101
|
Kresnowati MTAP, Suarez-Mendez C, Groothuizen MK, van Winden WA, Heijnen JJ. Measurement of fast dynamic intracellular pH in Saccharomyces cerevisiae using benzoic acid pulse. Biotechnol Bioeng 2007; 97:86-98. [PMID: 16952151 DOI: 10.1002/bit.21179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
pH affects many processes on cell metabolism, such as enzyme kinetics. To enhance the understanding of the living cells, it is therefore indispensable to have a method to monitor the pH in living cells. To accomplish this, a dynamic intracellular pH measurement method applying low concentration benzoic acid pulse was developed. The method was thoroughly validated and successfully implemented for measuring fast dynamic intracellular pH of Saccharomyces cerevisiae in response to a glucose pulse perturbation performed in the BioSCOPE set-up. Fast drop in intracellular pH followed by partial alkalinization was observed following the pulse. The low concentration benzoic acid pulse which was implemented in the method avoids the undesirable effects that may be introduced by benzoic acid to cell metabolism.
Collapse
Affiliation(s)
- M T A P Kresnowati
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | | | | | | | | |
Collapse
|
102
|
Meyer A, Pellaux R, Panke S. Bioengineering novel in vitro metabolic pathways using synthetic biology. Curr Opin Microbiol 2007; 10:246-53. [PMID: 17548240 DOI: 10.1016/j.mib.2007.05.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 05/23/2007] [Indexed: 11/21/2022]
Abstract
Huge numbers of enzymes have evolved in nature to function in aqueous environments at moderate temperatures and neutral pH. This gives us, in principle, the unique opportunity to construct multistep reaction systems of considerable catalytic complexity in vitro. However, this opportunity is rarely exploited beyond research scale, because such systems are difficult to assemble and to operate productively. Recent advances in DNA synthesis, genome engineering, high-throughput analytics, model-based analysis of biochemical systems and (semi-)rational protein engineering suggest that we have all the tools available to rationally design and efficiently operate such systems of enzymes, and finally harvest their potential for preparative syntheses.
Collapse
Affiliation(s)
- Andreas Meyer
- Bioprocess Laboratory, ETH Zurich, Universitaetsstrasse 6, 8092 Zurich, Switzerland
| | | | | |
Collapse
|
103
|
Loret MO, Pedersen L, François J. Revised procedures for yeast metabolites extraction: application to a glucose pulse to carbon-limited yeast cultures, which reveals a transient activation of the purine salvage pathway. Yeast 2007; 24:47-60. [PMID: 17192850 DOI: 10.1002/yea.1435] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In this study we have revised our original procedure of yeast metabolites extraction. We showed that: (a) less than 5% of intracellular metabolites leaks out during the step of rapid arrest of cellular metabolism by quenching yeast cells into a 60% methanol solution kept at -40 degrees C; and (b) with a few exception, the stability of metabolites were not altered during the 3 min boiling procedure in a buffered ethanol solution. However, there was a loss of external added metabolites of 5-30%, depending on the type of metabolites. This was mainly attributable to their retention on cellular debris after ethanol treatment, which prevented centrifugation of the cellular extracts before evaporation of ethanol. We further simplified our previous high-performance ionic chromatography (HPIC) techniques for easier, more reliable and robust quantitative measurements of organic acids, sugar phosphates and sugar nucleotides, and extended these techniques to purine and pyrimidine bases, using a variable wavelength detector set at 220 and 260 nm in tandem with a pulsed electrochemical or suppressed conductivity detector. These protocols were successfully applied to a glucose pulse to carbon-limited yeast cultures on purines metabolism. This study showed that glucose induced a fast activation of the purine salvage pathway, as indicated by a transient drop of ATP and ADP with a concomitant rise of IMP and inosine. This metabolic perturbation was accompanied by a rapid increase in the activity of the ISN1-encoded specific IMP-5'-nucleotidase. The mechanism of this activation remains to be determined.
Collapse
Affiliation(s)
- Marie Odile Loret
- Laboratoire de Biotechnologie et Bioprocédés, UMR-CNRS 5504, UMR-INRA 792, Avenue de Rangueil, 31077 Toulouse Cedex 04, France
| | | | | |
Collapse
|
104
|
Wiebe MG, Rintala E, Tamminen A, Simolin H, Salusjärvi L, Toivari M, Kokkonen JT, Kiuru J, Ketola RA, Jouhten P, Huuskonen A, Maaheimo H, Ruohonen L, Penttilä M. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res 2007; 8:140-54. [PMID: 17425669 DOI: 10.1111/j.1567-1364.2007.00234.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Saccharomyces cerevisiae CEN.PK113-1A was grown in glucose-limited chemostat culture with 0%, 0.5%, 1.0%, 2.8% or 20.9% O2 in the inlet gas (D=0.10 h(-1), pH 5, 30 degrees C) to determine the effects of oxygen on 17 metabolites and 69 genes related to central carbon metabolism. The concentrations of tricarboxylic acid cycle (TCA) metabolites and all glycolytic metabolites except 2-phosphoglycerate+3-phosphoglycerate and phosphoenolpyruvate were higher in anaerobic than in fully aerobic conditions. Provision of only 0.5-1% O2 reduced the concentrations of most metabolites, as compared with anaerobic conditions. Transcription of most genes analyzed was reduced in 0%, 0.5% or 1.0% O2 relative to cells grown in 2.8% or 20.9% O2. Ethanol production was observed with 2.8% or less O2. After steady-state analysis in defined oxygen concentrations, the conditions were switched from aerobic to anaerobic. Metabolite and transcript levels were monitored for up to 96 h after the transition, and this showed that more than 30 h was required for the cells to fully adapt to anaerobiosis. Levels of metabolites of upper glycolysis and the TCA cycle increased following the transition to anaerobic conditions, whereas those of metabolites of lower glycolysis generally decreased. Gene regulation was more complex, with some genes showing transient upregulation or downregulation during the adaptation to anaerobic conditions.
