101
|
Matsarskaia O, Roosen‐Runge F, Schreiber F. Multivalent ions and biomolecules: Attempting a comprehensive perspective. Chemphyschem 2020; 21:1742-1767. [PMID: 32406605 PMCID: PMC7496725 DOI: 10.1002/cphc.202000162] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Ions are ubiquitous in nature. They play a key role for many biological processes on the molecular scale, from molecular interactions, to mechanical properties, to folding, to self-organisation and assembly, to reaction equilibria, to signalling, to energy and material transport, to recognition etc. Going beyond monovalent ions to multivalent ions, the effects of the ions are frequently not only stronger (due to the obviously higher charge), but qualitatively different. A typical example is the process of binding of multivalent ions, such as Ca2+ , to a macromolecule and the consequences of this ion binding such as compaction, collapse, potential charge inversion and precipitation of the macromolecule. Here we review these effects and phenomena induced by multivalent ions for biological (macro)molecules, from the "atomistic/molecular" local picture of (potentially specific) interactions to the more global picture of phase behaviour including, e. g., crystallisation, phase separation, oligomerisation etc. Rather than attempting an encyclopedic list of systems, we rather aim for an embracing discussion using typical case studies. We try to cover predominantly three main classes: proteins, nucleic acids, and amphiphilic molecules including interface effects. We do not cover in detail, but make some comparisons to, ion channels, colloidal systems, and synthetic polymers. While there are obvious differences in the behaviour of, and the relevance of multivalent ions for, the three main classes of systems, we also point out analogies. Our attempt of a comprehensive discussion is guided by the idea that there are not only important differences and specific phenomena with regard to the effects of multivalent ions on the main systems, but also important similarities. We hope to bridge physico-chemical mechanisms, concepts of soft matter, and biological observations and connect the different communities further.
Collapse
Affiliation(s)
| | - Felix Roosen‐Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and SocietyMalmö UniversitySweden
- Division of Physical ChemistryLund UniversitySweden
| | | |
Collapse
|
102
|
Liao Y, Guan M, Liang D, Shi Y, Liu J, Zeng X, Huang S, Xie X, Yuan D, Qiao H, Huang L. Differences in Pathological Composition Among Large Artery Occlusion Cerebral Thrombi, Valvular Heart Disease Atrial Thrombi and Carotid Endarterectomy Plaques. Front Neurol 2020; 11:811. [PMID: 32849244 PMCID: PMC7427050 DOI: 10.3389/fneur.2020.00811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose: Acute ischemic stroke (AIS) with large artery occlusion (LAO) may lead to severe disability or death if not promptly treated. To determine the source of cerebral artery occlusion thrombosis, we studied the pathological components of cerebral artery thrombosis with different etiological classifications to guide clinical formulation of preventive treatment. Materials and Methods: Eighty-eight thrombi from AIS patients with LAO, 12 atrial thrombi from patients with valvular heart disease (VHD), and 11 plaques obtained by carotid endarterectomy (CEA) from patients with carotid artery stenosis were included in this retrospective study. The hematoxylin and eosin–stained specimens were quantitatively analyzed for erythrocytes, white blood cells (WBCs) and fibrin; platelets were shown by immunohistochemistry for CD31. Results: The thrombi of VHD showed the highest percentage of fibrin, followed by those of cardioembolism (CE) and stroke of undetermined etiology (SUE), and these values were higher than those of the other groups. Plaques obtained by CEA showed the highest erythrocyte number, followed by the large artery atherosclerosis (LAA) thrombi, and showed significantly noticeable differences between other stroke subtypes. The proportions of fibrin and erythrocytes in the thrombi of CE and SUE were most similar to those in the thrombi of VHD, and the LAA thrombi were the closest to those obtained by CEA. CE thrombi and CEA plaques had a higher percentage of WBCs than thrombi of other stroke thrombus subtypes and VHD. Conclusions: CE and most cryptogenic thrombi may originate from the heart, and the formation of carotid atherosclerotic plaques may be related to atherosclerotic cerebral embolism. Inflammation may be involved in their formation.
Collapse
Affiliation(s)
- Yu Liao
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Pathology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Min Guan
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Dan Liang
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yingying Shi
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jialin Liu
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiuli Zeng
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shengming Huang
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaomei Xie
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Dingxin Yuan
- Department of Neurology, Beijiao Hospital, Foshan, China
| | - Hongyu Qiao
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Li'an Huang
- Department of Neurology, Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
103
|
Khokhlova TD, Kucewicz JC, Ponomarchuk EM, Hunter C, Bruce M, Khokhlova VA, Matula TJ, Monsky W. Effect of Stiffness of Large Extravascular Hematomas on Their Susceptibility to Boiling Histotripsy Liquefaction in Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2007-2016. [PMID: 32444137 PMCID: PMC7360281 DOI: 10.1016/j.ultrasmedbio.2020.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 05/04/2023]
Abstract
Large intra-abdominal, retroperitoneal and intramuscular hematomas are common consequences of sharp and blunt trauma and post-surgical bleeds, and often threaten organ failure, compartment syndrome or spontaneous infection. Current therapy options include surgical evacuation and placement of indwelling drains that are not effective because of the viscosity of the organized hematoma. We have previously reported the feasibility of using boiling histotripsy (BH)-a pulsed high-intensity focused ultrasound method-for liquefaction of large volumes of freshly coagulated blood and subsequent fine-needle aspiration. The goal of this work was to evaluate the changes in stiffness of large coagulated blood volumes with aging and retraction in vitro, and to correlate these changes with the size of the BH void and, therefore, the susceptibility of the material to BH liquefaction. Large-volume (55-200 mL) whole-blood clots were fabricated in plastic molds from human and bovine blood, either by natural clotting or by recalcification of anticoagulated blood, with or without addition of thrombin. Retraction of the clots was achieved by incubation for 3 h, 3 d or 8 d. The shear modulus of the samples was measured with a custom-built indentometer and shear wave elasticity (SWE) imaging. Sizes of single liquefied lesions produced with a 1.5-MHz high-intensity focused ultrasound transducer within a 30-s standard BH exposure served as the metric for susceptibility of clot material to this treatment. Neither the shear moduli of naturally clotted human samples (0.52 ± 0.08 kPa), nor their degree of retraction (ratio of expelled fluid to original volume 50%-58%) depended on the length of incubation within 0-8 d, and were significantly lower than those of bovine samples (2.85 ± 0.17 kPa, retraction 5%-38%). In clots made from anticoagulated bovine blood, the variation of calcium chloride concentration within 5-40 mmol/L did not change the stiffness, whereas lower concentrations and the addition of thrombin resulted in significantly softer clots, similar to naturally clotted human samples. Within the achievable shear modulus range (0.4-1.6 kPa), the width of the BH-liquefied lesion was more affected by the changes in stiffness than the length of the lesion. In all cases, however, the lesions were larger compared with any soft tissue liquefied with the same BH parameters, indicating higher susceptibility of hematomas to BH damage. These results suggest that clotted bovine blood with added thrombin is an acceptable in vitro model of both acute and chronic human hematomas for assessing the efficiency of BH liquefaction strategies.
Collapse
Affiliation(s)
| | - John C Kucewicz
- Center for Industrial and Medical Ultrasound, Applied Physics Lab, University of Washington, Seattle, Washington, USA
| | | | - Christopher Hunter
- Center for Industrial and Medical Ultrasound, Applied Physics Lab, University of Washington, Seattle, Washington, USA
| | - Matthew Bruce
- Center for Industrial and Medical Ultrasound, Applied Physics Lab, University of Washington, Seattle, Washington, USA
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Lab, University of Washington, Seattle, Washington, USA; Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Thomas J Matula
- Center for Industrial and Medical Ultrasound, Applied Physics Lab, University of Washington, Seattle, Washington, USA
| | - Wayne Monsky
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
104
|
Montero A, Acosta S, Hernández R, Elvira C, Jorcano JL, Velasco D. Contraction of fibrin-derived matrices and its implications for in vitro human skin bioengineering. J Biomed Mater Res A 2020; 109:500-514. [PMID: 32506782 DOI: 10.1002/jbm.a.37033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/09/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
It is well-known that fibroblasts play a fundamental role in the contraction of collagen and fibrin hydrogels when used in the production of in vitro bilayered skin substitutes. However, little is known about the contribution of other factors, such as the hydrogel matrix itself, on this contraction. In this work, we studied the contraction of plasma-derived fibrin hydrogels at different temperatures (4, 23, and 37°C) in an isotonic buffer (phosphate-buffered saline). These types of hydrogels presented a contraction of approximately 30% during the first 24 hr, following a similar kinetics irrespectively of the temperature. This kinetics continued in a slowed down manner to reach a plateau value of 40% contraction after 10-15 days. Contraction of commercial fibrinogen hydrogels was studied under similar conditions and the kinetics was completed after 8 hr, reaching values between 20 and 70% depending on the temperature. We attribute these substantial differences to a modulatory effect on the contraction due to plasma proteins which are initially embedded in, and progressively released from, the plasma-based hydrogels. The elastic modulus of hydrogels measured at a constant frequency decreased with increasing temperature in 7-day gels. Rheological measurements showed the absence of a strain-hardening behavior in the plasma-derived fibrin hydrogels. Finally, plasma-derived fibrin hydrogels with and without human primary fibroblast and keratinocytes were prepared in transwell inserts and their height measured over time. Both cellular and acellular gels showed a height reduction of 30% during the first 24 hr likely due to the above-mentioned intrinsic fibrin matrix contraction.
Collapse
Affiliation(s)
- Andrés Montero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Sonia Acosta
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Rebeca Hernández
- Institute of Polymer Science and Technology, CSIC, Madrid, Spain
| | - Carlos Elvira
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, CSIC, Madrid, Spain
| | - José Luis Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain.,Division of Epithelial Biomedicine, CIEMAT, Madrid, Spain
| | - Diego Velasco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| |
Collapse
|
105
|
Affiliation(s)
- Matthew L. Bedell
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Adam M. Navara
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| |
Collapse
|
106
|
Okano S, Lobosky M, Dessoffy R, Horvath DJ, Fukamachi K, Karimov JH. Anti-clogging mechanisms of a motion-activated chest tube patency maintenance system: Histology and high-speed camera assessment. Artif Organs 2020; 44:1162-1170. [PMID: 32437592 DOI: 10.1111/aor.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 11/26/2022]
Abstract
The motion-activated system (MAS) employs vibration to prevent intraluminal chest tube clogging. We evaluated the intraluminal clot formation inside chest tubes using high-speed camera imaging and postexplant histology analysis of thrombus. The chest tube clogging was tested (MAS vs. control) in acute hemothorax porcine models (n = 5). The whole tubes with blood clots were fixed with formalin-acetic acid solution and cut into cross-sections, proceeded for H&E-stained paraffin-embedded tissue sections (MAS sections, n = 11; control sections, n = 11), and analyzed. As a separate effort, a high-speed camera (FASTCAM Mini AX200, 100-mm Zeiss lens) was used to visualize the whole blood clogging pattern inside the chest tube cross-sectional view. Histology revealed a thin string-like fibrin deposition, which showed spiral eddy or aggregate within the blood clots in most sections of Group MAS, but not in those of the control group. Histology findings were compatible with high-speed camera views. The high-speed camera images showed a device-specific intraluminal blood "swirling" pattern. Our findings suggest that a continuous spiral flow in blood within the chest tube (MAS vs. static control) contributes to the formation of a spiral string-like fibrin network during consumption of coagulation factors. As a result, the spiral flow may prevent formation of thick band-like fibrin deposits sticking to the inner tube surface and causing tube clogging, and thus may positively affect chest tube patency and drainage.
