101
|
|
102
|
Weatherman S, Feldmann H, de Wit E. Transmission of henipaviruses. Curr Opin Virol 2017; 28:7-11. [PMID: 29035743 DOI: 10.1016/j.coviro.2017.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
Abstract
The genus Henipavirus has expanded rapidly in geographic range, number of species, and host range. Hendra and Nipah virus are two henipaviruses known to cause severe disease in humans with a high case-fatality rate. Pteropid spp. bats are the natural reservoir of Hendra and Nipah virus. From these bats, virus can be transmitted to an amplifying host, horses and pigs, and from these hosts to humans, or the virus can be transmitted directly to humans. Although the main route of shedding varies between host species, close contact is required for transmission in all hosts. Understanding the transmission routes of Hendra and Nipah virus in their respective hosts is essential for devising strategies to block zoonotic transmission.
Collapse
Affiliation(s)
- Sarah Weatherman
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| |
Collapse
|
103
|
Escaffre O, Saito TB, Juelich TL, Ikegami T, Smith JK, Perez DD, Atkins C, Levine CB, Huante MB, Nusbaum RJ, Endsley JJ, Freiberg AN, Rockx B. Contribution of Human Lung Parenchyma and Leukocyte Influx to Oxidative Stress and Immune System-Mediated Pathology following Nipah Virus Infection. J Virol 2017; 91:e00275-17. [PMID: 28539439 PMCID: PMC5651721 DOI: 10.1128/jvi.00275-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 12/27/2022] Open
Abstract
Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets.IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Terry L Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - David D Perez
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Corri B Levine
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rebecca J Nusbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Barry Rockx
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
104
|
Cytoplasmic Motifs in the Nipah Virus Fusion Protein Modulate Virus Particle Assembly and Egress. J Virol 2017; 91:JVI.02150-16. [PMID: 28250132 DOI: 10.1128/jvi.02150-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/21/2017] [Indexed: 01/19/2023] Open
Abstract
Nipah virus (NiV), a paramyxovirus in the genus Henipavirus, has a mortality rate in humans of approximately 75%. While several studies have begun our understanding of NiV particle formation, the mechanism of this process remains to be fully elucidated. For many paramyxoviruses, M proteins drive viral assembly and egress; however, some paramyxoviral glycoproteins have been reported as important or essential in budding. For NiV the matrix protein (M), the fusion glycoprotein (F) and, to a much lesser extent, the attachment glycoprotein (G) autonomously induce the formation of virus-like particles (VLPs). However, functional interactions between these proteins during assembly and egress remain to be fully understood. Moreover, if the F-driven formation of VLPs occurs through interactions with host cell machinery, the cytoplasmic tail (CT) of F is a likely interactive domain. Therefore, we analyzed NiV F CT deletion and alanine mutants and report that several but not all regions of the F CT are necessary for efficient VLP formation. Two of these regions contain YXXØ or dityrosine motifs previously shown to interact with cellular machinery involved in F endocytosis and transport. Importantly, our results showed that F-driven, M-driven, and M/F-driven viral particle formation enhanced the recruitment of G into VLPs. By identifying key motifs, specific residues, and functional viral protein interactions important for VLP formation, we improve our understanding of the viral assembly/egress process and point to potential interactions with host cell machinery.IMPORTANCE Henipaviruses can cause deadly infections of medical, veterinary, and agricultural importance. With recent discoveries of new henipa-like viruses, understanding the mechanisms by which these viruses reproduce is paramount. We have focused this study on identifying the functional interactions of three Nipah virus proteins during viral assembly and particularly on the role of one of these proteins, the fusion glycoprotein, in the incorporation of other viral proteins into viral particles. By identifying several regions in the fusion glycoprotein that drive viral assembly, we further our understanding of how these viruses assemble and egress from infected cells. The results presented will likely be useful toward designing treatments targeting this aspect of the viral life cycle and for the production of new viral particle-based vaccines.
Collapse
|
105
|
Maller VV, Bathla G, Moritani T, Helton KJ. Imaging in viral infections of the central nervous system: can images speak for an acutely ill brain? Emerg Radiol 2016; 24:287-300. [DOI: 10.1007/s10140-016-1463-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022]
|
106
|
Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters. PLoS Negl Trop Dis 2016; 10:e0005120. [PMID: 27812087 PMCID: PMC5094696 DOI: 10.1371/journal.pntd.0005120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022] Open
Abstract
Background Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B). Methodology/Principal Findings Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi. Conclusions/Significance Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology. Nipah virus is a highly fatal paramyxovirus that causes respiratory and neurologic disease with widespread vascular damage. Although end stage disease has been characterized in humans and in animal models, the early phase of infection has yet to be described. Thus, it is known where the virus replicates during the final stages of infection, but not how the virus is transported to these end stage tissues or which tissues are targeted first. Using Syrian hamsters that were intranasally inoculated with virus as a model of Nipah virus infection, we show here that Nipah virus initially targets the respiratory tract, specifically the nasal cavity and lung, with virus replication being detected as early as 8 hours after inoculation. During the first 48 hours of infection, the virus slowly penetrates into the underlying tissues of the respiratory tract, but viremia and virus replication in the brain are not detected. In the lung, Nipah virus initially infects epithelial cells lining airways, followed by spread to arterial smooth muscle cells, suggesting that localized spread of the virus within an organ can lead to viral dissemination into the vasculature. Likewise, replication in the olfactory epithelium likely precedes spread of Nipah virus along the olfactory nerve into the brain. Understanding how Nipah virus spreads through the host to cause encephalitis is important for developing effective countermeasures that can target Nipah virus replication and prevent viral dissemination.
Collapse
|
107
|
Abstract
Bats are hosts of a range of viruses, including ebolaviruses, and many important human viral infections, such as measles and mumps, may have their ancestry traced back to bats. Here, I review viruses of all viral families detected in global bat populations. The viral diversity in bats is substantial, and viruses with all known types of genomic structures and replication strategies have been discovered in bats. However, the discovery of viruses is not geographically even, with some apparently undersampled regions, such as South America. Furthermore, some bat families, including those with global or wide distributions such as Emballonuridae and Miniopteridae, are underrepresented on viral databases. Future studies, including those that address these sampling gaps along with those that develop our understanding of viral-host relationships, are highlighted.
Collapse
Affiliation(s)
- David T S Hayman
- Molecular Epidemiology and Public Health Laboratory, Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North 4442, New Zealand;
| |
Collapse
|
108
|
Watkinson RE, Lee B. Nipah virus matrix protein: expert hacker of cellular machines. FEBS Lett 2016; 590:2494-511. [PMID: 27350027 DOI: 10.1002/1873-3468.12272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 06/20/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022]
Abstract
Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly.
Collapse
Affiliation(s)
- Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
109
|
Abstract
The family Paramyxoviridae includes many viruses that significantly affect human and animal health. An essential step in the paramyxovirus life cycle is viral entry into host cells, mediated by virus-cell membrane fusion. Upon viral entry, infection results in expression of the paramyxoviral glycoproteins on the infected cell surface. This can lead to cell-cell fusion (syncytia formation), often linked to pathogenesis. Thus membrane fusion is essential for both viral entry and cell-cell fusion and an attractive target for therapeutic development. While there are important differences between viral-cell and cell-cell membrane fusion, many aspects are conserved. The paramyxoviruses generally utilize two envelope glycoproteins to orchestrate membrane fusion. Here, we discuss the roles of these glycoproteins in distinct steps of the membrane fusion process. These findings can offer insights into evolutionary relationships among Paramyxoviridae genera and offer future targets for prophylactic and therapeutic development.
