lehmann-Horn
- Department of Applied Physiology, University of Ulm, Ulm, Germany.
| | | |
Collapse
|
123
|
Start RD, Cross SS. Acp. Best practice no 155. Pathological investigation of deaths following surgery, anaesthesia, and medical procedures. J Clin Pathol 1999; 52:640-52. [PMID: 10655984 PMCID: PMC501538 DOI: 10.1136/jcp.52.9.640] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The pathological investigation of deaths following surgery, anaesthesia, and medical procedures is discussed. The definition of "postoperative death" is examined and the classification of deaths following procedures detailed. The review of individual cases is described and the overall approach to necropsy and interpretation considered. There are specific sections dealing with the cardiovascular system (including air embolism, perioperative myocardial infarction, cardiac pacemakers, central venous catheters, cardiac surgery, heart valve replacement, angioplasty, and vascular surgery); respiratory system (postoperative pneumonia, pulmonary embolism, pneumothorax); central nervous system (dissection of cervical spinal cord), hepatobiliary and gastrointestinal system; musculoskeletal system; and head and neck region. Deaths associated with anaesthesia are classified and the specific problems of epidural anaesthesia and malignant hyperthermia discussed. The article concludes with a section on the recording of necropsy findings and their communication to clinicians and medicolegal authorities.
Collapse
Affiliation(s)
- R D Start
- Department of Histopathology, Chesterfield and North Derbyshire Royal Hospital NHS Trust, Calow, UK
| | | |
Collapse
|
124
|
Lynch PJ, Tong J, Lehane M, Mallet A, Giblin L, Heffron JJ, Vaughan P, Zafra G, MacLennan DH, McCarthy TV. A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. Proc Natl Acad Sci U S A 1999; 96:4164-9. [PMID: 10097181 PMCID: PMC22438 DOI: 10.1073/pnas.96.7.4164] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Central core disease is a rare, nonprogressive myopathy that is characterized by hypotonia and proximal muscle weakness. In a large Mexican kindred with an unusually severe and highly penetrant form of the disorder, DNA sequencing identified an I4898T mutation in the C-terminal transmembrane/luminal region of the RyR1 protein that constitutes the skeletal muscle ryanodine receptor. All previously reported RYR1 mutations are located either in the cytoplasmic N terminus or in a central cytoplasmic region of the 5,038-aa protein. The I4898T mutation was introduced into a rabbit RYR1 cDNA and expressed in HEK-293 cells. The response of the mutant RyR1 Ca2+ channel to the agonists halothane and caffeine in a Ca2+ photometry assay was completely abolished. Coexpression of normal and mutant RYR1 cDNAs in a 1:1 ratio, however, produced RyR1 channels with normal halothane and caffeine sensitivities, but maximal levels of Ca2+ release were reduced by 67%. [3H]Ryanodine binding indicated that the heterozygous channel is activated by Ca2+ concentrations 4-fold lower than normal. Single-cell analysis of cotransfected cells showed a significantly increased resting cytoplasmic Ca2+ level and a significantly reduced luminal Ca2+ level. These data are indicative of a leaky channel, possibly caused by a reduction in the Ca2+ concentration required for channel activation. Comparison with two other coexpressed mutant/normal channels suggests that the I4898T mutation produces one of the most abnormal RyR1 channels yet investigated, and this level of abnormality is reflected in the severe and penetrant phenotype of affected central core disease individuals.