Collapse
|
105
|
Nöh K, Grönke K, Luo B, Takors R, Oldiges M, Wiechert W. Metabolic flux analysis at ultra short time scale: Isotopically non-stationary 13C labeling experiments. J Biotechnol 2007; 129:249-67. [PMID: 17207877 DOI: 10.1016/j.jbiotec.2006.11.015] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/12/2006] [Accepted: 11/16/2006] [Indexed: 11/16/2022]
Abstract
A novel approach to (13)C metabolic flux analysis (MFA) is presented using cytosolic metabolite pool sizes and their (13)C labeling data from an isotopically non-stationary (13)C labeling experiment (INST-CLE). The procedure is demonstrated with an E. coli wild type strain grown at fed batch conditions. The intra cellular labeling dynamics are excited by a sudden step increase of the (13)C portion in the substrate feed. Due to unchanged saturation of the substrate uptake system, the metabolic fluxes remain constant during the following sampling time period of only 16s, in which 20 samples are taken by an automated rapid sampling device immediately stopping metabolism by methanol quenching. Subsequent cell disruptive sample preparation and LC-MS/MS enabled simultaneous determination of pool sizes and mass isotopomers of intra cellular metabolites requiring detection limits in the nM range. Based on this data the new computational flux analysis tool 13CFLUX/INST is used to determine the intra cellular fluxes based on a complex carbon labeling network model. The measured data is in good agreement with the model predictions, thus proving the applicability of the new isotopically non-stationary (13)C metabolic flux analysis (INST-(13)C-MFA) concept. Moreover, it is shown that significant new information with respect to flux identifiability, non-measurable pool sizes, data consistency, or large storage pools can be taken from the novel kind of experimental data. This offers new insight into the biological operation of the metabolic network in vivo.
Collapse
Affiliation(s)
- Katharina Nöh
- Institute of Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
106
|
Mashego MR, van Gulik WM, Heijnen JJ. Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor. FEMS Yeast Res 2007; 7:48-66. [PMID: 17311584 DOI: 10.1111/j.1567-1364.2006.00144.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rapid perturbation experiments are highly relevant to elaborate the in vivo kinetics for mathematical models of metabolism, which are needed for selecting gene targets for metabolic engineering. Perturbations were applied to chemostat-cultivated biomass (D=0.05 h(-1), aerobic glucose/ethanol-limited) using the BioScope of Saccharomyces cerevisiae CEN. PK 113-7D over time span of 90 and 180 s. The availability of the external electron acceptor oxygen was decreased from fully aerobic to anaerobic conditions. It was observed that the changes in metabolome response under these conditions were limited to the pyruvate node. Acetaldehyde supply was used as an extra external electron acceptor during glucose perturbation under fully aerobic conditions. This had a strong effect on the metabolome dynamics and resulted in a significantly higher initial glycolytic flux. Dynamic response of the adenine nucleotides indicated that their behavior is not dictated by the glycolytic flux but is much more coupled to the cytosolic NADH/NAD(+) ratio through the equilibrium pool of fructose 1,6-bisphosphate and 2/3-phosphoglycerate. Also, the electron donor availability (glucose) was decreased. This did not result in significant changes in the concentrations of the glycolytic and tricarboxylic acid cycle metabolites, whereas the adenine nucleotides, especially ADP and AMP, showed the opposite response to that observed in a glucose pulse experiment. Surprisingly, trehalose was not mobilized in the time frame of 180 s.
Collapse
Affiliation(s)
- Mlawule R Mashego
- Department of Biotechnology, Faculty of Applied Sciences, Technical University of Delft, Julianalaan, Delft, The Netherlands.
| | | | | |
Collapse
|
107
|
Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 2007; 1147:153-64. [PMID: 17376459 DOI: 10.1016/j.chroma.2007.02.034] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/02/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
A highly selective and sensitive method for identification and quantification of intracellular metabolites involved in central carbon metabolism (including glycolysis, pentose phosphate pathway and tricarboxylic acid cycle) by means of liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS) was developed. The volatile ion pair modifier tributylammonium acetate (TBAA) was employed in the mobile phase for simultaneously separation of 29 negatively charged compounds including sugar phosphates, nucleotides, and carboxylic acids on a common C18 reversed-phase column. Method validation results displayed that limits of detection (LODs) calculated according to DIN (German Institute for Standardization) 32645 are mostly below 60 nM, only with the exception of pyruvate and malate. The calibration curves showed excellent linearity mainly over three orders of magnitude with correlation coefficients R(2)>0.9982. This LC-MS/MS method was successfully applied to determine these metabolites in cell extracts of Escherichia coli. Most of the intracellular metabolites were found within the detection range and the relative standard deviations of the measurements were smaller than 5.65% (n=5) for a cell extract sample.
Collapse
|
108
|
Tai SL, Daran-Lapujade P, Luttik MAH, Walsh MC, Diderich JA, Krijger GC, van Gulik WM, Pronk JT, Daran JM. Control of the glycolytic flux in Saccharomyces cerevisiae grown at low temperature: a multi-level analysis in anaerobic chemostat cultures. J Biol Chem 2007; 282:10243-51. [PMID: 17251183 DOI: 10.1074/jbc.m610845200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth temperature has a profound impact on the kinetic properties of enzymes in microbial metabolic networks. Activities of glycolytic enzymes in Saccharomyces cerevisiae were up to 7.5-fold lower when assayed at 12 degrees C than at 30 degrees C. Nevertheless, the in vivo glycolytic flux in chemostat cultures (dilution rate: 0.03 h(-1)) grown at these two temperatures was essentially the same. To investigate how yeast maintained a constant glycolytic flux despite the kinetic challenge imposed by a lower growth temperature, a systems approach was applied that involved metabolic flux analysis, transcript analysis, enzyme activity assays, and metabolite analysis. Expression of hexose-transporter genes was affected by the growth temperature, as indicated by differential transcription of five HXT genes and changed zero trans-influx kinetics of [(14)C]glucose transport. No such significant changes in gene expression were observed for any of the glycolytic enzymes. Fermentative capacity (assayed off-line at 30 degrees C), which was 2-fold higher in cells grown at 12 degrees C, was therefore probably controlled predominantly by glucose transport. Massive differences in the intracellular concentrations of nucleotides (resulting in an increased adenylate energy charge at low temperature) and glycolytic intermediates indicated a dominant role of metabolic control as opposed to gene expression in the adaptation of glycolytic enzyme activity to different temperatures. In evolutionary terms, this predominant reliance on metabolic control of a central pathway, which represents a significant fraction of the cellular protein of the organism, may be advantageous to limit the need for protein synthesis and degradation during adaptation to diurnal temperature cycles.