Collapse
|
110
|
Nipah Virus C and W Proteins Contribute to Respiratory Disease in Ferrets. J Virol 2016; 90:6326-6343. [PMID: 27147733 DOI: 10.1128/jvi.00215-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/21/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Nipah virus (NiV) is a highly lethal paramyxovirus that recently emerged as a causative agent of febrile encephalitis and severe respiratory disease in humans. The ferret model has emerged as the preferred small-animal model with which to study NiV disease, but much is still unknown about the viral determinants of NiV pathogenesis, including the contribution of the C protein in ferrets. Additionally, studies have yet to examine the synergistic effects of the various P gene products on pathogenesis in animal models. Using recombinant NiVs (rNiVs), we examine the sole contribution of the NiV C protein and the combined contributions of the C and W proteins in the ferret model of NiV pathogenesis. We show that an rNiV void of C expression resulted in 100% mortality, though with limited respiratory disease, like our previously reported rNiV void of W expression; this finding is in stark contrast to the attenuated phenotype observed in previous hamster studies utilizing rNiVs void of C expression. We also observed that an rNiV void of both C and W expression resulted in limited respiratory disease; however, there was severe neurological disease leading to 60% mortality, and the surviving ferrets demonstrated sequelae similar to those for human survivors of NiV encephalitis. IMPORTANCE Nipah virus (NiV) is a human pathogen capable of causing lethal respiratory and neurological disease. Many human survivors have long-lasting neurological impairment. Using a ferret model, this study demonstrated the roles of the NiV C and W proteins in pathogenesis, where lack of either the C or the W protein independently decreased the severity of clinical respiratory disease but did not decrease lethality. Abolishing both C and W expression, however, dramatically decreased the severity of respiratory disease and the level of destruction of splenic germinal centers. These ferrets still suffered severe neurological disease: 60% succumbed to disease, and the survivors experienced long-term neurological impairment, such as that seen in human survivors. This new ferret NiV C and W knockout model may allow, for the first time, the examination of interventions to prevent or mitigate the neurological damage and sequelae experienced by human survivors.
Collapse
|
111
|
Clayton BA, Middleton D, Arkinstall R, Frazer L, Wang LF, Marsh GA. The Nature of Exposure Drives Transmission of Nipah Viruses from Malaysia and Bangladesh in Ferrets. PLoS Negl Trop Dis 2016; 10:e0004775. [PMID: 27341030 PMCID: PMC4920392 DOI: 10.1371/journal.pntd.0004775] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/24/2016] [Indexed: 12/27/2022] Open
Abstract
Person-to-person transmission is a key feature of human Nipah virus outbreaks in Bangladesh. In contrast, in an outbreak of Nipah virus in Malaysia, people acquired infections from pigs. It is not known whether this important epidemiological difference is driven primarily by differences between NiV Bangladesh (NiV-BD) and Malaysia (NiV-MY) at a virus level, or by environmental or host factors. In a time course study, ferrets were oronasally exposed to equivalent doses of NiV-BD or NiV-MY. More rapid onset of productive infection and higher levels of virus replication in respiratory tract tissues were seen for NiV-BD compared to NiV-MY, corroborating our previous report of increased oral shedding of NiV-BD in ferrets and suggesting a contributory mechanism for increased NiV-BD transmission between people compared to NiV-MY. However, we recognize that transmission occurs within a social and environmental framework that may have an important and differentiating role in NiV transmission rates. With this in mind, ferret-to-ferret transmission of NiV-BD and NiV-MY was assessed under differing viral exposure conditions. Transmission was not identified for either virus when naïve ferrets were cohoused with experimentally-infected animals. In contrast, all naïve ferrets developed acute infection following assisted and direct exposure to oronasal fluid from animals that were shedding either NiV-BD or NiV-MY. Our findings for ferrets indicate that, although NiV-BD may be shed at higher levels than NiV-MY, transmission risk may be equivalently low under exposure conditions provided by cohabitation alone. In contrast, active transfer of infected bodily fluids consistently results in transmission, regardless of the virus strain. These observations suggest that the risk of NiV transmission is underpinned by social and environmental factors, and will have practical implications for managing transmission risk during outbreaks of human disease.
Collapse
Affiliation(s)
- Bronwyn A. Clayton
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Deborah Middleton
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Rachel Arkinstall
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Leah Frazer
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Lin-Fa Wang
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
- Program in Emerging Infectious Disease, Duke–National University of Singapore Graduate Medical School, Singapore
| | - Glenn A. Marsh
- Health and Biosecurity, Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
- * E-mail:
| |
Collapse
|
112
|
Broder CC, Weir DL, Reid PA. Hendra virus and Nipah virus animal vaccines. Vaccine 2016; 34:3525-34. [PMID: 27154393 DOI: 10.1016/j.vaccine.2016.03.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/30/2015] [Accepted: 03/11/2016] [Indexed: 01/07/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are zoonotic viruses that emerged in the mid to late 1990s causing disease outbreaks in livestock and people. HeV appeared in Queensland, Australia in 1994 causing a severe respiratory disease in horses along with a human case fatality. NiV emerged a few years later in Malaysia and Singapore in 1998-1999 causing a large outbreak of encephalitis with high mortality in people and also respiratory disease in pigs which served as amplifying hosts. The key pathological elements of HeV and NiV infection in several species of mammals, and also in people, are a severe systemic and often fatal neurologic and/or respiratory disease. In people, both HeV and NiV are also capable of causing relapsed encephalitis following recovery from an acute infection. The known reservoir hosts of HeV and NiV are several species of pteropid fruit bats. Spillovers of HeV into horses continue to occur in Australia and NiV has caused outbreaks in people in Bangladesh and India nearly annually since 2001, making HeV and NiV important transboundary biological threats. NiV in particular possesses several features that underscore its potential as a pandemic threat, including its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals, along with a capacity of limited human-to-human transmission. Several HeV and NiV animal challenge models have been developed which have facilitated an understanding of pathogenesis and allowed for the successful development of both active and passive immunization countermeasures.
Collapse
Affiliation(s)
- Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, United States.
| | - Dawn L Weir
- Navy Environmental and Preventive Medicine Unit Six, Joint Base Pearl Harbor Hickam, HI, 96860, United States
| | - Peter A Reid
- Equine Veterinary Surgeon, Brisbane, Queensland, 4034, Australia
| |
Collapse
|
113
|
Satterfield BA, Geisbert TW, Mire CE. Inhibition of the host antiviral response by Nipah virus: current understanding and future perspectives. Future Virol 2016. [DOI: 10.2217/fvl-2016-0027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nipah virus (NiV) is a lethal paramyxovirus that has recently emerged as a human pathogen capable of causing acute respiratory disease and encephalitis. Like many viral pathogens, NiV has developed multiple means of antagonizing the host antiviral response. The viral proteins responsible for this antiviral inhibition are encoded in the NiV P gene and include the P, V, W and C proteins, which contain various unique and overlapping roles. This review examines the current data on inhibition of the host antiviral response for each of these proteins gathered from viral protein expression systems, in vitro data using recombinant NiV mutants and from in vivo studies using recombinant NiV mutants, as well as a future perspective regarding the direction of the field.
Collapse
Affiliation(s)
- Benjamin A Satterfield
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chad E Mire
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
114
|
Sauerhering L, Zickler M, Elvert M, Behner L, Matrosovich T, Erbar S, Matrosovich M, Maisner A. Species-specific and individual differences in Nipah virus replication in porcine and human airway epithelial cells. J Gen Virol 2016; 97:1511-1519. [PMID: 27075405 DOI: 10.1099/jgv.0.000483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Highly pathogenic Nipah virus (NiV) causes symptomatic infections in pigs and humans. The severity of respiratory symptoms is much more pronounced in pigs than in humans, suggesting species-specific differences of NiV replication in porcine and human airways. Here, we present a comparative study on productive NiV replication in primary airway epithelial cell cultures of the two species. We reveal that NiV growth substantially differs in primary cells between pigs and humans, with a more rapid spread of infection in human airway epithelia. Increased replication, correlated with higher endogenous expression levels of the main NiV entry receptor ephrin-B2, not only significantly differed between airway cells of the two species but also varied between cells from different human donors. To our knowledge, our study provides the first experimental evidence of species-specific and individual differences in NiV receptor expression and replication kinetics in primary airway epithelial cells. It remains to be determined whether and how these differences contribute to the viral host range and pathogenicity.
