101
|
Pecoraro C, Gennis RB, Vygodina TV, Konstantinov AA. Role of the K-channel in the pH-dependence of the reaction of cytochrome c oxidase with hydrogen peroxide. Biochemistry 2001; 40:9695-708. [PMID: 11583170 DOI: 10.1021/bi010115v] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of cytochrome c oxidase (COX) from Rhodobacter sphaeroides with hydrogen peroxide has been studied at alkaline (pH 8.5) and acidic (pH 6.5) conditions with the aid of a stopped-flow apparatus. Absorption changes in the entire 350-800 nm spectral range were monitored and analyzed by a global fitting procedure. The reaction can be described by the sequential formation of two intermediates analogous to compounds I and II of peroxidases: oxidized COX + H2O2 --> intermediate I --> intermediate II. At pH as high as 8.5, intermediate I appears to be a mixture of at least two species characterized by absorption bands at approximately 607 nm (P607) and approximately 580 nm (F-I580) that rise synchronously. At acidic pH (6.5), intermediate I is represented mainly by a component with an alpha-peak around 575 nm (F-I575) that is probably equivalent to the so-called F* species observed with the bovine COX. The data are consistent with a pH-dependent reaction branching at the step of intermediate I formation. To get further insight into the mechanism of the pH-dependence, the peroxide reaction was studied using two mutants of the R. sphaeroides oxidase, K362M and D132N, that block, respectively, the proton-conducting K- and D-channels. The D132N mutation does not affect significantly the Ox --> intermediate I step of the peroxide reaction. In contrast, K362M replacement exerts a dramatic effect, eliminating the pH-dependence of intermediate I formation. The data obtained allow us to propose that formation of the acidic form of intermediate I (F-I575, F*) requires protonation of some group at/near the binuclear site that follows or is concerted with peroxide binding. The protonation involves specifically the K-channel. Presumably, a proton vacancy can be generated in the site as a consequence of the proton-assisted heterolytic scission of the O-O bond of the bound peroxide. The results are consistent with a proposal [Vygodina, T. V., Pecoraro, C., Mitchell, D., Gennis, R., and Konstantinov, A. A. (1998) Biochemistry 37, 3053-3061] that the K-channel may be involved in the delivery of the first four protons in the catalytic cycle (starting from reduction of the oxidized form) including proton uptake coupled to reduction of the binuclear site and transfer of protons driven by cleavage of the dioxygen O-O bond in the binculear site. Once peroxide intermediate I has been formed, generation of a strong oxene ligand at the heme a3 iron triggers a transition of the enzyme to the "peroxidase conformation" in which the K-channel is closed and the binuclear site becomes protonically disconnected from the bulk aqueous phase.
Collapse
Affiliation(s)
- C Pecoraro
- Department of Biochemistry, University of Illinois, Urbana 61801, USA
| | | | | | | |
Collapse
|
102
|
Kotelnikov AI, Medvedev ES, Medvedev DM, Stuchebrukhov AA. Kinetic Treatment of Coupled Electron and Proton Transfer in Flash-Photolysis Experiments on Carbon Monoxide-Inhibited Mixed-Valence Cytochrome c Oxidase. J Phys Chem B 2001. [DOI: 10.1021/jp010001t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. I. Kotelnikov
- Department of Chemistry, University of California, Davis, California 95616, and Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| | - E. S. Medvedev
- Department of Chemistry, University of California, Davis, California 95616, and Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| | - D. M. Medvedev
- Department of Chemistry, University of California, Davis, California 95616, and Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| | - A. A. Stuchebrukhov
- Department of Chemistry, University of California, Davis, California 95616, and Institute of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow, Russia
| |
Collapse
|
103
|
Brändén M, Sigurdson H, Namslauer A, Gennis RB, Adelroth P, Brzezinski P. On the role of the K-proton transfer pathway in cytochrome c oxidase. Proc Natl Acad Sci U S A 2001; 98:5013-8. [PMID: 11296255 PMCID: PMC33155 DOI: 10.1073/pnas.081088398] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase is a membrane-bound enzyme that catalyzes the four-electron reduction of oxygen to water. This highly exergonic reaction drives proton pumping across the membrane. One of the key questions associated with the function of cytochrome c oxidase is how the transfer of electrons and protons is coupled and how proton transfer is controlled by the enzyme. In this study we focus on the function of one of the proton transfer pathways of the R. sphaeroides enzyme, the so-called K-proton transfer pathway (containing a highly conserved Lys(I-362) residue), leading from the protein surface to the catalytic site. We have investigated the kinetics of the reaction of the reduced enzyme with oxygen in mutants of the enzyme in which a residue [Ser(I-299)] near the entry point of the pathway was modified with the use of site-directed mutagenesis. The results show that during the initial steps of oxygen reduction, electron transfer to the catalytic site (to form the "peroxy" state, P(r)) requires charge compensation through the proton pathway, but no proton uptake from the bulk solution. The charge compensation is proposed to involve a movement of the K(I-362) side chain toward the binuclear center. Thus, in contrast to what has been assumed previously, the results indicate that the K-pathway is used during oxygen reduction and that K(I-362) is charged at pH approximately 7.5. The movement of the Lys is proposed to regulate proton transfer by "shutting off" the protonic connectivity through the K-pathway after initiation of the O(2) reduction chemistry. This "shutoff" prevents a short-circuit of the proton-pumping machinery of the enzyme during the subsequent reaction steps.
Collapse
Affiliation(s)
- M Brändén
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
104
|
Fabian M, Palmer G. Proton involvement in the transition from the "peroxy" to the ferryl intermediate of cytochrome c oxidase. Biochemistry 2001; 40:1867-74. [PMID: 11327850 DOI: 10.1021/bi002373i] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the absence of any external electron donor, the "peroxy" intermediate of cytochrome c oxidase (CcO-607) is converted to the ferryl form (CcO-580) and subsequently to oxidized enzyme. The rate of conversion of CcO-607 to the CcO-580 form is pH dependent between pH 3.0 and pH 7.6. A plot of the logarithm of the rate constant for this conversion is a linear function of pH with a slope of -0.92, implying the involvement of a single proton in the transition. Upon rapidly lowering the pH from 8.1 to 5.8, the uptake of one proton was observed by direct pH measurement, and the kinetics of proton uptake coincide with the spectral conversion of CcO-607 to CcO-580. We interpret the slow endogenous decay of CcO-607 to CcO-580 to be the result of proton transfer to a deprotonated group generated in the binuclear cavity during CcO-607 formation. This group is not freely accessible to protons from the medium, and its pK(a) is probably higher than 9.0.