Collapse
Affiliation(s)
- Siew Leng Tai
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Kiefer P, Nicolas C, Letisse F, Portais JC. Determination of carbon labeling distribution of intracellular metabolites from single fragment ions by ion chromatography tandem mass spectrometry. Anal Biochem 2007; 360:182-8. [PMID: 17134674 DOI: 10.1016/j.ab.2006.06.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 05/23/2006] [Accepted: 06/26/2006] [Indexed: 11/16/2022]
Abstract
Liquid chromatography tandem mass spectrometry coupling is a highly sensitive and specific technique allowing molecule detection in the femtomolar range. This article introduces a straightforward approach to apply this technique in 13C metabolic flux analysis. Based on a theoretical analysis of the correlation between molecule ions and corresponding fragments, a method was developed to determine the carbon labeling of intracellular metabolites without increasing the number of measurements per metabolite compared with direct molecule ion analysis. The method was applied to phosphorylated metabolites because their fragmentation results in high yields of [PO3]- and/or [H2PO4]- ions. Comparing the accuracy of the carbon labeling determination of phosphorylated metabolites between direct analysis of the molecule ions with that of corresponding phosphate fragment ions, it could be demonstrated that the introduced approach resulted in significantly higher accuracy and sensitivity for all tested metabolites. When applying the techniques to Escherichia coli cell extracts, 2 microg cell dry weight per injection was sufficient to determine the natural abundances of the carbon fractions m and m+1 from six phosphorylated metabolites with high accuracy, predestining the approach for very small cultivation volumes in the microliter range.
Collapse
Affiliation(s)
- Patrick Kiefer
- Laboratoire Biotechnologie Bioprocédés, UMR INSA/CNRS 5504 INRA 792, F-31077 Toulouse cedex, France
| | | | | | | |
Collapse
|
110
|
Højer-Pedersen J, Smedsgaard J, Nielsen J. Elucidating the mode-of-action of compounds from metabolite profiling studies. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 64:103, 105-29. [PMID: 17195473 DOI: 10.1007/978-3-7643-7567-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Metabolite profiling has been carried out for decades and is as such not a new research area. However, the field has attracted increasing attention in the last couple of years, and the term metabolome is now often used to describe the complete pool of metabolites associated with an organism at any given time. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the best candidates for comprehensive analysis of the metabolome and the application of these technologies is presented in this chapter. In this relation, the importance of efficient metabolite screening for discovery of novel drugs is discussed. Related to metabolite profiling, the principals underlying the application of labeled substrates to quantify in vivo metabolic fluxes are introduced, and the chapter is concluded by discussing the perspectives of metabolite measurements in systems biology.
Collapse
Affiliation(s)
- Jesper Højer-Pedersen
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Kgs. Lyngby
| | | | | |
Collapse
|
111
|
Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ. Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 2006; 29:1-16. [PMID: 17091378 DOI: 10.1007/s10529-006-9218-0] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/08/2006] [Accepted: 09/21/2006] [Indexed: 10/23/2022]
Abstract
Microbial metabolomics has received much attention in recent years mainly because it supports and complements a wide range of microbial research areas from new drug discovery efforts to metabolic engineering. Broadly, the term metabolomics refers to the comprehensive (qualitative and quantitative) analysis of the complete set of all low molecular weight metabolites present in and around growing cells at a given time during their growth or production cycle. This review focuses on the past, current and future development of various experimental protocols in the rapid developing area of metabolomics in the ongoing quest to reliably quantify microbial metabolites formed under defined physiological conditions. These developments range from rapid sample collection, instant quenching of microbial metabolic activity, extraction of the relevant intracellular metabolites as well as quantification of these metabolites using enzyme based and or modern high tech hyphenated analytical protocols, mainly chromatographic techniques coupled to mass spectrometry (LC-MS(n), GC-MS(n), CE-MS(n)), where n indicates the number of tandem mass spectrometry, and nuclear magnetic resonance spectroscopy (NMR).
Collapse
Affiliation(s)
- Mlawule R Mashego
- Department of Biotechnology, Faculty of Applied Sciences, Technical University of Delft, Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
112
|
Kresnowati MTAP, van Winden WA, Almering MJH, ten Pierick A, Ras C, Knijnenburg TA, Daran-Lapujade P, Pronk JT, Heijnen JJ, Daran JM. When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2006; 2:49. [PMID: 16969341 PMCID: PMC1681515 DOI: 10.1038/msb4100083] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 07/04/2006] [Indexed: 12/04/2022] Open
Abstract
Within the first 5 min after a sudden relief from glucose limitation, Saccharomyces cerevisiae exhibited fast changes of intracellular metabolite levels and a major transcriptional reprogramming. Integration of transcriptome and metabolome data revealed tight relationships between the changes at these two levels. Transcriptome as well as metabolite changes reflected a major investment in two processes: adaptation from fully respiratory to respiro-fermentative metabolism and preparation for growth acceleration. At the metabolite level, a severe drop of the AXP pools directly after glucose addition was not accompanied by any of the other three NXP. To counterbalance this loss, purine biosynthesis and salvage pathways were transcriptionally upregulated in a concerted manner, reflecting a sudden increase of the purine demand. The short-term dynamics of the transcriptome revealed a remarkably fast decrease in the average half-life of downregulated genes. This acceleration of mRNA decay can be interpreted both as an additional nucleotide salvage pathway and an additional level of glucose-induced regulation of gene expression.