Collapse
Affiliation(s)
- Lucie Sauerhering
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Martin Zickler
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Mareike Elvert
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Laura Behner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | | | - Stephanie Erbar
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | | | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
115
|
Escaffre O, Borisevich V, Vergara LA, Wen JW, Long D, Rockx B. Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air-liquid interface. J Gen Virol 2016; 97:1077-1086. [PMID: 26932515 DOI: 10.1099/jgv.0.000441] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nipah virus (NiV) is an emerging paramyxovirus that can cause lethal respiratory illness in humans. No vaccine/therapeutic is currently licensed for humans. Human-to-human transmission was previously reported during outbreaks and NiV could be isolated from respiratory secretions, but the proportion of cases in Malaysia exhibiting respiratory symptoms was significantly lower than that in Bangladesh. Previously, we showed that primary human basal respiratory epithelial cells are susceptible to both NiV-Malaysia (M) and -Bangladesh (B) strains causing robust pro-inflammatory responses. However, the cells of the human respiratory epithelium that NiV targets are unknown and their role in NiV transmission and NiV-related lung pathogenesis is still poorly understood. Here, we characterized NiV infection of the human respiratory epithelium using a model of the human tracheal/bronchial (B-ALI) and small airway (S-ALI) epithelium cultured at an air-liquid interface. We show that NiV-M and NiV-B infect ciliated and secretory cells in B/S-ALI, and that infection of S-ALI, but not B-ALI, results in disruption of the epithelium integrity and host responses recruiting human immune cells. Interestingly, NiV-B replicated more efficiently in B-ALI than did NiV-M. These results suggest that the human tracheal/bronchial epithelium is favourable to NiV replication and shedding, while inducing a limited host response. Our data suggest that the small airways epithelium is prone to inflammation and lesions as well as constituting a point of virus entry into the pulmonary vasculature. The use of relevant models of the human respiratory tract, such as B/S-ALI, is critical for understanding NiV-related lung pathogenesis and identifying the underlying mechanisms allowing human-to-human transmission.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology at University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Department of Pathology at University of Texas Medical Branch, Galveston, TX, USA
| | - Leoncio A Vergara
- Center for Biomedical Engineering at University of Texas Medical Branch, Galveston, TX, USA
| | - Julie W Wen
- Department of Pathology at University of Texas Medical Branch, Galveston, TX, USA
| | - Dan Long
- Rocky Mountain Veterinary Branch, Microscopy Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Barry Rockx
- Department of Rare and Emerging Viral Infections and Response (EID), Centre for Infectious Disease Control (CIb), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Department of Pathology at University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
116
|
Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol 2016; 131:159-184. [PMID: 26659576 PMCID: PMC4713712 DOI: 10.1007/s00401-015-1511-3] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/24/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022]
Abstract
A wide range of viruses from different virus families in different geographical areas, may cause immediate or delayed neuropathological changes and neurological manifestations in humans and animals. Infection by neurotropic viruses as well as the resulting immune response can irreversibly disrupt the complex structural and functional architecture of the central nervous system, frequently leaving the patient or affected animal with a poor or fatal prognosis. Mechanisms that govern neuropathogenesis and immunopathogenesis of viral infections are highlighted, using examples of well-studied virus infections that are associated with these alterations in different populations throughout the world. A better understanding of the molecular, epidemiological and biological characteristics of these infections and in particular of mechanisms that underlie their clinical manifestations may be expected to provide tools for the development of more effective intervention strategies and treatment regimens.
Collapse
|
117
|
Ryan JR. Category C Diseases and Agents. BIOSECURITY AND BIOTERRORISM 2016. [PMCID: PMC7150296 DOI: 10.1016/b978-0-12-802029-6.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This chapter covers Category C diseases and agents. These emerging diseases present a very unique challenge to public health officials and infectious disease specialists. Perhaps they have been with us for millions of years, lurking in a dark corner of the environment, waiting for an opportunity to jump from their natural cycle of transmission to a human host. Or they may represent something totally new. Regardless of their origin, an emerging disease pathogen must be characterized quickly by molecular biologists and microbiologists. The dynamics of disease transmission must be investigated by teams of epidemiologists. Treatment regimens must be formulated by clinicians working on the frontlines of the outbreak. Disease prevention strategies and risk communications must be quickly formulated by public health officials. Finally, media attention for emerging disease outbreaks forces government officials at all levels to address the problem with planning and preparedness activities aimed at preserving the health of the public. Specific examples explored in this chapter include Nipah virus, hantavirus, West Nile fever virus, and the coronaviruses that cause severe acute respiratory syndrome and Middle East respiratory syndrome.
Collapse
|
118
|
Henipaviruses. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153454 DOI: 10.1007/978-3-319-33133-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The first henipaviruses, Hendra virus (HeV), and Nipah virus (NiV) were pathogenic zoonoses that emerged in the mid to late 1990s causing serious disease outbreaks in livestock and humans. HeV was recognized in Australia 1994 in horses exhibiting respiratory disease along with a human case fatality, and then NiV was identified during a large outbreak of human cases of encephalitis with high mortality in Malaysia and Singapore in 1998–1999 along with respiratory disease in pigs which served as amplifying hosts. The recently identified third henipavirus isolate, Cedar virus (CedPV), is not pathogenic in animals susceptible to HeV and NiV disease. Molecular detection of additional henipavirus species has been reported but no additional isolates of virus have been reported. Central pathological features of both HeV and NiV infection in humans and several susceptible animal species is a severe systemic and often fatal neurologic and/or respiratory disease. In people, both viruses can also manifest relapsed encephalitis following recovery from an acute infection, particularly NiV. The recognized natural reservoir hosts of HeV, NiV, and CedPV are pteropid bats, which do not show clinical illness when infected. With spillovers of HeV continuing to occur in Australia and NiV in Bangladesh and India, these henipaviruses continue to be important transboundary biological threats. NiV in particular possesses several features that highlight a pandemic potential, such as its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals along with a capacity of limited human-to-human transmission. Several henipavirus animal challenge models have been developed which has aided in understanding HeV and NiV pathogenesis as well as how they invade the central nervous system, and successful active and passive immunization strategies against HeV and NiV have been reported which target the viral envelope glycoproteins.
Collapse
|
119
|
Ong KC, Wong KT. Henipavirus Encephalitis: Recent Developments and Advances. Brain Pathol 2015; 25:605-13. [PMID: 26276024 PMCID: PMC7161744 DOI: 10.1111/bpa.12278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 06/18/2015] [Indexed: 01/27/2023] Open
Abstract
The genus Henipavirus within the family Paramyxoviridae includes the Hendra virus (HeV) and Nipah virus (NiV) which were discovered in the 1990s in Australia and Malaysia, respectively, after emerging to cause severe and often fatal outbreaks in humans and animals. While HeV is confined to Australia, more recent NiV outbreaks have been reported in Bangladesh, India and the Philippines. The clinical manifestations of both henipaviruses in humans appear similar, with a predominance of an acute encephalitic syndrome. Likewise, the pathological features are similar and characterized by disseminated, multi-organ vasculopathy comprising endothelial infection/ulceration, vasculitis, vasculitis-induced thrombosis/occlusion, parenchymal ischemia/microinfarction, and parenchymal cell infection in the central nervous system (CNS), lung, kidney and other major organs. This unique dual pathogenetic mechanism of vasculitis-induced microinfarction and neuronal infection causes severe tissue damage in the CNS. Both viruses can also cause relapsing encephalitis months and years after the acute infection. Many animal models studied to date have largely confirmed the pathology of henipavirus infection, and provided the means to test new therapeutic agents and vaccines. As the bat is the natural host of henipaviruses and has worldwide distribution, spillover events into human populations are expected to occur in the future.