Collapse
Affiliation(s)
- Shinji Okano
- Transplant Center, Department of General Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mark Lobosky
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Raymond Dessoffy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David J Horvath
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
107
|
Windberger U, Dibiasi C, Lotz EM, Scharbert G, Reinbacher-Koestinger A, Ivanov I, Ploszczanski L, Antonova N, Lichtenegger H. The effect of hematocrit, fibrinogen concentration and temperature on the kinetics of clot formation of whole blood. Clin Hemorheol Microcirc 2020; 75:431-445. [PMID: 32390608 DOI: 10.3233/ch-190799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dynamic mechanical analysis of blood clots can be used to detect the coagulability of blood. OBJECTIVE We investigated the kinetics of clot formation by changing several blood components, and we looked into the clot "signature" at its equilibrium state by using viscoelastic and dielectric protocols. METHODS Oscillating shear rheometry, ROTEM, and a dielectro-rheological device was used. RESULTS In fibrinogen- spiked samples we found the classical high clotting ability: shortened onset, faster rate of clotting, and higher plateau stiffness. Electron microscopy explained the gain of stiffness. Incorporated RBCs weakened the clots. Reduction of temperature during the clotting process supported the development of high moduli by providing more time for fiber assembly. But at low HCT, clot firmness could be increased by elevating the temperature from 32 to 37°C. In contrast, when the fibrinogen concentration was modified, acceleration of clotting via temperature always reduced clot stiffness, whatever the initial fibrinogen concentration. Electrical resistance increased continuously during clotting; loss tangent (D) (relaxation frequency 249 kHz) decreased when clots became denser: fewer dipoles contributed to the relaxation process. The relaxation peak (Dmax) shifted to lower frequencies at higher platelet count. CONCLUSION Increasing temperature accelerates clot formation but weakens clots. Rheometry and ROTEM correlate well.
Collapse
Affiliation(s)
- U Windberger
- Center for Biomedical Research, Medical University Vienna, Vienna, Austria
| | - Ch Dibiasi
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - E M Lotz
- Center for Biomedical Research, Medical University Vienna, Vienna, Austria
| | - G Scharbert
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - A Reinbacher-Koestinger
- Institute of Fundamentals and Theory in Electrical Engineering, Graz University of Technology, Graz, Austria
| | - I Ivanov
- Institute of Mechanics, Bulgarian Academy of Science, Sofia, Bulgaria
| | - L Ploszczanski
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - N Antonova
- Institute of Mechanics, Bulgarian Academy of Science, Sofia, Bulgaria
| | - H Lichtenegger
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
108
|
Domínguez-García P, Dietler G, Forró L, Jeney S. Filamentous and step-like behavior of gelling coarse fibrin networks revealed by high-frequency microrheology. SOFT MATTER 2020; 16:4234-4242. [PMID: 32297892 DOI: 10.1039/c9sm02228g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
By a micro-experimental methodology, we study the ongoing molecular process inside coarse fibrin networks by means of microrheology. We made these networks gelate around a probe microbead, allowing us to observe a temporal evolution compatible with the well-known molecular formation of fibrin networks in four steps: monomer, protofibril, fiber and network. Thanks to the access that optical-trapping interferometry provides to the short-time scale on the bead's Brownian motion, we observe a Kelvin-Voigt mechanical behavior from low to high frequencies, range not available in conventional rheometry. We exploit that mechanical model for obtaining the characteristic lengths of the filamentous structures composing these fibrin networks, whose obtained values are compatible with a non-affine behavior characterized by bending modes. At very long gelation times, a ω7/8 power-law is observed in the loss modulus, theoretically related with the longitudinal response of the molecular structures.
Collapse
Affiliation(s)
- Pablo Domínguez-García
- Dep. Física Interdisciplinar, Universidad Nacional de Educación a Distancia (UNED), Madrid 28040, Spain.
| | | | | | | |
Collapse
|
109
|
Vorwald CE, Gonzalez-Fernandez T, Joshee S, Sikorski P, Leach JK. Tunable fibrin-alginate interpenetrating network hydrogels to support cell spreading and network formation. Acta Biomater 2020; 108:142-152. [PMID: 32173582 PMCID: PMC7198331 DOI: 10.1016/j.actbio.2020.03.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/14/2023]
Abstract
Hydrogels are effective platforms for use as artificial extracellular matrices, cell carriers, and to present bioactive cues. Two common natural polymers, fibrin and alginate, are broadly used to form hydrogels and have numerous advantages over synthetic materials. Fibrin is a provisional matrix containing native adhesion motifs for cell engagement, yet the interplay between mechanical properties, degradation, and gelation rate is difficult to decouple. Conversely, alginate is highly tunable yet bioinert and requires modification to present necessary adhesion ligands. To address these challenges, we developed a fibrin-alginate interpenetrating network (IPN) hydrogel to combine the desirable adhesion and stimulatory characteristics of fibrin with the tunable mechanical properties of alginate. We tested its efficacy by examining capillary network formation with entrapped co-cultures of mesenchymal stromal cells (MSCs) and endothelial cells (ECs). We manipulated thrombin concentration and alginate crosslinking density independently to modulate the fibrin structure, mesh size, degradation, and biomechanical properties of these constructs. In IPNs of lower stiffness, we observed a significant increase in total cell area (1.7 × 105 ± 7.9 × 104 µm2) and decrease in circularity (0.56 ± 0.03) compared to cells encapsulated in stiffer IPNs (4.0 × 104 ± 1.5 × 104 µm2 and 0.77 ± 0.09, respectively). Fibrinogen content did not influence capillary network formation. However, higher fibrinogen content led to greater retention of these networks confirmed via increased spreading and presence of F-actin at 7 days. This is an elegant platform to decouple cell adhesion and hydrogel bulk stiffness that will be broadly useful for cell instruction and delivery. STATEMENT OF SIGNIFICANCE: Hydrogels are widely used as drug and cell delivery vehicles and as artificial extracellular matrices to study cellular responses. However, there are limited opportunities to simultaneously control mechanical properties and degradation while mimicking the complex native adhesion motifs and ligands known to encourage cell engagement with the hydrogel. In this study, we describe a fibrin-alginate interpenetrating network (IPN) hydrogel designed to balance the compliance and provisional qualities of fibrin with the mechanical stability and tunability of alginate to interrogate these contributions on cell response. We used clinically relevant cell sources, a co-culture of endothelial cells and mesenchymal stromal cells, to test its efficacy in supporting capillary formation in vitro. These data demonstrate the promise of this IPN for use in tissue engineering.
Collapse
Affiliation(s)
- Charlotte E Vorwald
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | | | - Shreeya Joshee
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA; Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA.
| |
Collapse
|
110
|
Cone SJ, Fuquay AT, Litofsky JM, Dement TC, Carolan CA, Hudson NE. Inherent fibrin fiber tension propels mechanisms of network clearance during fibrinolysis. Acta Biomater 2020; 107:164-177. [PMID: 32105833 PMCID: PMC7160043 DOI: 10.1016/j.actbio.2020.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 11/21/2022]
Abstract
Proper wound healing necessitates both coagulation (the formation of a blood clot) and fibrinolysis (the dissolution of a blood clot). A thrombus resistant to clot dissolution can obstruct blood flow, leading to vascular pathologies. This study seeks to understand the mechanisms by which individual fibrin fibers, the main structural component of blood clots, are cleared from a local volume during fibrinolysis. We observed 2-D fibrin networks during lysis by plasmin, recording the clearance of each individual fiber. We found that, in addition to transverse cleavage of fibers, there were multiple other pathways by which clot dissolution occurred, including fiber bundling, buckling, and collapsing. These processes are all influenced by the concentration of plasmin utilized in lysis. The network fiber density influenced the kinetics and distribution of these pathways. Individual cleavage events often resulted in large morphological changes in network structure, suggesting that the inherent tension in fibers played a role in fiber clearance. Using images before and after a cleavage event to measure fiber lengths, we estimated that fibers are strained ~23% beyond their equilibrium length during polymerization. To understand the role of fiber tension in fibrinolysis we modeled network clearance under differing amounts of fiber polymerized strain (prestrain). The comparison of experimental and model data indicated that fibrin tension enables 35% more network clearance due to network rearrangements after individual cleavage events than would occur if fibers polymerized in a non-tensed state. Our results highlight many characteristics and mechanisms of fibrin breakdown, which have implications on future fibrin studies, our understanding of the fibrinolytic process, and the development of thrombolytic therapies. STATEMENT OF SIGNIFICANCE: Fibrin fibers serve as the main structural element of blood clots. They polymerize under tension and have remarkable extensibility and elasticity. After the cessation of wound healing, fibrin must be cleared from the vasculature by the enzyme plasmin in order to resume normal blood flow: a process called fibrinolysis. In this study we investigate the mechanisms that regulate the clearance of individual fibrin fibers during fibrinolysis. We show that the inherent tension in fibers enhances the action of plasmin because every fiber cleavage event results in a redistribution of the network tension. This network re-equilibration causes fibers to buckle, bundle, and even collapse, leading to a more rapid fiber clearance than plasmin alone could provide.
Collapse
Affiliation(s)
- Sean J Cone
- Department of Physics, East Carolina University; 1000 E 5(th) St, Greenville, NC 27858, United States
| | - Andrew T Fuquay
- Medical Physics Graduate Program, Duke University; DUMC 2729, 2424 Erwin Rd Suite 101, Durham, NC 27705, USA
| | - Justin M Litofsky
- Department of Physics, East Carolina University; 1000 E 5(th) St, Greenville, NC 27858, United States
| | - Taylor C Dement
- Department of Physics, East Carolina University; 1000 E 5(th) St, Greenville, NC 27858, United States
| | - Christopher A Carolan
- Department of Mathematics, East Carolina University; 1000 E 5(th) St, Greenville, NC 27858, United States
| | - Nathan E Hudson
- Department of Physics, East Carolina University; 1000 E 5(th) St, Greenville, NC 27858, United States.
| |
Collapse
|
111
|
Staessens S, Denorme F, Francois O, Desender L, Dewaele T, Vanacker P, Deckmyn H, Vanhoorelbeke K, Andersson T, De Meyer SF. Structural analysis of ischemic stroke thrombi: histological indications for therapy resistance. Haematologica 2020; 105:498-507. [PMID: 31048352 PMCID: PMC7012484 DOI: 10.3324/haematol.2019.219881] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/24/2019] [Indexed: 11/28/2022] Open
Abstract
Ischemic stroke is caused by a thromboembolic occlusion of cerebral arteries. Treatment is focused on fast and efficient removal of the occluding thrombus, either via intravenous thrombolysis or via endovascular thrombectomy. Recanalization, however, is not always successful and factors contributing to failure are not completely understood. Although the occluding thrombus is the primary target of acute treatment, little is known about its internal organization and composition. The aim of this study, therefore, was to better understand the internal organization of ischemic stroke thrombi on a molecular and cellular level. A total of 188 thrombi were collected from endovascularly treated ischemic stroke patients and analyzed histologically for fibrin, red blood cells (RBC), von Willebrand factor (vWF), platelets, leukocytes and DNA, using bright field and fluorescence microscopy. Our results show that stroke thrombi are composed of two main types of areas: RBC-rich areas and platelet-rich areas. RBC-rich areas have limited complexity as they consist of RBC that are entangled in a meshwork of thin fibrin. In contrast, platelet-rich areas are characterized by dense fibrin structures aligned with vWF and abundant amounts of leukocytes and DNA that accumulate around and in these platelet-rich areas. These findings are important to better understand why platelet-rich thrombi are resistant to thrombolysis and difficult to retrieve via thrombectomy, and can guide further improvements of acute ischemic stroke therapy.