Collapse
Affiliation(s)
- M T A P Kresnowati
- Department of Biotechnology, Bioprocess Technology Section, Delft University of Technology, Delft, The Netherlands
| | - W A van Winden
- Department of Biotechnology, Bioprocess Technology Section, Delft University of Technology, Delft, The Netherlands
| | - M J H Almering
- Department of Biotechnology, Industrial Microbiology Section, Delft University of Technology, Delft, The Netherlands
| | - A ten Pierick
- Department of Biotechnology, Bioprocess Technology Section, Delft University of Technology, Delft, The Netherlands
| | - C Ras
- Department of Biotechnology, Bioprocess Technology Section, Delft University of Technology, Delft, The Netherlands
| | - T A Knijnenburg
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - P Daran-Lapujade
- Department of Biotechnology, Industrial Microbiology Section, Delft University of Technology, Delft, The Netherlands
| | - J T Pronk
- Department of Biotechnology, Industrial Microbiology Section, Delft University of Technology, Delft, The Netherlands
| | - J J Heijnen
- Department of Biotechnology, Bioprocess Technology Section, Delft University of Technology, Delft, The Netherlands
| | - J M Daran
- Department of Biotechnology, Industrial Microbiology Section, Delft University of Technology, Delft, The Netherlands
- Department of Biotechnology, Section of Industrial Microbiology, TU Delft, Industrial Microbiology, Julianalaan 67, Delft 2628BC, The Netherlands. Tel.: +31 152782412; Fax: +31 152782355; E-mail:
| |
Collapse
|
113
|
Wu L, van Dam J, Schipper D, Kresnowati MTAP, Proell AM, Ras C, van Winden WA, van Gulik WM, Heijnen JJ. Short-term metabolome dynamics and carbon, electron, and ATP balances in chemostat-grown Saccharomyces cerevisiae CEN.PK 113-7D following a glucose pulse. Appl Environ Microbiol 2006; 72:3566-77. [PMID: 16672504 PMCID: PMC1472385 DOI: 10.1128/aem.72.5.3566-3577.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vivo kinetics in Saccharomyces cerevisiae CEN.PK 113-7D was evaluated during a 300-second transient period after applying a glucose pulse to an aerobic, carbon-limited chemostat culture. We quantified the responses of extracellular metabolites, intracellular intermediates in primary metabolism, intracellular free amino acids, and in vivo rates of O(2) uptake and CO(2) evolution. With these measurements, dynamic carbon, electron, and ATP balances were set up to identify major carbon, electron, and energy sinks during the postpulse period. There were three distinct metabolic phases during this time. In phase I (0 to 50 seconds after the pulse), the carbon/electron balances closed up to 85%. The accumulation of glycolytic and storage compounds accounted for 60% of the consumed glucose, caused an energy depletion, and may have led to a temporary decrease in the anabolic flux. In phase II (50 to 150 seconds), the fermentative metabolism gradually became the most important carbon/electron sink. In phase III (150 to 300 seconds), 29% of the carbon uptake was not identified in the measurements, and the ATP balance had a large surplus. These results indicate an increase in the anabolic flux, which is consistent with macroscopic balances of extracellular fluxes and the observed increase in CO(2) evolution associated with nonfermentative metabolism. The identified metabolic processes involving major carbon, electron, and energy sinks must be taken into account in in vivo kinetic models based on short-term dynamic metabolome responses.
Collapse
Affiliation(s)
- Liang Wu
- DSM Anti-Infectives, P.O. Box 525, 2613 AX Delft, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Nasution U, van Gulik WM, Kleijn RJ, van Winden WA, Proell A, Heijnen JJ. Measurement of intracellular metabolites of primary metabolism and adenine nucleotides in chemostat cultivated Penicillium chrysogenum. Biotechnol Bioeng 2006; 94:159-66. [PMID: 16508996 DOI: 10.1002/bit.20842] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An experimental platform has been developed for rapid sampling and quenching of chemostat cultivated Penicillium chrysogenum broth for metabolome analysis in highly dynamic experiments, aimed at the elucidation of the in vivo kinetic properties of metabolism. The sampling and quenching protocol available from Saccharomyces cerevisiae had to be modified for Penicillium chrysogenum mainly because of its filamentous character. Intracellular metabolites of glycolysis, TCA cycle, and adenine nucleotides were measured with isotope dilution mass spectrometry (IDMS) using a U-(13)C-labeled metabolite mix produced from yeast cells as internal standard. By addition of the U-(13)C internal standard mix prior to the metabolite extraction procedure, partial degradation of metabolites as well as non-linearity and drift of the LC-MS/MS could be successfully compensated for. It was found that there is a serious matrix effect on metabolite extraction between different organisms, which is however completely corrected for by the IDMS approach. Intracellular metabolites could be analyzed with standard deviations of around 5%. A comparison of the metabolite levels between Saccharomyces cerevisiae and Penicillium chrysogenum showed both significant similarities and large differences, which seem to be related to the presence of the penicillin pathway.
Collapse
Affiliation(s)
- U Nasution
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
115
|
Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 2006; 1125:76-88. [PMID: 16759663 DOI: 10.1016/j.chroma.2006.05.019] [Citation(s) in RCA: 504] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/08/2006] [Accepted: 05/10/2006] [Indexed: 11/23/2022]
Abstract
A key unmet need in metabolomics is the ability to efficiently quantify a large number of known cellular metabolites. Here we present a liquid chromatography (LC)-electrospray ionization tandem mass spectrometry (ESI-MS/MS) method for reliable measurement of 141 metabolites, including components of central carbon, amino acid, and nucleotide metabolism. The selected LC approach, hydrophilic interaction chromatography with an amino column, effectively separates highly water soluble metabolites that fail to retain using standard reversed-phase chromatography. MS/MS detection is achieved by scanning through numerous selected reaction monitoring events on a triple quadrupole instrument. When applied to extracts of Escherichia coli grown in [12C]- versus [13C]glucose, the method reveals appropriate 12C- and 13C-peaks for 79 different metabolites.
