101
|
Abstract
The ryanodine receptors (RyRs) are a family of Ca2+ release channels found on intracellular Ca2+ storage/release organelles. The RyR channels are ubiquitously expressed in many types of cells and participate in a variety of important Ca2+ signaling phenomena (neurotransmission, secretion, etc.). In striated muscle, the RyR channels represent the primary pathway for Ca2+ release during the excitation-contraction coupling process. In general, the signals that activate the RyR channels are known (e.g., sarcolemmal Ca2+ influx or depolarization), but the specific mechanisms involved are still being debated. The signals that modulate and/or turn off the RyR channels remain ambiguous and the mechanisms involved unclear. Over the last decade, studies of RyR-mediated Ca2+ release have taken many forms and have steadily advanced our knowledge. This robust field, however, is not without controversial ideas and contradictory results. Controversies surrounding the complex Ca2+ regulation of single RyR channels receive particular attention here. In addition, a large body of information is synthesized into a focused perspective of single RyR channel function. The present status of the single RyR channel field and its likely future directions are also discussed.
Collapse
Affiliation(s)
- Michael Fill
- Department of Physiology, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
102
|
Affiliation(s)
- David H MacLennan
- Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, 112 College Street, Toronto, Ontario, Canada M5G 1L6.
| | | | | |
Collapse
|
103
|
West DJ, Smith ECJ, Williams AJ. A novel and rapid approach to isolating functional ryanodine receptors. Biochem Biophys Res Commun 2002; 294:402-7. [PMID: 12051726 DOI: 10.1016/s0006-291x(02)00494-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Conventional methods of isolating and reconstituting ryanodine receptors (RyRs) from native membranes into proteoliposomes take a minimum of 2 days to complete. We have developed an alternative strategy that can be used to isolate and reconstitute functional RyRs in just 3 h with a similar degree of purification. RyRs isolated by this method display characteristic functional behaviour as assessed by radioligand binding and single channel analyses.
Collapse
Affiliation(s)
- Duncan J West
- Department of Cardiac Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Dovehouse Street, London SW3 6LY, UK
| | | | | |
Collapse
|
104
|
Chen SRW, Li P, Zhao M, Li X, Zhang L. Role of the proposed pore-forming segment of the Ca2+ release channel (ryanodine receptor) in ryanodine interaction. Biophys J 2002; 82:2436-47. [PMID: 11964232 PMCID: PMC1302034 DOI: 10.1016/s0006-3495(02)75587-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In earlier studies we showed that point mutations introduced into the proposed pore-forming segment, GVRAGGGIGD (amino acids 4820-4829), of the mouse cardiac ryanodine receptor reduced or abolished high affinity [3H]ryanodine binding. Here we investigate the effects of these mutations on the affinity and dissociation properties of [3H]ryanodine binding and on ryanodine modification of the ryanodine receptor channel at the single channel and whole cell levels. Scatchard analysis and dissociation studies reveal that mutation G4824A decreases the equilibrium dissociation constant (K(d)) and the dissociation rate constant (k(off)), whereas mutations G4828A and D4829A increase the K(d) and k(off) values. The effect of ryanodine on single G4828A and D4829A mutant channels is reversible on the time scale of single channel experiments, in contrast to the irreversible effect of ryanodine on single wild-type channels. Ryanodine alone is able to induce a large and sustained Ca2+ release in HEK293 cells transfected with the R4822A or G4825A mutant cDNA at the resting cytoplasmic Ca2+ but causes little or no Ca2+ release in cells transfected with the wild-type cDNA. Mutation G4826C diminishes the functional effect of ryanodine on Ca2+ release but spares caffeine-induced Ca2+ release in HEK293 cells. Co-expression of the wild-type and G4826C mutant proteins produces single channels that interact with ryanodine reversibly and display altered conductance and ryanodine response. These results are consistent with the view that the proposed pore-forming segment is a critical determinant of ryanodine interaction. A putative model of ryanodine-ryanodine receptor interaction is proposed.
