101
|
Pan W, Kastin AJ, Yu Y, Cain CM, Fairburn T, Stütz AM, Morrison C, Argyropoulos G. Selective tissue uptake of agouti-related protein(82-131) and its modulation by fasting. Endocrinology 2005; 146:5533-9. [PMID: 16141394 DOI: 10.1210/en.2005-0578] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The blood concentration of agouti-related protein (AgRP), a protein related to hyperphagia and obesity, is increased in obese human and fasted lean subjects. Because there is no saturable transport system at the blood-brain barrier for circulating AgRP to reach its central nervous system target, uptake of AgRP by peripheral organs might be physiologically meaningful. Using the biologically active fragment AgRP(82-131), we determined the pharmacokinetics of its radioactively labeled tracer after iv bolus injection and compared it with that of the vascular marker albumin. AgRP enters peripheral organs at different influx rates, all of which were higher than into brain and spinal cord. At 10 min after iv injection, the radioactivity recovered in the liver, which had the fastest influx rate for AgRP, represented intact (125)I-AgRP. The adrenal gland had a moderately fast uptake (but the highest initial volume of distribution), followed by the heart, lungs, and skeletal muscle. By comparison, epididymal fat, testis, and pancreas had low permeability to AgRP. Saturation of influx was determined by coadministration of excess unlabeled AgRP and was shown to be present in the liver and adrenal gland. The influx rate and initial volume of distribution did not show a linear correlation with vascular permeability or regional blood flow. AgRP uptake by the liver and epididymal fat was significantly increased by overnight fasting, whereas that by the adrenal gland was significantly decreased in fasted mice. Thus, the differential uptake of AgRP by peripheral organs could be a regulated process that is modulated by food deprivation.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, 70808, USA.
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Pan W, Yu Y, Cain CM, Nyberg F, Couraud PO, Kastin AJ. Permeation of growth hormone across the blood-brain barrier. Endocrinology 2005; 146:4898-904. [PMID: 16099858 DOI: 10.1210/en.2005-0587] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exogenous GH can affect central nervous system function when given peripherally to animals and as a supplemental therapy to humans. This study tested whether GH crosses the blood-brain barrier (BBB) by a specific transport system and found that both mice and rats have small but significant uptake of GH into the brain without a species difference. Determined by multiple-time regression analysis, the blood-to-brain influx transfer constants of 125I-labeled rat GH in mice (0.23+/-0.07 microl/g.min) and rats (0.32+/-0.04 microl/g.min) were comparable to those of some cytokines of similar size, with a half-time disappearance of 125I-GH of 3.8-7.6 min in blood. Intact 125I-GH was present in both serum and brain homogenate 20 min after iv injection. At this time, about 26.8% of GH in brain entered the parenchyma, whereas 10% was entrapped in endothelial cells. Neither excess GH nor insulin showed acute modulation of the influx, indicating lack of a saturable transport system for GH at the BBB. Binding and cellular uptake studies in cultured cerebral microvessel endothelial cells (RBE4) further ruled out the presence of high-capacity adsorptive endocytosis. The brain influx of GH by simple diffusion adds definitive value to the long-disputed question of whether and how GH crosses the BBB. The central nervous system effects of peripheral GH can be attributed to permeation of the BBB despite the absence of a specific transport system.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Dietz GPH, Bähr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 2005; 27:85-131. [PMID: 15485768 DOI: 10.1016/j.mcn.2004.03.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 02/17/2004] [Accepted: 03/16/2004] [Indexed: 01/12/2023] Open
Abstract
In recent years, vast amounts of data on the mechanisms of neural de- and regeneration have accumulated. However, only in disproportionally few cases has this led to efficient therapies for human patients. Part of the problem is to deliver cell death-averting genes or gene products across the blood-brain barrier (BBB) and cellular membranes. The discovery of Antennapedia (Antp)-mediated transduction of heterologous proteins into cells in 1992 and other "Trojan horse peptides" raised hopes that often-frustrating attempts to deliver proteins would now be history. The demonstration that proteins fused to the Tat protein transduction domain (PTD) are capable of crossing the BBB may revolutionize molecular research and neurobiological therapy. However, it was only recently that PTD-mediated delivery of proteins with therapeutic potential has been achieved in models of neural degeneration in nerve trauma and ischemia. Several groups have published the first positive results using protein transduction domains for the delivery of therapeutic proteins in relevant animal models of human neurological disorders. Here, we give an extensive review of peptide-mediated protein transduction from its early beginnings to new advances, discuss their application, with particular focus on a critical evaluation of the limitations of the method, as well as alternative approaches. Besides applications in neurobiology, a large number of reports using PTD in other systems are included as well. Because each protein requires an individual purification scheme that yields sufficient quantities of soluble, transducible material, the neurobiologist will benefit from the experiences of other researchers in the growing field of protein transduction.