Collapse
Affiliation(s)
- Sunil U Bajad
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|
116
|
Jewett MC, Hofmann G, Nielsen J. Fungal metabolite analysis in genomics and phenomics. Curr Opin Biotechnol 2006; 17:191-7. [PMID: 16488600 DOI: 10.1016/j.copbio.2006.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/10/2006] [Accepted: 02/09/2006] [Indexed: 10/25/2022]
Abstract
Metabolomics consists of strategies to quantitatively identify cellular metabolites and to understand how trafficking of these biochemical messengers through the metabolic network influences phenotype. The application of metabolomics to fungi has been strongly pursued because these organisms are widely used for the production of chemicals, are well known for their diverse metabolic landscape and serve as excellent eukaryotic model organisms for studying metabolism and systems biology. Within the context of fungal systems, recent progress has been made in the development of analytical tools and mathematical strategies used in metabolite analysis that have enhanced our ability to crack the code underpinning the cellular inventory, regulatory schemes and communication mechanisms that dictate cellular function. Metabolomics has played a key role in functional genomics and strain classification.
Collapse
Affiliation(s)
- Michael C Jewett
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
117
|
Lu W, Kimball E, Rabinowitz JD. A high-performance liquid chromatography-tandem mass spectrometry method for quantitation of nitrogen-containing intracellular metabolites. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:37-50. [PMID: 16352439 DOI: 10.1016/j.jasms.2005.09.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 09/01/2005] [Accepted: 09/01/2005] [Indexed: 05/05/2023]
Abstract
A comprehensive method of quantifying intracellular metabolite concentrations would be a valuable addition to the arsenal of tools for holistic biochemical studies. Here, we describe a step toward the development of such method: a quantitative assay for 90 nitrogen-containing cellular metabolites. The assay involves reverse-phase high-performance liquid chromatography separation followed by electrospray ionization and detection of the resulting ions using triple-quadrupole mass spectrometry in selected reaction monitoring mode. For 79 of the 90 metabolites, the assay is linear with a limit of detection of 10 ng/mL or less. Using this method, 36 metabolites can be reliably detected in extracts of the bacterium Salmonella enterica, with the identity of each metabolite confirmed by the presence, on growing of the bacteria in (13)C-glucose, of a peak corresponding to the isotope-labeled form of the compound. Quantitation in biological samples is performed by mixing unlabeled test cell extract with (13)C-labeled standard extract, and determining the (12)C/(13)C-ratio for each metabolite. Using this approach, the metabolomes of growing (exponential phase) and carbon-starved (stationary phase) bacteria were compared, revealing 16 metabolites that are significantly down-regulated and five metabolites that are significantly up-regulated, in stationary phase.
Collapse
Affiliation(s)
- Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Elizabeth Kimball
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
118
|
Villas-Bôas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. MASS SPECTROMETRY REVIEWS 2005; 24:613-46. [PMID: 15389842 DOI: 10.1002/mas.20032] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the post-genomic era, increasing efforts have been made to describe the relationship between the genome and the phenotype in cells and organisms. It has become clear that even a complete understanding of the state of the genes, messages, and proteins in a living system does not reveal its phenotype. Therefore, researchers have started to study the metabolome (or the metabolic complement of functional genomics). Within this context, mass spectrometry (MS) has increasingly occupied a central position in the methodologies developed for determination of the metabolic state. This review is mainly focused on the status of MS in the metabolome field, trying to direct the reader to the main approaches for analysis of metabolites, reviewing basic methodologies in sample preparation, and the most recent MS techniques introduced. Apart from the description of the different methods, this review will try to state a general comparison between the several different techniques that involve MS and metabolite analysis, and will highlight their limitations and preferred applicability.
Collapse
Affiliation(s)
- Silas G Villas-Bôas
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Building 223, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
119
|
Wu L, van Winden WA, van Gulik WM, Heijnen JJ. Application of metabolome data in functional genomics: A conceptual strategy. Metab Eng 2005; 7:302-10. [PMID: 16043375 DOI: 10.1016/j.ymben.2005.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 05/11/2005] [Accepted: 05/17/2005] [Indexed: 11/22/2022]
Abstract
A gene with yet unknown physiological function can be studied by changing its expression level followed by analysis of the resulting phenotype. This type of functional genomics study can be complicated by the occurrence of 'silent mutations', the phenotypes of which are not easily observable in terms of metabolic fluxes (e.g., the growth rate). Nevertheless, genetic alteration may give rise to significant yet complicated changes in the metabolome. We propose here a conceptual functional genomics strategy based on microbial metabolome data, which identifies changes in in vivo enzyme activities in the mutants. These predicted changes are used to formulate hypotheses to infer unknown gene functions. The required metabolome data can be obtained solely from high-throughput mass spectrometry analysis, which provides the following in vivo information: (1) the metabolite concentrations in the reference and the mutant strain; (2) the metabolic fluxes in both strains and (3) the enzyme kinetic parameters of the reference strain. We demonstrate in silico that changes in enzyme activities can be accurately predicted by this approach, even in 'silent mutants'.
Collapse
Affiliation(s)
- Liang Wu
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands.
| | | | | | | |
Collapse
|
120
|
Visser D, van Zuylen GA, van Dam JC, Eman MR, Pröll A, Ras C, Wu L, van Gulik WM, Heijnen JJ. Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses. Biotechnol Bioeng 2005; 88:157-67. [PMID: 15449293 DOI: 10.1002/bit.20235] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article presents the dynamic responses of several intra- and extracellular components of an aerobic, glucose-limited chemostat culture of Saccharomyces cerevisiae to glucose and ethanol pulses within a time window of 75 sec. Even though the ethanol pulse cannot perturb the glycolytic pathway directly, a distinct response of the metabolites at the lower part of glycolysis was found. We suggest that this response is an indirect effect, caused by perturbation of the NAD/NADH ratio, which is a direct consequence of the conversion of ethanol into acetaldehyde. This effect of the NAD/NADH ratio on glycolysis might serve as an additional explanation for the observed decrease of 3PG, 2PG, and PEP during a glucose pulse. The responses measured during the ethanol pulse were used to evaluate the allosteric regulation of glycolysis. Our results confirm that FBP stimulates pyruvate kinase and suggest that this effect is pronounced. Furthermore, it appears that PEP does not play an important role in the allosteric regulation of phosphofructo kinase.