Collapse
Affiliation(s)
- M Fabian
- Department of Biochemistry and Cell Biology, MS 140, Rice University, 6100 Main, Houston, TX 77005-1892, USA.
| | | |
Collapse
|
105
|
Baptista AM, Soares CM. Some Theoretical and Computational Aspects of the Inclusion of Proton Isomerism in the Protonation Equilibrium of Proteins. J Phys Chem B 2001. [DOI: 10.1021/jp002763e] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
106
|
Lill MA, Hutter MC, Helms V. Accounting for Environmental Effects in ab Initio Calculations of Proton Transfer Barriers. J Phys Chem A 2000. [DOI: 10.1021/jp001550m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Markus A. Lill
- Max-Planck Institute of Biophysics, Kennedyallee 70, 60596 Frankfurt/Main, Germany
| | - Michael C. Hutter
- Max-Planck Institute of Biophysics, Kennedyallee 70, 60596 Frankfurt/Main, Germany
| | - Volkhard Helms
- Max-Planck Institute of Biophysics, Kennedyallee 70, 60596 Frankfurt/Main, Germany
| |
Collapse
|
107
|
Ullmann GM. The Coupling of Protonation and Reduction in Proteins with Multiple Redox Centers: Theory, Computational Method, and Application to Cytochrome c3. J Phys Chem B 2000. [DOI: 10.1021/jp000711j] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. Matthias Ullmann
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., TPC-15, La Jolla, California 92037
| |
Collapse
|
108
|
Pfitzner U, Hoffmeier K, Harrenga A, Kannt A, Michel H, Bamberg E, Richter OM, Ludwig B. Tracing the D-pathway in reconstituted site-directed mutants of cytochrome c oxidase from Paracoccus denitrificans. Biochemistry 2000; 39:6756-62. [PMID: 10841754 DOI: 10.1021/bi992235x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme-copper terminal oxidases use the free energy of oxygen reduction to establish a transmembrane proton gradient. While the molecular mechanism of coupling electron transfer to proton pumping is still under debate, recent structure determinations and mutagenesis studies have provided evidence for two pathways for protons within subunit I of this class of enzymes. Here, we probe the D-pathway by mutagenesis of the cytochrome c oxidase of the bacterium Paracoccus denitrificans; amino acid replacements were selected with the rationale of interfering with the hydrophilic lining of the pathway, in particular its assumed chain of water molecules. Proton pumping was assayed in the reconstituted vesicle system by a stopped-flow spectroscopic approach, allowing a reliable assessment of proton translocation efficiency even at low turnover rates. Several mutations at positions above the cytoplasmic pathway entrance (Asn 131, Asn 199) and at the periplasmic exit region (Asp 399) led to complete inhibition of proton pumping; one of these mutants, N131D, exhibited an ideal decoupled phenotype, with a turnover comparable to that of the wild-type enzyme. Since sets of mutations in other positions along the presumed course of the pathway showed normal proton translocation stoichiometries, we conclude that the D-pathway is too wide in most areas above positions 131/199 to be disturbed by single amino acid replacements.
Collapse
Affiliation(s)
- U Pfitzner
- Molekulare Genetik, Institut f]ur Biochemie, Biozentrum, Johann Wolfgang Goethe-Universit]at, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Capitanio N, Capitanio G, Minuto M, De Nitto E, Palese LL, Nicholls P, Papa S. Coupling of electron transfer with proton transfer at heme a and Cu(A) (redox Bohr effects) in cytochrome c oxidase. Studies with the carbon monoxide inhibited enzyme. Biochemistry 2000; 39:6373-9. [PMID: 10828951 DOI: 10.1021/bi0003137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A study is presented on the coupling of electron transfer with proton transfer at heme a and Cu(A) (redox Bohr effects) in carbon monoxide inhibited cytochrome c oxidase isolated from bovine heart mitochondria. Detailed analysis of the coupling number for H(+) release per heme a, Cu(A) oxidized (H(+)/heme a, Cu(A) ratio) was based on direct measurement of the balance between the oxidizing equivalents added as ferricyanide to the CO-inhibited fully reduced COX, the equivalents of heme a, Cu(A), and added cytochrome c oxidized and the H(+) released upon oxidation and all taken up back by the oxidase upon rereduction of the metal centers. One of two reductants was used, either succinate plus a trace of mitochondrial membranes (providing a source of succinate-c reductase) or hexaammineruthenium(II) as the chloride salt. The experimental H(+)/heme a, Cu(A) ratios varied between 0.65 and 0.90 in the pH range 6.0-8.5. The pH dependence of the H(+)/heme a, Cu(A) ratios could be best-fitted by a function involving two redox-linked acid-base groups with pK(o)-pK(r) of 5.4-6.9 and 7.3-9.0, respectively. Redox titrations in the same samples of the CO-inhibited oxidase showed that Cu(A) and heme a exhibited superimposed E'(m) values, which decreased, for both metals, by around 20 mV/pH unit increase in the range 6.0-8.5. A model in which oxido-reduction of heme a and Cu(A) are both linked to the pK shifts of the two acid-base groups, characterized by the analysis of the pH dependence of the H(+)/heme a, Cu(A) ratios, provided a satisfactory fit for the pH dependence of the E'(m) of heme a and Cu(A). The results presented are consistent with a primary involvement of the redox Bohr effects shared by heme a and Cu(A) in the proton-pumping activity of cytochrome c oxidase.
Collapse
Affiliation(s)
- N Capitanio
- Department of Medical Biochemistry and Biology, University of Bari, Piazza G. Cesare, 70124 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
110
|
Wikström M. Mechanism of proton translocation by cytochrome c oxidase: a new four-stroke histidine cycle. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:188-98. [PMID: 10812033 DOI: 10.1016/s0005-2728(00)00068-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M Wikström
- Helsinki Bioenergetics Group, Department of Medical Chemistry, Institute of Biomedical Sciences and Biocentrum Helsinki, University of Helsinki, Finland.
| |
Collapse
|
111
|
Mills DA, Florens L, Hiser C, Qian J, Ferguson-Miller S. Where is 'outside' in cytochrome c oxidase and how and when do protons get there? BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:180-7. [PMID: 10812032 DOI: 10.1016/s0005-2728(00)00067-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytochrome c oxidase moves both electrons and protons in its dual role as a terminal electron acceptor and a contributor to the proton motive force which drives the formation of ATP. Although the sequence of electron transfer events is well-defined, the correlated mechanism and routes by which protons are translocated across the membrane are not. A recent model [Michel, Proc. Natl. Acad. Sci. USA 95 (1998) 12819] offers a detailed molecular description of when and how protons are translocated through the protein to the outside, which contrasts with previous models in several respects. This article reviews the behavior of site-directed mutants of Rhodobacter sphaeroides cytochrome c oxidase in the context of these different models. Studies of the internally located lysine 362 on the K channel and aspartate 132 on the D channel, indicate that D132, but not K362, is connected to the exterior region. Analysis of the externally located arginine pair, 481 and 482, and the Mg/Mn ligands, histidine 411 and aspartate 412, which are part of the hydrogen-bonded network that includes the heme propionates, indicates that alterations in this region do not strongly compromise proton pumping, but do influence the pH dependence of overall activity and the control of activity by the pH gradient. The results are suggestive of a region of 'sequestered' protons: beyond a major energetic gate, but selectively responsive to the external environment.