Collapse
Affiliation(s)
- Senna Staessens
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk,Belgium
| | - Frederik Denorme
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk,Belgium
| | | | - Linda Desender
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk,Belgium
| | - Tom Dewaele
- Department of Medical Imaging, AZ Groeninge, Kortrijk, Belgium
| | - Peter Vanacker
- Department of Neurology, AZ Groeninge, Kortrijk, Belgium.,Department of Neurology, University Hospitals Antwerp, Antwerp, Belgium.,Department of Translational Neuroscience, University of Antwerp, Antwerp, Belgium
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk,Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk,Belgium
| | - Tommy Andersson
- Department of Medical Imaging, AZ Groeninge, Kortrijk, Belgium.,Department of Neuroradiology, Karolinska University Hospital and Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk,Belgium
| |
Collapse
|
112
|
Larson BT, Ruiz-Herrero T, Lee S, Kumar S, Mahadevan L, King N. Biophysical principles of choanoflagellate self-organization. Proc Natl Acad Sci U S A 2020; 117:1303-1311. [PMID: 31896587 PMCID: PMC6983409 DOI: 10.1073/pnas.1909447117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inspired by the patterns of multicellularity in choanoflagellates, the closest living relatives of animals, we quantify the biophysical processes underlying the morphogenesis of rosette colonies in the choanoflagellate Salpingoeca rosetta We find that rosettes reproducibly transition from an early stage of 2-dimensional (2D) growth to a later stage of 3D growth, despite the underlying variability of the cell lineages. Our perturbative experiments demonstrate the fundamental importance of a basally secreted extracellular matrix (ECM) for rosette morphogenesis and show that the interaction of the ECM with cells in the colony physically constrains the packing of proliferating cells and, thus, controls colony shape. Simulations of a biophysically inspired model that accounts for the size and shape of the individual cells, the fraction of ECM, and its stiffness relative to that of the cells suffices to explain our observations and yields a morphospace consistent with observations across a range of multicellular choanoflagellate colonies. Overall, our biophysical perspective on rosette development complements previous genetic perspectives and, thus, helps illuminate the interplay between cell biology and physics in regulating morphogenesis.
Collapse
Affiliation(s)
- Ben T Larson
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Biophysics Graduate Group, University of California, Berkeley, CA 94720
| | - Teresa Ruiz-Herrero
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Stacey Lee
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
- Department of Physics, Harvard University, Cambridge, MA 02138
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Kavli Institute for NanoBio Science and Technology, Harvard University, Cambridge, MA 02138
| | - Nicole King
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
113
|
Fibrin clot formation under diverse clotting conditions: Comparing turbidimetry and thromboelastography. Thromb Res 2020; 187:48-55. [PMID: 31954276 DOI: 10.1016/j.thromres.2020.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Thrombosis is a leading cause of death around the world. Fibrin, the protein primarily responsible for clot formation, is formed via cleaving soluble fibrinogen by thrombin with resulting properties varying under different clot forming conditions. This study sought to compare trends across thromboelastography (TEG) and turbidimetry utilizing a simplified fibrinogen/thrombin clot model. Turbidimetry is an optical measure (550 nm) of fibrin clot formation and is widely utilized due to its laboratory accessibility and ease of use. Thromboelastography (TEG) is a specialized viscoelastic technique that directly measures clot strength and is primarily utilized in the clinical setting to assess patients' hemostasis. In these experiments, human and bovine fibrin clots were formed in-vitro by mixing fibrinogen and thrombin under diverse clotting conditions. Increasing thrombin concentration (0 to 10 U/mL), ionic strength (0.05 to 0.3 M), pH (5.5 to 8.1), and lowering albumin concentration (100 to 0 mg/mL) resulted in decreased clot turbidity and increased clot strength using species-matched bovine and human fibrinogen and thrombin. Whereas, increasing fibrinogen concentration (1 to 5 mg/mL) resulted in increased clot turbidity and increased clot strength for both species-matched and cross-species fibrinogen and thrombin. Clotting times with both techniques followed a similar trend and were observed to be unchanged when varying albumin concentration, elongated with increasing fibrinogen, and shortened with increasing pH, ionic strength, and thrombin. TEG and turbidimetry track clot formation via two distinct methods and when utilized together provide complementary clot strength and fiber structural information across diverse clotting conditions.
Collapse
|
114
|
Gómez-Florit M, Domingues RM, Bakht SM, Mendes BB, Reis RL, Gomes ME. Natural Materials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
115
|
Catalytic microgelators for decoupled control of gelation rate and rigidity of the biological gels. J Control Release 2020; 317:166-180. [DOI: 10.1016/j.jconrel.2019.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 11/23/2022]
|
116
|
Poredoš P, Poredoš P, Jezovnik MK. Factors influencing recanalization of thrombotic venous occlusions. VASA 2020; 49:17-22. [DOI: 10.1024/0301-1526/a000800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary. The outcome of a thrombotic vessel occlusion is related to the resolution of thrombus and restitution of blood flow. Thrombus formation simultaneously activates an enzymatic process that mediates endogenous fibrinolysis to maintain vessel patency. The balance between coagulation and fibrinolysis determines the extent of thrombus formation, its resolution, and clinical outcome. Endogenic fibrinolysis is frequently unable to overcome coagulation and to resolve the thrombus. Therefore, for a complete resolution of thrombus in an acute phase, exogenic fibrinolytic agents are needed. Currently, tissue plasminogen activator (tPA) is most frequently used for therapeutic thrombolysis. Also, heparins, particularly low-molecular-weight heparins and direct oral anticoagulants which are known as anticoagulant drugs, have some pro-fibrinolytic properties. Besides the extent and age of a clot, different other factors influence the lysis of thrombus. Thrombus structure is one of the most important determinants of thrombus lysis. The concentration of thrombolytic agent (tPA) around and inside of thrombus importantly determines clot lysis velocity. Further, flow-induced mechanical forces which stimulate the transport of thrombolytic agent into the clot influence thrombolysis. Inflammation most probably represents a basic pathogenetic mechanism of activation of coagulation and influences the activity of the fibrinolytic system. Inflammation increases tissue factor release, platelet activity, fibrinogen concentration and inhibits fibrinolysis by increasing plasminogen activator inhibitor 1. Therefore, recanalization of a thrombotic vessel occlusion is inversely related to levels of some circulating inflammatory agents. Consequently, inhibition of inflammation with anti-inflammatory drugs may improve the efficacy of prevention of thromboembolic events and stimulate recanalization of thrombotic occlusions of veins.
Collapse
Affiliation(s)
- Pavel Poredoš
- Department of Vascular Disease, University Medical Centre Ljubljana, Slovenia
| | - Peter Poredoš
- Department of Anesthesiology and Perioperative Intensive Care, University Medical Centre Ljubljana, Slovenia
| | - Mateja Kaja Jezovnik
- Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Centre Houston, Texas, USA
| |
Collapse
|
117
|
Farkas ÁZ, Farkas VJ, Szabó L, Wacha A, Bóta A, Csehi L, Kolev K, Thelwell C. Structure, Mechanical, and Lytic Stability of Fibrin and Plasma Coagulum Generated by Staphylocoagulase From Staphylococcus aureus. Front Immunol 2019; 10:2967. [PMID: 31921206 PMCID: PMC6933771 DOI: 10.3389/fimmu.2019.02967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus causes localized infections or invasive diseases (abscesses or endocarditis). One of its virulence factors is staphylocoagulase (SCG), which binds prothrombin to form a complex with thrombin-like proteolytic activity and leads to uncontrolled fibrin generation at sites of bacterial inoculation. The aim of this study was to characterize the formation, structure, mechanical properties and lysis of SCG-generated clots. Recombinant SCG was expressed in Escherichia coli, purified and the amidolytic activity of its complexes with human prothrombin (SCG-PT) and thrombin (SCG-T) was determined using human thrombin as a reference. Fibrin clots were prepared from purified fibrinogen and human plasma using thrombin, SCG-PT or SCG-T as a coagulase. The kinetics of clot formation and lysis by tissue-type plasminogen activator (tPA) were monitored with turbidimetric assays. Fibrin ultrastructure was examined with scanning electron microscopy and small-angle X-ray scattering (SAXS). Fibrin clot porosity was characterized with fluid permeation assays, whereas the viscoelastic properties and mechanical stability were evaluated with oscillation rheometry. Compared to thrombin, the amidolytic and clotting activity of SCG-PT was 1.6- to 2.5-fold lower on a molar basis. SCG-T had equivalent amidolytic, but reduced clotting activity both on pure fibrinogen (1.6-fold), and in plasma (1.3-fold). The SCG-PT and SCG-T generated fibrin with thicker fibers (10-60% increase in median diameter) than thrombin due to increased number of fibrin protofibrils per fiber cross-section. According to the fluid permeability of the clots SCG-PT and SCG-T promoted the formation of more porous structures. The shear stress resistance in the pure fibrin and plasma clots generated by SCG-PT was significantly lower than in the thrombin clots (243.8 ± 22.0 Pa shear stress was sufficient for disassembly of SCG-PT fibrin vs. 937.3 ± 65.6 Pa in thrombin clots). The tPA-mediated lysis of both pure fibrin and plasma clots produced by SCG-PT or SCG-T was accelerated compared to thrombin, resulting in up to a 2.1-fold increase in tPA potency. Our results indicate that SCG generates a thrombus scaffold with a structure characterized by impaired mechanical stability and increased lytic susceptibility. This proneness to clot disintegration could have implications in the septic embolism from endocardial bacterial vegetation.
Collapse
Affiliation(s)
- Ádám Z Farkas
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Veronika J Farkas
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - László Szabó
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - András Wacha
- Biological Nanochemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Attila Bóta
- Biological Nanochemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Lóránt Csehi
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Krasimir Kolev
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Craig Thelwell
- Haemostasis Section, Biotherapeutics Group, National Institute for Standards and Control, Potters Bar, United Kingdom
| |
Collapse
|
118
|
Yesudasan S, Averett RD. Recent advances in computational modeling of fibrin clot formation: A review. Comput Biol Chem 2019; 83:107148. [PMID: 31751883 PMCID: PMC6918949 DOI: 10.1016/j.compbiolchem.2019.107148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
The field of thrombosis and hemostasis is crucial for understanding and developing new therapies for pathologies such as deep vein thrombosis, diabetes related strokes, pulmonary embolisms, and hemorrhaging related diseases. In the last two decades, an exponential growth in studies related to fibrin clot formation using computational tools has been observed. Despite this growth, the complete mechanism behind thrombus formation and hemostasis has been long and rife with obstacles; however, significant progress has been made in the present century. The computational models and methods used in this context are diversified into different spatiotemporal scales, yet there is no single model which can predict both physiological and mechanical properties of fibrin clots. In this review, we list the major strategies employed by researchers in modeling fibrin clot formation using recent and existing computational techniques. This review organizes the computational strategies into continuum level, system level, discrete particle (DPD), and multi-scale methods. We also discuss strengths and weaknesses of various methods and future directions in which computational modeling of fibrin clots can advance.
Collapse
Affiliation(s)
- Sumith Yesudasan
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, 597 D.W. Brooks Drive, Athens, GA 30602
| | - Rodney D Averett
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, 597 D.W. Brooks Drive, Athens, GA 30602.
| |
Collapse
|
119
|
Roberts IV, Bukhary D, Valdivieso CYL, Tirelli N. Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromol Biosci 2019; 20:e1900283. [PMID: 31769933 DOI: 10.1002/mabi.201900283] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Indexed: 12/19/2022]
Abstract
This review focuses on fibrin, starting from biological mechanisms (its production from fibrinogen and its enzymatic degradation), through its use as a medical device and as a biomaterial, and finally discussing the techniques used to add biological functions and/or improve its mechanical performance through its molecular engineering. Fibrin is a material of biological (human, and even patient's own) origin, injectable, adhesive, and remodellable by cells; further, it is nature's most common choice for an in situ forming, provisional matrix. Its widespread use in the clinic and in research is therefore completely unsurprising. There are, however, areas where its biomedical performance can be improved, namely achieving a better control over mechanical properties (and possibly higher modulus), slowing down degradation or incorporating cell-instructive functions (e.g., controlled delivery of growth factors). The authors here specifically review the efforts made in the last 20 years to achieve these aims via biomimetic reactions or self-assembly, as much via formation of hybrid materials.