Collapse
Affiliation(s)
- Diana Visser
- PURAC, P.O. Box 21, 4200 AA Gorinchem, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
van Winden WA, van Dam JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM, Heijnen JJ. Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of (13)C-labeled primary metabolites. FEMS Yeast Res 2005; 5:559-68. [PMID: 15780655 DOI: 10.1016/j.femsyr.2004.10.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Revised: 10/08/2004] [Accepted: 10/11/2004] [Indexed: 11/19/2022] Open
Abstract
Metabolic-flux analyses in microorganisms are increasingly based on (13)C-labeling data. In this paper a new approach for the measurement of (13)C-label distributions is presented: rapid sampling and quenching of microorganisms from a cultivation, followed by extraction and detection by liquid chromatography-mass spectrometry of free intracellular metabolites. This approach allows the direct assessment of mass isotopomer distributions of primary metabolites. The method is applied to the glycolytic and pentose phosphate pathways of Saccharomyces cerevisiae strain CEN.PK113-7D grown in an aerobic, glucose-limited chemostat culture. Detailed investigations of the measured mass isotopomer distributions demonstrate the accuracy and information-richness of the obtained data. The mass fractions are fitted with a cumomer model to yield the metabolic fluxes. It is estimated that 24% of the consumed glucose is catabolized via the pentose phosphate pathway. Furthermore, it is found that turnover of storage carbohydrates occurs. Inclusion of this turnover in the model leads to a large confidence interval of the estimated split ratio.
Collapse
Affiliation(s)
- Wouter A van Winden
- Kluyver Laboratory for Biotechnology, Department of Biotechnology, Faculty of Applied Sciences, Bioprocess Technology Group, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
122
|
van der Werf MJ, Jellema RH, Hankemeier T. Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol 2005; 32:234-52. [PMID: 15895265 DOI: 10.1007/s10295-005-0231-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 03/10/2005] [Indexed: 01/01/2023]
Abstract
Microbial production strains are currently improved using a combination of random and targeted approaches. In the case of a targeted approach, potential bottlenecks, feed-back inhibition, and side-routes are removed, and other processes of interest are targeted by overexpressing or knocking-out the gene(s) of interest. To date, the selection of these targets has been based at its best on expert knowledge, but to a large extent also on 'educated guesses' and 'gut feeling'. Therefore, time and thus money is wasted on targets that later prove to be irrelevant or only result in a very minor improvement. Moreover, in current approaches, biological processes that are not known to be involved in the formation of a specific product are overlooked and it is impossible to rank the relative importance of the different targets postulated. Metabolomics, a technology that involves the non-targeted, holistic analysis of the changes in the complete set of metabolites in the cell in response to environmental or cellular changes, in combination with multivariate data analysis (MVDA) tools like principal component discriminant analysis and partial least squares, allow the replacement of current empirical approaches by a scientific approach towards the selection and ranking of targets. In this review, we describe the technological challenges in setting up the novel metabolomics technology and the principle of MVDA algorithms in analyzing biomolecular data sets. In addition to strain improvement, the combined metabolomics and MVDA approach can also be applied to growth medium optimization, predicting the effect of quality differences of different batches of complex media on productivity, the identification of bioactives in complex mixtures, the characterization of mutant strains, the exploration of the production potential of strains, the assignment of functions to orphan genes, the identification of metabolite-dependent regulatory interactions, and many more microbiological issues.
Collapse
|
123
|
Mashego MR, Jansen MLA, Vinke JL, van Gulik WM, Heijnen JJ. Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats. FEMS Yeast Res 2005; 5:419-30. [PMID: 15691747 DOI: 10.1016/j.femsyr.2004.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/10/2004] [Accepted: 11/10/2004] [Indexed: 10/26/2022] Open
Abstract
The effect of culture age on intra- and extracellular metabolite levels as well as on in vitro determined specific activities of enzymes of central carbon metabolism was investigated during evolution for over 90 generations of Saccharomyces cerevisiae CEN.PK 113-7D in an aerobic glucose/ethanol-limited chemostat at a specific dilution rate of 0.052 h(-1). It was found that the fluxes of consumed (O2, glucose/ethanol) and secreted compounds (CO2) did not change significantly during the entire cultivation period. However, morphological changes were observed, leading to an increased cellular surface area. During 90 generations of chemostat growth not only the residual glucose concentration decreased, also the intracellular concentrations of trehalose, glycolytic intermediates, TCA cycle intermediates and amino acids were found to have decreased with a factor 5-10. The only exception was glyoxylate which showed a fivefold increase in concentration. In addition to this the specific activities of most glycolytic enzymes also decreased by a factor 5-10 during long-term cultivation. Exceptions to this were hexokinase, phosphofructokinase, pyruvate kinase and 6-phosphogluconate dehydrogenase of which the activities remained unchanged. Furthermore, the concentrations of the adenylate nucleotides as well as the energy charge of the cells did not change in a significant manner. Surprisingly, the specific activities of glucose-6-phosphate dehydrogenase (G6PDH), malate synthase (MS) and isocitrate lyase (ICL) increased significantly during 90 generations of chemostat cultivation. These changes seem to indicate a pattern where metabolic overcapacities (for reversible reactions) and storage pools (trehalose, high levels of amino acids and excess protein in enzymes) are lost during the evolution period. The driving force is proposed to be a growth advantage in the absence of these metabolic overcapacities.