Collapse
Affiliation(s)
- D A Mills
- Biochemistry Department, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
112
|
Zaslavsky D, Gennis RB. Proton pumping by cytochrome oxidase: progress, problems and postulates. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:164-79. [PMID: 10812031 DOI: 10.1016/s0005-2728(00)00066-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The current status of our knowledge about the mechanism of proton pumping by cytochrome oxidase is discussed. Significant progress has resulted from the study of site-directed mutants within the proton-conducting pathways of the bacterial oxidases. There appear to be two channels to facilitate proton translocation within the enzyme and they are important at different parts of the catalytic cycle. The use of hydrogen peroxide as an alternative substrate provides a very useful experimental tool to explore the enzymology of this system, and insights gained from this approach are described. Proton transfer is coupled to and appears to regulate the rate of electron transfer steps during turnover. It is proposed that the initial step in the reaction involves a proton transfer to the active site that is important to convert metal-ligated hydroxide to water, which can more rapidly dissociate from the metals and allow the reaction with dioxygen which, we propose, can bind the one-electron reduced heme-copper center. Coordinated movement of protons and electrons over both short and long distances within the enzyme appear to be important at different parts of the catalytic cycle. During the initial reduction of dioxygen, direct hydrogen transfer to form a tyrosyl radical at the active site seems likely. Subsequent steps can be effectively blocked by mutation of a residue at the surface of the protein, apparently preventing the entry of protons.
Collapse
Affiliation(s)
- D Zaslavsky
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
113
|
Behr J, Michel H, Mäntele W, Hellwig P. Functional properties of the heme propionates in cytochrome c oxidase from Paracoccus denitrificans. Evidence from FTIR difference spectroscopy and site-directed mutagenesis. Biochemistry 2000; 39:1356-63. [PMID: 10684616 DOI: 10.1021/bi991504g] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By specific (13)C labeling of the heme propionates, four bands in the reduced-minus-oxidized FTIR difference spectrum of cytochrome c oxidase from Paracoccus denitrificans have been assigned to the heme propionates [Behr, J., Hellwig, P., Mäntele, W., and Michel, H. (1998) Biochemistry 37, 7400-7406]. To attribute these signals to the individual propionates, we have constructed seven cytochrome coxidase variants using site-directed mutagenesis of subunit I. The mutant enzymes W87Y, W87F, W164F, H403A, Y406F, R473K, and R474K were characterized by measurement of enzymatic turnover, proton pumping activity, and Vis and FTIR spectroscopy. Whereas the mutant enzymes W164F and Y406F were found to be structurally altered, the other cytochrome c oxidase variants were suitable for band assignment in the infrared. Reduced-minus-oxidized FTIR difference spectra of the mutant enzymes were used to identify the ring D propionate of heme a as a likely proton acceptor upon reduction of cytochromic oxidase. The ring D propionate of heme a(3) might undergo conformational changes or, less likely, act as a proton donor.
Collapse
Affiliation(s)
- J Behr
- Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Heinrich-Hoffmann-Strasse 7, D-60528 Frankfurt/M., Germany
| | | | | | | |
Collapse
|
114
|
Riistama S, Verkhovsky MI, Laakkonen L, Wikström M, Puustinen A. Interaction between the formyl group of heme a and arginine 54 in cytochrome aa(3) from Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1456:1-4. [PMID: 10611451 DOI: 10.1016/s0005-2728(99)00097-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The optical spectrum of heme a is red-shifted in aa(3)-type cytochrome c oxidases compared to isolated low-spin heme A model compounds. Early spectroscopic studies indicated that this may be due to hydrogen-bonding of the formyl group of heme a to an amino acid in the close vicinity. Here we show that most of the optical spectral shift of native heme a is due to a hydrogen-bonding interaction between the formyl group and arginine-54 in subunit I of cytochrome aa(3) from Paracoccus denitrificans, and that a smaller part is due to an electrostatic interaction between the D ring propionate of heme a and arginine-474.
Collapse
Affiliation(s)
- S Riistama
- Helsinki Bioenergetics Group, Department of Medical Chemistry, Institute of Biomedical Sciences and Biocentrum Helsinki, P.O. Box 8, 00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
115
|
Kannt A, Pfitzner U, Ruitenberg M, Hellwig P, Ludwig B, Mäntele W, Fendler K, Michel H. Mutation of Arg-54 strongly influences heme composition and rate and directionality of electron transfer in Paracoccus denitrificans cytochrome c oxidase. J Biol Chem 1999; 274:37974-81. [PMID: 10608865 DOI: 10.1074/jbc.274.53.37974] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of a single site mutation of Arg-54 to methionine in Paracoccus denitrificans cytochrome c oxidase was studied using a combination of optical spectroscopy, electrochemical and rapid kinetics techniques, and time-resolved measurements of electrical membrane potential. The mutation resulted in a blue-shift of the heme a alpha-band by 15 nm and partial occupation of the low-spin heme site by heme O. Additionally, there was a marked decrease in the midpoint potential of the low-spin heme, resulting in slow reduction of this heme species. A stopped-flow investigation of the reaction with ferrocytochrome c yielded a kinetic difference spectrum resembling that of heme a(3). This observation, and the absence of transient absorbance changes at the corresponding wavelength of the low-spin heme, suggests that, in the mutant enzyme, electron transfer from Cu(A) to the binuclear center may not occur via heme a but that instead direct electron transfer to the high-spin heme is the dominating process. This was supported by charge translocation measurements where Deltapsi generation was completely inhibited in the presence of KCN. Our results thus provide an example for how the interplay between protein and cofactors can modulate the functional properties of the enzyme complex.
Collapse
Affiliation(s)
- A Kannt
- Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Heinrich-Hoffmann-Strasse 7, D-60528, Germany
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Moore DB, Martínez TJ. Ab Initio Study of Coupled Electron Transfer/Proton Transfer in Cytochrome c Oxidase. J Phys Chem A 1999. [DOI: 10.1021/jp992559v] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dana B. Moore
- Department of Chemistry and The Beckman Institute, University of Illinois, Urbana, Illinois 61801
| | - Todd J. Martínez
- Department of Chemistry and The Beckman Institute, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
117
|
Bratton MR, Pressler MA, Hosler JP. Suicide inactivation of cytochrome c oxidase: catalytic turnover in the absence of subunit III alters the active site. Biochemistry 1999; 38:16236-45. [PMID: 10587446 DOI: 10.1021/bi9914107] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic core of cytochrome c oxidase is composed of three subunits: I, II, and III. Subunit III is a highly hydrophobic membrane protein that contains no redox centers; its role in cytochrome oxidase function is not obvious. Here, subunit III has been removed from the three-subunit mitochondrial-like oxidase of Rhodobacter sphaeroides by detergent washing. The resulting two-subunit oxidase, subunit III (-), is highly active. Ligand-binding analyses and resonance Raman spectroscopy show that its heme a(3)-Cu(B) active site is normal. However, subunit III (-) spontaneously and irreversibly inactivates during O(2) reduction. At pH 7.5, its catalytic lifetime is only 2% that of the normal oxidase. This suicide inactivation event primarily alters the active site. Its ability to form specific O(2) reduction intermediates is lost, and CO binding experiments suggest that the access of O(2) to reduced heme a(3) is inhibited. Reduced heme a accumulates in response to a decrease in the redox potential of heme a(3); electron transfer between the hemes is inhibited. Ligand-binding experiments and resonance Raman analysis show that increased flexibility in the structure of the active site accompanies inactivation. Cu(B) is partially lost. It is proposed that suicide inactivation results from the dissociation of a ligand of Cu(B) and that subunit III functions to prevent suicide inactivation by maintaining the structural integrity of the Cu(B) center via long-range interactions.