Collapse
Affiliation(s)
- Iwan Vaughan Roberts
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Deena Bukhary
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | | | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| |
Collapse
|
120
|
Mammadova-Bach E, Braun A. Zinc Homeostasis in Platelet-Related Diseases. Int J Mol Sci 2019; 20:E5258. [PMID: 31652790 PMCID: PMC6861892 DOI: 10.3390/ijms20215258] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Zn2+ deficiency in the human population is frequent in underdeveloped countries. Worldwide, approximatively 2 billion people consume Zn2+-deficient diets, accounting for 1-4% of deaths each year, mainly in infants with a compromised immune system. Depending on the severity of Zn2+ deficiency, clinical symptoms are associated with impaired wound healing, alopecia, diarrhea, poor growth, dysfunction of the immune and nervous system with congenital abnormalities and bleeding disorders. Poor nutritional Zn2+ status in patients with metastatic squamous cell carcinoma or with advanced non-Hodgkin lymphoma, was accompanied by cutaneous bleeding and platelet dysfunction. Forcing Zn2+ uptake in the gut using different nutritional supplementation of Zn2+ could ameliorate many of these pathological symptoms in humans. Feeding adult rodents with a low Zn2+ diet caused poor platelet aggregation and increased bleeding tendency, thereby attracting great scientific interest in investigating the role of Zn2+ in hemostasis. Storage protein metallothionein maintains or releases Zn2+ in the cytoplasm, and the dynamic change of this cytoplasmic Zn2+ pool is regulated by the redox status of the cell. An increase of labile Zn2+ pool can be toxic for the cells, and therefore cytoplasmic Zn2+ levels are tightly regulated by several Zn2+ transporters located on the cell surface and also on the intracellular membrane of Zn2+ storage organelles, such as secretory vesicles, endoplasmic reticulum or Golgi apparatus. Although Zn2+ is a critical cofactor for more than 2000 transcription factors and 300 enzymes, regulating cell differentiation, proliferation, and basic metabolic functions of the cells, the molecular mechanisms of Zn2+ transport and the physiological role of Zn2+ store in megakaryocyte and platelet function remain elusive. In this review, we summarize the contribution of extracellular or intracellular Zn2+ to megakaryocyte and platelet function and discuss the consequences of dysregulated Zn2+ homeostasis in platelet-related diseases by focusing on thrombosis, ischemic stroke and storage pool diseases.
Collapse
Affiliation(s)
- Elmina Mammadova-Bach
- University Hospital and Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich, German Center for Lung Research, 80336 Munich, Germany.
| |
Collapse
|
121
|
Clay NE, Villanueva C, You T, Wrice N, Kowalczewski A, Christy RJ, Natesan S. Plasma-Alginate Composite Material Provides Improved Mechanical Support for Stem Cell Growth and Delivery. ACS APPLIED BIO MATERIALS 2019; 2:4271-4282. [PMID: 35021442 DOI: 10.1021/acsabm.9b00544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Blood plasma-based products have been recently utilized in different tissue engineering applications, ranging from soft tissue repair to bone regeneration. Plasma contains fibrinogen which can be converted to an insoluble fibrin-laden gel in the presence of activated thrombin. In tissue engineering, these plasma-based materials can serve either as a three-dimensional scaffold to deliver therapeutic cells in vivo or as a growth factor-rich supply for tissue regeneration. Unfortunately, plasma-based materials are often mechanically weak and easily deformed, thus limiting their usability in harsh clinical settings. Simpler methods to create sturdier plasma-based materials are therefore needed. To this end, we hypothesized that combining alginate with plasma can create a composite plasma material with improved mechanical properties. Incorporating alginate into plasma produced composite gels with increasing bulk stiffness, as measured by rheology. Specifically, the plasma-alginate composite (PAC) gels with an alginate concentration of 2.86 mg/mL were 10-fold stiffer than pure plasma gels (11 vs 112 Pa). Interestingly, gel lysis rates were unchanged despite increasing alginate concentration (lysis time approximately 50 min). Adipose-derived stem cells cultured in the stiffer PAC gels expressed stemness markers (THY1, ENG, NT5E) at levels comparable to those in the pure plasma gels. Similarly, proangiogenic factor secretion was also constant across all gel conditions. In sum, we envision this PAC gel system will extend the use of plasma gel-based therapies into more rigorous clinical applications.
Collapse
|
122
|
Komorowicz E, Balázs N, Tanka-Salamon A, Varga Z, Szabó L, Bóta A, Longstaff C, Kolev K. Biorelevant polyanions stabilize fibrin against mechanical and proteolytic decomposition: Effects of polymer size and electric charge. J Mech Behav Biomed Mater 2019; 102:103459. [PMID: 31604180 DOI: 10.1016/j.jmbbm.2019.103459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 01/03/2023]
Abstract
The release of neutrophil extracellular traps (NETs) containing DNA and histones is an essential mechanism in the neutrophil-mediated innate immunity. In thrombi the polyanionic DNA confers mechanical and lytic resistance to fibrin and heparins interfere with the effects of NET components. Heparins are polyanions used not only as therapeutic agents, but they are also released by mast cells at entry sites of pathogens. Platelets and microorganisms release a different type of polyanions (polyphosphates) of various size (in the range 60-1000 phosphate monomers). With the current study we aimed to evaluate if the stability of fibrin is influenced by the type of polyanion, its molecular size or relative electric charge. Fibrin structure was approached with scanning electron microscopy (SEM) and pressure-driven permeation. An oscillation rheometer was used to investigate viscoelastic properties. Kinetic turbidimetric assays for the generation and dissolution of composite fibrin clots containing unfractionated heparin (UFH), and its partially or fully desulfated derivatives, as well as low molecular-weight heparin (LMWH), pentasaccharide (S5), and polyphosphates composed of 45 (P45), 100 (P100) or 700 (P700) monomers at average. The smaller polyanions P45, P100, LMWH, and S5 accelerated, whereas P700 and UFH retarded clot formation. All polyanions altered the fibrin structure: SEM and clot permeation showed thicker fibers with smaller (LMWH, S5, P700) or larger (UFH, P100) pores. All polyanions stabilized the clots mechanically, but the smaller P45, P100 and LMWH decreased the deformability of fibrin, whereas the large UFH and P700 increased the maximal bearable deformation of clots. Despite the size-dependent structural changes, all heparins caused a 10-15% prolongation of lysis-times with plasmin, and UFH-effects depended on sulfation patterns. The 20-35% prolongation of lysis-times caused by all polyphosphates was a kringle-dependent phenomenon, and was dampened in the presence of 6-aminohexanoate blocking the lysine-binding sites of plasmin. In summary, we found that polyanions of different chemical structure stabilize fibrin clots via size-dependent modulation of fibrin structure and kringle-dependent inhibition of plasmin-mediated fibrinolysis.
Collapse
Affiliation(s)
- Erzsébet Komorowicz
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Nóra Balázs
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Anna Tanka-Salamon
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Zoltán Varga
- Department of Biological Nanochemsitry, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Szabó
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Bóta
- Department of Biological Nanochemsitry, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Colin Longstaff
- Biotherapeutics, Haemostasis Section, National Institute for Biological Standards and Control, South Mimms, Potters Bar, UK
| | - Krasimir Kolev
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
123
|
Li J, Wan N, Wen J, Cheng G, He L, Cheng L. Quantitative detection and evaluation of thrombus formation based on electrical impedance spectroscopy. Biosens Bioelectron 2019; 141:111437. [PMID: 31279177 DOI: 10.1016/j.bios.2019.111437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 01/13/2023]
Abstract
Thrombus formation is quantitatively measured and evaluated by the electrical impedance spectroscopy method in this study, which confirms the possibility for the application of a promising non-invasive thrombus detection method. The impedance parameter Z*(t) of blood from the electrical impedance spectroscopy is utilized to elaborate the impedance performance of blood during thrombus formation process. Experimental results indicate that the impedance Z*(t) of blood has regular variations under the formation of thrombus, which could be divided into three stages. Modified Hanai equation is proposed to quantitatively expound the three stages of impedance Z*(t) variation. The amount of fibrin and thrombus clot is founded to be accounted for the impedance variation of blood, which confirms the feasibility and theoretical basis of the non-invasive and on-line thrombus bio-detection technology for patients with serious cardiovascular disease.
Collapse
Affiliation(s)
- Jianping Li
- Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, 321004, Zhejiang Province, China
| | - Nen Wan
- Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, 321004, Zhejiang Province, China.
| | - Jianming Wen
- Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, 321004, Zhejiang Province, China
| | - Guangming Cheng
- Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, 321004, Zhejiang Province, China
| | - Lidong He
- Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, 321004, Zhejiang Province, China
| | - Li Cheng
- Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, 321004, Zhejiang Province, China
| |
Collapse
|
124
|
Tokarev AA. Velocity-Amplitude Relationship in the Gray-Scott Autowave Model in Isolated Conditions. ACS OMEGA 2019; 4:14430-14438. [PMID: 31528796 PMCID: PMC6740189 DOI: 10.1021/acsomega.9b01338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Velocity and amplitude are two basic characteristics of any autowave, and their relationship reflects the internal regulation of the autowave system. This study proposes an approach to approximately estimate steady velocity-amplitude (VA) relation without deriving separate formulas for V and A. The approach presumes constructing an ansatz which represents the "petal" form of phase trajectory and contains V, A, and a free parameter (parameters). After substituting this ansatz, integration of model equations leads to a VA relation analytically. A free parameter (parameters) can be determined by comparing the analytical VA relation to the numerical data. As an example, we used the simplest autowave model possessing threshold, that is, the Gray-Scott model (cubic autocatalysis with linear inhibition) in isolated conditions with an immobilized precursor and a diffusible reactant. For all values of the inhibition rate constant allowing autowave solution (i.e., except approaching zero), the free parameter of ansatz belongs to a narrow interval has little effect on VA relation and can be regarded as fixed. Assumption of precursor immobilization does not influence the results qualitatively. This approach will be useful in investigations of more complex active media systems in biochemistry, combustion, and disease control.