Collapse
|
104
|
Pan W, Kastin AJ. Why study transport of peptides and proteins at the neurovascular interface. ACTA ACUST UNITED AC 2004; 46:32-43. [PMID: 15297153 DOI: 10.1016/j.brainresrev.2004.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2004] [Indexed: 01/17/2023]
Abstract
The blood-brain barrier (BBB) is an immense neurovascular interface. In neurodegenerative, ischemic, and traumatic disorders of the central nervous system (CNS), the BBB may hinder the delivery of many therapeutic peptides and proteins to the brain and spinal cord. Fortunately, the mistaken dogma that peptides and proteins do not cross the BBB has been corrected during the past two decades by the accumulating evidence that peptides and proteins in the periphery exert potent effects in the CNS. Not only can peptides and proteins serve as carriers for selective therapeutic agents, but they themselves may directly cross the BBB after delivery into the bloodstream. Their passage may be mediated by simple diffusion or specific transport, both of which can be affected by interactions in the blood compartment (outside the BBB) and within the endothelial cells (at the BBB level). Although the majority of current delivery strategies focuses on modification of the molecule to be delivered, understanding the mechanisms of transport will eventually facilitate regulation of the BBB directly. We review the different aspects of interactions and discuss recent advances in the cell biology of peptide/protein transport across the BBB. Better understanding of the nature and regulation of the transport systems at the BBB will provide a new direction to enhance the interactions of peripheral peptides and proteins with the CNS.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
105
|
Pan W, Kastin AJ, Zankel TC, van Kerkhof P, Terasaki T, Bu G. Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. J Cell Sci 2004; 117:5071-8. [PMID: 15383619 DOI: 10.1242/jcs.01381] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have sought to identify a high-capacity transport system that mediates transcytosis of proteins from the blood to the brain. The 39 kDa receptor-associated protein (RAP) functions as a specialized endoplasmic reticulum chaperone assisting in the folding and trafficking of members of the low-density lipoprotein (LDL) receptor family. RAP efficiently binds to these receptors and antagonizes binding of other ligands. Previous studies have shown that two large members of the LDL receptor family, LDL receptor-related protein 1 (LRP1) and LDL receptor-related protein 2 (LRP2 or megalin), possess the ability to mediate transcytosis of ligands across the brain capillary endothelium. Here, we tested whether blood-borne RAP crosses the blood-brain barrier (BBB) by LRP1- or megalin-mediated transport by studying the pharmacokinetics of [125I]-RAP transport into the brain in intact mice and across cell monolayers in vitro. Our results show that [125I]-RAP is relatively stable in blood for 30 minutes and has a mean influx constant of 0.62±0.08 μl/g-minute from blood to brain. In situ brain perfusion in blood-free buffer shows that transport of [125I]-RAP across the BBB is a saturable process. Capillary depletion of brain homogenates indicates that 70% of [125I]-RAP is localized in the parenchyma rather than in the vasculature of the brain. Results of transport in stably transfected MDCK cells are consistent with the hypothesis that megalin mediates most of the apical-to-basolateral transport across polarized epithelial cells. The inhibition of [125I]-RAP influx by excess RAP and the involvement of megalin indicate the presence of a saturable transport system at the BBB. The higher permeability of RAP compared with that of melanotransferrin and transferrin show that the LRP receptor is a high capacity transport system. These studies suggest that RAP may provide a novel means of protein-based drug delivery to the brain.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge 70808, USA.
| | | | | | | | | | | |
Collapse
|
106
|
Angelucci F, Oliviero A, Pilato F, Saturno E, Dileone M, Versace V, Musumeci G, Batocchi AP, Tonali PA, Di Lazzaro V. Transcranial magnetic stimulation and BDNF plasma levels in amyotrophic lateral sclerosis. Neuroreport 2004; 15:717-20. [PMID: 15094483 DOI: 10.1097/00001756-200403220-00029] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Low- and high-frequency repetitive transcranial magnetic stimulation (rTMS) of the motor cortex results in lasting changes of excitatory neurotransmission. We investigated the effects of suprathreshold 1 Hz rTMS on brain derived neurotrophic factor (BDNF) plasma levels in 10 healthy subjects and effects of either 1 Hz or 20 Hz rTMS in four amyotrophic lateral sclerosis (ALS) patients. BDNF levels were progressively decreased by 1 Hz rTMS in healthy subjects; there was no effect of 1 Hz rTMS on BDNF plasma levels in ALS patients, an effect probably due to the loss of motor cortex pyramidal cells. High frequency rTMS determined a transitory decrease in BDNF plasma levels. Cumulatively these findings suggest that rTMS might influence the BDNF production by interfering with neuronal activity.
Collapse
Affiliation(s)
- Francesco Angelucci
- Institute of Neurology, Catholic University, Largo Gemelli 8, 00168 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
Proteins of the neuregulin (NRG) family play important regulatory roles in neuronal survival and synaptic activity. NRG-1-beta1 has particular potential as a therapeutic agent because it enhances myelination of neurites in spinal cord explants. In this study, we determined the permeation of NRG-1-beta1 across the blood-brain and blood-spinal cord barriers (BBB and BSCB respectively). Intact radioactively labeled NRG-1-beta1 had a saturable and relatively rapid influx rate from blood to the CNS in mice. Capillary depletion studies showed that NRG-1-beta1 entered the parenchyma of the brain and spinal cord rather than being trapped in the capillaries that compose the BBB. The possible mechanism of receptor-mediated transport was shown by the ability of antibodies to erbB3 and erbB4 receptors to inhibit the influx. Lipophilicity, less important for such saturable transport mechanisms, was measured by the octanol : buffer partition coefficient and found to be low. The results indicate that NRG-1-beta1 enters spinal cord and brain by a saturable receptor-mediated mechanism, which provides the opportunity for possible therapeutic manipulation at the BBB level.
Collapse
Affiliation(s)
- Abba J Kastin
- Veterans Affairs Medical Center and Tulane University Health Sciences Center, New Orleans, Louisiana 70112-1262, USA.
| | | | | |
Collapse
|
108
|
Abstract
Nerve growth factor was the first identified protein with anti-apoptotic activity on neurons. This prototypic neurotrophic factor, together with the three structurally and functionally related growth factors brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4/5 (NT4/5), forms the neurotrophin protein family. Target T cells for neurotrophins include many neurons affected by neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and peripheral polyneuropathies. In addition, the neurotrophins act on neurons affected by other neurological and psychiatric pathologies including ischemia, epilepsy, depression and eating disorders. Work with cell cultures and animal models provided solid support for the hypothesis that neurotrophins prevent neuronal death. While no evidence exists that a lack of neurotrophins underlies the etiology of any neurodegenerative disease, these studies have spurred on hopes that neurotrophins might be useful symptomatic-therapeutic agents. However first clinical trials led to variable results and severe side effects were observed. For future therapeutic use of the neurotrophins it is therefore crucial to expand our knowledge about their physiological functions as well as their pharmacokinetic properties. A major challenge is to develop methods for their application in effective doses and in a precisely timed and localized fashion.