Collapse
Affiliation(s)
- M R Bratton
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
118
|
Harrenga A, Michel H. The cytochrome c oxidase from Paracoccus denitrificans does not change the metal center ligation upon reduction. J Biol Chem 1999; 274:33296-9. [PMID: 10559205 DOI: 10.1074/jbc.274.47.33296] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c oxidase catalyzes the reduction of oxygen to water. This process is accompanied by the vectorial transport of protons across the mitochondrial or bacterial membrane ("proton pumping"). The mechanism of proton pumping is still a matter of debate. Many proposed mechanisms require structural changes during the reaction cycle of cytochrome c oxidase. Therefore, the structure of the cytochrome c oxidase was determined in the completely oxidized and in the completely reduced states at a temperature of 100 K. No ligand exchanges or other major structural changes upon reduction of the cytochrome c oxidase from Paracoccus denitrificans were observed. The three histidine Cu(B) ligands are well defined in the oxidized and in the reduced states. These results are hardly compatible with the "histidine cycle" mechanisms formulated previously.
Collapse
Affiliation(s)
- A Harrenga
- Max-Planck-Institut für Biophysik, Abteilung für molekulare Membranbiologie, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt am Main, Germany
| | | |
Collapse
|
119
|
Michel H. Cytochrome c oxidase: catalytic cycle and mechanisms of proton pumping--a discussion. Biochemistry 1999; 38:15129-40. [PMID: 10563795 DOI: 10.1021/bi9910934] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase catalyzes the reduction of molecular oxygen to water, a process in which four electrons, four protons, and one molecule of oxygen are consumed. The reaction is coupled to the pumping of four additional protons across the membrane. According to the currently accepted concept, the pumping of all four protons occurs after the binding of oxygen to the reduced enzyme and is exclusively coupled to the last two electron transfer steps. A careful analysis of the existing data shows that there is no experimental evidence for this paradigm. It is more likely that only three protons are pumped during the second half of the catalytic cycle of cytochrome c oxidase after the reaction with oxygen. In this article a variant of a recent mechanistic model of proton pumping by electrostatic repulsion is discussed. It is based on the electroneutrality principle in a way that in the catalytic cycle each electron transfer to the membrane-embedded electron acceptors is charge-compensated by uptake of one proton. The mechanism takes into account the findings with mutant cytochrome c oxidases and explains the results of many recent experiments, including the effects of hydrogen peroxide.
Collapse
Affiliation(s)
- H Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| |
Collapse
|
120
|
Ma J, Tsatsos PH, Zaslavsky D, Barquera B, Thomas JW, Katsonouri A, Puustinen A, Wikström M, Brzezinski P, Alben JO, Gennis RB. Glutamate-89 in subunit II of cytochrome bo3 from Escherichia coli is required for the function of the heme-copper oxidase. Biochemistry 1999; 38:15150-6. [PMID: 10563797 DOI: 10.1021/bi991764y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent electrostatics calculations on the cytochrome c oxidase from Paracoccus denitrificans revealed an unexpected coupling between the redox state of the heme-copper center and the state of protonation of a glutamic acid (E78II) that is 25 A away in subunit II of the oxidase. Examination of more than 300 sequences of the homologous subunit in other heme-copper oxidases shows that this residue is virtually totally conserved and is in a cluster of very highly conserved residues at the "negative" end (bacterial cytoplasm or mitochondrial matrix) of the second transmembrane helix. The functional importance of several residues in this cluster (E89II, W93II, T94II, and P96II) was examined by site-directed mutagenesis of the corresponding region of the cytochrome bo(3) quinol oxidase from Escherichia coli (where E89II is the equivalent of residue E78II of the P. denitrificans oxidase). Substitution of E89II with either alanine or glutamine resulted in reducing the rate of turnover to about 43 or 10% of the wild-type value, respectively, whereas E89D has only about 60% of the activity of the control oxidase. The quinol oxidase activity of the W93V mutant is also reduced to about 30% of that of the wild-type oxidase. Spectroscopic studies with the purified E89A and E89Q mutants indicate no perturbation of the heme-copper center. The data suggest that E89II (E. coli numbering) is critical for the function of the heme copper oxidases. The proximity to K362 suggests that this glutamic acid residue may regulate proton entry or transit through the K-channel. This hypothesis is supported by the finding that the degree of oxidation of the low-spin heme b is greater in the steady state using hydrogen peroxide as an oxidant in place of dioxygen for the E89Q mutant. Thus, it appears that the inhibition resulting from the E89II mutation is due to a block in the reduction of the heme-copper binuclear center, expected for K-channel mutants.
Collapse
Affiliation(s)
- J Ma
- Department of Biochemistry, University of Illinois, Urbana 61801, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Sham YY, Muegge I, Warshel A. Simulating proton translocations in proteins: Probing proton transfer pathways in theRhodobacter sphaeroides reaction center. Proteins 1999. [DOI: 10.1002/(sici)1097-0134(19990901)36:4<484::aid-prot13>3.0.co;2-r] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
122
|
Pereira MM, Santana M, Soares CM, Mendes J, Carita JN, Fernandes AS, Saraste M, Carrondo MA, Teixeira M. The caa3 terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP:oxygen oxidoreductase lacking the key glutamate of the D-channel. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1413:1-13. [PMID: 10524259 DOI: 10.1016/s0005-2728(99)00073-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The respiratory chain of the thermohalophilic bacterium Rhodothermus marinus contains a novel complex III and a high potential iron-sulfur protein (HiPIP) as the main electron shuttle (Pereira et al., Biochemistry 38 (1999) 1268-1275 and 1276-1283). In this paper, one of the terminal oxidases expressed in this bacterium is extensively characterised. It is a caa3-type oxidase, isolated with four subunits (apparent molecular masses of 42, 19 and 15 kDa and a C-haem containing subunit of 35 kDa), which has haems of the A(s) type. This oxidase is capable of using TMPD and horse heart cytochrome c as substrates, but has a higher turnover with HiPIP, being the first example of a HiPIP:oxygen oxidoreductase. The oxidase has unusually low reduction potentials of 260 (haem C), 255 (haem A) and 180 mV (haem A3). Subunit I of R. marinus caa3 oxidase has an overall significant homology with the subunits I of the COX type oxidases, namely the metal binding sites and most residues considered to be functionally important for proton uptake and pumping (K- and D-channels). However, a major difference is present: the putative essential glutamate (E278 in Paraccocus denitrificans) of the D-channel is missing in the R. marinus oxidase. Homology modelling of the R. marinus oxidase shows that the phenol group of a tyrosine residue may occupy a similar spatial position as the glutamate carboxyl, in relation to the binuclear centre. Moreover, sequence comparisons reveal that several enzymes lacking that glutamate have a conserved substitution pattern in helix VI: -YSHPXV- instead of -XGHPEV-. These observations are discussed in terms of the mechanisms for proton uptake and it is suggested that, in these enzymes, tyrosine may play the role of the glutamate in the proton channel.
