101
|
Ramnath L, Sithole B, Govinden R. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 2017; 63:179-192. [DOI: 10.1139/cjm-2016-0447] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the pulp and paper industry, during the manufacturing process, the agglomeration of pitch particles (composed of triglycerides, fatty acids, and esters) leads to the formation of black pitch deposits in the pulp and on machinery, which impacts on the process and pulp quality. Traditional methods of pitch prevention and treatment are no longer feasible due to environmental impact and cost. Consequently, there is a need for more efficient and environmentally friendly approaches. The application of lipolytic enzymes, such as lipases and esterases, could be the sustainable solution to this problem. Therefore, an understanding of their structure, mechanism, and sources are essential. In this report, we review the microbial sources for the different groups of lipolytic enzymes, the differences between lipases and esterases, and their potential applications in the pulping industry.
Collapse
Affiliation(s)
- L. Ramnath
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| | - B. Sithole
- Forestry and Forest Products Research Centre, Council for Scientific and Industrial Research, Durban 4000, South Africa
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban 4000, South Africa
| | - R. Govinden
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| |
Collapse
|
102
|
Duchiron SW, Pollet E, Givry S, Avérous L. Enzymatic synthesis of poly(ε-caprolactone- co -ε-thiocaprolactone). Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
103
|
Competition of Thermomyces lanuginosus lipase with its hydrolysis products at the oil–water interface. Colloids Surf B Biointerfaces 2017; 149:280-287. [DOI: 10.1016/j.colsurfb.2016.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 11/22/2022]
|
104
|
Unni KN, Priji P, Sajith S, Faisal PA, Benjamin S. Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces an efficient lipase. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
105
|
Kaushik S, Prokop Z, Damborsky J, Chaloupkova R. Kinetics of binding of fluorescent ligands to enzymes with engineered access tunnels. FEBS J 2016; 284:134-148. [DOI: 10.1111/febs.13957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/30/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Shubhangi Kaushik
- Loschmidt Laboratories Department of Experimental Biology Research Centre for Toxic Compounds in the Environment (RECETOX) Masaryk University Brno Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories Department of Experimental Biology Research Centre for Toxic Compounds in the Environment (RECETOX) Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories Department of Experimental Biology Research Centre for Toxic Compounds in the Environment (RECETOX) Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories Department of Experimental Biology Research Centre for Toxic Compounds in the Environment (RECETOX) Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| |
Collapse
|
106
|
Champagne E, Strandman S, Zhu XX. Recent Developments and Optimization of Lipase-Catalyzed Lactone Formation and Ring-Opening Polymerization. Macromol Rapid Commun 2016; 37:1986-2004. [DOI: 10.1002/marc.201600494] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/16/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Elyse Champagne
- Département de Chimie; Université de Montréal; C. P. 6128, Succursale Center-ville Montréal QC H3C 3J7 Canada
| | - Satu Strandman
- Département de Chimie; Université de Montréal; C. P. 6128, Succursale Center-ville Montréal QC H3C 3J7 Canada
| | - Xiao-Xia Zhu
- Département de Chimie; Université de Montréal; C. P. 6128, Succursale Center-ville Montréal QC H3C 3J7 Canada
| |
Collapse
|
107
|
Graber M, Rouillard H, Delatouche R, Fniter N, Belkhiria B, Bonnet A, Domon L, Thiéry V. Improved racemate resolution of pentan-2-ol and trans -( Z )-cyclooct-5-ene-1,2-diol by lipase catalysis. J Biotechnol 2016; 238:60-68. [DOI: 10.1016/j.jbiotec.2016.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/15/2016] [Accepted: 09/23/2016] [Indexed: 10/21/2022]
|
108
|
Poletto F, Lima F, Lundberg D, Nylander T, Loh W. Tailoring the internal structure of liquid crystalline nanoparticles responsive to fungal lipases: A potential platform for sustained drug release. Colloids Surf B Biointerfaces 2016; 147:210-216. [DOI: 10.1016/j.colsurfb.2016.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/27/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023]
|
109
|
Trbojević Ivić J, Veličković D, Dimitrijević A, Bezbradica D, Dragačević V, Gavrović Jankulović M, Milosavić N. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4281-4287. [PMID: 26801832 DOI: 10.1002/jsfa.7641] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Biocatalysts are a promising alternative for the production of natural flavor compounds. Candida rugosa lipase (CRL) is a particularly important biocatalyst owing to its remarkable efficiency in both hydrolysis and synthesis. However, additional stabilization is necessary for successful industrial implementation. This study presents an easy and time-saving method for immobilizing this valuable enzyme on hydroxyapatite (HAP), a biomaterial with high protein-binding capacity. RESULTS Targeted immobilized CRL was obtained in high yield of ≥98%. Significant lipase stabilization was observed upon immobilization: at 60 °C, immobilized lipase (HAP-CRL) retained almost unchanged activity after 3 h, while free CRL lost 50% of its initial activity after only 30 min. The same trend was observed with tested organic solvents. Methanol and hexane had the most pronounced effect: after 3 h, only HAP-CRL was stable and active, while CRL was completely inactivated. The practical value of the prepared catalyst was tested in the synthesis of the aroma ester methyl acetate in hexane. Reaction yields were 2.6 and 52.5% for CRL and HAP-CRL respectively. CONCLUSION This research has successfully combined an industrially prominent biocatalyst, CRL, and a biocompatible, environmentally suitable carrier, HAP, into an immobilized preparation with improved catalytic properties. The obtained CRL preparation has excellent potential for the food and flavor industries, major consumers in the global enzyme market. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jovana Trbojević Ivić