Collapse
Affiliation(s)
- Georg Dechant
- Neurobiochemistry, Max-Planck-Institute of Neurobiology, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | |
Collapse
|
109
|
Gold SM, Schulz KH, Hartmann S, Mladek M, Lang UE, Hellweg R, Reer R, Braumann KM, Heesen C. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol 2003; 138:99-105. [PMID: 12742659 DOI: 10.1016/s0165-5728(03)00121-8] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neurotrophins like brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are thought to play an important role in neuronal repair and plasticity. Recent experimental evidence suggests neuroprotective effects of these proteins in multiple sclerosis (MS). We investigated the response of serum NGF and BDNF concentrations to standardized acute exercise in MS patients and controls. Basal NGF levels were significantly elevated in MS. Thirty minutes of moderate exercise significantly induced BDNF production in MS patients and controls, but no differential effects were seen. We conclude that moderate exercise can be used to induce neutrophin production in humans. This may mediate beneficial effects of physical exercise in MS reported recently.
Collapse
Affiliation(s)
- Stefan M Gold
- Department of Neurology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Kastin AJ, Akerstrom V, Pan W. Glial cell line-derived neurotrophic factor does not enter normal mouse brain. Neurosci Lett 2003; 340:239-41. [PMID: 12672550 DOI: 10.1016/s0304-3940(03)00007-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is produced both in the central nervous system (CNS) and the periphery. Effective in ameliorating neurodegeneration in several animal models of CNS disease, its promise as a therapeutic agent would be greatly enhanced if it readily crossed the blood-brain barrier (BBB) in unmodified form. Here, we used the sensitive techniques of multiple-time regression analysis and ex-vivo perfusion in blood-free buffer to examine the entry of (125)I-GDNF into mouse brain. The integrity of GDNF in blood and brain was examined by high performance liquid chromatography and the physicochemical properties determining permeability were measured by octanol/buffer partition coefficient and hydrogen bonding. The efflux of (125)I-GDNF was determined to test for the presence of a bidirectional transport system. The results show that (125)I-GDNF differs from other peptides and polypeptides in that it does not enter brain any faster than (99m)Tc-albumin, an effect that cannot be explained by degradation, rapid efflux, protein binding, or inadequate lipophilicity. Thus, GDNF shows a different type of interaction with the BBB. In normal mice, the BBB functions as a substantial physical barrier; in pathological or traumatic situations when the barrier is partially disrupted, the lack of restriction by a saturable transport system could make GDNF a suitable candidate for peripheral delivery in promoting neuroregeneration.
Collapse
Affiliation(s)
- Abba J Kastin
- VA Medical Center and Tulane University School of Medicine, 1601 Perdido Street, New Orleans, LA 70112-1262, USA.
| | | | | |
Collapse
|
111
|
Carro E, Trejo JL, Núñez A, Torres-Aleman I. Brain repair and neuroprotection by serum insulin-like growth factor I. Mol Neurobiol 2003; 27:153-62. [PMID: 12777685 DOI: 10.1385/mn:27:2:153] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The existence of protective mechanisms in the adult brain is gradually being recognized as an important aspect of brain function. For many years, self-repair processes in the post-embryonic brain were considered of minor consequence or nonexistent. This notion dominated the study of neurotrophism. Thus, although the possibility that neurotrophic factors participate in brain function in adult life was prudently maintained, the majority of the studies on the role of trophic factors in the brain were focused on developmental aspects. With the recent recognition that the adult brain keeps a capacity for cell renewal, although limited, a new interest in the regenerative properties of brain tissue has emerged. New findings on the role of insulin-like growth factor I (IGF-I), a potent neurotrophic peptide present at high levels in serum, may illustrate this current trend. Circulating IGF-I is an important determinant of proper brain function in the adult. Its pleiotropic effects range from classical trophic actions on neurons such as housekeeping or anti-apoptotic/ pro-survival effects to modulation of brain-barrier permeability, neuronal excitability, or new neuron formation. More recent findings indicate that IGF-I participates in physiologically relevant neuroprotective mechanisms such as those triggered by physical exercise. The increasing number of neurotrophic features displayed by serum IGF-I reinforces the view of a physiological neuroprotective network formed by IGF-I, and possibly other still uncharacterized signals. Future studies with IGF-I, and hopefully other neurotrophic factors, will surely reveal and teach us how to potentiate the self-reparative properties of the adult brain.
Collapse
Affiliation(s)
- Eva Carro
- Laboratory of Neuroendocrinology, Instituto Cajal, CSIC, Madrid, Universidad Autonoma de Madrid, Spain
| | | | | | | |
Collapse
|
112
|
Trejo JL, Carro E, Nuñez A, Torres-Aleman I. Sedentary life impairs self-reparative processes in the brain: the role of serum insulin-like growth factor-I. Rev Neurosci 2003; 13:365-74. [PMID: 12542262 DOI: 10.1515/revneuro.2002.13.4.365] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Regular exercise has long being recognized as an important contributor to appropriate health status and is currently recommended to reduce the incidence of many diseases. More recent is the notion that sedentary life may also be a risk factor for neurodegenerative diseases even though for the last decade the beneficial effects of exercise on brain function have been widely documented. In the brain, exercise exerts both acute and long-term changes that can be interpreted as beneficial, such as increased levels of various neurotrophic factors or enhanced cognition. However, the signals involved in exercise-induced changes in the brain are not yet well known. It is generally thought that they arise from the periphery as a direct consequence of increased metabolic activity and aim to elicit adaptive changes in brain function. However, body-to-brain signaling induced by exercise also underlies a different aspect. Exercise induces changes in the brain that are essential for proper brain function. In this view, sedentarism, a relatively new cultural trait, negates the beneficial effects of exercise and paves the way to pathological derangement. A critical step in this process is exercise-induced uptake by the brain of insulin-like growth factor-I (IGF-I), a circulating hormone with potent neurotrophic activity. We summarize the evidence supporting the hypothesis that serum IGF-I is a neuroprotective hormone within a neuroprotective network modulated by physical activity.