Collapse
Affiliation(s)
- M M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Das TK, Gomes CM, Teixeira M, Rousseau DL. Redox-linked transient deprotonation at the binuclear site in the aa(3)-type quinol oxidase from Acidianus ambivalens: implications for proton translocation. Proc Natl Acad Sci U S A 1999; 96:9591-6. [PMID: 10449737 PMCID: PMC22253 DOI: 10.1073/pnas.96.17.9591] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hyperthermophilic archaeon Acidianus ambivalens expresses a membrane-bound aa(3)-type quinol oxidase, when grown aerobically, that we have studied by resonance Raman spectroscopy. The purified aa(3) oxidase, which does not contain bound quinol, undergoes a reversible slow conformational change at heme a(3) upon reduction, as indicated by a change in the frequency of its heme formyl stretching mode, from 1,660 cm(-1) to 1,667 cm(-1). In contrast, upon reduction of the integral membrane enzyme or the purified enzyme preincubated with decylubiquinol, this mode appears at 1,667 cm(-1) much more rapidly, suggesting a role of the bound quinol in controlling the redox-linked conformational changes. The shift of the formyl mode to higher frequency is attributed to a loss of hydrogen bonding that is associated with a group having a pKa of approximately 3.8. Based on these observations, a crucial element for proton translocation involving a redox-linked conformational change near the heme a(3) formyl group is postulated.
Collapse
Affiliation(s)
- T K Das
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
124
|
Riistama S, Laakkonen L, Wikström M, Verkhovsky MI, Puustinen A. The calcium binding site in cytochrome aa3 from Paracoccus denitrificans. Biochemistry 1999; 38:10670-7. [PMID: 10451361 DOI: 10.1021/bi990885v] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A shift in the spectrum of heme a induced by calcium or proton binding, or by the proton electrochemical gradient, has been attributed to interaction of Ca2+ or H+ with the vicinity of the heme propionates in mitochondrial cytochrome c oxidase, and proposed to be associated with the exit path of proton translocation. However, this shift is absent in cytochrome c oxidases from yeast and bacteria [Kirichenko et al. (1998) FEBS Lett. 423, 329-333]. Here we report that mutations of Glu56 or Gln63 in a newly described Ca2+/Na+ binding site in subunit I of cytochrome c oxidase from Paracoccus denitrificans [Ostermeier et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 10547-10553] establish the Ca2+-dependent spectral shift in heme a. This shift is counteracted by low pH and by sodium ions, as was described for mammalian cytochrome c oxidase, but in the mutant Paracoccus enzymes Na+ is also able to shift the heme a spectrum, albeit to a smaller extent. We conclude that the Ca2+-induced shift in both Paracoccus and mitochondrial cytochrome aa3 is due to binding of the cation to the new metal binding site. Comparison of the structures of this site in the two types of enzyme allows rationalization of their different reactivity with cations. Structural analysis and data from site-directed mutagenesis experiments suggest mechanisms by which the cation binding may influence the heme spectrum.
Collapse
Affiliation(s)
- S Riistama
- Helsinki Bioenergetics Group, Department of Medical Chemistry, Institute of Biomedical Sciences, Biocentrum Helsinki, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
125
|
Alexov EG, Gunner MR. Calculated protein and proton motions coupled to electron transfer: electron transfer from QA- to QB in bacterial photosynthetic reaction centers. Biochemistry 1999; 38:8253-70. [PMID: 10387071 DOI: 10.1021/bi982700a] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaction centers from Rhodobacter sphaeroides were subjected to Monte Carlo sampling to determine the Boltzmann distribution of side-chain ionization states and positions and buried water orientation and site occupancy. Changing the oxidation states of the bacteriochlorophyll dimer electron donor (P) and primary (QA) and secondary (QB) quinone electron acceptors allows preparation of the ground (all neutral), P+QA-, P+QB-, P0QA-, and P0QB- states. The calculated proton binding going from ground to other oxidation states and the free energy of electron transfer from QA-QB to form QAQB- (DeltaGAB) compare well with experiment from pH 5 to pH 11. At pH 7 DeltaGAB is measured as -65 meV and calculated to be -80 meV. With fixed protein positions as in standard electrostatic calculations, DeltaGAB is +170 meV. At pH 7 approximately 0.2 H+/protein is bound on QA reduction. On electron transfer to QB there is little additional proton uptake, but shifts in side chain protonation and position occur throughout the protein. Waters in channels leading from QB to the surface change site occupancy and orientation. A cluster of acids (GluL212, AspL210, and L213) and SerL223 near QB play important roles. A simplified view shows this cluster with a single negative charge (on AspL213 with a hydrogen bond to SerL233) in the ground state. In the QB- state the cluster still has one negative charge, now on the more distant AspL210. AspL213 and SerL223 move so SerL223 can hydrogen bond to QB-. These rearrangements plus other changes throughout the protein make the reaction energetically favorable.
Collapse
Affiliation(s)
- E G Alexov
- Department of Physics, City College of New York 10031, USA
| | | |
Collapse
|
126
|
Rost B, Behr J, Hellwig P, Richter OM, Ludwig B, Michel H, Mäntele W. Time-resolved FT-IR studies on the CO adduct of Paracoccus denitrificans cytochrome c oxidase: comparison of the fully reduced and the mixed valence form. Biochemistry 1999; 38:7565-71. [PMID: 10360954 DOI: 10.1021/bi990225q] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rebinding of CO to cytochrome c oxidase from Paracoccus denitrificans in the fully reduced and in the half-reduced (mixed valence) form as a function of temperature was investigated using time-resolved rapid-scan FT-IR spectroscopy in the mid-IR (1200-2100 cm-1). For the fully reduced enzyme, rebinding was complete in approximately 2 s at 268 K and showed a biphasic reaction. At 84 K, nonreversible transfer of CO from heme a3 to CuB was observed. Both photolysis at 84 K and photolysis at 268 K result in FT-IR difference spectra which show similarities in the amide I, amide II, and heme modes. Both processes, however, differ in spectral features characteristic for amino acid side chain modes and may thus be indicative for the motional constraint of CO at low temperature. Rebinding of photodissociated CO for the mixed-valence enzyme at 268 K is also biphasic, but much slower as compared to the fully reduced enzyme. FT-IR difference spectra show band features similar to those for the fully reduced enzyme. Additional strong bands in the amide I and amide II range indicate local conformational changes induced by electron and coupled proton transfer. These signals disappear when the temperature is lowered to 84 K. At 268 K, a difference signal at 1746 cm-1 is observed which is shifted by 6 cm-1 to 1740 cm-1 in 2H2O. The absence of this signal for the mutant Glu 278 Gln allows assignment to the COOH stretching mode of Glu 278, and indicates changes of the conformation, proton position, or protonation of this residue upon electron transfer.