Collapse
|
125
|
Debono J, Bos MHA, Frank N, Fry B. Clinical implications of differential antivenom efficacy in neutralising coagulotoxicity produced by venoms from species within the arboreal viperid snake genus Trimeresurus. Toxicol Lett 2019; 316:35-48. [PMID: 31509773 DOI: 10.1016/j.toxlet.2019.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Snake envenomation globally is attributed to an ever-increasing human population encroaching into snake territories. Responsible for many bites in Asia is the widespread genus Trimeresurus. While bites lead to haemorrhage, only a few species have had their venoms examined in detail. We found that Trimeresurus venom causes haemorrhaging by cleaving fibrinogen in a pseudo-procoagulation manner to produce weak, unstable, short-lived fibrin clots ultimately resulting in an overall anticoagulant effect due to fibrinogen depletion. The monovalent antivenom 'Thai Red Cross Green Pit Viper antivenin', varied in efficacy ranging from excellent neutralisation of T. albolabris venom through to T. gumprechti and T. mcgregori being poorly neutralised and T. hageni being unrecognised by the antivenom. While the results showing excellent neutralisation of some non-T. albolabris venoms (such as T. flavomaculaturs, T. fucatus, and T. macrops) needs to be confirmed with in vivo tests, conversely the antivenom failure T. hageni, and the very poor results against T. gumprechti and T. mcgregori, despite being conducted in the ideal scenario of preincubation of antivenom:venom, indicates that the likelihood of clinically relevant cross-reactivity for these species is low (T. gumprechti and T. mcgregori) to non-existent (T. hageni). These same latter three species were also not inhibited by the serine protease inhibitor AEBSF, suggesting that the toxins leading to a coagulotoxic effect in these species are non-serine proteases while in contrast T. albolabris coagulotoxicity was completely impeded by AEBSF, and thus driven by kallikrein-type serine proteases. There was a conspicuous lack of phylogenetic pattern in venom variation, with the most potent venoms (T. albolabris and T. hageni) being distant to each other on the organismal tree, and with the three most divergent and poorly neutralised venoms (T. gumprechti, T. hageni, and T. mcgregori) were also not each others closest relatives. This reinforces the paradigm that the fundamental dynamic evolution of venom results in organismal phylogeny being a poor predictor of venom potency or antivenom efficacy. This study provides a robust investigation on the differential venom effects from a wide range of Trimeresurus species on coagulation, highlighting differential fibrinogenolytic effects, while also investigating the relative antivenom neutralisation capabilities of the widely available Thai Red Cross Green Pit Viper antivenom. These results therefore have immediate, real-world implications for patients envenomed by Trimeresurus species.
Collapse
Affiliation(s)
- Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mettine H A Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | | | - Bryan Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
126
|
Lu X, Dong X, Natla S, Kripfgans OD, Fowlkes JB, Wang X, Franceschi R, Putnam AJ, Fabiilli ML. Parametric Study of Acoustic Droplet Vaporization Thresholds and Payload Release From Acoustically-Responsive Scaffolds. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2471-2484. [PMID: 31235205 PMCID: PMC6689245 DOI: 10.1016/j.ultrasmedbio.2019.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 05/11/2023]
Abstract
Hydrogels are commonly used for the delivery of bioactive molecules, especially growth factors and cytokines capable of stimulating tissue regeneration. Regenerative processes are regulated by the concentrations and spatiotemporal presentations of these molecules. With conventional hydrogels, these critical delivery parameters cannot be actively modulated after implantation. We have developed composite hydrogel scaffolds where payload release is non-invasively modulated, in an on-demand manner, using ultrasound (US). These acoustically-responsive scaffolds (ARSs) consist of a fibrin matrix doped with a payload-carrying, perfluorocarbon (PFC) double emulsion. Previously, acoustic droplet vaporization (ADV) was used to trigger release of a pro-angiogenic growth factor, encapsulated in the ARS, which stimulated blood vessel formation in vivo. In the present study, we assess how characteristics of the monodispersed emulsion, fibrin matrix, and US impact ADV thresholds and the release efficiency of a dextran payload. ADV thresholds increased with the molecular weight of the PFC in the emulsion and inversely with the volume fraction of emulsion in the ARS. Payload release from ARSs with perfluoroheptane (C7) or perfluorooctane (C8) emulsions was dependent on the number of z-planes of US used to generate ADV and inversely dependent on the lateral spacing. Conversely, release from ARSs with perfluoropentane (C5) or perfluorohexane (C6) emulsions was less dependent on these US exposure parameters. After ADV, payload diffusion decreased significantly in ARSs with C5 or C6 emulsions compared with ARSs with C7 or C8 emulsions. The expansion of the ARS after ADV decreased with the molecular weight of the PFC. Non-selective release increased with the molecular weight of the PFC and thrombin concentration. Overall, these findings can be used for optimization of ARS properties and US parameters in future therapeutic applications.
Collapse
Affiliation(s)
- Xiaofang Lu
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA
| | - Xiaoxiao Dong
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA; Department of Ultrasound, Army Medical University, Chongqing, China
| | - Sam Natla
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA; Applied Physics Program, University of Michigan, Ann Arbor, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA; Applied Physics Program, University of Michigan, Ann Arbor, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Xueding Wang
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Renny Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA; Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA; Applied Physics Program, University of Michigan, Ann Arbor, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
127
|
Sabra A, Lawrence MJ, Curtis D, Hawkins K, Williams PR, Evans PA. In vitro clot model to evaluate fibrin-thrombin effects on fractal dimension of incipient blood clot. Clin Hemorheol Microcirc 2019; -1:147-153. [PMID: 31381508 DOI: 10.3233/ch-190615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION This aim of this study is to investigate the individual effects of varying concentrations of thrombin and fibrinogen on clot microstructure (characterised through the fractal dimension of the incipient clot network, df) and clot formation time (TGP) using a fibrin-thrombin clot model. df and TGP markers are measured using a haemorheological method that has already been investigated for whole blood. METHODS This is an in vitro study using three thrombin concentrations (0.1, 0.05 and 0.02 NIH/ml) and two fibrinogen concentrations (8 mg/ml and 12 mg/ml) to investigate a fibrin-thrombin clot model. The haemorheological changes were measured at the gel point using df and TGP. RESULTS Fractal dimension (df) increased with increasing concentrations of thrombin both at 8 mg/ml (1.60±0.024, 1.67±0.022, 1.74±0.079) and 12 mg/ml fibrinogen concentrations (1.63±0.02, 1.87±0.019, 1.95±0.014). On the other hand, TGP decreased for both 8 mg/ml (1089±265, 637±80, 223±22 seconds) and 12 mg/ml fibrinogen concentrations (2008±247, 776±20, 410±20 seconds). In contrast to previous studies investigating whole blood, TGP increased with higher fibrinogen levels. CONCLUSIONS The findings from this fibrin-thrombin clot model confirmed that df and TGP can detect changes in the incipient clot following manipulation of fibrinogen and thrombin concentration. df increases (indicating stronger clot) with higher concentrations of thrombin and fibrinogen. On the other hand, TGP decreased as expected with higher thrombin level but not with higher fibrinogen concentrations.
Collapse
Affiliation(s)
- Ahmed Sabra
- Welsh Centre for Emergency Medicine Research, Swansea University, Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, UK.,Morriston Cardiac Centre, Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, UK
| | - Matthew J Lawrence
- Welsh Centre for Emergency Medicine Research, Swansea University, Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, UK
| | - Dan Curtis
- College of Engineering, Swansea University, Swansea, UK
| | - Karl Hawkins
- College of Medicine, Swansea University, Swansea, UK
| | | | - Phillip A Evans
- Welsh Centre for Emergency Medicine Research, Swansea University, Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, UK.,Emergency Department, Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, UK
| |
Collapse
|
128
|
Pal A, Tripathi K, Pathak C, Vernon BL. Plasma-based fast-gelling biohybrid gels for biomedical applications. Sci Rep 2019; 9:10881. [PMID: 31350449 PMCID: PMC6659638 DOI: 10.1038/s41598-019-47366-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Blood based biomaterials are widely researched and used in different biomedical applications including cell therapy, drug delivery, sealants etc. due to their biocompatibility and biodegradability. Blood derived gels are successfully used in clinical studies due to the presence of fibrinogen and several platelet growth factors. In spite of their wide applications, it is challenging to use blood-based biomaterials due to their low mechanical stability, poor adhesive property and contamination risk. In this study, we used porcine plasma to form gel in presence of biodegradable synthetic crosslinkers. Mechanical strength of this plasma gel could be tailored by altering the amount of crosslinkers for any desired biomedical applications. These plasma gels, formed by the synthetic crosslinkers, were utilized as a drug delivery platform for wound healing due to their low cytotoxicity. A model drug release study with these plasma gels indicated slow and sustained release of the drugs.
Collapse
Affiliation(s)
- Amrita Pal
- Arizona State University, Tempe, AZ, 85287, USA
| | | | | | | |
Collapse
|
129
|
Lee SJJ, Nguyen DM, Grewal HS, Puligundla C, Saha AK, Nair PM, Cap AP, Ramasubramanian AK. Image-based analysis and simulation of the effect of platelet storage temperature on clot mechanics under uniaxial strain. Biomech Model Mechanobiol 2019; 19:173-187. [PMID: 31312933 DOI: 10.1007/s10237-019-01203-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022]
Abstract
Optimal strength and stability of blood clots are keys to hemostasis and in prevention of hemorrhagic or thrombotic complications. Clots are biocomposite materials composed of fibrin network enmeshing platelets and other blood cells. We have previously shown that the storage temperature of platelets significantly impacts clot structure and stiffness. The objective of this work is to delineate the relationship between morphological characteristics and mechanical response of clot networks. We examined scanning electron microscope images of clots prepared from fresh apheresis platelets, and from apheresis platelets stored for 5 days at room temperature or at 4 °C, suspended in pooled plasma. Principal component analysis of nine different morphometric parameters revealed that a single principal component (PC1) can distinguish the effect of platelet storage on clot ultrastructure. Finite element analysis of clot response to uniaxial strain was used to map the spatially heterogeneous distribution of strain energy density for each clot. At modest deformations (25% strain), a single principal component (PC2) was able to predict these heterogeneities as quantified by variability in strain energy density distribution and in linear elastic stiffness, respectively. We have identified structural parameters that are primary regulators of stress distribution, and the observations provide insights into the importance of spatial heterogeneity on hemostasis and thrombosis.
Collapse
Affiliation(s)
- Sang-Joon J Lee
- Department of Mechanical Engineering, San José State University, San Jose, CA, 95192, USA
| | - Dustin M Nguyen
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA, 95192, USA
| | - Harjot S Grewal
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA, 95192, USA
| | - Chaitanya Puligundla
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA, 95192, USA
| | - Amit K Saha
- Department of Biochemistry, Stanford University, Palo Alto, CA, 94304, USA
| | - Prajeeda M Nair
- Blood Research Program, US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, 78234, USA
| | - Andrew P Cap
- Blood Research Program, US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, 78234, USA
| | - Anand K Ramasubramanian
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA, 95192, USA.