Collapse
Affiliation(s)
- Jose Luis Trejo
- Laboratory of Neuroendocrinology, Instituto Cajal, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
113
|
Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2003; 61:39-78. [PMID: 14674608 DOI: 10.1007/978-3-0348-8049-7_2] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David J Begley
- Centre for Neuroscience Research, Kings College London, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
114
|
Farvolden P, Kennedy SH, Lam RW. Recent developments in the psychobiology and pharmacotherapy of depression: optimising existing treatments and novel approaches for the future. Expert Opin Investig Drugs 2003; 12:65-86. [PMID: 12517255 DOI: 10.1517/13543784.12.1.65] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Effective antidepressants include monoamine oxidase inhibitors and tricyclic antidepressants, selective serotonin re-uptake inhibitors and novel agents, including serotonin and noradrenaline re-uptake inhibitors. Although effective, current treatments most often produce partial symptomatic improvement (response) rather than symptom resolution and optimal functioning (remission). While current pharmacotherapies target monoaminergic systems, different symptoms of major depressive disorder (MDD) may have distinct neurobiological underpinnings and other neurobiological systems are likely involved in the pathogenesis of MDD. In this article a review of current pharmacotherapeutic options for MDD, current understanding of the neurobiology and pathogenesis of MDD and a review of new and promising directions in pharmacological research will be provided. It is generally accepted that no single neurotransmitter or system is responsible for the dysregulation found in MDD. While agents that affect monoaminergic systems will likely continue to be first-line treatments for MDD for the foreseeable future, a number of new and novel agents, including corticotropin-releasing factor antagonists, substance P antagonists and antiglucocorticoids show considerable promise for refining treatment options. In order to better understand the neurobiology and treatment response of MDD, it is probable that more sophisticated theory-driven typologies of MDD will have to be developed.
Collapse
Affiliation(s)
- P Farvolden
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.
| | | | | |
Collapse
|
115
|
Karege F, Schwald M, Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 2002; 328:261-4. [PMID: 12147321 DOI: 10.1016/s0304-3940(02)00529-3] [Citation(s) in RCA: 648] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) has been involved in pre- and postnatal brain development. Moreover, abundant levels of this neurotrophin have been found in animal and human brain and serum. This study was aimed to assess the postnatal change profile of both serum and brain BDNF levels. By using immunoassay and reverse transcription-polymerase chain reaction methods, BDNF protein and mRNA levels were determined in serum and platelets, respectively, and in two brain structures (hippocampus and frontal cortex) of postnatal rats (one and three weeks old), young adults (two months old) and in aged animals (two years old). The results showed that brain and serum BDNF levels underwent similar changes during maturation and aging processes (analysis of variance (ANOVA): P<0.001, P<0.001, for hippocampus and serum, respectively). During the same investigation period, the measure of BDNF mRNA indicated gradual changes in the hippocampus but not in platelets (ANOVA: P<0.001 and not significant, for hippocampus and platelets, respectively). Interestingly, there was a positive correlation between serum and cortical BDNF levels (r=0.81, P<0.01), especially in young animals. This study of ontogenic characteristics of BDNF in blood and central nervous system can help to shed more light on the role of platelet BDNF.
Collapse
Affiliation(s)
- Félicien Karege
- Geneva University Hospitals (Belle-Idée), Division of Neuropsychiatry, 2 Chemin du Petit Bel-Air, CH-1225 Chêne-Bourg, Geneva, Switzerland.
| | | | | |
Collapse
|
116
|
Thorne RG, Frey WH. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 2002; 40:907-46. [PMID: 11735609 DOI: 10.2165/00003088-200140120-00003] [Citation(s) in RCA: 353] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurotrophic factors are proteins with considerable potential in the treatment of central nervous system (CNS) diseases and traumatic injuries. However, a significant challenge to their clinical use is the difficulty associated with delivering these proteins to the CNS. Neurotrophic factors are hydrophilic, typically basic, monomeric or dimeric proteins, mostly in the size range of 5 to 30 kDa. Neurotrophic factors potently support the development, growth and survival of neurons, eliciting biological effects at concentrations in the nanomolar to femtomolar range. They are not orally bioavailable and the blood-brain and blood-cerebrospinal fluid barriers severely limit their ability to enter into and act on sites in the CNS following parenteral systemic routes of administration. Most neurotrophic factors have short in vivo half-lives and poor pharmacokinetic profiles. Their access to the CNS is restricted by rapid enzymatic inactivation, multiple clearance processes, potential immunogenicity and sequestration by binding proteins and other components of the blood and peripheral tissues. The development of targeted drug delivery strategies for neurotrophic factors will probably determine their clinical effectiveness for CNS conditions. Achieving significant CNS target site concentrations while limiting systemic exposure and distribution to peripheral sites of action will lessen unwanted pleiotropic effects and toxicity. Local introduction of neurotrophic factors into the CNS intraparenchymally by direct injection/infusion or by implantation of delivery vectors such as polymer matrices or genetically modified cells yields the highest degree of targeting, but is limited by diffusion restrictions and invasiveness. Delivery of neurotrophic factors into the cerebrospinal fluid (CSF) following intracerebroventricular or intrathecal administration is less invasive and allows access to a much wider area of the CNS through CSF circulation pathways. However, diffusional and cellular barriers to penetration into surrounding CNS tissue and significant clearance of CSF into the venous and lymphatic circulation are also limiting. Unconventional delivery strategies such as intranasal administration may offer some degree of CNS targeting with minimal invasiveness. This review presents a summary of the neurotrophic factors and their indications for CNS disorders, their physicochemical characteristics and the different approaches that have been attempted or suggested for their delivery to the CNS. Future directions for further research such as the potential for CNS disease treatment utilising combinations of neurotrophic factors, displacement strategies, small molecule mimetics, chimaeric molecules and gene therapy are also discussed.
Collapse
Affiliation(s)
- R G Thorne
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
117
|
Kern MA, Bamborschke S, Nekic M, Schubert D, Rydin C, Lindholm D, Schirmacher P. Concentrations of hepatocyte growth factor in cerebrospinal fluid under normal and different pathological conditions. Cytokine 2001; 14:170-6. [PMID: 11396995 DOI: 10.1006/cyto.2001.0875] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatocyte growth factor (HGF) and its specific receptor, MET, are expressed in the developing and adult mammalian brain. Recent studies have shown a neurotrophic activity of HGF in the nervous system. The present study focused on HGF concentrations in the cerebrospinal fluid (CSF) and serum in normal persons and in different central nervous system (CNS) diseases considering blood-CSF barrier (BCB) function. Concentrations of HGF were analyzed using an enzyme-linked immunosorbent assay (ELISA). HGF was present in normal human CSF (346+/-126 pg/ml) representing approximately half of the HGF serum concentrations. The CSF HGF levels were not significantly changed in chronic CNS disease and in aseptic meningitis (419+/-71 pg/ml), but significantly increased in patients with bacterial meningitis (6101+/- 5200 pg/ml). The HGF levels in CSF were not influenced by increased serum concentrations in patients with normal or mildly affected BCB function. The results show that HGF is present in normal CSF and does not appear to cross the CSF barrier significantly unless it is severely disrupted. So far, strong increases of HGF concentration in CSF are only present in acute bacterial meningitis.