Collapse
Affiliation(s)
- S R Wayne Chen
- Cardiovascular Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | |
Collapse
|
105
|
Shiwa M, Murayama T, Ogawa Y. Molecular cloning and characterization of ryanodine receptor from unfertilized sea urchin eggs. Am J Physiol Regul Integr Comp Physiol 2002; 282:R727-37. [PMID: 11832393 DOI: 10.1152/ajpregu.00519.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unfertilized eggs of sea urchins (Hemicentrotus pulcherrimus) demonstrated cyclic ADP-ribose (cADPR)-induced Ca(2+) release and caffeine-induced Ca(2+) release, both of which were considered to be mediated through the ryanodine receptor (RyR). We cloned cDNAs for sea urchin egg RyR (suRyR), which encode a 597-kDa protein of 5,317 amino acids. suRyR shares common structural features with known RyRs: the well-conserved COOH-terminal domain, which forms a functional Ca(2+) channel, and a large hydrophilic NH2-terminal domain. suRyR shows amino acid sequence identity (43-45%) similar to the three mammalian RyR isoforms. Phylogenetic analysis indicates that suRyR branched from three isoforms of vertebrates before they diverged, suggesting that suRyR may be the only RyR isoform in the sea urchin. Four in-frame insertions were found in suRyR cDNAs, one of which was novel and unique, in that it had a cluster of serine residues. The transcripts with and without these insertions were found in the egg RNA. These results suggest that suRyR may be expressed as a functional Ca(2+)-induced Ca(2+) release channel, which might also be involved in cADPR-induced Ca(2+) release.
Collapse
Affiliation(s)
- Mieko Shiwa
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | | | | |
Collapse
|
106
|
Sun J, Xin C, Eu JP, Stamler JS, Meissner G. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci U S A 2001; 98:11158-62. [PMID: 11562475 PMCID: PMC58700 DOI: 10.1073/pnas.201289098] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have shown previously that at physiologically relevant oxygen tension (pO(2) approximately 10 mmHg), NO S-nitrosylates 1 of approximately 50 free cysteines per ryanodine receptor 1 (RyR1) subunit and transduces a calcium-sensitizing effect on the channel by means of calmodulin (CaM). It has been suggested that cysteine-3635 is part of a CaM-binding domain, and its reactivity is attenuated by CaM [Porter Moore, C., Zhang, J. Z., Hamilton, S. L. (1999) J. Biol. Chem. 274, 36831-36834]. Therefore, we tested the hypothesis that the effect of NO was mediated by C3635. The full-length RyR1 single-site C3635A mutant was generated and expressed in HEK293 cells. The mutation resulted in the loss of CaM-dependent NO modulation of channel activity and reduced S-nitrosylation by NO to background levels but did not affect NO-independent channel modulation by CaM or the redox sensitivity of the channel to O(2) and glutathione. Our results reveal that different cysteines within the channel have been adapted to serve in nitrosative and oxidative responses, and that S-nitrosylation of the cysteine-containing CaM-binding domain underlies the mechanism of CaM-dependent regulation of RyR1 by NO.