Collapse
Affiliation(s)
- Mlawule R Mashego
- Department of Biotechnology, Faculty of Applied Sciences, Technical University of Delft, 67 Julianalaan, 2628 BC Delft, The Netherlands.
| | | | | | | | | |
Collapse
|
124
|
Pitkänen JP, Rintala E, Aristidou A, Ruohonen L, Penttilä M. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 2005; 67:827-37. [PMID: 15630585 DOI: 10.1007/s00253-004-1798-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 10/12/2004] [Accepted: 10/15/2004] [Indexed: 11/30/2022]
Abstract
The efficient conversion of xylose-containing biomass hydrolysate by the ethanologenic yeast Saccharomyces cerevisiae to useful chemicals such as ethanol still remains elusive, despite significant efforts in both strain and process development. This study focused on the recovery and characterization of xylose chemostat isolates of a S. cerevisiae strain that overexpresses xylose reductase- and xylitol dehydrogenase-encoding genes from Pichia stipitis and the gene encoding the endogenous xylulokinase. The isolates were recovered from aerobic chemostat cultivations on xylose as the sole or main carbon source. Under aerobic conditions, on minimal medium with 30 g l(-1) xylose, the growth rate of the chemostat isolates was 3-fold higher than that of the original strain (0.15 h(-1) vs 0.05 h(-1)). In a detailed characterization comparing the metabolism of the isolates with the metabolism of xylose, glucose, and ethanol in the original strain, the isolates showed improved properties in the assumed bottlenecks of xylose metabolism. The xylose uptake rate was increased almost 2-fold. Activities of the key enzymes in the pentose phosphate pathway (transketolase, transaldolase) increased 2-fold while the concentrations of their substrates (pentose 5-phosphates, sedoheptulose 7-phosphate) decreased correspondingly. Under anaerobic conditions, on minimal medium with 45 g l(-1) xylose, the ethanol productivity (in terms of cell dry weight; CDW) of one of the isolates increased from 0.012 g g(-1) CDW h(-1) to 0.017 g g(-1) CDW h(-1) and the yield from 0.09 g g(-1) xylose to 0.14 g g(-1) xylose, respectively.
Collapse
|
125
|
Wittmann C, Hans M, van Winden WA, Ras C, Heijnen JJ. Dynamics of intracellular metabolites of glycolysis and TCA cycle during cell-cycle-related oscillation inSaccharomyces cerevisiae. Biotechnol Bioeng 2005; 89:839-47. [PMID: 15690349 DOI: 10.1002/bit.20408] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present work LC-MS/MS was applied to measure the concentrations of intermediates of glycolysis and TCA cycle during autonomous, cell-cycle synchronized oscillations in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. This study complements previously reported oscillations in carbon dioxide production rate, intracellular concentrations of trehalose and various free amino acids, and extracellular acetate and pyruvate in the same culture. Of the glycolytic intermediates, fructose 1,6-bisphosphate, 2- and 3-phosphoglycerate, and phosphoenolpyruvate show the most pronounced oscillatory behavior, the latter three compounds oscillating out of phase with the former. This agrees with previously observed metabolic control by phosphofructokinase and pyruvate kinase. Although individually not clearly oscillating, several intermediates of the TCA cycle, i.e., alpha-ketoglutarate, succinate, fumarate, and malate, exhibited increasing concentration during the cell cycle phase with high carbon flux through glycolysis and TCA cycle. The average mass action ratios of beta-phosphoglucomutase and fumarase agreed well with previously determined in vitro equilibrium constants. Minor differences resulted for phosphoglucose isomerase and enolase. Together with the observed close correlation of the pool sizes of the involved metabolites, this might indicate that, in vivo, these reactions are operating close to equilibrium, whereby care must be taken due to possible differences between in vivo and in vitro conditions. Combining the data with previously determined intracellular amino acid levels from the same culture, a few clear correlations between catabolism and anabolism could be identified: phosphoglycerate/serine and alpha-ketoglutarate/lysine exhibited correlated oscillatory behavior, albeit with different phase shifts. Oscillations in intracellular amino acids might therefore be, at least partly, following oscillations of their anabolic precursors.
Collapse
Affiliation(s)
- Christoph Wittmann
- Biochemical Engineering, Saarland University, POB 151150, 66123 Saarbrücken, Germany.
| | | | | | | | | |
Collapse
|
126
|
Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 2005; 336:164-71. [PMID: 15620880 DOI: 10.1016/j.ab.2004.09.001] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Indexed: 11/22/2022]
Abstract
A novel method was developed for the quantitative analysis of the microbial metabolome using a mixture of fully uniformly (U) (13)C-labeled metabolites as internal standard (IS) in the metabolite extraction procedure the subsequent liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. This mixture of fully U (13)C-labeled metabolites was extracted from biomass of Saccharomyces cerevisiae cultivated in a fed-batch fermentation on fully U (13)C-labeled substrates. The obtained labeled cell extract contained, in principle, the whole yeast metabolome, allowing the quantification of any intracellular metabolite of interest in S. cerevisiae. We have applied the labeled cell extract as IS in the analysis of glycolytic and tricarboxylic acid (TCA) cycle intermediates in S. cerevisiae sampled in both steady-state and transient conditions following a glucose pulse. The use of labeled IS effectively reduced errors due to variations occurring in the analysis and sample processing. As a result, the linearity of calibration lines and the precision of measurements were significantly improved. Coextraction of the labeled cell extract with the samples also eliminates the need to perform elaborate recovery checks for each metabolite to be analyzed. In conclusion, the method presented leads to less workload, more robustness, and a higher precision in metabolome analysis.