Collapse
Affiliation(s)
- B Rost
- Institut für Biophysik der Universität Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
127
|
Ralle M, Verkhovskaya ML, Morgan JE, Verkhovsky MI, Wikström M, Blackburn NJ. Coordination of CuB in reduced and CO-liganded states of cytochrome bo3 from Escherichia coli. Is chloride ion a cofactor? Biochemistry 1999; 38:7185-94. [PMID: 10353829 DOI: 10.1021/bi982885l] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ubiquinol oxidase cytochrome bo3 from Escherichia coli is one of the respiratory heme-copper oxidases which catalyze the reduction of O2 to water linked to translocation of protons across the bacterial or mitochondrial membrane. We have studied the structure of the CuB site in the binuclear heme-copper center of O2 reduction by EXAFS spectroscopy in the fully reduced state of this enzyme, as well as in the reduced CO-liganded states where CO is bound either to the heme iron or to CuB. We find that, in the reduced enzyme, CuB is coordinated by one weakly bound and two strongly bound histidine imidazoles at Cu-N distances of 2.10 and 1.92 A, respectively, and that an additional feature at 2.54 A is due to a highly ordered water molecule that might be weakly associated with the copper. Unexpectedly, the binding of CO to heme iron is found to result in a major conformational change at CuB, which now binds only two equidistant histidine imidazoles at 1.95 A and a chloride ion at 2. 25 A, with elimination of the water molecule and one of the histidines. Attempts to remove the chloride from the enzyme by extensive dialysis did not change this finding, nor did substitution of chloride with bromide. Photolysis of CO bound to the heme iron is known to cause the CO to bind to CuB in a very fast reaction and to remain bound to CuB at low temperatures. In this state, we indeed find the CO to be bound to CuB at a Cu-C distance of 1.85 A, with chloride still bound at 2.25 A and the two histidine imidazoles at a Cu-N distance of 2.01 A. These results suggest that reduction of the binuclear site weakens the bond between CuB and one of its three histidine imidazole ligands, and that binding of CO to the reduced binuclear site causes a major structural change in CuB in which one histidine ligand is lost and replaced by a chloride ion. Whether chloride is a cofactor in this enzyme is discussed.
Collapse
Affiliation(s)
- M Ralle
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291, USA
| | | | | | | | | | | |
Collapse
|
128
|
Baptista AM, Martel PJ, Soares CM. Simulation of electron-proton coupling with a Monte Carlo method: application to cytochrome c3 using continuum electrostatics. Biophys J 1999; 76:2978-98. [PMID: 10354425 PMCID: PMC1300269 DOI: 10.1016/s0006-3495(99)77452-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new method is presented for simulating the simultaneous binding equilibrium of electrons and protons on protein molecules, which makes it possible to study the full equilibrium thermodynamics of redox and protonation processes, including electron-proton coupling. The simulations using this method reflect directly the pH and electrostatic potential of the environment, thus providing a much closer and realistic connection with experimental parameters than do usual methods. By ignoring the full binding equilibrium, calculations usually overlook the twofold effect that binding fluctuations have on the behavior of redox proteins: first, they affect the energy of the system by creating partially occupied sites; second, they affect its entropy by introducing an additional empty/occupied site disorder (here named occupational entropy). The proposed method is applied to cytochrome c3 of Desulfovibrio vulgaris Hildenborough to study its redox properties and electron-proton coupling (redox-Bohr effect), using a continuum electrostatic method based on the linear Poisson-Boltzmann equation. Unlike previous studies using other methods, the full reduction order of the four hemes at physiological pH is successfully predicted. The sites more strongly involved in the redox-Bohr effect are identified by analysis of their titration curves/surfaces and the shifts of their midpoint redox potentials and pKa values. Site-site couplings are analyzed using statistical correlations, a method much more realistic than the usual analysis based on direct interactions. The site found to be more strongly involved in the redox-Bohr effect is propionate D of heme I, in agreement with previous studies; other likely candidates are His67, the N-terminus, and propionate D of heme IV. Even though the present study is limited to equilibrium conditions, the possible role of binding fluctuations in the concerted transfer of protons and electrons under nonequilibrium conditions is also discussed. The occupational entropy contributions to midpoint redox potentials and pKa values are computed and shown to be significant.
Collapse
Affiliation(s)
- A M Baptista
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal.
| | | | | |
Collapse
|
129
|
Siletsky S, Kaulen AD, Konstantinov AA. Resolution of electrogenic steps coupled to conversion of cytochrome c oxidase from the peroxy to the ferryl-oxo state. Biochemistry 1999; 38:4853-61. [PMID: 10200174 DOI: 10.1021/bi982614a] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charge translocation across the membrane coupled to transfer of the third electron in the reaction cycle of bovine cytochrome c oxidase (COX) has been studied. Flash-induced reduction of the peroxy intermediate (P) to the ferryl-oxo state (F) by tris-bipyridyl complex of Ru(II) in liposome-reconstituted COX is coupled to several phases of membrane potential generation that have been time-resolved with the use of an electrometric technique applied earlier in the studies of the ferryl-oxo-to-oxidized (F --> O) transition of the enzyme [Zaslavsky, D., et al. (1993) FEBS Lett. 336, 389-393]. As in the case of the F --> O transition, the electric response associated with photoreduction of P to F includes a rapid KCN-insensitive electrogenic phase with a tau of 40-50 microseconds (reduction of heme a by CuA) and a multiphasic slower part; this part is cyanide-sensitive and is assigned to vectorial transfer of protons coupled to reduction of oxygen intermediate in the binuclear center. The net KCN-sensitive phase of the response is approximately 4-fold more electrogenic than the rapid phase, which is similar to the characteristics of the F --> O electrogenic transition and is consistent with net transmembrane translocation of two protons per electron, including vectorial movement of both "chemical" and "pumped" protons. The protonic part of the P --> F electric response is faster than in the F --> O transition and can be deconvoluted into three exponential phases with tau values varying for different samples in the range of 0.25-0.33, 1-1.5, and 6-7.5 ms at pH 8. Of these three phases, the 1-1.5 ms component is the major one contributing 50-60%. The P --> F conversion induced by single electron photoreduction of the peroxy state as studied in this work is several times slower than the P --> F transition resolved during oxidation of the fully reduced oxidase by molecular oxygen. The role of the CuB redox state in controlling the rate of P --> F conversion of heme a3 is discussed.