Collapse
Affiliation(s)
- Kien Chai Ong
- Department of Biomedical ScienceFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Kum Thong Wong
- Department ofPathologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
120
|
Escaffre O, Halliday H, Borisevich V, Casola A, Rockx B. Oxidative stress in Nipah virus-infected human small airway epithelial cells. J Gen Virol 2015; 96:2961-2970. [PMID: 26297489 DOI: 10.1099/jgv.0.000243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nipah virus (NiV) is a zoonotic emerging pathogen that can cause severe and often fatal respiratory disease in humans. The pathogenesis of NiV infection of the human respiratory tract remains unknown. Reactive oxygen species (ROS) produced by airway epithelial cells in response to viral infections contribute to lung injury by inducing inflammation and oxidative stress; however, the role of ROS in NiV-induced respiratory disease is unknown. To investigate whether NiV induces oxidative stress in human respiratory epithelial cells, we used oxidative stress markers and monitored antioxidant gene expression. We also used ROS scavengers to assess their role in immune response modulation. Oxidative stress was confirmed in infected cells and correlated with the reduction in antioxidant enzyme gene expression. Infected cells treated by ROS scavengers resulted in a significant decrease of the (F2)-8-isoprostane marker, inflammatory responses and virus replication. In conclusion, ROS are induced during NiV infection in human respiratory epithelium and contribute to the inflammatory response. Understanding how oxidative stress contributes to NiV pathogenesis is crucial for therapeutic development.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hailey Halliday
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Barry Rockx
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Rare and Emerging Viral Infections and Response, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
121
|
The immunomodulating V and W proteins of Nipah virus determine disease course. Nat Commun 2015; 6:7483. [PMID: 26105519 PMCID: PMC4482017 DOI: 10.1038/ncomms8483] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/13/2015] [Indexed: 01/20/2023] Open
Abstract
The viral determinants that contribute to Nipah virus (NiV)-mediated disease are poorly understood compared with other paramyxoviruses. Here we use recombinant NiVs (rNiVs) to examine the contributions of the NiV V and W proteins to NiV pathogenesis in a ferret model. We show that a V-deficient rNiV is susceptible to the innate immune response in vitro and behaves as a replicating non-lethal virus in vivo. Remarkably, rNiV lacking W expression results in a delayed and altered disease course with decreased respiratory disease and increased terminal neurological disease associated with altered in vitro inflammatory cytokine production. This study confirms the V protein as the major determinant of pathogenesis, also being the first in vivo study to show that the W protein modulates the inflammatory host immune response in a manner that determines the disease course. Nipah virus (NiV) can be transmitted from bats and other animals to humans, causing severe encephalitis and respiratory disease. Here, Satterfield et al. show that the W protein of NiV modulates the host immune response and determines disease course in a ferret model of infection.
Collapse
|
122
|
Abstract
ABSTRACT Within the Paramyxoviridae family, Henipaviruses are the deadliest human pathogens. Nipah and Hendra viruses comprise the genus Henipavirus, zoonotic pathogens which cause encephalitis and respiratory disease in humans with mortality rates that can exceed 70%. Henipaviruses are the only Paramyxoviruses classified as biosafety level 4 pathogens due to their extreme pathogenicity, potential for bioterrorism and lack of available licensed vaccines or therapeutic modalities. Both viruses emerged from their natural reservoir, Asian fruit bats, during the last decade of the 20th century. They caused severe disease and mortality in humans, horses and swine. They also infected a number of other mammalian species. With significant progress in understanding the biology of these deadly pathogens, including the discovery of a Hendra virus vaccine and a potential neutralizing antibody, have we really won the war against the Henipavirus?
Collapse
|
123
|
Detailed analysis of the African green monkey model of Nipah virus disease. PLoS One 2015; 10:e0117817. [PMID: 25706617 PMCID: PMC4338303 DOI: 10.1371/journal.pone.0117817] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/30/2014] [Indexed: 01/15/2023] Open
Abstract
Henipaviruses are implicated in severe and frequently fatal pneumonia and encephalitis in humans. There are no approved vaccines or treatments available for human use, and testing of candidates requires the use of well-characterized animal models that mimic human disease. We performed a comprehensive and statistically-powered evaluation of the African green monkey model to define parameters critical to disease progression and the extent to which they correlate with human disease. African green monkeys were inoculated by the intratracheal route with 2.5 × 10(4) plaque forming units of the Malaysia strain of Nipah virus. Physiological data captured using telemetry implants and assessed in conjunction with clinical pathology were consistent with shock, and histopathology confirmed widespread tissue involvement associated with systemic vasculitis in animals that succumbed to acute disease. In addition, relapse encephalitis was identified in 100% of animals that survived beyond the acute disease phase. Our data suggest that disease progression in the African green monkey is comparable to the variable outcome of Nipah virus infection in humans.
Collapse
|
124
|
de Wit E, Munster VJ. Animal models of disease shed light on Nipah virus pathogenesis and transmission. J Pathol 2015; 235:196-205. [PMID: 25229234 DOI: 10.1002/path.4444] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022]
Abstract
Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans.
Collapse
Affiliation(s)
- Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | | |
Collapse
|
125
|
Abstract
Hendra virus and Nipah virus are closely related, recently emerged zoonotic paramyxoviruses, belonging to the Henipavirus genus. Both viruses induce generalized vasculitis affecting particularly the respiratory tract and CNS. The exceptionally broad species tropism of Henipavirus, the high case fatality rate and person-to-person transmission associated with Nipah virus outbreaks emphasize the necessity of effective antiviral strategies for these intriguing threatening pathogens. Current therapeutic approaches, validated in animal models, target early steps in viral infection; they include the use of neutralizing virus-specific antibodies and blocking membrane fusion with peptides that bind the viral fusion protein. A better understanding of Henipavirus pathogenesis is critical for the further advancement of antiviral treatment, and we summarize here the recent progress in the field.
Collapse
Affiliation(s)
- Cyrille Mathieu
- CIRI, International Center for Infectiology Research, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | | |
Collapse
|
126
|
Sing A. A Review of Hendra Virus and Nipah Virus Infections in Man and Other Animals. ZOONOSES - INFECTIONS AFFECTING HUMANS AND ANIMALS 2015. [PMCID: PMC7120151 DOI: 10.1007/978-94-017-9457-2_40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) emerged in the last decade of the twentieth century. They were the cause of a number of outbreaks of respiratory and neurological disease infecting horses and pigs respectively. Transmission from infected domestic animal species resulted in human infections as well, with high case fatality rates a feature. Today they continue to cause outbreaks of human and animal disease. NiV causes yearly disease outbreaks in humans in Bangladesh, and HeV causes sporadic disease outbreaks in horses in north eastern Australia. Due to their zoonotic nature, they have been ideal candidates for collaborative projects in the One Health space, bringing public health and animal health professionals together. This has lead to insightful epidemiological studies, which has resulted in practical disease prevention solutions including a horse vaccine for HeV and NiV spill-over prevention interventions in the field. As more surveillance is undertaken, their known distributions have expanded, as has the range of reservoir host species. The majority of bat species for which there is evidence of henipavirus infection belong to the group known as the Old World family of fruit and nectar feeding bats (Family Pteropodidae, Suborder Megachiroptera). This review of the bat borne henipaviruses discusses the epidemiology, pathology, transmission and disease symptoms in these closely related viruses which belong to the Genus Henipavirus, Family Paramyxoviridae.