Collapse
Affiliation(s)
- P J Lynch
- Department of Biochemistry, University College Cork, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Balshaw D, Gao L, Meissner G. Luminal loop of the ryanodine receptor: a pore-forming segment? Proc Natl Acad Sci U S A 1999; 96:3345-7. [PMID: 10097041 PMCID: PMC34272 DOI: 10.1073/pnas.96.7.3345] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
126
|
Tong J, McCarthy TV, MacLennan DH. Measurement of resting cytosolic Ca2+ concentrations and Ca2+ store size in HEK-293 cells transfected with malignant hyperthermia or central core disease mutant Ca2+ release channels. J Biol Chem 1999; 274:693-702. [PMID: 9873004 DOI: 10.1074/jbc.274.2.693] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malignant hyperthermia (MH) and central core disease (CCD) mutations were introduced into full-length rabbit Ca2+ release channel (RYR1) cDNA, which was then expressed transiently in HEK-293 cells. Resting Ca2+ concentrations were higher in HEK-293 cells expressing homotetrameric CCD mutant RyR1 than in cells expressing homotetrameric MH mutant RyR1. Cells expressing homotetrameric CCD or MH mutant RyR1 exhibited lower maximal peak amplitudes of caffeine-induced Ca2+ release than cells expressing wild type RyR1, suggesting that MH and CCD mutants might be "leaky." In cells expressing homotetrameric wild type or mutant RyR1, the amplitude of 10 mM caffeine-induced Ca2+ release was correlated significantly with the amplitude of carbachol- or thapsigargin-induced Ca2+ release, indicating that maximal drug-induced Ca2+ release depends on the size of the endoplasmic reticulum Ca2+ store. The content of endogenous sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2b (SERCA2b), measured by enzyme-linked immunosorbent assay, 45Ca2+ uptake, and confocal microscopy, was increased in HEK-293 cells expressing wild type or mutant RyR1, supporting the view that endoplasmic reticulum Ca2+ storage capacity is increased as a compensatory response to an enhanced Ca2+ leak. When heterotetrameric (1:1) combinations of MH/CCD mutant and wild type RyR1 were expressed together with SERCA1 to enhance Ca2+ reuptake, the amplitude of Ca2+ release in response to low concentrations of caffeine and halothane was higher than that observed in cells expressing wild type RyR1 and SERCA1. In Ca2+-free medium, MH/CCD mutants were more sensitive to caffeine than wild type RyR1, indicating that caffeine hypersensitivity observed with a variety of MH/CCD mutant RyR1 proteins is not dependent on extracellular Ca2+ concentration.
Collapse
Affiliation(s)
- J Tong
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | |
Collapse
|
127
|
Du GG, MacLennan DH. Functional consequences of mutations of conserved, polar amino acids in transmembrane sequences of the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem 1998; 273:31867-72. [PMID: 9822655 DOI: 10.1074/jbc.273.48.31867] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The potential role in Ca2+ release channel function of highly conserved, polar, and small amino acids in predicted transmembrane sequences in the rabbit skeletal muscle ryanodine receptor (RyR1) was investigated through mutagenesis. Acidic amino acids Asp3987, Glu4032, Asp4815, Asp4917, Asp4938, and Asp4969 and amidated residues Asn4034, Asn4037, Asn4574, Asn4805, Asn4806, and Gln4933, and Gly4033 were mutated to Ala, and Ala3988 was mutated to Val. When expressed in HEK-293 cells and challenged with either caffeine or 4-chloro-m-cresol, mutants E4032A, N4806A, D4815A, and D4917A did not respond, indicating that Ca2+ release channel function was impaired. None of these mutants exhibited specific binding of [3H]ryanodine. Mutants N4805A and Q4933A showed a diminished response to both caffeine and 4-chloro-m-cresol, but [3H]ryanodine binding was not altered. Other mutant responses and the responses of mutants E4032D, N4806Q or D, D4815N or E, and D4938N or E were unaltered when compared with RyR1. However, mutants E4032Q, D4917N or E, and Q4933N or E displayed neither caffeine nor 4-chloro-m-cresol response nor [3H]ryanodine binding. Sedimentation assays indicated that the nonfunctional mutants did contain tetrameric complexes, implying that defects in the assembly of a functional channel did not occur with specific mutations in transmembrane sequences. These results support the view that amino acids Glu4032 (M2), Asn4806 (M7), Asp4815 (M7), Asp4917 (M10), and Gln4933 (M10) are involved in channel function and regulation.