Collapse
Affiliation(s)
- J Sun
- Departments of Biochemistry and Biophysics, and Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | |
Collapse
|
107
|
Avila G, Dirksen RT. Functional effects of central core disease mutations in the cytoplasmic region of the skeletal muscle ryanodine receptor. J Gen Physiol 2001; 118:277-90. [PMID: 11524458 PMCID: PMC2229502 DOI: 10.1085/jgp.118.3.277] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Central core disease (CCD) is a human myopathy that involves a dysregulation in muscle Ca(2)+ homeostasis caused by mutations in the gene encoding the skeletal muscle ryanodine receptor (RyR1), the protein that comprises the calcium release channel of the SR. Although genetic studies have clearly demonstrated linkage between mutations in RyR1 and CCD, the impact of these mutations on release channel function and excitation-contraction coupling in skeletal muscle is unknown. Toward this goal, we have engineered the different CCD mutations found in the NH(2)-terminal region of RyR1 into a rabbit RyR1 cDNA (R164C, I404M, Y523S, R2163H, and R2435H) and characterized the functional effects of these mutations after expression in myotubes derived from RyR1-knockout (dyspedic) mice. Resting Ca(2)+ levels were elevated in dyspedic myotubes expressing four of these mutants (Y523S > R2163H > R2435H R164C > I404M RyR1). A similar rank order was also found for the degree of SR Ca(2)+ depletion assessed using maximal concentrations of caffeine (10 mM) or cyclopiazonic acid (CPA, 30 microM). Although all of the CCD mutants fully restored L-current density, voltage-gated SR Ca(2)+ release was smaller and activated at more negative potentials for myotubes expressing the NH(2)-terminal CCD mutations. The shift in the voltage dependence of SR Ca(2)+ release correlated strongly with changes in resting Ca(2)+, SR Ca(2)+ store depletion, and peak voltage-gated release, indicating that increased release channel activity at negative membrane potentials promotes SR Ca(2)+ leak. Coexpression of wild-type and Y523S RyR1 proteins in dyspedic myotubes resulted in release channels that exhibited an intermediate degree of SR Ca(2)+ leak. These results demonstrate that the NH(2)-terminal CCD mutants enhance release channel sensitivity to activation by voltage in a manner that leads to increased SR Ca(2)+ leak, store depletion, and a reduction in voltage-gated Ca(2)+ release. Two fundamentally distinct cellular mechanisms (leaky channels and EC uncoupling) are proposed to explain how altered release channel function caused by different mutations in RyR1 could result in muscle weakness in CCD.
Collapse
Affiliation(s)
- Guillermo Avila
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
108
|
Sambuughin N, Nelson TE, Jankovic J, Xin C, Meissner G, Mullakandov M, Ji J, Rosenberg H, Sivakumar K, Goldfarb LG. Identification and functional characterization of a novel ryanodine receptor mutation causing malignant hyperthermia in North American and South American families. Neuromuscul Disord 2001; 11:530-7. [PMID: 11525881 DOI: 10.1016/s0960-8966(01)00202-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malignant hyperthermia is a pharmacogenetic disorder associated with mutations in Ca(2+) regulatory proteins. It manifests as a hypermetabolic crisis triggered by commonly used anesthetics. Malignant hyperthermia susceptibility is a dominantly inherited predisposition to malignant hyperthermia that can be diagnosed by using caffeine/halothane contracture tests. In a multigenerational North American family with a severe form of malignant hyperthermia that has caused four deaths, a novel RYR1 A2350T missense mutation was identified in all individuals testing positive for malignant hyperthermia susceptibility. The same A2350T mutation was identified in an Argentinean family with two known fatal MH reactions. Functional analysis in HEK-293 cells revealed an altered Ca(2+) dependence and increased caffeine sensitivity of the expressed mutant protein thus confirming the pathogenic potential of the RYR1 A2350T mutation.