Collapse
Affiliation(s)
- M A Kern
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Str. 9, D-50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
118
|
Fullerton SM, Shirman GA, Strittmatter WJ, Matthew WD. Impairment of the blood-nerve and blood-brain barriers in apolipoprotein e knockout mice. Exp Neurol 2001; 169:13-22. [PMID: 11312553 DOI: 10.1006/exnr.2001.7631] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apolipoprotein E (apoE) is well characterized as a plasma lipoprotein involved in lipid and cholesterol metabolism. Recent studies implicating apoE in Alzheimer's disease and successful recovery from neurological injury have stimulated much interest in the functions of apoE within the brain. To explore the functions of apoE within the nervous system, we examined apoE knockout (KO) mice. Previously, we showed that apoE KO mice have a delayed response to noxious thermal stimuli associated with a loss and abnormal morphology of unmyelinated fibers in the sciatic nerve. From these data, we hypothesized that apoE KO mice could have an impaired blood-nerve barrier (BNB). In this report, we demonstrate functionally impaired blood-nerve and blood-brain barriers (BBB) in apoE KO mice using immunofluorescent detection of serum protein leakage into nervous tissue as a diagnostic for decreased BNB and BBB integrity. Extensive extravasation of serum immunoglobulin G (IgG) is detected in the sciatic nerve, spinal cord, and cerebellum of apoE KO but not WT mice. In a subpopulation of apoE KO mice, IgG also extravasates into discrete cortical and subcortical locations, including hippocampus. Loss of BBB integrity was additionally confirmed by the ability of exogenously supplied Evans blue dye to penetrate the BBB and to colocalize with IgG immunoreactivity in CNS tissue. These observations support a role for apoE in maintaining the integrity of the BNB/BBB and suggest a novel relationship between apoE and neural injury.
Collapse
Affiliation(s)
- S M Fullerton
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | | | |
Collapse
|
119
|
Abstract
Chemokines are a large family of small, inducible, secreted, chemoattractant cytokines that are involved in inflammatory processes. It is well known that systemic and CNS infections cause disruption of the blood-brain barrier (BBB); however, it is not clear how chemokines are involved in this process. We studied the pharmacokinetics of the passage of the chemokine cytokine-induced neutrophil chemoattractant-1 (CINC1) from blood to brain after i.v. bolus injection and its efflux out of the brain after i.c.v. injection. Radiolabeled CINC1 was injected i.v. into mice, and the results were determined by multiple-time regression analysis. Using HPLC, we detected intact CINC1 in brain homogenate and blood after i.v. administration. CINC1 accumulated in the cerebral vasculature but also crossed the BBB completely and rapidly. No saturation of the influx was found, suggesting that either CINC1 crossed the BBB by simple diffusion or the dynamic interactions of binding and internalization precluded the self-inhibition typical of a transport system. Furthermore, there was no efflux system, with CINC1 exiting the brain at the same rate as reabsorption of CSF. The CINC1 injected into blood or CSF did not cause any breakdown of the BBB during the course of the experiments. Thus, the influx of CINC1 may alter the "chemokine gradient" across the BBB and therefore affect inflammatory reactions involving the CNS.
Collapse
Affiliation(s)
- W Pan
- Department of Medicine, Tulane University School of Medicine and the VA Medical Center, New Orleans, LA 70112, USA.
| | | |
Collapse
|
120
|
Abstract
Various monoamine hypotheses of affective disorders have been unable to provide a complete explanation for the observed clinical findings. Recently Duman et al. (1997) have produced a molecular and cellular theory of depression which seems to be a worthy successor to these hypotheses. Whereas the earlier theories were unable to explain the time lag between antidepressant drug administration and lightening of affect, Duman's group pinpoints intracellular mechanisms, in the right time frame, which decrease or increase the generation of neurotrophic factors necessary for the survival of certain neurons, particularly in the hippocampus. This new concept may lead to novel therapeutic approaches. Copyright 2001 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Sandler
- Queen Charlottes and Chelsea Hospital, Goldhawk Road, London, W6 0XG, UK
| |
Collapse
|
121
|
Kastin AJ, Akerstrom V, Hackler L. Agouti-related protein(83-132) aggregates and crosses the blood-brain barrier slowly. Metabolism 2000; 49:1444-8. [PMID: 11092509 DOI: 10.1053/meta.2000.16556] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Agouti-related protein (AgRP), expressed in both the periphery and the brain, can result in obesity. Its active C-terminal fragment, AgRP(83-132), was recently reported to increase feeding and antagonize alpha-melanocyte-stimulating hormone (alpha-MSH) and leptin. We used multiple-time regression analysis to show that the rate at which AgRP(83-132) crossed the blood-brain barrier (BBB) from the blood to the brain was very slow (Ki = 0.6 x 10(-4) mL/g x min). Entry was not self-inhibited by excess AgRP(83-132) after either intravenous (i.v.) injection or perfusion in blood-free medium, indicating the absence of a saturable transport system, and was not cross-inhibited by alpha-MSH or leptin. Not only did AgRP(83-132) cross much slower than the saturably entering leptin, but the entry was slower than almost all other non-saturably entering endogenous peptides or neurotrophins. Nevertheless, high-performance liquid chromatography (HPLC) showed that the small amount of AgRP(83-132) crossing the BBB did so in intact form, and capillary depletion showed that it entered the brain parenchyma rather than binding to capillary endothelial cells or adhering to vascular components. There was no rapid efflux system out of the brain that might have misleadingly appeared as slow entry for AgRP(83-132). Poor lipophilicity was shown by a low octanol/buffer partition coefficient. By size-exclusion chromatography, AgRP(83-132) appeared as a 17-kd substance in both blood and buffer. Since protein was absent from the buffer, the 17-kd peak probably represented a trimer of the 5.7-kd AgRP(83-132). Capillary electrophoresis confirmed that most of the AgRP(83-132) existed as a trimer, with much smaller amounts as a dimer and monomer. Thus, although intact AgRP(83-132) can cross the BBB from the blood to the brain, its nonsaturable rate of entry is very slow, probably influenced by aggregation.