Collapse
Affiliation(s)
- G G Du
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6 Canada
| | | |
Collapse
|
128
|
Leong P, MacLennan DH. The cytoplasmic loops between domains II and III and domains III and IV in the skeletal muscle dihydropyridine receptor bind to a contiguous site in the skeletal muscle ryanodine receptor. J Biol Chem 1998; 273:29958-64. [PMID: 9792715 DOI: 10.1074/jbc.273.45.29958] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excitation-contraction coupling in skeletal muscle is a result of the interaction between the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (ryanodine receptor or RyR1) and the skeletal muscle L-type Ca2+ channel (dihydropyridine receptor or DHPR). Interactions between RyR1 and DHPR are critical for the depolarization-induced activation of Ca2+ release from the sarcoplasmic reticulum, enhancement of DHPR Ca2+ channel activity, and repolarization-induced inactivation of RyR1. The DHPR III-IV loop was fused to glutathione S-transferase (GST) or His-peptide and used as a protein affinity column for 35S-labeled, in vitro translated fragments from the N-terminal three-fourths of RyR1. RyR1 residues Leu922-Asp1112 bound specifically to the DHPR III-IV loop column, but the corresponding fragment from the cardiac ryanodine receptor (RyR2) did not. Construction of chimeras between RyR1 and RyR2 showed that amino acids Lys954-Asp1112 retained full binding activity, whereas Leu922-Phe1075 had no binding activity. The RyR1 sequence Arg1076-Asp1112, previously shown to interact with the DHPR II-III loop (Leong, P., and MacLennan, D., H. (1998) J. Biol. Chem. 273, 7791-7794), bound to DHPR III-IV loop columns, but with only half the efficiency of binding of the longer RyR1 sequence, Lys954-Asp1112. These data suggest that the site of DHPR III-IV loop interaction contains elements from both the Lys954-Phe1075 and Arg1076-Asp1112 fragments. The presence of 4 +/- 0.4 microM GST-DHPR II-III or 5 +/- 0.1 microM His-peptide-DHPR III-IV was required for half-maximal co-purification of 35S-labeled RyR1 Leu922-Asp1112 on glutathione-Sepharose or Ni2+-nitrilotriacetic acid. Dose-dependent inhibition of 35S-labeled RyR1 Leu922-Asp1112 binding to GST-DHPR II-III and GST-DHPR III-IV by His10-DHPR II-III and His-peptide-DHPR III-IV was observed. These studies indicate that the DHPR II-III and III-IV loops bind to contiguous and possibly overlapping sites on RyR1 between Lys 954 and Asp1112.
Collapse
Affiliation(s)
- P Leong
- Banting and Best Department of Medical Research, University of Toronto, Charles H. Best Institute, Toronto, Ontario M5G 1L6 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
129
|
Abstract
A specific inherited muscle membrane disorder predisposes to a variety of clinical problems. The most common is malignant hyperthermia (MH), a dangerous hypermetabolic state after anaesthesia with suxamethonium and/or volatile halogenated anaesthetic agents. MH may also be triggered in susceptible individuals by severe exercise in hot conditions, infections, neuroleptic drugs, and overheating in infants. Inbred pigs have provided a helpful model, and experiments on these animals and in MH-susceptible patients have shown that the essential biochemical abnormality is an increase in calcium ions in the muscle cells. This knowledge has led to a specific muscle test to identify susceptibility to MH and to a specific treatment, dantrolene; and as a result the case-fatality rate in MH has fallen from 70% in the 1970s to 5% today. In pigs susceptibility to MH is caused by a single mutation in the ryanodine receptor (RYR) in skeletal muscle. In man the genetics is more complex and three clinical myopathies that predispose to MH have been defined. By far the most common is inherited as a mendelian dominant characteristic and at present mutations in the human RYR account for no more than 20% of susceptible families.
Collapse
Affiliation(s)
- M Denborough
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra ACT.
| |
Collapse
|