Collapse
Affiliation(s)
- N Sambuughin
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Du GG, Guo X, Khanna VK, MacLennan DH. Functional characterization of mutants in the predicted pore region of the rabbit cardiac muscle Ca(2+) release channel (ryanodine receptor isoform 2). J Biol Chem 2001; 276:31760-71. [PMID: 11427530 DOI: 10.1074/jbc.m102751200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A highly conserved amino acid sequence, GVRAGGGIGD(4831), which may form part of the Ca(2+) release channel pore in RyR2, was subjected to Ala scanning or Ala to Val mutagenesis; function was then measured by expression in HEK-293 cells, followed by Ca(2+) photometry, high affinity [(3)H]ryanodine binding, and single-channel recording. All mutants except I4829A and I4829T (corresponding to the I4897T central core disease mutant in RyR1) displayed caffeine-induced Ca(2+) release in HEK-293 cells; only mutants G4826A, I4829V, and G4830A retained high affinity [(3)H]ryanodine binding; and single-channel function was found for all mutants tested, except for G4822A and A4825V. EC(50) values for caffeine-induced Ca(2+) release were increased for G4822A, R4824A, G4826A, G4828A, and D4831A; decreased for V4823A; and unchanged for A4825V, G4827A, I4829V, and G4830A. Ryanodine (10 microm), which did not stimulate Ca(2+) release in wild type (wt), did so in Ala mutants in amino acids 4823-4827. It inhibited the caffeine response in wt and most mutants, but enhanced the amplitude of caffeine-induced Ca(2+) release in mutant G4828A. It also restored caffeine-induced Ca(2+) release in mutants I4829A and I4829T. In single-channel recordings, mutants I4829V and G4830A retained normal conductance, whereas all others had decreased unitary channel conductances ranging from 27 to 540 picosiemens. Single-channel modulation was retained in G4826A, I4829V, and G4830A, but was lost in other mutants. In contrast to wt and G4826A, I4829V, and G4830A, in which divalent metals were preferentially conducted, mutants with loss of modulation had no selectivity of divalent cations over a monovalent cation. Analysis of Gly(4822) to Asp(4831) mutants in RyR2 supports the view that this highly conserved sequence constitutes part of the ion-conducting pore of the Ca(2+) release channel and plays a key role in ryanodine and caffeine binding and activation.
Collapse
Affiliation(s)
- G G Du
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
110
|
Yamaguchi N, Xin C, Meissner G. Identification of apocalmodulin and Ca2+-calmodulin regulatory domain in skeletal muscle Ca2+ release channel, ryanodine receptor. J Biol Chem 2001; 276:22579-85. [PMID: 11306590 DOI: 10.1074/jbc.m102729200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fusion proteins and full-length mutants were generated to identify the Ca(2+)-free (apoCaM) and Ca(2+)-bound (CaCaM) calmodulin binding sites of the skeletal muscle Ca(2+) release channel/ryanodine receptor (RyR1). [(35)S]Calmodulin (CaM) overlays of fusion proteins revealed one potential Ca(2+)-dependent (aa 3553-3662) and one Ca(2+)-independent (aa 4302-4430) CaM binding domain. W3620A or L3624D substitutions almost abolished completely, whereas V3619A or L3624A substitutions reduced [(35)S]CaM binding to fusion protein (aa 3553-3662). Three full-length RyR1 single-site mutants (V3619A,W3620A,L3624D) and one deletion mutant (Delta4274-4535) were generated and expressed in human embryonic kidney 293 cells. L3624D exhibited greatly reduced [(35)S]CaM binding affinity as indicated by a lack of noticeable binding of apoCaM and CaCaM (nanomolar) and the requirement of CaCaM (micromolar) for the inhibition of RyR1 activity. W3620A bound CaM (nanomolar) only in the absence of Ca(2+) and did not show inhibition of RyR1 activity by 3 microm CaCaM. V3619A and the deletion mutant bound apoCaM and CaCaM at levels compared with wild type. V3619A activity was inhibited by CaM with IC(50) approximately 200 nm, as compared with IC(50) approximately 50 nm for wild type and the deletion mutant. [(35)S]CaM binding experiments with sarcoplasmic reticulum vesicles suggested that apoCaM and CaCaM bind to the same region of the native RyR1 channel complex. These results indicate that the intact RyR1 has a single CaM binding domain that is shared by apoCaM and CaCaM.