Collapse
Affiliation(s)
- Andreas Sing
- Dept. of Infectiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Bayern Germany
| |
Collapse
|
127
|
Infektionen. NEUROINTENSIV 2015. [PMCID: PMC7175474 DOI: 10.1007/978-3-662-46500-4_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In diesem Kapitel werden zunächst die für die Neurointensivmedizin wesentlichen bakteriellen Infektionen (Meningitis, spinale und Hirnabszesse, Spondylodiszitis, septisch-embolische Herdenzephalitis) abgehandelt, die trotz gezielt eingesetzter Antibiotika und neurochirurgischer Therapieoptionen noch mit einer erheblichen Morbidität und Mortalität behaftet sind. Besonderheiten wie neurovaskuläre Komplikationen, die Tuberkulose des Nervensystems, Neuroborreliose, Neurosyphilis und opportunistische Infektionen bei Immunsuppressionszuständen finden hierbei besondere Berücksichtigung. Der zweite Teil dieses Kapitels behandelt akute und chronische Virusinfektionen des ZNS sowie in einem gesonderten Abschnitt die HIVInfektion und HIV-assoziierte Krankheitsbilder sowie Parasitosen und Pilzinfektionen, die in Industrieländern seit Einführung der HAART bei HIV zwar eher seltener, aber mit zunehmender Globalisierung auch in unseren Breiten immer noch anzutreffen sind.
Collapse
|
128
|
Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering. J Virol 2014; 89:1838-50. [PMID: 25428863 DOI: 10.1128/jvi.02277-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Membrane fusion is essential for paramyxovirus entry into target cells and for the cell-cell fusion (syncytia) that results from many paramyxoviral infections. The concerted efforts of two membrane-integral viral proteins, the attachment (HN, H, or G) and fusion (F) glycoproteins, mediate membrane fusion. The emergent Nipah virus (NiV) is a highly pathogenic and deadly zoonotic paramyxovirus. We recently reported that upon cell receptor ephrinB2 or ephrinB3 binding, at least two conformational changes occur in the NiV-G head, followed by one in the NiV-G stalk, that subsequently result in F triggering and F execution of membrane fusion. However, the domains and residues in NiV-G that trigger F and the specific events that link receptor binding to F triggering are unknown. In the present study, we identified a NiV-G stalk C-terminal region (amino acids 159 to 163) that is important for multiple G functions, including G tetramerization, conformational integrity, G-F interactions, receptor-induced conformational changes in G, and F triggering. On the basis of these results, we propose that this NiV-G region serves as an important structural and functional linker between the NiV-G head and the rest of the stalk and is critical in propagating the F-triggering signal via specific conformational changes that open a concealed F-triggering domain(s) in the G stalk. These findings broaden our understanding of the mechanism(s) of receptor-induced paramyxovirus F triggering during viral entry and cell-cell fusion. IMPORTANCE The emergent deadly viruses Nipah virus (NiV) and Hendra virus belong to the Henipavirus genus in the Paramyxoviridae family. NiV infections target endothelial cells and neurons and, in humans, result in 40 to 75% mortality rates. The broad tropism of the henipaviruses and the unavailability of therapeutics threaten the health of humans and livestock. Viral entry into host cells is the first step of henipavirus infections, which ultimately cause syncytium formation. After attaching to the host cell receptor, henipaviruses enter the target cell via direct viral-cell membrane fusion mediated by two membrane glycoproteins: the attachment protein (G) and the fusion protein (F). In this study, we identified and characterized a region in the NiV-G stalk C-terminal domain that links receptor binding to fusion triggering via several important glycoprotein functions. These findings advance our understanding of the membrane fusion-triggering mechanism(s) of the henipaviruses and the paramyxoviruses.
Collapse
|
129
|
Edenborough K, Marsh GA. Reverse genetics: Unlocking the secrets of negative sense RNA viral pathogens. World J Clin Infect Dis 2014; 4:16-26. [DOI: 10.5495/wjcid.v4.i4.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/29/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Negative-sense RNA viruses comprise several zoonotic pathogens that mutate rapidly and frequently emerge in people including Influenza, Ebola, Rabies, Hendra and Nipah viruses. Acute respiratory distress syndrome, encephalitis and vasculitis are common disease outcomes in people as a result of pathogenic viral infection, and are also associated with high case fatality rates. Viral spread from exposure sites to systemic tissues and organs is mediated by virulence factors, including viral attachment glycoproteins and accessory proteins, and their contribution to infection and disease have been delineated by reverse genetics; a molecular approach that enables researchers to experimentally produce recombinant and reassortant viruses from cloned cDNA. Through reverse genetics we have developed a deeper understanding of virulence factors key to disease causation thereby enabling development of targeted antiviral therapies and well-defined live attenuated vaccines. Despite the value of reverse genetics for virulence factor discovery, classical reverse genetic approaches may not provide sufficient resolution for characterization of heterogeneous viral populations, because current techniques recover clonal virus, representing a consensus sequence. In this review the contribution of reverse genetics to virulence factor characterization is outlined, while the limitation of the technique is discussed with reference to new technologies that may be utilized to improve reverse genetic approaches.
Collapse
|
130
|
Abstract
Emerging infectious diseases of zoonotic origin are shaping today's infectious disease field more than ever. In this article, we introduce and review three emerging zoonotic viruses. Novel hantaviruses emerged in the Americas in the mid-1990s as the cause of severe respiratory infections, designated hantavirus pulmonary syndrome, with case fatality rates of around 40%. Nipah virus emerged a few years later, causing respiratory infections and encephalitis in Southeast Asia, with case fatality rates ranging from 40% to more than 90%. A new coronavirus emerged in 2012 on the Arabian Peninsula with a clinical syndrome of acute respiratory infections, later designated as Middle East respiratory syndrome (MERS), and an initial case fatality rate of more than 40%. Our current state of knowledge on the pathogenicity of these three severe, emerging viral infections is discussed.
Collapse
Affiliation(s)
- David Safronetz
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana; , ,
| | | | | |
Collapse
|
131
|
Baseler L, de Wit E, Scott DP, Munster VJ, Feldmann H. Syrian hamsters (Mesocricetus auratus) oronasally inoculated with a Nipah virus isolate from Bangladesh or Malaysia develop similar respiratory tract lesions. Vet Pathol 2014; 52:38-45. [PMID: 25352203 DOI: 10.1177/0300985814556189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nipah virus is a paramyxovirus in the genus Henipavirus, which has caused outbreaks in humans in Malaysia, India, Singapore, and Bangladesh. Whereas the human cases in Malaysia were characterized mainly by neurological symptoms and a case fatality rate of ∼40%, cases in Bangladesh also exhibited respiratory disease and had a case fatality rate of ∼70%. Here, we compared the histopathologic changes in the respiratory tract of Syrian hamsters, a well-established small animal disease model for Nipah virus, inoculated oronasally with Nipah virus isolates from human cases in Malaysia and Bangladesh. The Nipah virus isolate from Bangladesh caused slightly more severe rhinitis and bronchointerstitial pneumonia 2 days after inoculation in Syrian hamsters. By day 4, differences in lesion severity could no longer be detected. Immunohistochemistry demonstrated Nipah virus antigen in the nasal cavity and pulmonary lesions; the amount of Nipah virus antigen present correlated with lesion severity. Immunohistochemistry indicated that both Nipah virus isolates exhibited endotheliotropism in small- and medium-caliber arteries and arterioles, but not in veins, in the lung. This correlated with the location of ephrin B2, the main receptor for Nipah virus, in the vasculature. In conclusion, Nipah virus isolates from outbreaks in Malaysia and Bangladesh caused a similar type and severity of respiratory tract lesions in Syrian hamsters, suggesting that the differences in human disease reported in the outbreaks in Malaysia and Bangladesh are unlikely to have been caused by intrinsic differences in these 2 virus isolates.
Collapse
Affiliation(s)
- L Baseler
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - E de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - D P Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - V J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - H Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
132
|
Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JAK, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 2014; 27:691-726. [PMID: 25278572 PMCID: PMC4187632 DOI: 10.1128/cmr.00118-13] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.