| |
Collapse
|
130
|
Litvinov RI, Nabiullina RM, Zubairova LD, Shakurova MA, Andrianova IA, Weisel JW. Lytic Susceptibility, Structure, and Mechanical Properties of Fibrin in Systemic Lupus Erythematosus. Front Immunol 2019; 10:1626. [PMID: 31379831 PMCID: PMC6646676 DOI: 10.3389/fimmu.2019.01626] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Among complications of systemic lupus erythematosus (SLE), thrombotic events are relatively common and contribute significantly to the morbidity and mortality rates. An increased risk of thrombosis in various diseases has been shown to be associated with the lytic stability and mechanical stiffness of the fibrin clot determined by its structure. Here we studied alterations of the fibrin clot properties in relation to disease severity in SLE patients. Plasma clots from 28 SLE patients were characterized by the kinetics of formation and fibrinolytic dissolution (using dynamic turbidimetry), the network and fiber ultrastructure (scanning electron microscopy), viscoelasticity (shear rheometry), and the rate and degree of crosslinking (Western blotting) correlated with the disease activity, blood composition, and compared to clotting of pooled normal human plasma. Clots made from plasma of SLE patients were lysed faster with exogenous t-PA than control clots from normal plasma without a significant difference between those from active (SLEDAI>4) and inactive (SLEDAI<4) SLE patients. Clots from the blood of patients with active SLE were characterized by significantly slower onset, but faster rate of fibrin polymerization and a higher optical density due to thicker fibers compared to those from inactive SLE and control pooled normal plasma. The rheological parameters of the clots (storage and loss moduli) were significantly increased in the active SLE patients along with enhanced fibrin crosslinking and hyperfibrinogenemia. The structural and rheological alterations displayed a strong positive correlation with high fibrinogen levels and other laboratory markers of immune inflammation. In conclusion, changes in the blood composition associated with active systemic inflammation in SLE cause significant alterations in the lytic resistance of fibrin clots associated with changes in polymerization kinetics, viscoelastic properties, and structure. The formation of more rigid prothrombotic fibrin clots in the plasma of SLE patients is likely due to the inflammatory hyperfibrinogenemia and greater extent of crosslinking. However, the higher susceptibility of the SLE clots to fibrinolysis may be a protective and/or compensatory mechanism that reduces the risk of thrombotic complications and improves patient outcomes.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Rosa M Nabiullina
- Departments of Biochemistry and General Pathology, Kazan State Medical University, Kazan, Russia
| | - Laily D Zubairova
- Departments of Biochemistry and General Pathology, Kazan State Medical University, Kazan, Russia
| | - Mileusha A Shakurova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Izabella A Andrianova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
131
|
Goczkowski M, Gobin M, Hindié M, Agniel R, Larreta-Garde V. Properties of interpenetrating polymer networks associating fibrin and silk fibroin networks obtained by a double enzymatic method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109931. [PMID: 31499978 DOI: 10.1016/j.msec.2019.109931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 06/17/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
Fibrin gels are of interest as biomaterials for regenerative medicine but present poor mechanical properties, undergo fast degradation and strongly contract in presence of cells. To face these drawbacks, a fibrin network can be associated with another polymer network, in an Interpenetrating Polymer Network (IPN) architecture. In this study, we report the properties of an IPN comprising a fibrin (Fb) network and a silk fibroin (SF) network. This IPN is synthesized through the action of 2 enzymes, each one being specific of one protein gelation, i.e. thrombin (Tb) for Fb gelation, and horseradish peroxidase (HRP) for SF gelation. The effective formation of both Fb and SF networks in an IPN architecture was first verified at qualitative and quantitative levels. The resulting IPN was easily manipulable, displayed high viscoelastic properties and showed homogeneous macro- and micro-structure. Then the degradability of the IPN by two proteases, thermolysin (TL) and trypsin (TRY), obeying different mechanisms was presented. Finally, two-dimensional culture of human fibroblasts on the IPN surface induced little material contraction, while fibroblasts showed healthy morphology, displayed high viability and produced mature extracellular matrix (ECM) proteins. Taken together, the results suggest that this new IPN have a strong potential for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mathieu Goczkowski
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France; Celogos, Paris, France
| | - Maxime Gobin
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France
| | - Véronique Larreta-Garde
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France.
| |
Collapse
|
132
|
Natesan S, Stone R, Coronado RE, Wrice NL, Kowalczewski AC, Zamora DO, Christy RJ. PEGylated Platelet-Free Blood Plasma-Based Hydrogels for Full-Thickness Wound Regeneration. Adv Wound Care (New Rochelle) 2019; 8:323-340. [PMID: 31737420 DOI: 10.1089/wound.2018.0844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/23/2018] [Indexed: 02/03/2023] Open
Abstract
Objective: To develop a cost-effective and clinically usable therapy to treat full-thickness skin injuries. We accomplished this by preparing a viscoelastic hydrogel using polyethylene glycol (PEG)-modified platelet-free plasma (PEGylated PFP) combined with human adipose-derived stem cells (ASCs). Approach: PEGylated PFP hydrogels were prepared by polymerizing the liquid mixture of PEG and PFP±ASCs and gelled either by adding calcium chloride (CaCl2) or thrombin. Rheological and in vitro studies were performed to assess viscoelasticity and the ability of hydrogels to direct ASCs toward a vasculogenic phenotype, respectively. Finally, a pilot study evaluated the efficacy of hydrogels±ASCs using an athymic rat full-thickness skin wound model. Results: Hydrogels prepared within the range of 11 to 27 mM for CaCl2 or 5 to 12.5 U/mL for thrombin exhibited a storage modulus of ∼62 to 87 Pa and ∼47 to 92 Pa, respectively. The PEGylated PFP hydrogels directed ASCs to form network-like structures resembling vasculature, with a fourfold increase in perivascular specific genes that were confirmed by immunofluorescent staining. Hydrogels combined with ASCs exhibited an increase in blood vessel density when applied to excisional rat wounds compared with those treated with hydrogels (110.3 vs. 95.6 BV/mm2; p < 0.05). Furthermore, ASCs were identified in the perivascular region associated with newly forming blood vessels. Innovation: This study demonstrates that PFP modified with PEG along with ASCs can be used to prepare cost-effective stable hydrogels, at the bed-side, to treat extensive skin wounds. Conclusion: These results indicate that PEGylated plasma-based hydrogels combined with ASCs may be a potential regenerative therapy for full-thickness skin wounds.
Collapse
Affiliation(s)
- Shanmugasundaram Natesan
- Combat Trauma and Burn Injury Research, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Randolph Stone
- Combat Trauma and Burn Injury Research, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas
| | | | - Nicole L. Wrice
- Ocular Trauma & Vision Restoration, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Andrew C. Kowalczewski
- Combat Trauma and Burn Injury Research, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - David O. Zamora
- Ocular Trauma & Vision Restoration, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Robert J. Christy
- Combat Trauma and Burn Injury Research, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas
| |
Collapse
|
133
|
Kattula S, Byrnes JR, Wolberg AS. Fibrinogen and Fibrin in Hemostasis and Thrombosis. Arterioscler Thromb Vasc Biol 2019; 37:e13-e21. [PMID: 28228446 DOI: 10.1161/atvbaha.117.308564] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sravya Kattula
- From the Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - James R Byrnes
- From the Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Alisa S Wolberg
- From the Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill.
| |
Collapse
|
134
|
Fischer T, Hayn A, Mierke CT. Fast and reliable advanced two-step pore-size analysis of biomimetic 3D extracellular matrix scaffolds. Sci Rep 2019; 9:8352. [PMID: 31175320 PMCID: PMC6555844 DOI: 10.1038/s41598-019-44764-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/23/2019] [Indexed: 11/22/2022] Open
Abstract
The tissue microenvironment is a major contributor to cellular functions, such as cell adhesion, migration and invasion. A critical physical parameter for determining the effect of the microenvironment on cellular functions is the average pore-size of filamentous scaffolds, such as 3D collagen fiber matrices, which are assembled by the polymerization of biopolymers. The scaffolds of these matrices can be analyzed easily by using state-of-the-art laser scanning confocal imaging. However, the generation of a quantitative estimate of the pore-size in a 3D microenvironment is not trivial. In this study, we present a reliable and fast analytical method, which relies on a two-step 3D pore-size analysis utilizing several state-of-the-art image analysis methods, such as total variation (TV) denoising and adaptive local thresholds, and another crucial parameter, such as pore-coverage. We propose an iterative approach of pore-size analysis to determine even the smallest and obscure pores in a collagen scaffold. Additionally, we propose a novel parameter, the pseudo-pore-size, which describes a virtual scaffold porosity. In order to validate the advanced two-step pore-size analysis different types of artificial collagens, such as a rat and bovine mixture with two different collagen concentrations have been utilized. Additionally, we compare a traditional approach with our method using an artificially generated network with predefined pore-size distributions. Indeed, our analytical method provides a precise, fast and parameter-free, user-independent and automatic analysis of 3D pore topology, such as pore-sizes and pore-coverage. Additionally, we are able to determine non-physiological network topologies by taking the pore-coverage as a goodness-of-fit parameter.
Collapse
Affiliation(s)
- Tony Fischer
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnéstr. 5, 04103, Leipzig, Germany
| | - Alexander Hayn
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnéstr. 5, 04103, Leipzig, Germany
| | - Claudia Tanja Mierke
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnéstr. 5, 04103, Leipzig, Germany.
| |
Collapse
|
135
|
Mouapi KN, Wagner LJ, Stephens CA, Hindi MM, Wilkey DW, Merchant ML, Maurer MC. Evaluating the Effects of Fibrinogen αC Mutations on the Ability of Factor XIII to Crosslink the Reactive αC Glutamines (Q237, Q328, Q366). Thromb Haemost 2019; 119:1048-1057. [PMID: 31055797 DOI: 10.1055/s-0039-1687875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Fibrinogen (Fbg) levels and extent of fibrin polymerization have been associated with various pathological conditions such as cardiovascular disease, arteriosclerosis, and coagulation disorders. Activated factor XIII (FXIIIa) introduces γ-glutamyl-ε-lysinyl isopeptide bonds between reactive glutamines and lysines in the fibrin network to form a blood clot resistant to fibrinolysis. FXIIIa crosslinks the γ-chains and at multiple sites in the αC region of Fbg. Fbg αC contains a FXIII binding site involving αC (389-402) that is located near three glutamines whose reactivities rank Q237 >> Q366 ≈ Q328. Mass spectrometry and two-dimensional heteronuclear single-quantum correlation nuclear magnetic resonance assays were used to probe the anchoring role that αC E396 may play in controlling FXIII function and characterize the effects of Q237 on the reactivities of Q328 and Q366. Studies with αC (233-425) revealed that the E396A mutation does not prevent the transglutaminase function of FXIII A2 or A2B2. Other residues must play a compensatory role in targeting FXIII to αC. Unlike full Fbg, Fbg αC (233-425) did not promote thrombin cleavage of FXIII, an event contributing to activation. With the αC (233-425) E396A mutant, Q237 exhibited slower reactivities compared with αC wild-type (WT) consistent with difficulties in directing this N-terminal segment toward an anchored FXIII interacting at a weaker binding region. Q328 and Q366 became less reactive when Q237 was replaced with inactive N237. Q237 crosslinking is proposed to promote targeting of Q328 and Q366 to the FXIII active site. FXIII thus uses Fbg αC anchoring sites and distinct Q environments to regulate substrate specificity.
Collapse
Affiliation(s)
- Kelly Njine Mouapi
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| | - Lucille J Wagner
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| | - Chad A Stephens
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| | - Mohammed M Hindi
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| | - Daniel W Wilkey
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Kentucky, United States
| | - Michael L Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Kentucky, United States
| | - Muriel C Maurer
- Chemistry Department, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
136
|
Qiu Y, Myers DR, Lam WA. The biophysics and mechanics of blood from a materials perspective. NATURE REVIEWS. MATERIALS 2019; 4:294-311. [PMID: 32435512 PMCID: PMC7238390 DOI: 10.1038/s41578-019-0099-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cells actively interact with their microenvironment, constantly sensing and modulating biochemical and biophysical signals. Blood comprises a variety of non-adherent cells that interact with each other and with endothelial and vascular smooth muscle cells of the blood vessel walls. Blood cells are further experiencing a range of external forces by the hemodynamic environment and they also exert forces to remodel their local environment. Therefore, the biophysics and material properties of blood cells and blood play an important role in determining blood behaviour in health and disease. In this Review, we discuss blood cells and tissues from a materials perspective, considering the mechanical properties and biophysics of individual blood cells and endothelial cells as well as blood cell collectives. We highlight how blood vessels provide a mechanosensitive barrier between blood and tissues and how changes in vessel stiffness and flow shear stress can be correlated to plaque formation and exploited for the design of vascular grafts. We discuss the effect of the properties of fibrin on blood clotting, and investigate how forces exerted by platelets are correlated to disease. Finally, we hypothesize that blood and vascular cells are constantly establishing a mechanical homeostasis, which, when imbalanced, can lead to hematologic and vascular diseases.