Collapse
Affiliation(s)
- N Yamaguchi
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | |
Collapse
|
111
|
Boehning D, Mak DO, Foskett JK, Joseph SK. Molecular determinants of ion permeation and selectivity in inositol 1,4,5-trisphosphate receptor Ca2+ channels. J Biol Chem 2001; 276:13509-12. [PMID: 11278266 DOI: 10.1074/jbc.c100094200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We tested the hypothesis that key residues in a putative intraluminal loop contribute to determination of ion permeation through the intracellular Ca(2+) release channel (inositol 1,4,5-trisphosphate receptors (IP(3)Rs)) that is gated by the second messenger inositol 1,4,5-trisphosphate (IP(3)). To accomplish this, we mutated residues within the putative pore forming region of the channel and analyzed the functional properties of mutant channels using a (45)Ca(2+) flux assay and single channel electrophysiological analyses. Two IP(3)R mutations, V2548I and D2550E, retained the ability to release (45)Ca(2+) in response to IP(3). When analyzed at the single channel level; both recombinant channels had IP(3)-dependent open probabilities similar to those observed in wild-type channels. The mutation V2548I resulted in channels that exhibited a larger K(+) conductance (489 +/- 13 picosiemens (pS) for V2548I versus 364 +/- 5 pS for wild-type), but retained a Ca(2+) selectivity similar to wild-type channels (P(Ca(2+)):P(K(+)) approximately 4:1). Conversely, D2550E channels were nonselective for Ca(2+) over K(+) (P(Ca(2+)):P(K(+)) approximately 0.6:1), while the K(+) conductance was effectively unchanged (391 +/- 4 pS). These results suggest that amino acid residues Val(2548) and Asp(2550) contribute to the ion conduction pathway. We propose that the pore of IP(3)R channels has two distinct sites that control monovalent cation permeation (Val(2548)) and Ca(2+) selectivity (Asp(2550)).
Collapse
Affiliation(s)
- D Boehning
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19103, USA
| | | | | | | |
Collapse
|
112
|
Avila G, O'Brien JJ, Dirksen RT. Excitation--contraction uncoupling by a human central core disease mutation in the ryanodine receptor. Proc Natl Acad Sci U S A 2001; 98:4215-20. [PMID: 11274444 PMCID: PMC31205 DOI: 10.1073/pnas.071048198] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2001] [Accepted: 01/30/2001] [Indexed: 11/18/2022] Open
Abstract
Central core disease (CCD) is a human congenital myopathy characterized by fetal hypotonia and proximal muscle weakness that is linked to mutations in the gene encoding the type-1 ryanodine receptor (RyR1). CCD is thought to arise from Ca(2+)-induced damage stemming from mutant RyR1 proteins forming "leaky" sarcoplasmic reticulum (SR) Ca(2+) release channels. A novel mutation in the C-terminal region of RyR1 (I4898T) accounts for an unusually severe and highly penetrant form of CCD in humans [Lynch, P. J., Tong, J., Lehane, M., Mallet, A., Giblin, L., Heffron, J. J., Vaughan, P., Zafra, G., MacLennan, D. H. & McCarthy, T. V. (1999) Proc. Natl. Acad. Sci. USA 96, 4164--4169]. We expressed in skeletal myotubes derived from RyR1-knockout (dyspedic) mice the analogous mutation engineered into a rabbit RyR1 cDNA (I4897T). Here we show that homozygous expression of I4897T in dyspedic myotubes results in a complete uncoupling of sarcolemmal excitation from voltage-gated SR Ca(2+) release without significantly altering resting cytosolic Ca(2+) levels, SR Ca(2+) content, or RyR1-mediated enhancement of dihydropyridine receptor (DHPR) channel activity. Coexpression of both I4897T and wild-type RyR1 resulted in a 60% reduction in voltage-gated SR Ca(2+) release, again without altering resting cytosolic Ca(2+) levels, SR Ca(2+) content, or DHPR channel activity. These findings indicate that muscle weakness suffered by individuals possessing the I4898T mutation involves a functional uncoupling of sarcolemmal excitation from SR Ca(2+) release, rather than the expression of overactive or leaky SR Ca(2+) release channels.
Collapse
Affiliation(s)
- G Avila
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|