Collapse
Affiliation(s)
- Samantha J Dando
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Robert Norton
- Townsville Hospital, Townsville, Queensland, Australia
| | - Bart J Currie
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Jenny A K Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
133
|
Zhou T, Zhang Y, Wu P, Sun Q, Guo Y, Yang Y. Potential biomarkers and latent pathways for vasculitis based on latent pathway identification analysis. Int J Rheum Dis 2014; 17:671-8. [PMID: 24867262 DOI: 10.1111/1756-185x.12391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tao Zhou
- The Second Hospital of Shandong University; Jinan Shandong Province China
| | - Yudong Zhang
- Department of Peripheral Vascular; Affiliated Hospital of Shandong Traditional Chinese Medicine University; Jinan Shandong Province China
| | - Peng Wu
- The Second Hospital of Shandong University; Jinan Shandong Province China
| | - Qiang Sun
- The Second Hospital of Shandong University; Jinan Shandong Province China
| | - Yanan Guo
- The Second Hospital of Shandong University; Jinan Shandong Province China
| | - Yanfei Yang
- The Second Hospital of Shandong University; Jinan Shandong Province China
| |
Collapse
|
134
|
Mattera R, Farías GG, Mardones GA, Bonifacino JS. Co-assembly of viral envelope glycoproteins regulates their polarized sorting in neurons. PLoS Pathog 2014; 10:e1004107. [PMID: 24831812 PMCID: PMC4022726 DOI: 10.1371/journal.ppat.1004107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/24/2014] [Indexed: 12/14/2022] Open
Abstract
Newly synthesized envelope glycoproteins of neuroinvasive viruses can be sorted in a polarized manner to the somatodendritic and/or axonal domains of neurons. Although critical for transneuronal spread of viruses, the molecular determinants and interregulation of this process are largely unknown. We studied the polarized sorting of the attachment (NiV-G) and fusion (NiV-F) glycoproteins of Nipah virus (NiV), a paramyxovirus that causes fatal human encephalitis, in rat hippocampal neurons. When expressed individually, NiV-G exhibited a non-polarized distribution, whereas NiV-F was specifically sorted to the somatodendritic domain. Polarized sorting of NiV-F was dependent on interaction of tyrosine-based signals in its cytosolic tail with the clathrin adaptor complex AP-1. Co-expression of NiV-G with NiV-F abolished somatodendritic sorting of NiV-F due to incorporation of NiV-G•NiV-F complexes into axonal transport carriers. We propose that faster biosynthetic transport of unassembled NiV-F allows for its proteolytic activation in the somatodendritic domain prior to association with NiV-G and axonal delivery of NiV-G•NiV-F complexes. Our study reveals how interactions of viral glycoproteins with the host's transport machinery and between themselves regulate their polarized sorting in neurons. Neurons are highly polarized cells exhibiting somatodendritic and axonal domains with distinct protein and lipid compositions. Some enveloped viruses target neurons by binding of the viral envelope glycoproteins to neuronal surface receptors. The ensuing fusion of the viral and neuronal membranes delivers the genetic material of the virus into the neurons. During viral replication in neurons, newly synthesized envelope glycoproteins are sorted to the somatodendritic and/or axonal domains. Although critical for viral propagation, the mechanisms responsible for this sorting are largely unknown. We studied the neuronal sorting of the attachment (NiV-G) and fusion (NiV-F) glycoproteins of Nipah virus, a pathogen that causes fatal human encephalitis. When analyzed individually, NiV-G was delivered to both the axonal and somatodendritic domains. In contrast, NiV-F was exclusively targeted to the somatodendritic domain by virtue of interaction of specific signals in this protein with AP-1, a component of the neuronal protein transport machinery. Assembly with NiV-G, however, abolished somatodendritic sorting of NiV-F due to incorporation of complexes into axon-bound vesicles. Thus, coordinated interactions of viral glycoproteins with the host's sorting machinery and between themselves allow temporal and spatial regulation of their distribution in neurons. We propose that this coordination facilitates viral spread among neurons.
Collapse
Affiliation(s)
- Rafael Mattera
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ginny G. Farías
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gonzalo A. Mardones
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juan S. Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
135
|
Valbuena G, Halliday H, Borisevich V, Goez Y, Rockx B. A human lung xenograft mouse model of Nipah virus infection. PLoS Pathog 2014; 10:e1004063. [PMID: 24699832 PMCID: PMC3974875 DOI: 10.1371/journal.ppat.1004063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/28/2014] [Indexed: 01/22/2023] Open
Abstract
Nipah virus (NiV) is a member of the genus Henipavirus (family Paramyxoviridae) that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%). NiV can cause Acute Lung Injury (ALI) in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive “air” spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (107 TCID50/gram lung tissue) as early as 3 days post infection (pi). NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses. Nipah virus (NiV) is a highly pathogenic zoonotic virus that causes fatal disease in humans and a variety of other mammalian hosts including pigs. Given the lack of effective therapeutics and vaccines, this virus is considered a public health and agricultural concern, and listed as category C priority pathogen for biodefense research by the National Institute of Allergy and Infectious Diseases. Both animal-to-human and human-to-human transmission has been observed. Studies on the molecular mechanisms of NiV-mediated pathogenesis have been hampered by the lack of biologically relevant in vivo models for studying the initial host responses to NiV infection in the human lung. We show here a new small animal model in which we transplant human lung tissue for studying the pathogenesis of NiV. We showed that NiV can replicate to high levels in the human lung. NiV causes extensive damage to the lung tissue and induces important regulators of the inflammatory response. This study is the first to use a human lung transplant for studying infectious diseases, a powerful model for studying the pathogenesis of NiV infection, and will open up new possibilities for studying virus-host interactions.
Collapse
Affiliation(s)
- Gustavo Valbuena
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hailey Halliday
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Viktoriya Borisevich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yenny Goez
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Barry Rockx
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
136
|
Rockx B. Recent developments in experimental animal models of Henipavirus infection. Pathog Dis 2014; 71:199-206. [PMID: 24488776 DOI: 10.1111/2049-632x.12149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/13/2014] [Accepted: 01/23/2014] [Indexed: 11/27/2022] Open
Abstract
Hendra (HeV) and Nipah (NiV) viruses (genus Henipavirus (HNV; family Paramyxoviridae) are emerging zoonotic agents that can cause severe respiratory distress and acute encephalitis in humans. Given the lack of effective therapeutics and vaccines for human use, these viruses are considered as public health concerns. Several experimental animal models of HNV infection have been developed in recent years. Here, we review the current status of four of the most promising experimental animal models (mice, hamsters, ferrets, and African green monkeys) and their suitability for modeling the clinical disease, transmission, pathogenesis, prevention, and treatment for HNV infection in humans.