Collapse
Affiliation(s)
- Liang Wu
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Villas-Bôas SG, Højer-Pedersen J, Akesson M, Smedsgaard J, Nielsen J. Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 2005; 22:1155-69. [PMID: 16240456 DOI: 10.1002/yea.1308] [Citation(s) in RCA: 327] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Sample preparation is considered one of the limiting steps in microbial metabolome analysis. Eukaryotes and prokaryotes behave very differently during the several steps of classical sample preparation methods for analysis of metabolites. Even within the eukaryote kingdom there is a vast diversity of cell structures that make it imprudent to blindly adopt protocols that were designed for a specific group of microorganisms. We have therefore reviewed and evaluated the whole sample preparation procedures for analysis of yeast metabolites. Our focus has been on the current needs in metabolome analysis, which is the analysis of a large number of metabolites with very diverse chemical and physical properties. This work reports the leakage of intracellular metabolites observed during quenching yeast cells with cold methanol solution, the efficacy of six different methods for the extraction of intracellular metabolites, and the losses noticed during sample concentration by lyophilization and solvent evaporation. A more reliable procedure is suggested for quenching yeast cells with cold methanol solution, followed by extraction of intracellular metabolites by pure methanol. The method can be combined with reduced pressure solvent evaporation and therefore represents an attractive sample preparation procedure for high-throughput metabolome analysis of yeasts.
Collapse
Affiliation(s)
- Silas G Villas-Bôas
- Centre for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Building 223, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
128
|
Pitkänen JP, Törmä A, Alff S, Huopaniemi L, Mattila P, Renkonen R. Excess mannose limits the growth of phosphomannose isomerase PMI40 deletion strain of Saccharomyces cerevisiae. J Biol Chem 2004; 279:55737-43. [PMID: 15520001 DOI: 10.1074/jbc.m410619200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphomannose isomerase (PMI40) catalyzes the conversion between fructose 6-phosphate and mannose 6-phosphate and thus connects glycolysis, i.e. energy production and GDP-mannose biosynthesis or cell wall synthesis in Saccharomyces cerevisiae. After PMI40 deletion (pmi(-)) the cells were viable only if fed with extracellular mannose and glucose. In an attempt to force the GDP-mannose synthesis in the pmi(-) strain by increasing the extracellular mannose concentrations, the cells showed significantly reduced growth rates without any alterations in the intracellular GDP-mannose levels. To reveal the mechanisms resulting in reduced growth rates, we measured genome-wide gene expression levels, several metabolite concentrations, and selected in vitro enzyme activities in central metabolic pathways. The increasing of the initial mannose concentration led to an increase in the mannose 6-phosphate concentration, which inhibited the activity of the second enzyme in glycolysis, i.e. phosphoglucose isomerase converting glucose 6-phosphate to fructose 6-phosphate. As a result of this limitation, the flux through glycolysis was decreased as was the median expression of the genes involved in glycolysis. The expression levels of RAP1, a transcription factor involved in the regulation of the mRNA levels of several enzymes in glycolysis, as well as those of cell cycle regulators CDC28 and CLN3, decreased concomitantly with the growth rates and expression of many genes encoding for enzymes in glycolysis.
Collapse
|
129
|
Mashego MR, Wu L, Van Dam JC, Ras C, Vinke JL, Van Winden WA, Van Gulik WM, Heijnen JJ. MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 2004; 85:620-8. [PMID: 14966803 DOI: 10.1002/bit.10907] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
First, we report the application of stable isotope dilution theory in metabolome characterization of aerobic glucose limited chemostat culture of S. cerevisiae CEN.PK 113-7D using liquid chromatography-electrospray ionization MS/MS (LC-ESI-MS/MS). A glucose-limited chemostat culture of S. cerevisiae was grown to steady state at a specific growth rate (mu)=0.05 h(-1) in a medium containing only naturally labeled (99% U-12C, 1% U-13C) carbon source. Upon reaching steady state, defined as 5 volume changes, the culture medium was switched to chemically identical medium except that the carbon source was replaced with 100% uniformly (U) 13C labeled stable carbon isotope, fed for 4 h, with sampling every hour. We observed that within a period of 1 h approximately 80% of the measured glycolytic metabolites were U-13C-labeled. Surprisingly, during the next 3 h no significant increase of the U-13C-labeled metabolites occurred. Second, we demonstrate for the first time the LC-ESI-MS/MS-based quantification of intracellular metabolite concentrations using U-13C-labeled metabolite extracts from chemostat cultivated S. cerevisiae cells, harvested after 4 h of feeding with 100% U-13C-labeled medium, as internal standard. This method is hereby termed "Mass Isotopomer Ratio Analysis of U-13C Labeled Extracts" (MIRACLE). With this method each metabolite concentration is quantified relative to the concentration of its U-13C-labeled equivalent, thereby eliminating drawbacks of LC-ESI-MS/MS analysis such as nonlinear response and matrix effects and thus leads to a significant reduction of experimental error and work load (i.e., no spiking and standard additions). By coextracting a known amount of U-13C labeled cells with the unlabeled samples, metabolite losses occurring during the sample extraction procedure are corrected for.
Collapse
Affiliation(s)
- M R Mashego
- Kluyver Laboratory for Biotechnology, 67 Julianalaan, 2628BC Delft, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Sato S, Soga T, Nishioka T, Tomita M. Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:151-63. [PMID: 15361149 DOI: 10.1111/j.1365-313x.2004.02187.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The study of the metabolomics of primary metabolites using conventional chemical analyses requires a high-throughput method. Chemical derivatizations are a prerequisite for gas-chromatographic separation, and a large sample quantity is needed for liquid-chromatographic separation and nuclear magnetic resonance detection systems. Recently, we have developed a capillary electrophoresis-mass spectrometry (CE-MS) technology that can simultaneously quantify a large number of primary metabolites, using only a small quantity of samples, and without any chemical derivatizations. Parallel use of a capillary electrophoresis-diode array detector (CE-DAD) system further enables almost all water-soluble intracellular metabolites to be analyzed. We demonstrate, with rice leaves, a simple and rapid method of sample preparation for CE analysis; using this method, we have successfully measured the levels of 88 main metabolites involved in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, photorespiration, and amino acid biosynthesis.
Collapse
Affiliation(s)
- Shigeru Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0035, Japan
| | | | | | | |
Collapse
|
131
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:1096-1103. [PMID: 12375284 DOI: 10.1002/jms.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
132
|
Current awareness on yeast. Yeast 2002; 19:1277-84. [PMID: 12400546 DOI: 10.1002/yea.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|