Collapse
Affiliation(s)
- A J Kastin
- Veterans Affairs Medical Center and Tulane University School of Medicine, New Orleans, LA 70112-1262, USA
| | | | | |
Collapse
|
122
|
Abstract
The adult brain requires a constant trophic input for appropriate function. Although the main source of trophic factors for mature neurons is considered to arise locally from glial cells and synaptic partners, recent evidence suggests that hormonal-like influences from distant sources may also be important. These include not only relatively well-characterized steroid hormones that cross the brain barriers, but also blood-borne protein growth factors able to cross the barriers and exert unexpected, albeit specific, trophic actions in diverse brain areas. Insulin-like growth factor I (IGF-I) is until now the serum neurotrophic factor whose actions on the adult brain are best-characterized. This is because IGF-I has been known for many years to be present in serum, whereas the presence in the circulation of other more classical neurotrophic factors has only recently been recognized. Thus, new evidence strongly suggests that IGF-I, and other blood-borne neurotrophic factors such as Fibroblast Growth Factor (FGF-2) or the neurotrophins, exert a tonic trophic input on brain cells, providing a mechanism for what we may refer to as neuroprotective surveillance. Protective surveillance includes "first-line" defense mechanisms ranging from blockade of neuronal death after a wide variety of cellular insults to upregulation of neurogenesis when defenses against neuronal death are overcome. Most importantly, surveillance should also encompass modulation of homeostatic mechanisms to prevent neuronal derangement. These will include modulation of basic cellular processes such as metabolic demands and maintainance of cell-membrane potential as well as more complex processes such as regulation of neuronal plasticity to keep neurons able to respond to constantly changing functional demands.
Collapse
Affiliation(s)
- I Torres-Aleman
- Laboratory of Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain.
| |
Collapse
|
123
|
Saragovi HU, Gehring K. Development of pharmacological agents for targeting neurotrophins and their receptors. Trends Pharmacol Sci 2000; 21:93-8. [PMID: 10689362 DOI: 10.1016/s0165-6147(99)01444-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurotrophins comprise a family of protein growth factors that control the survival, growth, and/or differentiation of neurons and several other cell populations derived from the neuroectoderm. Neurotrophins and their receptors are important targets for the therapy of human disease, with potential applications ranging from the treatment of chronic or acute neurodegeneration to pain and cancer. Neurotrophins have been used clinically but are poor pharmacological agents. Consequently, approaches to develop pharmacological agents that target neurotrophins, their receptors or neurotrophin signaling pathways have been attempted.
Collapse
Affiliation(s)
- H U Saragovi
- Departments of Pharmacology and Therapeutics, Oncology and the Cancer Center, McGill University, 3655 Drummond St. #1320, Montréal, QC, Canada H3G 1Y6.
| | | |
Collapse
|
124
|
Windisch M. Approach towards an integrative drug treatment of Alzheimer's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2000; 59:301-13. [PMID: 10961442 DOI: 10.1007/978-3-7091-6781-6_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
At present pharmacotherapy of Alzheimer's disease (AD) is limited to acetylcholinesterase inhibitors. These drugs produce small, but consistent improvements of memory and global function, some are also positively influencing activities of daily living. This therapeutic approach neglects the complexity of AD and the fact that most of the degenerating neurons are not cholinergic. Acetylcholinesterase inhibitors are symptomatic drugs, with no influence on disease progression. There is a need for disease modifying compounds, or preventive drugs. Data are indicating that vitamin E has some ability to influence the disease progression. The potency of non-steroidal anti-inflammatory drugs (NSAIDs) or estrogen as preventive agents has to be explored further in prospective clinical studies. The initial hope in the use of naturally occurring neurotrophic factors, like nerve growth factor, to rescue cholinergic neurons from degeneration and to restore cognitive function has been disappointed in first, small clinical studies. The peptidergic drug Cerebrolysin exhibiting neurotrophic stimulation, neuroimmunotrophic regulation and induction of BBB glucose transporter expression, might be able to address the pathological changes of AD at different levels simultaneously. In addition to an impressive preclinical database, results from 3 placebo-controlled, double-blind studies demonstrate significant improvements of cognitive performance, global function and activities of daily living in AD patients. In all studies persisting improvements, up to 6 months after drug withdrawal, indicate a powerful disease modifying activity.
Collapse
Affiliation(s)
- M Windisch
- JSW-Research Forschungslabor Graz, Austria
| |
Collapse
|
125
|
Kastin AJ, Akerstrom V, Hackler L, Zadina JE. Phe(13),Tyr(19)-melanin-concentration hormone and the blood-brain barrier: role of protein binding. J Neurochem 2000; 74:385-91. [PMID: 10617143 DOI: 10.1046/j.1471-4159.2000.0740385.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Melanin-concentrating hormone (MCH), found both peripherally and centrally, is involved in food ingestion. Although its expression in brain is increased by fasting, it is not known whether it crosses the blood-brain barrier (BBB). Use of the sensitive method of multiple-time regression analysis has shown that almost all of the peptides and polypeptides tested cross the BBB at a rate faster than the vascular marker albumin. With this same method, however, we found that the 19-amino acid 125I-Phe13,Tyr19-MCH did not cross faster than 99mTc-albumin. Several mechanisms were excluded as possible explanations for the slow rate of influx. These included degradation, association with capillary endothelial cells, and transport from brain to blood. When Phe13,Tyr19-MCH was perfused in blood-free buffer, however, it entered the brain significantly faster than albumin. This suggested protein binding as an explanation for the slow rate of influx when the MCH was administered in blood. Protein binding was confirmed by capillary zone electrophoresis, which showed that almost all of the Phe13,Tyr19-MCH added to blood migrated with a large-molecular-weight substance. Sodium dodecyl sulfate-capillary gel electrophoresis of Phe13,Tyr19-MCH in buffer additionally showed that the MCH aggregated as a trimer, a factor not preventing its influx by blood-free perfusion. Thus, the results show that blood-borne Phe13,Tyr19-MCH does not significantly cross the BBB, probably because of its binding to serum proteins.