Collapse
Affiliation(s)
- Barry Rockx
- Galveston National Laboratory, Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
137
|
Mahan M, Karl M, Gordon S. Neuroimaging of viral infections of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:149-73. [PMID: 25015484 DOI: 10.1016/b978-0-444-53488-0.00006-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mathur Mahan
- Department of Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Muchantef Karl
- Department of Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sze Gordon
- Department of Radiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
138
|
Rollin PE. Nipah Virus Disease. Emerg Infect Dis 2014. [DOI: 10.1016/b978-0-12-416975-3.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
139
|
Affiliation(s)
- Suhailah Abdullah
- Division of Neurology, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chong Tin Tan
- Division of Neurology, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
140
|
Liu Q, Stone JA, Bradel-Tretheway B, Dabundo J, Benavides Montano JA, Santos-Montanez J, Biering SB, Nicola AV, Iorio RM, Lu X, Aguilar HC. Unraveling a three-step spatiotemporal mechanism of triggering of receptor-induced Nipah virus fusion and cell entry. PLoS Pathog 2013; 9:e1003770. [PMID: 24278018 PMCID: PMC3837712 DOI: 10.1371/journal.ppat.1003770] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/01/2013] [Indexed: 01/13/2023] Open
Abstract
Membrane fusion is essential for entry of the biomedically-important paramyxoviruses into their host cells (viral-cell fusion), and for syncytia formation (cell-cell fusion), often induced by paramyxoviral infections [e.g. those of the deadly Nipah virus (NiV)]. For most paramyxoviruses, membrane fusion requires two viral glycoproteins. Upon receptor binding, the attachment glycoprotein (HN/H/G) triggers the fusion glycoprotein (F) to undergo conformational changes that merge viral and/or cell membranes. However, a significant knowledge gap remains on how HN/H/G couples cell receptor binding to F-triggering. Via interdisciplinary approaches we report the first comprehensive mechanism of NiV membrane fusion triggering, involving three spatiotemporally sequential cell receptor-induced conformational steps in NiV-G: two in the head and one in the stalk. Interestingly, a headless NiV-G mutant was able to trigger NiV-F, and the two head conformational steps were required for the exposure of the stalk domain. Moreover, the headless NiV-G prematurely triggered NiV-F on virions, indicating that the NiV-G head prevents premature triggering of NiV-F on virions by concealing a F-triggering stalk domain until the correct time and place: receptor-binding. Based on these and recent paramyxovirus findings, we present a comprehensive and fundamentally conserved mechanistic model of paramyxovirus membrane fusion triggering and cell entry. The medically-important Paramyxovirus family includes the deadly Nipah virus (NiV). After paramyxoviruses attach to a receptor at a cell surface, fusion between viral and cellular membranes must occur before the virus genetic material can enter the cell and replication of the virus inside the cell can begin. For most paramyxoviruses, viral/cell membrane fusion requires the concerted actions of two viral glycoproteins. After binding to a cell surface receptor, the viral attachment glycoprotein triggers the viral fusion glycoprotein to execute viral/cell membrane fusion so the genetic material of the virus can enter the cell. However, the mechanism of this receptor-induced triggering of membrane fusion is not well understood. We identified several sequential receptor-induced structural changes in the attachment glycoprotein of NiV that are part of the viral/cell membrane fusion-triggering cascade. Importantly, we propose a mechanism of cell receptor-induced paramyxovirus entry into cells, based on the findings described here, similarities between NiV and other paramyxoviruses, and other recent advances.
Collapse
Affiliation(s)
- Qian Liu
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Jacquelyn A. Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Birgit Bradel-Tretheway
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Jeffrey Dabundo
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Javier A. Benavides Montano
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Departamento Ciencia Animal, Universidad Nacional de Colombia, Palmira Valle, Colombia
| | - Jennifer Santos-Montanez
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Scott B. Biering
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Anthony V. Nicola
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Ronald M. Iorio
- Department of Microbiology and Physiological Systems and Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Xiaonan Lu
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hector C. Aguilar
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
141
|
Kulkarni DD, Tosh C, Venkatesh G, Senthil Kumar D. Nipah virus infection: current scenario. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:398-408. [PMID: 24426305 DOI: 10.1007/s13337-013-0171-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 10/10/2013] [Indexed: 11/25/2022]
Abstract
The emergence of Nipah virus (NiV) infection into the pig population and subsequently into the human population is believed to be due to changes in ecological conditions. In Malaysia, A major NiV outbreak occurred in pigs and humans from September 1998 to April 1999 that resulted in infection of 265 and death of 105 persons. About 1.1 million pigs had to be destroyed to control the outbreak. The disease was recorded in the form of a major outbreak in India in 2001 and then a small incidence in 2007, both the outbreaks in West Bengal only in humans without any involvement of pigs. There were series of human Nipah incidences in Bangladesh from 2001 till 2013 almost every year with mortality exceeding 70 %. The disease transmission from pigs acting as an intermediate host during Malaysian and Singapore outbreaks has changed in NIV outbreaks in India and Bangladesh, transmitting the disease directly from bats to human followed by human to human. The drinking of raw date palm sap contaminated with fruit bat urine or saliva containing NiV is the only known cause of outbreak of the disease in Bangladesh outbreaks. The virus is now known to exist in various fruit bats of Pteropus as well as bats of other genera in a wider belt from Asia to Africa.
Collapse
Affiliation(s)
- D D Kulkarni
- High Security Animal Disease Laboratory, OIE Reference Laboratory for Avian Influenza, Indian Veterinary Research Institute, Bhopal, India
| | - C Tosh
- High Security Animal Disease Laboratory, OIE Reference Laboratory for Avian Influenza, Indian Veterinary Research Institute, Bhopal, India
| | - G Venkatesh
- High Security Animal Disease Laboratory, OIE Reference Laboratory for Avian Influenza, Indian Veterinary Research Institute, Bhopal, India
| | - D Senthil Kumar
- High Security Animal Disease Laboratory, OIE Reference Laboratory for Avian Influenza, Indian Veterinary Research Institute, Bhopal, India
| |
Collapse
|
142
|
Croser EL, Marsh GA. The changing face of the henipaviruses. Vet Microbiol 2013; 167:151-8. [PMID: 23993256 DOI: 10.1016/j.vetmic.2013.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/12/2013] [Accepted: 08/05/2013] [Indexed: 01/11/2023]
Abstract
The Henipavirus genus represents a group of paramyxoviruses that are some of the deadliest of known human and veterinary pathogens. Hendra and Nipah viruses are zoonotic pathogens that can cause respiratory and encephalitic illness in humans with mortality rates that exceed 70%. Over the past several years, we have seen an increase in the number of cases and an altered clinical presentation of Hendra virus in naturally infected horses. Recent increase in the number of cases has also been reported with human Nipah virus infections in Bangladesh. These factors, along with the recent discovery of henipa and henipa-like viruses in Africa, Asia and South and Central America adds, a truly global perspective to this group of emerging viruses.
Collapse
Affiliation(s)
- Emma L Croser
- CSIRO Animal, Food and Health Sciences, Australian Animal Health Laboratory, Private Bag 24, Geelong 3220, Australia.
| | | |
Collapse
|
143
|
Hendra and Nipah infection: emerging paramyxoviruses. Virus Res 2013; 177:119-26. [PMID: 23954578 DOI: 10.1016/j.virusres.2013.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/22/2022]
Abstract
Since their first emergence in mid 1990s henipaviruses continued to re emerge in Australia and South East Asia almost every year. In total there has been more than 12 Nipah and 48 Hendra virus outbreaks reported in South East Asia and Australia, respectively. These outbreaks are associated with significant economic and health damages that most high risks countries (particularly in South East Asia) cannot bear the burden of such economical threats. Up until recently, there were no actual therapeutics available to treat or prevent these lethal infections. However, an international collaborative research has resulted in the identification of a potential equine Hendra vaccine capable of providing antibody protection against Hendra virus infections. Consequently, with the current findings and after nearly 2 decades since their first detection, are we there yet? This review recaps the chronicle of the henipavirus emergence and briefly evaluates potential anti-henipavirus vaccines and antivirals.
Collapse
|
144
|
Luby SP. The pandemic potential of Nipah virus. Antiviral Res 2013; 100:38-43. [PMID: 23911335 DOI: 10.1016/j.antiviral.2013.07.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/09/2013] [Accepted: 07/19/2013] [Indexed: 11/30/2022]
Abstract
Nipah virus, a paramyxovirus whose wildlife reservoir is Pteropus bats, was first discovered in a large outbreak of acute encephalitis in Malaysia in 1998 among persons who had contact with sick pigs. Apparently, one or more pigs was infected from bats, and the virus then spread efficiently from pig to pig, then from pigs to people. Nipah virus outbreaks have been recognized nearly every year in Bangladesh since 2001 and occasionally in neighboring India. Outbreaks in Bangladesh and India have been characterized by frequent person-to-person transmission and the death of over 70% of infected people. Characteristics of Nipah virus that increase its risk of becoming a global pandemic include: humans are already susceptible; many strains are capable of limited person-to-person transmission; as an RNA virus, it has an exceptionally high rate of mutation: and that if a human-adapted strain were to infect communities in South Asia, high population densities and global interconnectedness would rapidly spread the infection. Appropriate steps to estimate and manage this risk include studies to explore the molecular and genetic basis of respiratory transmission of henipaviruses, improved surveillance for human infections, support from high-income countries to reduce the risk of person-to-person transmission of infectious agents in low-income health care settings, and consideration of vaccination in communities at ongoing risk of exposure to the secretions and excretions of Pteropus bats.