Collapse
Affiliation(s)
- S Siletsky
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | | | | |
Collapse
|
130
|
Poulos TL, Li H, Raman CS. Heme-mediated oxygen activation in biology: cytochrome c oxidase and nitric oxide synthase. Curr Opin Chem Biol 1999; 3:131-7. [PMID: 10348620 DOI: 10.1016/s1367-5931(99)80024-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Major advances have been made in our understanding of cytochrome c oxidase owing to continued crystallographic work on important intermediates. This, together with a wealth of data derived from selective mutations and sophisticated spectroscopic probes, has provided significant new insights into oxidase dioxygen chemistry and proton pumping activities. Recent advances have also been made for nitric oxide synthase, owing to the crystal structure determination of the heme domain for two of three nitric oxide synthase isoforms.
Collapse
Affiliation(s)
- T L Poulos
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, USA
| | | | | |
Collapse
|
131
|
Paula S, Sucheta A, Szundi I, Einarsdóttir O. Proton and electron transfer during the reduction of molecular oxygen by fully reduced cytochrome c oxidase: a flow-flash investigation using optical multichannel detection. Biochemistry 1999; 38:3025-33. [PMID: 10074355 DOI: 10.1021/bi981351h] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton and electron transfer events during the reaction of solubilized fully reduced bovine heart cytochrome c oxidase with molecular oxygen were investigated using the flow-flash technique. Time-resolved spectral changes resulting from ligand binding and electron transfer events were detected simultaneously with pH changes in the bulk. The kinetics and spectral changes in the visible region (450-750 nm) were probed by optical multichannel detection, allowing high spectral resolution on time scales from 50 ns to 50 ms. Experiments were carried out in the presence and absence of pH-sensitive dyes (carboxyfluorescein at pH 6.5, phenol red at pH 7.5, and m-cresol purple at pH 8.5) which permitted separation of spectral changes due to proton transfer from those caused by ligand binding and electron transfer. The transient spectra recorded in the absence of dye were analyzed by singular-value decomposition and multiexponential fitting. Five apparent lifetimes (0.93 microseconds, 10 microseconds, 36 microseconds, 90 microseconds, and 1.3 ms at pH 7.5) could consistently be distinguished and provided a basis for a reaction mechanism consistent with our most recent kinetic model [Sucheta, A., Szundi, I., and Einarsdóttir, O. (1999) Biochemistry 37, 17905-17914]. The dye response indicated that proton uptake occurred concurrently with the two slowest electron transfer steps, in agreement with previous results based on single-wavelength detection [Hallén, S., and Nilsson, T. (1992) Biochemistry 31, 11853-11859]. The stoichiometry of the proton uptake reactions was approximately 1.3 +/- 0.3, 1.4 +/- 0.3, and 1.6 +/- 0.5 protons per enzyme at pH 6.5, 7.5, and 8.5, respectively. The electron transfer between heme a and CuA was limited by proton uptake on a 90 microseconds time scale. We have established the lower limit of the true rate constant for the electron transfer between CuA and heme a to be approximately 2 x 10(5) s-1.
Collapse
Affiliation(s)
- S Paula
- Department of Chemistry and Biochemistry, University of California at Santa Cruz 95064, USA
| | | | | | | |
Collapse
|
132
|
Lübben M, Prutsch A, Mamat B, Gerwert K. Electron transfer induces side-chain conformational changes of glutamate-286 from cytochrome bo3. Biochemistry 1999; 38:2048-56. [PMID: 10026287 DOI: 10.1021/bi981859k] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heme-copper oxidases have two putative proton channels, the so-called K-channel and the membrane-spanning D-channel. The latter contains a number of polar groups with glutamate-286 located in its center, which could-together with bound water-contribute to a transmembrane hydrogen-bonded network. Protonation states of carboxyl groups from cytochrome bo3 of Escherichia coli were studied by redox Fourier transform infrared (FTIR) difference spectroscopy. A net absorbance increase in the carboxyl region was observed upon reduction. The band signature typically found in heme-copper oxidases comprises an absorbance decrease (reduced-minus-oxidized difference spectra) at 1745 cm-1 and increase at 1735 cm-1. No significant changes in the carboxyl region were found in the site-specific mutants D135E and D407N. The difference bands were lacking in redox spectra of mutants at position 286; they could clearly be related to Glu-286. In wild-type oxidase, the pK of Glu-286 appears to be higher than 9.8. Upon solvent isotope exchange from H2O to D2O, the band at 1745 cm-1 shifts more readily than the one at 1735 cm-1, indicating dissimilar accessibility of the carboxyl side chain to the hydrogen-bonded network in both redox states. The data are consistent with a redox-triggered conformational change of Glu-286, which attributes to the carboxyl group an orientation toward the interior of the D-channel for the oxidized form. The change of Glu-286 is retained in cyanide complexes of cytochrome bo3 and of cytochrome c oxidase; therefore it should be related to oxidoreduction of the heme b and/or CuB metal centers.
Collapse
Affiliation(s)
- M Lübben
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Germany.
| | | | | | | |
Collapse
|
133
|
Puustinen A, Wikström M. Proton exit from the heme-copper oxidase of Escherichia coli. Proc Natl Acad Sci U S A 1999; 96:35-7. [PMID: 9874767 PMCID: PMC15088 DOI: 10.1073/pnas.96.1.35] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathways of proton entry have been identified in the proton-translocating heme-copper oxidases, but the proton exit pathway is unknown. Here we report experiments with cytochrome bo3 in Escherichia coli cells that may identify the beginning of the exit pathway. Systematic mutations of arginines 438 and 439 (R481 and R482 in the E. coli enzyme), numbering as in cytochrome aa3 from bovine heart mitochondria, which interact with the ring D propionates of the two heme groups, reveal that the D propionate of the oxygen-binding heme is involved in proton pumping; its anionic form must be stabilized in order for proton translocation to occur. This may locate the beginning of the pathway by which pumped protons exit from the enzyme structure.
Collapse
Affiliation(s)
- A Puustinen
- Helsinki Bioenergetics Group, Department of Medical Chemistry, Institute of Biomedical Sciences and Biocentrum Helsinki, P.O. Box 8, 00014 University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
134
|
Michel H. The mechanism of proton pumping by cytochrome c oxidasex127e [comments]. Proc Natl Acad Sci U S A 1998; 95:12819-24. [PMID: 9788998 PMCID: PMC23610 DOI: 10.1073/pnas.95.22.12819] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/1998] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase catalyzes the reduction of oxygen to water that is accompanied by pumping of four protons across the mitochondrial or bacterial membrane. Triggered by the results of recent x-ray crystallographic analyses, published data concerning the coupling of individual electron transfer steps to proton pumping are reanalyzed: Conversion of the conventional oxoferryl intermediate F to the fully oxidized form O is connected to pumping of only one proton. Most likely one proton is already pumped during the double reduction of O, and only three protons during conversion of the "peroxy" forms P to O via the oxoferryl form F. Based on the available structural, spectroscopic, and mutagenesis data, a detailed mechanistic model, carefully considering electrostatic interactions, is presented. In this model, each of the four reductions of heme a during the catalytic cycle is coupled to the uptake of one proton via the D-pathway. These protons, but never more than two, are temporarily stored in the regions of the heme a and a3 propionates and are driven to the outside ("pumped") by electrostatic repulsion from protons entering the active site during turnover. The first proton is pumped by uptake of one proton via the K-pathway during reduction, the second and third proton during the P --> F transition when the D-pathway and the active site become directly connected, and the fourth one upon conversion of F to O. Atomic structures are assigned to each intermediate including F' with an alternative route to O.