Collapse
Affiliation(s)
- A J Kastin
- VA Medical Center and Tulane University School of Medicine, New Orleans, Louisiana 70112-1262, USA
| | | | | | | |
Collapse
|
126
|
Pan W, Vallance K, Kastin AJ. TGFalpha and the blood-brain barrier: accumulation in cerebral vasculature. Exp Neurol 1999; 160:454-9. [PMID: 10619562 DOI: 10.1006/exnr.1999.7215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor alpha (TGFalpha) is a cytokine that belongs to the epidermal growth factor (EGF) family of growth factors. EGF has a fast and saturable entry from blood to brain that is inhibitable by TGFalpha (18). In this report, we studied the passage of TGFalpha from blood to brain after an i.v. bolus injection. Using radioactively labeled peptide, we found that TGFalpha had an apparent rate of entry of 0.7 microl/g/min. However, most of the TGFalpha was trapped in the capillary endothelial cells of the cerebral vasculature rather than entering the brain parenchyma. No saturation was detected. TGFalpha was relatively stable in blood for 20 min after i.v. injection, but dissociation of the isotope 125I was more evident in brain. The accumulation of TGFalpha in the cerebral vasculature was similar to that of amyloid-beta protein1-40. Therefore, we conclude that TGFalpha from the periphery interacts with the blood-brain barrier without substantial uptake into brain parenchyma. This raises the possibility that TGFalpha might be involved in intracranial vascular disorders such as angiopathy.
Collapse
Affiliation(s)
- W Pan
- Department of Neurology, Tulane University, New Orleans, Louisiana 70112-1262, USA
| | | | | |
Collapse
|
127
|
Kastin AJ, Pan W, Maness LM, Banks WA. Peptides crossing the blood-brain barrier: some unusual observations. Brain Res 1999; 848:96-100. [PMID: 10612701 DOI: 10.1016/s0006-8993(99)01961-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An interactive blood-brain barrier (BBB) helps regulate the passage of peptides from the periphery to the CNS and from the CNS to the periphery. Many peptides cross the BBB by simple diffusion, mainly explained by their lipophilicity and other physicochemical properties. Other peptides cross by saturable transport systems. The systems that transport peptides into or out of the CNS can be highly specific, transporting MIF-1 but not Tyr-MIF-1, PACAP38 but not PACAP27, IL-1 but not IL-2, and leptin but not the smaller ingestive peptides NPY, orexin A, orexin B, CART (55-102[Met(O)(67)]), MCH, or AgRP(83-132). Although the peptides EGF and TGF-alpha bind to the same receptor, only EGF enters by a rapid saturable transport system, suggesting that receptors and transporters can represent different proteins. Even the polypeptide NGF enters faster than its much smaller subunit beta-NGF. The saturable transport of some compounds can be upregulated, like TNF-alpha in EAE (an animal model of multiple sclerosis) and after spinal cord injury, emphasizing the regulatory role of the BBB. As has been shown for CRH, saturable transport from brain to blood can exert effects in the periphery. Thus, the BBB plays a dynamic role in the communication of peptides between the periphery and the CNS.
Collapse
Affiliation(s)
- A J Kastin
- VA Medical Center and Tulane University School of Medicine, 1601 Perdido Street, New Orleans, LA 70112-1262, USA
| | | | | | | |
Collapse
|
128
|
Mitsumoto H, Tsuzaka K. Neurotrophic factors and neuro-muscular disease: II. GDNF, other neurotrophic factors, and future directions. Muscle Nerve 1999; 22:1000-21. [PMID: 10417781 DOI: 10.1002/(sici)1097-4598(199908)22:8<1000::aid-mus2>3.0.co;2-q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This is the second of two reviews in which we discuss the essential aspects of neurotrophic factor neurobiology, the characteristics of each neurotrophic factor, and their clinical relevance to neuromuscular diseases. The previous paper reviewed the neurotrophin family and neuropoietic cytokines. In the present article, we focus on the GDNF family and other neurotrophic factors and then consider future approaches that may be utilized in neurotrophic factor treatment.
Collapse
Affiliation(s)
- H Mitsumoto
- Department of Neurology (S-90), The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
129
|
Fernandez AM, Gonzalez de la Vega AG, Planas B, Torres-Aleman I. Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur J Neurosci 1999; 11:2019-30. [PMID: 10336671 DOI: 10.1046/j.1460-9568.1999.00623.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exogenous administration of insulin-like growth factor I (IGF-I) restores motor function in rats with neurotoxin-induced cerebellar deafferentation. We first determined that endogenous IGFs are directly involved in the recovery process because infusion of an IGF-I receptor antagonist into the lateral ventricle blocks gradual recovery of limb coordination that spontaneously occurs after partial deafferentation of the olivo-cerebellar circuitry. We then analysed mechanisms whereby exogenous IGF-I restores motor function in rats with complete damage of the olivo-cerebellar pathway. Treatment with IGF-I normalized several markers of cell function in the cerebellum, including calbindin, glutamate receptor 1 (GluR1), gamma-aminobutyric acid (GABA) and glutamate, which are all depressed after 3-acetylpyridine (3AP)-induced deafferentation. IGF-I also promoted functional reinnervation of the cerebellar cortex by inferior olive (IO) axons. In the IO, increased expression of bax in neurons and bcl-X in astrocytes after 3AP was significantly reduced by IGF-I treatment. On the contrary, IGF-I prevented the decrease in poly-sialic-acid neural cell adhesion molecule (PSA-NCAM) and GAP-43 expression induced by 3AP in IO cells. IGF-I also significantly increased the number of neurons expressing bcl-2 in brainstem areas surrounding the IO. Altogether, these results indicate that subcutaneous IGF-I therapy promotes functional recovery of the olivo-cerebellar pathway by acting at two sites within this circuitry: (i) by modulating death- and plasticity-related proteins in IO neurons; and (ii) by impinging on homeostatic mechanisms leading to normalization of cell function in the cerebellum. These results provide insight into the neuroprotective actions of IGF-I and may be of practical consequence in the design of new therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- A M Fernandez
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
130
|
Pan W, Kastin AJ. Penetration of neurotrophins and cytokines across the blood-brain/blood-spinal cord barrier. Adv Drug Deliv Rev 1999; 36:291-298. [PMID: 10837721 DOI: 10.1016/s0169-409x(98)00086-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Now that peptides are no longer considered too large to cross the blood-brain barrier, attention has turned to the possibility that larger substances like polypeptides might also enter the central nervous system (CNS). This review summarizes evidence showing that many cytokines and neurotrophins not only enter the brain but also enter the spinal cord, sometimes faster than into the brain.