Collapse
Affiliation(s)
- Stephen P Luby
- Woods Institute of the Environment, Stanford University, Yang and Yamazaki Environment and Energy Building, Room 231, 473 Via Ortega, Stanford, CA 94305, United States.
| |
Collapse
|
145
|
Sendow I, Ratnawati A, Taylor T, Adjid RMA, Saepulloh M, Barr J, Wong F, Daniels P, Field H. Nipah virus in the fruit bat Pteropus vampyrus in Sumatera, Indonesia. PLoS One 2013; 8:e69544. [PMID: 23894501 PMCID: PMC3718695 DOI: 10.1371/journal.pone.0069544] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 06/14/2013] [Indexed: 11/18/2022] Open
Abstract
Nipah virus causes periodic livestock and human disease with high case fatality rate, and consequent major economic, social and psychological impacts. Fruit bats of the genus Pteropus are the natural reservoir. In this study, we used real time PCR to screen the saliva and urine of P. vampyrus from North Sumatera for Nipah virus genome. A conventional reverse transcriptase (RT-PCR) assay was used on provisionally positive samples to corroborate findings. This is the first report of Nipah virus detection in P. vampyrus in Sumatera, Indonesia.
Collapse
Affiliation(s)
- Indrawati Sendow
- Indonesian Research Center for Veterinary Science, Bogor, Indonesia
| | - Atik Ratnawati
- Indonesian Research Center for Veterinary Science, Bogor, Indonesia
| | - Trevor Taylor
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | | | | - Jennifer Barr
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Frank Wong
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Peter Daniels
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Hume Field
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture, Fisheries and Forestry, Coopers Plains, Queensland, Australia
- EcoHealth Alliance, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
146
|
Dhondt KP, Horvat B. Henipavirus infections: lessons from animal models. Pathogens 2013; 2:264-87. [PMID: 25437037 PMCID: PMC4235719 DOI: 10.3390/pathogens2020264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/16/2022] Open
Abstract
The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed.
Collapse
Affiliation(s)
- Kévin P Dhondt
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon 1, 21 Avenue T. Garnier, Lyon 69007, France.
| | - Branka Horvat
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon 1, 21 Avenue T. Garnier, Lyon 69007, France.
| |
Collapse
|
147
|
Yoneda M, Georges-Courbot MC, Ikeda F, Ishii M, Nagata N, Jacquot F, Raoul H, Sato H, Kai C. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge. PLoS One 2013; 8:e58414. [PMID: 23516477 PMCID: PMC3597623 DOI: 10.1371/journal.pone.0058414] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/04/2013] [Indexed: 11/21/2022] Open
Abstract
Nipah virus (NiV) is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G). Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi). Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.
Collapse
Affiliation(s)
- Misako Yoneda
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail: (MY); (CK)
| | | | - Fusako Ikeda
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Miho Ishii
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Noriyo Nagata
- National Institute of Infectious Diseases, Department of Pathology Tokyo, Japan
| | - Frederic Jacquot
- Institut National de la Sante et de la Recherche Médicale, Laboratory P4 INSERM Jean Mérieux, Lyon, France
| | - Hervé Raoul
- Institut National de la Sante et de la Recherche Médicale, Laboratory P4 INSERM Jean Mérieux, Lyon, France
| | - Hiroki Sato
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail: (MY); (CK)
| |
Collapse
|
148
|
Abstract
Nipah (NiV) and Hendra (HeV) viruses are the deadliest human pathogens within the Paramyxoviridae family, which include human and animal pathogens of global biomedical importance. NiV and HeV infections cause respiratory and encephalitic illness with high mortality rates in humans. Henipaviruses (HNV) are the only Paramyxoviruses classified as biosafety level 4 (BSL4) pathogens due to their extreme pathogenicity, potential for bioterrorism, and lack of licensed vaccines and therapeutics. HNV use ephrin-B2 and ephrin-B3, highly conserved proteins, as viral entry receptors. This likely accounts for their unusually broad species tropism, and also provides opportunities to study how receptor usage, cellular tropism, and end-organ pathology relates to the pathobiology of HNV infections. The clinical and pathologic manifestations of NiV and HeV virus infections are reviewed in the chapters by Wong et al. and Geisbert et al. in this issue. Here, we will review the biology of the HNV receptors, and how receptor usage relates to HNV cell tropism in vitro and in vivo.
Collapse
Affiliation(s)
- Olivier Pernet
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1489, USA
| | | | | |
Collapse
|
149
|
DeBuysscher BL, de Wit E, Munster VJ, Scott D, Feldmann H, Prescott J. Comparison of the pathogenicity of Nipah virus isolates from Bangladesh and Malaysia in the Syrian hamster. PLoS Negl Trop Dis 2013; 7:e2024. [PMID: 23342177 PMCID: PMC3547834 DOI: 10.1371/journal.pntd.0002024] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022] Open
Abstract
Nipah virus is a zoonotic pathogen that causes severe disease in humans. The mechanisms of pathogenesis are not well described. The first Nipah virus outbreak occurred in Malaysia, where human disease had a strong neurological component. Subsequent outbreaks have occurred in Bangladesh and India and transmission and disease processes in these outbreaks appear to be different from those of the Malaysian outbreak. Until this point, virtually all Nipah virus studies in vitro and in vivo, including vaccine and pathogenesis studies, have utilized a virus isolate from the original Malaysian outbreak (NiV-M). To investigate potential differences between NiV-M and a Nipah virus isolate from Bangladesh (NiV-B), we compared NiV-M and NiV-B infection in vitro and in vivo. In hamster kidney cells, NiV-M-infection resulted in extensive syncytia formation and cytopathic effects, whereas NiV-B-infection resulted in little to no morphological changes. In vivo, NiV-M-infected Syrian hamsters had accelerated virus replication, pathology and death when compared to NiV-B-infected animals. NiV-M infection also resulted in the activation of host immune response genes at an earlier time point. Pathogenicity was not only a result of direct effects of virus replication, but likely also had an immunopathogenic component. The differences observed between NiV-M and NiV-B pathogeneis in hamsters may relate to differences observed in human cases. Characterization of the hamster model for NiV-B infection allows for further research of the strain of Nipah virus responsible for the more recent outbreaks in humans. This model can be used to study NiV-B pathogenesis, transmission, and countermeasures that could be used to control outbreaks. Nipah virus causes severe disease in humans and outbreaks have occurred in two geographic regions, Malaysia and Bangladesh, and viruses have been isolated during outbreaks from both of these regions (NiV-M and NiV-B, respectively). The original outbreak of Nipah virus occurred in Malaysia and caused severe encephalitis in humans. All subsequent outbreaks of Nipah virus have occurred in Bangladesh or India and disease has been characterized as having a strong respiratory component. Nipah virus is a public health concern that can cause up to 100% lethality in humans and there is no approved treatment or vaccine. Current research should focus on understanding disease progression and pathogenicity. We compared NiV-M and NiV-B infection and disease progression using the Syrian hamster model. We found that NiV-M is more destructive in cultured hamster cells and has faster onset of cytopathogenicity compared to NiV-B. This is also true in hamsters, where although both viruses are pathogenic and cause a similar disease, pathology caused by NiV-M infection is accelerated. These data show that there is a difference in disease progression between the two strains of Nipah virus and will allow for a more detailed understanding of the events leading to disease caused by these viruses.
Collapse
Affiliation(s)
- Blair L. DeBuysscher
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail: (HF); (JP)
| | - Joseph Prescott
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail: (HF); (JP)
| |
Collapse
|
150
|
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.
Collapse
|