Collapse
Affiliation(s)
- H Michel
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany.
| |
Collapse
|
135
|
Zaslavsky D, Sadoski RC, Wang K, Durham B, Gennis RB, Millett F. Single electron reduction of cytochrome c oxidase compound F: resolution of partial steps by transient spectroscopy. Biochemistry 1998; 37:14910-6. [PMID: 9778367 DOI: 10.1021/bi981490z] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The final step of the catalytic cycle of cytochrome oxidase, the reduction of oxyferryl heme a3 in compound F, was investigated using a binuclear polypyridine ruthenium complex (Ru2C) as a photoactive reducing agent. The net charge of +4 on Ru2C allows it to bind electrostatically near CuA in subunit II of cytochrome oxidase. Photoexcitation of Ru2C with a laser flash results in formation of a metal-to-ligand charge-transfer excited state, Ru2C, which rapidly transfers an electron to CuA of cytochrome oxidase from either beef heart or Rhodobacter sphaeroides. This is followed by reversible electron transfer from CuA to heme a with forward and reverse rate constants of k1 = 9.3 x 10(4) s-1 and k-1 = 1.7 x 10(4) s-1 for R. sphaeroides cytochrome oxidase in the resting state. Compound F was prepared by treating the resting enzyme with excess hydrogen peroxide. The value of the rate constant k1 is the same in compound F where heme a3 is in the oxyferryl form as in the resting enzyme where heme a3 is ferric. Reduction of heme a in compound F is followed by electron transfer from heme a to oxyferryl heme a3 with a rate constant of 700 s-1, as indicated by transients at 605 and 580 nm. No delay between heme a reoxidation and oxyferryl heme a3 reduction is observed, showing that no electron-transfer intermediates, such as reduced CuB, accumulate in this process. The rate constant for electron transfer from heme a to oxyferryl heme a3 was measured in beef cytochrome oxidase from pH 7.0 to pH 9.5, and found to decrease upon titration of a group with a pKa of 9.0. The rate constant is slower in D2O than in H2O by a factor of 4.3, indicating that the electron-transfer reaction is rate-limited by a proton-transfer step. The pH dependence and deuterium isotope effect for reduction of isolated compound F are comparable to that observed during reaction of the reduced, CO-inhibited CcO with oxygen by the flow-flash technique. This result indicates that electron transfer from heme a to oxyferryl heme a3 is not controlled by conformational effects imposed by the initial redox state of the enzyme. The rate constant for electron transfer from heme a to oxyferryl heme a3 is the same in the R. sphaeroides K362M CcO mutant as in wild-type CcO, indicating that the K-channel is not involved in proton uptake during reduction of compound F.
Collapse
Affiliation(s)
- D Zaslavsky
- School of Chemical Sciences, University of Illinois, Urbana 61801, USA
| | | | | | | | | | | |
Collapse
|
136
|
Kannt A, Soulimane T, Buse G, Becker A, Bamberg E, Michel H. Electrical current generation and proton pumping catalyzed by the ba3-type cytochrome c oxidase from Thermus thermophilus. FEBS Lett 1998; 434:17-22. [PMID: 9738443 DOI: 10.1016/s0014-5793(98)00942-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several amino acid residues that have been shown to be essential for proton transfer in most cytochrome c oxidases are not conserved in the ba3-type cytochrome c oxidase from the thermophilic eubacterium Thermus thermophilus. So far, it has been unclear whether the Th. thermophilus ba3-type cytochrome c oxidase can nevertheless function as an electrogenic proton pump. In this study, we have combined charge translocation measurements on a lipid bilayer with two independent methods of proton pumping measurements to show that enzymatic turnover of the Th. thermophilus cytochrome c oxidase is indeed coupled to the generation of an electrocurrent and proton pumping across the membrane. In addition to a 'vectorial' consumption of 1.0 H+/e- for water formation, proton pumping with a stoichiometry of 0.4-0.5 H+/e- was observed. The implications of these findings for the mechanism of redox-coupled proton transfer in this unusual cytochrome c oxidase are discussed.
Collapse
Affiliation(s)
- A Kannt
- Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Frankfurt/M., Germany
| | | | | | | | | | | |
Collapse
|
137
|
Abstract
Proton translocation is the means by which free energy is conserved from oxygen reduction by the respiratory heme-copper oxidases and from sunlight by bacteriorhodopsin. Three-dimensional structures at atomic resolution of both proteins have aided functional studies of the proton translocation mechanism. A comparison reveals common structural and functional features that may be unique to the primary proton pumps in biology.
Collapse
Affiliation(s)
- M Wikström
- Helsinki Bioenergetics Group, University of Helsinki, Finland.
| |
Collapse
|
138
|
Structure and dynamics of a proton shuttle in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1998. [DOI: 10.1016/s0005-2728(98)00077-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
139
|
Kannt A, Lancaster CR, Michel H. The role of electrostatic interactions for cytochrome c oxidase function. J Bioenerg Biomembr 1998; 30:81-7. [PMID: 9623809 DOI: 10.1023/a:1020563629032] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, the enormous increase in high-resolution three-dimensional structures of proteins together with the development of powerful theoretical techniques have provided the basis for a more detailed examination of the role of electrostatics in determining the midpoint potentials of redox-active metal centers and in influencing the protonation behavior of titratable groups in proteins. Based on the coordinates of the Paracoccus denitrificans cytochrome c oxidase, we have determined the electrostatic potential in and around the protein, calculated the titration curves for all ionizable residues in the protein, and analyzed the response of the protein environment to redox changes at the metal centers. The results of this study provide insight into how charged groups can be stabilized within a low-dielectric environment and how the range of their electrostatic effects can be modulated by the protein. A cluster of 18 titratable groups around the heme a3-CuB binuclear center, including a hydroxide ion bound to the copper, was identified that accounts for most of the proton uptake associated with redox changes at the binuclear site. Predicted changes in net protonation were in reasonable agreement with experimentally determined values. The relevance of these findings in the light of possible mechanisms of redox-coupled proton movement is discussed.
Collapse
Affiliation(s)
- A Kannt
- Max-Planck-Institute for Biophysics, Department of Molecular Membrane Biology, Frankfurt am Main, Germany
| | | | | |
Collapse
|