Collapse
Affiliation(s)
- Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - David R. Myers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Corresponding author,
| |
Collapse
|
137
|
Protopopova AD, Ramirez A, Klinov DV, Litvinov RI, Weisel JW. Factor XIII topology: organization of B subunits and changes with activation studied with single-molecule atomic force microscopy. J Thromb Haemost 2019; 17:737-748. [PMID: 30773828 PMCID: PMC6917434 DOI: 10.1111/jth.14412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Essentials Factor XIII is a heterotetramer with 2 catalytic A subunits and 2 non-catalytic B subunits. Structure of active and inactive factor XIII was studied with atomic force microscopy. Inactive factor XIII is made of an A2 globule and 2 flexible B subunits extending from it. Activated factor XIII separates into a B2 homodimer and 2 monomeric active A subunits. SUMMARY: Background Factor XIII (FXIII) is a precursor of the blood plasma transglutaminase (FXIIIa) that is generated by thrombin and Ca2+ and covalently crosslinks fibrin to strengthen blood clots. Inactive plasma FXIII is a heterotetramer with two catalytic A subunits and two non-catalytic B subunits. Inactive A subunits have been characterized crystallographically, whereas the atomic structure of the entire FXIII and B subunits is unknown and the oligomerization state of activated A subunits remains controversial. Objectives Our goal was to characterize the (sub)molecular structure of inactive FXIII and changes upon activation. Methods Plasma FXIII, non-activated or activated with thrombin and Ca2+ , was studied by single-molecule atomic force microscopy. Additionally, recombinant separate A and B subunits were visualized and compared with their conformations and dimensions in FXIII and FXIIIa. Results and Conclusions We showed that heterotetrameric FXIII forms a globule composed of two catalytic A subunits with two flexible strands comprising individual non-catalytic B subunits that protrude on one side of the globule. Each strand corresponds to seven to eight out of 10 tandem repeats building each B subunit, called sushi domains. The remainder were not seen, presumably because they were tightly bound to the globular A2 dimer. Some FXIII molecules had one or no visible strands, suggesting dissociation of the B subunits from the globular core. After activation of FXIII with thrombin and Ca2+ , B subunits dissociated and formed B2 homodimers, whereas the activated globular A subunits dissociated into monomers. These results characterize the molecular organization of FXIII and changes with activation.
Collapse
Affiliation(s)
- Anna D Protopopova
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Andrea Ramirez
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
138
|
Chaudhary G, Ghosh A, Bharadwaj NA, Kang JG, Braun PV, Schweizer KS, Ewoldt RH. Thermoresponsive Stiffening with Microgel Particles in a Semiflexible Fibrin Network. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | | | - Jin Gu Kang
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | | | | | | |
Collapse
|
139
|
Malandrino A, Trepat X, Kamm RD, Mak M. Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices. PLoS Comput Biol 2019; 15:e1006684. [PMID: 30958816 PMCID: PMC6472805 DOI: 10.1371/journal.pcbi.1006684] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 04/18/2019] [Accepted: 11/19/2018] [Indexed: 11/18/2022] Open
Abstract
The mechanical properties of the extracellular matrix (ECM)–a complex, 3D, fibrillar scaffold of cells in physiological environments–modulate cell behavior and can drive tissue morphogenesis, regeneration, and disease progression. For simplicity, it is often convenient to assume these properties to be time-invariant. In living systems, however, cells dynamically remodel the ECM and create time-dependent local microenvironments. Here, we show how cell-generated contractile forces produce substantial irreversible changes to the density and architecture of physiologically relevant ECMs–collagen I and fibrin–in a matter of minutes. We measure the 3D deformation profiles of the ECM surrounding cancer and endothelial cells during stages when force generation is active or inactive. We further correlate these ECM measurements to both discrete fiber simulations that incorporate fiber crosslink unbinding kinetics and continuum-scale simulations that account for viscoplastic and damage features. Our findings further confirm that plasticity, as a mechanical law to capture remodeling in these networks, is fundamentally tied to material damage via force-driven unbinding of fiber crosslinks. These results characterize in a multiscale manner the dynamic nature of the mechanical environment of physiologically mimicking cell-in-gel systems. Many cells in the body are surrounded by a 3D extracellular matrix of interconnected protein fibers. The density and architecture of this protein fiber network can play important roles in controlling cell behavior. Deregulated biophysical properties of the extracellular environment are observed in diseases such as cancer. We demonstrate, through an integrated computational and experimental study, that cell-generated dynamic local forces rapidly and mechanically remodel the matrix, creating a non-homogeneous, densified region around the cell. This substantially increases extracellular matrix protein concentration in the vicinity of cells and alters matrix mechanical properties over time, creating a new microenvironment. Cells are known to respond to both biochemical and biomechanical properties of their surroundings. Our findings show that for mechanically active cells that exert dynamic forces onto the extracellular matrix, the physical properties of the surrounding environment that they sense are dynamic, and these dynamic properties should be taken into consideration in studies involving cell-matrix interactions, such as 3D traction force microscopy experiments in physiologically relevant environments.
Collapse
Affiliation(s)
- Andrea Malandrino
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute for Bioengineering of Catalonia, Barcelona, Spain
- * E-mail: (AM); (RDK); (MM)
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (AM); (RDK); (MM)
| | - Michael Mak
- Yale University, Biomedical Engineering Department, New Haven, Connecticut, United States of America
- * E-mail: (AM); (RDK); (MM)
| |
Collapse
|
140
|
The Effects of EDTA on Blood Clot in Regenerative Endodontic Procedures. J Endod 2019; 45:281-286. [DOI: 10.1016/j.joen.2018.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 11/23/2022]
|
141
|
Weafer FM, Duffy S, Machado I, Gunning G, Mordasini P, Roche E, McHugh PE, Gilvarry M. Characterization of strut indentation during mechanical thrombectomy in acute ischemic stroke clot analogs. J Neurointerv Surg 2019; 11:891-897. [DOI: 10.1136/neurintsurg-2018-014601] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/22/2018] [Accepted: 12/28/2018] [Indexed: 11/04/2022]
Abstract
BackgroundAlthough it is common practice to wait for an ‘embedding time’ during mechanical thrombectomy (MT) to allow strut integration of a stentriever device into an occluding thromboembolic clot, there is a scarcity of evidence demonstrating the value or optimal timing for the wide range of thrombus compositions. This work characterizes the behavior of clot analogs of varying fibrin and cellular compositions subject to indentation forces and embedding times representative of those imparted by a stentriever during MT. The purpose of this study is to quantify the effect of thrombus composition on device strut embedding, and to examine the precise nature of clot integration into a stentriever device at a microstructural level.MethodClot analogs with 0% (varying densities), 5%, 40%, and 80% red blood cell (RBC) content were created using ovine blood. Clot indentation behavior during an initial load application (loading phase) followed by a 5-min embedding time (creep phase) was analyzed using a mechanical tester under physiologically relevant conditions. The mechanism of strut integration was examined using micro-computed tomography (µCT) with an EmboTrap MT device (Cerenovus, Galway, Ireland) deployed in each clot type. Microstructural clot characteristics were identified using scanning electron microscopy (SEM).ResultsCompressive clot stiffness measured during the initial loading phase was shown to be lowest in RBC-rich clots, with a corresponding greatest maximum indentation depth. Meanwhile, additional depth achieved during the simulated embedding time was most pronounced in fibrin-rich clots. SEM imaging identified variations in microstructural mechanisms (fibrin stretching vs rupturing) which was dependent on fibrin:cellular content, while µCT analysis demonstrated the mechanism of strut integration was predominantly the formation of surface undulations rather than clot penetration.ConclusionsDisparities in indentation behavior between clot analogs were attributed to varying microstructural features induced by the cellular:fibrin content. Greater indentation was identified in clots with higher RBC content, but with an increased level of fibrin rupture, suggesting an increased propensity for fragmentation. Additional embedding time improves strut integration, especially in fibrin-rich clots, through the mechanism of fibrin stretching with the majority of additional integration occurring after 3 mins. The level of thrombus incorporation into the EmboTrap MT device (Cerenovus, Galway, Ireland) was primarily influenced by the stentriever design, with increased integration in regions of open architecture.
Collapse
|
142
|
Williams EK, Oshinowo O, Ravindran A, Lam WA, Myers DR. Feeling the Force: Measurements of Platelet Contraction and Their Diagnostic Implications. Semin Thromb Hemost 2018; 45:285-296. [PMID: 30566972 DOI: 10.1055/s-0038-1676315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to the classical biological and biochemical framework, blood clots can also be considered as active biomaterials composed of dynamically contracting platelets, nascent polymeric fibrin that functions as a matrix scaffold, and entrapped blood cells. As platelets sense, rearrange, and apply forces to the surrounding microenvironment, they dramatically change the material properties of the nascent clot, increasing its stiffness by an order of magnitude. Hence, the mechanical properties of blood clots are intricately tied to the forces applied by individual platelets. Research has also shown that the pathophysiological changes in clot mechanical properties are associated with bleeding and clotting disorders, cancer, stroke, ischemic heart disease, and more. By approaching the study of hemostasis and thrombosis from a biophysical and mechanical perspective, important insights have been made into how the mechanics of clotting and the forces applied by platelets are linked to various diseases. This review will familiarize the reader with a mechanics framework that is contextualized with relevant biology. The review also includes a discussion of relevant tools used to study platelet forces either directly or indirectly, and finally, concludes with a summary of potential links between clotting forces and disease.
Collapse
Affiliation(s)
- Evelyn Kendall Williams
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia.,Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.,Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Oluwamayokun Oshinowo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia.,Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.,Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Abhijit Ravindran
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia.,Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.,Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia.,Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.,Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - David R Myers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia.,Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.,Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
143
|
Matuska AM, Klimovich MK, Chapman JR. An Ethanol-Free Autologous Thrombin System. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2018; 50:237-243. [PMID: 30581231 PMCID: PMC6296456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/11/2018] [Indexed: 06/09/2023]
Abstract
Thrombin is a coagulation protein of central importance to hemostasis and wound healing that can be sourced from human blood, bovine blood, and engineered cell lines. Only autologous thrombin lacks the risks of transmitting emergent pathogens or eliciting an immunogenic response. Previous commercial autologous thrombin devices require the use of high concentrations of ethanol to achieve thrombin stability, introducing cytotoxicity risks. A new point of care device for preparing an ethanol-free autologous thrombin serum was investigated. The ethanol-free autologous serum (AS) was prepared using the Thrombinator™ System (Arthrex, Inc., Naples, FL). A total of 120 devices were tested with the blood of 30 healthy donors to determine the reliability and flexibility of the procedure. AS was prepared from both whole blood (WB) and platelet-poor plasma (PPP). Study endpoints were thrombin activity determined using a coagulation analyzer and formation of cohesive bone graft composites objectively measured using a durometer. The average thrombin activity produced by this system from 24 donors was 20.6 ± 2.7 IU/mL for WB and 13.4 ± 3.8 IU/mL for PPP which correlated to clot times of 3.9 and 5.9 seconds, respectively. The device tolerated use of varying volumes of blood to prepare AS. In addition, the system was able to generate four successive and comparable AS productions. When combined with platelet-rich plasma and bone graft material, cohesive scaffolds were always formed. A new device and method for preparing single donor, ethanol-free, AS with thrombin activity was demonstrated.