Collapse
Affiliation(s)
- W Pan
- VA Medical Center and Tulane University School of Medicine, 1601 Perdido Street, New Orleans, LA 70146, USA
| | | |
Collapse
|
131
|
Abstract
Ciliary neurotrophic factor (CNTF), like tumor necrosis factor-alpha (TNF) and granulocyte-macrophage colony-stimulating factor (GM-CSF), is a cytokine with neurotrophic properties. Since all three cytokines are found in the periphery as well as brain, and since TNF and GM-CSF cross the blood-brain barrier (BBB) by a saturable mechanism, we investigated whether CNTF also saturably enters the brain from the blood. We found that CNTF crosses the BBB rapidly, with a rate of entry (Ki) of 4.60 (+/-0.78) x 10(-4) ml/g min, considerably faster than that of the 99mTc-albumin control. The Ki was reduced more than 3-fold by addition of excess unlabeled CNTF. The results indicate that CNTF is saturably transported across the BBB from blood to brain.
Collapse
Affiliation(s)
- W Pan
- Department of Medicine, VA Medical Center and Tulane University School of Medicine, New Orleans, LA 70112-1262, USA.
| | | | | | | |
Collapse
|
132
|
Kastin AJ, Akerstrom V. Nonsaturable entry of neuropeptide Y into brain. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E479-82. [PMID: 10070013 DOI: 10.1152/ajpendo.1999.276.3.e479] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropeptide Y (NPY) is found and is active both in the periphery and brain, but its crossing of the blood-brain barrier (BBB) in either direction has not been measured. We used multiple time-regression analysis to determine that radioactively labeled NPY injected intravenously entered the brain much faster than albumin, with an influx constant of 2.0 x 10(-4) ml. g. -1. min-1. However, this rate of entry was not significantly changed by injection of 10 microgram/mouse of excess NPY, by leptin, or by food deprivation. HPLC showed that most of the NPY entering the brain was intact, and capillary depletion with and without washout showed that the NPY did not remain bound to endothelial cells or associated with vascular elements. Perfusion in a blood-free solution eliminated binding to serum proteins as an explanation for the lack of saturation. Efflux of labeled NPY from the brain occurred at the same rate as albumin, reflecting the normal rate of reabsorption of cerebrospinal fluid. Thus NPY can readily enter the brain from blood by diffusion across the BBB.
Collapse
Affiliation(s)
- A J Kastin
- Veterans Affairs Medical Center and Tulane University School of Medicine, New Orleans, Louisiana 70112-1262, USA
| | | |
Collapse
|
133
|
Abstract
Epidermal growth factor (EGF) is a neurotrophic peptide produced both in the central nervous system and the periphery. Peripheral administration of EGF causes central nervous system-mediated changes. The central nervous system effects could be explained by the permeation of EGF across the blood-brain barrier (BBB). In this report, we show that 125I-EGF crosses the BBB rapidly, with an influx rate of about 2 microl/g x min, much faster than that for neurotrophins, cytokines, and most other bioactive peptides tested. The 125I-EGF was recovered intact in the brain 10 min after i.v. injection, and the majority of the peptide reaching the brain was present in the parenchyma. The fast rate of influx was significantly decreased by co-administration of nonradiolabeled EGF and transforming growth factor alpha, peptides that share the EGF receptor. By contrast, a monoclonal antibody against the EGF receptor failed to inhibit the entry of EGF. Furthermore, mice with a mutation in the EGF receptor had no significant decrease in the rapid rate of entry of 125I-EGF. By contrast to the fast rate of entry, 125I-EGF injected intracerebroventricularly (i.c.v.) only exited the brain with the bulk flow of cerebrospinal fluid. Thus, EGF has a saturable transport system at the BBB for rapid, unidirectional influx. The transport system does not require the entire EGF receptor and is susceptible to possible therapeutic manipulation.
Collapse
Affiliation(s)
- W Pan
- VA Medical Center and Tulane University School of Medicine, New Orleans, LA 70112-1262, USA.
| | | |
Collapse
|
134
|
Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 1998; 37:1553-61. [PMID: 9886678 DOI: 10.1016/s0028-3908(98)00141-5] [Citation(s) in RCA: 1013] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a potential therapeutic agent for degenerative disorders of the central nervous system. In this report, we investigated the ability of BDNF to cross the blood-brain barrier (BBB). BDNF was stable in blood up to 60 min after i.v. injection, with evidence for aggregation, and had an early, rapid influx into brain. By 10 min, most of the BDNF sequestered by the cerebral cortex was associated with the parenchyma rather than with the endothelial cells, demonstrating complete passage across the BBB. A small dose of unlabeled BDNF enhanced the entry of 125I-BDNF from blood to brain after an i.v. bolus injection, whereas larger doses had no effect. In contrast, a large dose of unlabeled BDNF inhibited the influx of 125I-BDNF during in situ brain perfusion. After intracerebroventricular injection, the efflux of BDNF from brain to blood occurred at a rate similar to that for reabsorption of cerebrospinal fluid, and no evidence for self-inhibition was found. Therefore, we conclude that intact BDNF in the peripheral circulation crosses the BBB by a high-capacity, saturable transport system.
Collapse
Affiliation(s)
- W Pan
- VA Medical Center, New Orleans, LA 70112-1262, USA.
| | | | | | | | | |
Collapse
|