Collapse
|
144
|
Debono J, Bos MHA, Nouwens A, Ge L, Frank N, Kwok HF, Fry BG. Habu coagulotoxicity: Clinical implications of the functional diversification of Protobothrops snake venoms upon blood clotting factors. Toxicol In Vitro 2018; 55:62-74. [PMID: 30471431 DOI: 10.1016/j.tiv.2018.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/24/2018] [Accepted: 11/20/2018] [Indexed: 01/19/2023]
Abstract
Venom can affect any part of the body reachable via the bloodstream. Toxins which specifically act upon the coagulation cascade do so either by anticoagulant or procoagulant mechanisms. Here we investigated the coagulotoxic effects of six species within the medically important pit viper genus Protobothrops (Habu) from the Chinese mainland and Japanese islands, a genus known to produce hemorrhagic shock in envenomed patients. Differential coagulotoxicity was revealed: P. jerdonii and P. mangshanensis produced an overall net anticoagulant effect through the pseudo-procoagulant clotting of fibrinogen; P. flavoviridis and P. tokarensis exhibit a strong anticoagulant activity through the destructive cleavage of fibrinogen; and while P. elegans and P. mucrosquamatus both cleaved the A-alpha and B-beta chains of fibrinogen they did not exhibit strong anticoagulant activity. These variations in coagulant properties were congruent with phylogeny, with the closest relatives exhibiting similar venom effects in their action upon fibrinogen. Ancestral state reconstruction indicated that anticoagulation mediated by pseudo-procoagulant cleavage of fibrinogen is the basal state, while anticoagulation produced by destructive cleavage of fibrinogen is the derived state within this genus. This is the first in depth study of its kind highlighting extreme enzymatic variability, functional diversification and clotting diversification within one genus surrounding one target site, governed by variability in co-factor dependency. The documentation that the same net overall function, anticoagulation, is mediated by differential underlying mechanics suggests limited antivenom cross-reactivity, although this must be tested in future work. These results add to the body of knowledge necessary to inform clinical management of the envenomed patient.
Collapse
Affiliation(s)
- Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Mettine H A Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia 4072, Australia
| | - Lilin Ge
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 215400, China
| | | | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
145
|
Chernyshenko VO, Savchuk OV, Cherenok SO, Silenko OM, Negelia AO. Haemostasis modulation by calix[4]arene methylenebisphosphonic acid C-145 and its sulfur-containing analogue. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
146
|
Kodlekere P, Andrew Lyon L. Microgel core/shell architectures as targeted agents for fibrinolysis. Biomater Sci 2018; 6:2054-2058. [PMID: 29924117 DOI: 10.1039/c8bm00119g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the utility of microgel core/shell structures conjugated to fibrin-specific peptides as fibrinolytic agents. Poly(N-isopropylmethacrylamide) (pNIPMAm) based microgels conjugated to the peptide GPRPFPAC (GPRP) were observed to bring about fibrin clot erosion, merely through exploitation of the dynamic nature of the clots. These results suggest the potential utility of peptide-microgel hybrids in clot disruption and clotting modulation.
Collapse
Affiliation(s)
- Purva Kodlekere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | |
Collapse
|
147
|
Hingane VC, Pangam D, Dongre PM. Inhibition of crude viper venom action by silver nanoparticles: A biophysical and biochemical study. Biophys Physicobiol 2018; 15:204-213. [PMID: 30450270 PMCID: PMC6234898 DOI: 10.2142/biophysico.15.0_204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/04/2018] [Indexed: 01/26/2023] Open
Abstract
This investigation understands the interaction between lyophilized crude Viper snake venom (Doboia russellie) and Silver nanoparticles (SNPs) using biophysical and biochemical approaches. SNPs were synthesized by chemical reduction method and characterized using UV-Visible spectroscopy, Dynamic Light Scattering (DLS) and Transmission electron microscope (TEM). The average hydrodynamic size of SNPs was found to be 52 nm with 0.261 PDI. TEM image revealed the spherical shape of SNP. Interaction of SNPs and viper venom was resulted in the formation of complex which was confirmed by using DLS technique. Spectroscopic results showed an increase in absorbance intensity of venom upon interaction with SNPs which indicated interaction with venom proteins. Fluorescence spectroscopic data revealed the quenching in the fluorescence intensity of viper venom upon incubation with varying concentration of SNPs. The results obtained by biochemical assays (Protease and whole blood clotting test) revealed the inhibition of venom action due to presence of silver nanoparticles. The activity of protease enzyme was found to be decreased (10-13% reduction) in presence of silver nanoparticles. Prolonged clotting time (two fold) of viper venom upon interaction with SNPs compared to native crude viper venom was observed. The overall results confirmed the inhibition action of silver nanoparticles against viper venom.
Collapse
Affiliation(s)
| | - Dhanashri Pangam
- Department of Biophysics, University of Mumbai, Mumbai 400098, India
| | | |
Collapse
|
148
|
Dibiasi C, Plewka J, Ploszczanski L, Glanz V, Lichtenegger H, Windberger U. Viscoelasticity and structure of blood clots generated in-vitro by rheometry: A comparison between human, horse, rat, and camel. Clin Hemorheol Microcirc 2018; 69:515-531. [PMID: 29710696 DOI: 10.3233/ch-189203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Although the coagulation system is evolutionary well preserved, profound species differences exist in viscoelastic as well as in common laboratory tests of coagulation. OBJECTIVE Evaluating differences in clot formation and material characterisation of clots of four mammalian species on macro-, micro- and nanoscales by the means of rheometry, scanning electron microscopy (SEM) and small angle x-ray scattering (SAXS). METHODS Blood samples were collected from healthy human volunteers, laboratory rats (HL/LE inbred strain), warmblood horses and dromedary camels. Clot formation was observed by oscillating shear rheometry until plateau formation of the shear storage modulus G', at which point selected clots were prepared for scanning electron microscopy. SEM images were analysed for fibre diameter and fractal dimension. Additionally, scattering profiles for plasma and whole blood samples were obtained with SAXS. RESULTS Viscoelasticity of clots showed great interspecies variation: clots of rats and horses exhibited shorter clotting times and higher G' plateau values, when compared to human clots. Camel clots showed unique clotting characteristics with no G' plateau formation in the timeframe observed. Less differentiating features were found with SEM and SAXS, although the rat fibre network appears to be more convoluted and dense, which resulted in a higher fractal dimension. CONCLUSION Clotting kinetic differs between the species, which is not only of clinical interest, but could also be an important finding for animal models of blood coagulation.
Collapse
Affiliation(s)
- Christoph Dibiasi
- Department of Biomedical Research, Decentralized Biomedical Facilities, Medical University of Vienna, Austria
| | - Jacek Plewka
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Leon Ploszczanski
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Veronika Glanz
- Department of Biomedical Research, Decentralized Biomedical Facilities, Medical University of Vienna, Austria
| | - Helga Lichtenegger
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ursula Windberger
- Department of Biomedical Research, Decentralized Biomedical Facilities, Medical University of Vienna, Austria
| |
Collapse
|
149
|
Guedes AF, Carvalho FA, Domingues MM, Macrae FL, McPherson HR, Sabban A, Martins IC, Duval C, Santos NC, Ariëns RA. Impact of γ'γ' fibrinogen interaction with red blood cells on fibrin clots. Nanomedicine (Lond) 2018; 13:2491-2505. [PMID: 30311540 DOI: 10.2217/nnm-2018-0136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM γ' fibrinogen has been associated with thrombosis. Here the interactions between γ'γ' or γAγA fibrinogen and red blood cells (RBCs), and their role on fibrin clot properties were studied. MATERIALS & METHODS Atomic Force microscopy (AFM)-based force spectroscopy, rheological, electron and confocal microscopy, and computational approaches were conducted for both fibrinogen variants. RESULTS & CONCLUSION AFM shows that the recombinant human (rh)γ'γ' fibrinogen increases the binding force and the frequency of the binding to RBCs compared with rhγAγA, promoting cell aggregation. Structural changes in rhγ'γ' fibrin clots, displaying a nonuniform fibrin network were shown by microscopy approaches. The presence of RBCs decreases the fibrinolysis rate and increases viscosity of rhγ'γ' fibrin clots. The full length of the γ' chain structure, revealed by computational analysis, occupies a much wider surface and is more flexible, allowing an increase of the binding between γ' fibers, and eventually with RBCs.
Collapse
Affiliation(s)
- Ana Filipa Guedes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal
- Thrombosis & Tissue Repair Group, Discovery & Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine & Multidisciplinary Cardiovascular Centre, Faculty of Medicine & Health, University of Leeds, Leeds, United Kingdom
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal
- Thrombosis & Tissue Repair Group, Discovery & Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine & Multidisciplinary Cardiovascular Centre, Faculty of Medicine & Health, University of Leeds, Leeds, United Kingdom
| | - Fraser L Macrae
- Thrombosis & Tissue Repair Group, Discovery & Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine & Multidisciplinary Cardiovascular Centre, Faculty of Medicine & Health, University of Leeds, Leeds, United Kingdom
| | - Helen R McPherson
- Thrombosis & Tissue Repair Group, Discovery & Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine & Multidisciplinary Cardiovascular Centre, Faculty of Medicine & Health, University of Leeds, Leeds, United Kingdom
| | - Aliaa Sabban
- Thrombosis & Tissue Repair Group, Discovery & Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine & Multidisciplinary Cardiovascular Centre, Faculty of Medicine & Health, University of Leeds, Leeds, United Kingdom
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Cédric Duval
- Thrombosis & Tissue Repair Group, Discovery & Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine & Multidisciplinary Cardiovascular Centre, Faculty of Medicine & Health, University of Leeds, Leeds, United Kingdom
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Robert As Ariëns
- Thrombosis & Tissue Repair Group, Discovery & Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine & Multidisciplinary Cardiovascular Centre, Faculty of Medicine & Health, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
150
|
Sánchez-Ferrer A, Adamcik J, Handschin S, Hiew SH, Miserez A, Mezzenga R. Controlling Supramolecular Chiral Nanostructures by Self-Assembly of a Biomimetic β-Sheet-Rich Amyloidogenic Peptide. ACS NANO 2018; 12:9152-9161. [PMID: 30106557 DOI: 10.1021/acsnano.8b03582] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Squid sucker ring teeth (SRT) have emerged as a promising protein-only, thermoplastic biopolymer with an increasing number of biomedical and engineering applications demonstrated in recent years. SRT is a supra-molecular network whereby a flexible, amorphous matrix is mechanically reinforced by nanoconfined β-sheets. The building blocks for the SRT network are a family of suckerin proteins that share a common block copolymer architecture consisting of amorphous domains intervened by smaller, β-sheet forming modules. Recent studies have identified the peptide A1H1 (peptide sequence AATAVSHTTHHA) as one of the most abundant β-sheet forming domains within the suckerin protein family. However, we still have little understanding of the assembly mechanisms by which the A1H1 peptide may assemble into its functional load-bearing domains. In this study, we conduct a detailed self-assembly study of A1H1 and show that the peptide undergoes β-strands-driven elongation into amyloid-like fibrils with a rich polymorphism. The nanostructure of the fibrils was elucidated by small and wide-angle X-ray scattering (SAXS and WAXS) and atomic force microscopy (AFM). The presence of His-rich and Ala-rich segments results in an amphiphilic behavior and drives its assembly into fibrillar supramolecular chiral aggregates with helical ribbon configuration in solution, with the His-rich region exposed to the solvent molecules. Upon increase in concentration, the fibrils undergo gel formation, while preserving the same mesoscopic features. This complex phase behavior suggests that the repeat peptide modules of suckerins may be manipulated beyond their native biological environment to produce a wider variety of self-assembled amyloid-like nanostructures.
Collapse
Affiliation(s)
- Antoni Sánchez-Ferrer
- Department of Health Sciences & Technology , ETH Zurich , Zurich CH-8092 , Switzerland
| | - Jozef Adamcik
- Department of Health Sciences & Technology , ETH Zurich , Zurich CH-8092 , Switzerland
| | - Stephan Handschin
- Department of Health Sciences & Technology , ETH Zurich , Zurich CH-8092 , Switzerland
| | - Shu Hui Hiew
- School of Materials Science and Engineering , Nanyang Technological University (NTU) , 639798 , Singapore
| | - Ali Miserez
- School of Materials Science and Engineering , Nanyang Technological University (NTU) , 639798 , Singapore
- School of Biological Sciences , NTU , 637551 , Singapore
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology , ETH Zurich , Zurich CH-8092 , Switzerland
- Department of Materials , ETH Zurich , Zurich CH-8093 , Switzerland
| |
Collapse
|