- Innovation Center, Faculty of Chemistry, University of Belgrade, 11000, Belgrade, Serbia
| | - Dušan Veličković
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000, Belgrade, Serbia
| | - Aleksandra Dimitrijević
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, 11000, Belgrade, Serbia
| | - Vladimir Dragačević
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000, Belgrade, Serbia
| | | | - Nenad Milosavić
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
110
|
Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review. Biotechnol Adv 2016; 34:874-885. [DOI: 10.1016/j.biotechadv.2016.05.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 11/23/2022]
|
111
|
The effect of the migrating group structure on enantioselectivity in lipase-catalyzed kinetic resolution of 1-phenylethanol. CR CHIM 2016. [DOI: 10.1016/j.crci.2016.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
112
|
Antonopoulou I, Varriale S, Topakas E, Rova U, Christakopoulos P, Faraco V. Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Appl Microbiol Biotechnol 2016; 100:6519-6543. [PMID: 27276911 PMCID: PMC4939304 DOI: 10.1007/s00253-016-7647-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
Cosmeceuticals are cosmetic products containing biologically active ingredients purporting to offer a pharmaceutical therapeutic benefit. The active ingredients can be extracted and purified from natural sources (botanicals, herbal extracts, or animals) but can also be obtained biotechnologically by fermentation and cell cultures or by enzymatic synthesis and modification of natural compounds. A cosmeceutical ingredient should possess an attractive property such as anti-oxidant, anti-inflammatory, skin whitening, anti-aging, anti-wrinkling, or photoprotective activity, among others. During the past years, there has been an increased interest on the enzymatic synthesis of bioactive esters and glycosides based on (trans)esterification, (trans)glycosylation, or oxidation reactions. Natural bioactive compounds with exceptional theurapeutic properties and low toxicity may offer a new insight into the design and development of potent and beneficial cosmetics. This review gives an overview of the enzymatic modifications which are performed currently for the synthesis of products with attractive properties for the cosmeceutical industry.
Collapse
Affiliation(s)
- Io Antonopoulou
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Simona Varriale
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15700, Athens, Greece
| | - Ulrika Rova
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Paul Christakopoulos
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
113
|
Lindsay RJ, Johnson QR, Evangelista W, Nellas RB, Shen T. DMSO enhanced conformational switch of an interfacial enzyme. Biopolymers 2016; 105:864-72. [PMID: 27463323 DOI: 10.1002/bip.22924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 11/05/2022]
Abstract
Interfacial proteins function in unique heterogeneous solvent environments, such as water-oil interfaces. One important example is microbial lipase, which is activated in an oil-water emulsion phase and has many important enzymatic functions. A unique aprotic dipolar organic solvent, dimethyl sulfoxide (DMSO), has been shown to increase the activity of lipases, but the mechanism behind this enhancement is still unknown. Here, all-atom molecular dynamics simulations of lipase in a binary solution were performed to examine the effects of DMSO on the dynamics of the gating mechanism. The amphiphilic α5 region of the lipase was a focal point for the analysis, since the structural ordering of α5 has been shown to be important for gating under other perturbations. Compared to the closed-gorge ensemble in an aqueous environment, the conformational ensemble shifts towards open-gorge structures in the presence of DMSO solvents. Increased width of the access channel is particularly prevalent in 45% and 60% DMSO concentrations (w/w). As the amount of DMSO increases, the α5 region of the lipase becomes more α-helical, as we previously observed in studies that address water-oil interfacial and high pressure activation. We believe that the structural ordering of α5 plays an essential role on gating and lipase activity.
Collapse
Affiliation(s)
- Richard J Lindsay
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, 37996.,Oak Ridge National Laboratory, Center for Molecular Biophysics, Oak Ridge, TN, 37830
| | - Quentin R Johnson
- Oak Ridge National Laboratory, Center for Molecular Biophysics, Oak Ridge, TN, 37830.,National Institute for Mathematical and Biological Synthesis, Knoxville, TN, 37996
| | - Wilfredo Evangelista
- Oak Ridge National Laboratory, Center for Molecular Biophysics, Oak Ridge, TN, 37830.,Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996
| | - Ricky B Nellas
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| | - Tongye Shen
- Oak Ridge National Laboratory, Center for Molecular Biophysics, Oak Ridge, TN, 37830. .,Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996.
| |
Collapse
|
114
|
Shen YF, Chen GH, Lin SH, Lin G. S-endo-2-Norbornyl-N-n-butylcarbamate as a PotentialPseudomonasLipase Inhibitor to Probe the Enantioselectivity of the Enzyme by Kinetic and Molecular Docking Evaluation. J CHIN CHEM SOC-TAIP 2016. [DOI: 10.1002/jccs.201600005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
115
|
Jiang Y, Loos K. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers (Basel) 2016; 8:E243. [PMID: 30974520 PMCID: PMC6432488 DOI: 10.3390/polym8070243] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 11/17/2022] Open
Abstract
Nowadays, "green" is a hot topic almost everywhere, from retailers to universities to industries; and achieving a green status has become a universal aim. However, polymers are commonly considered not to be "green", being associated with massive energy consumption and severe pollution problems (for example, the "Plastic Soup") as a public stereotype. To achieve green polymers, three elements should be entailed: (1) green raw materials, catalysts and solvents; (2) eco-friendly synthesis processes; and (3) sustainable polymers with a low carbon footprint, for example, (bio)degradable polymers or polymers which can be recycled or disposed with a gentle environmental impact. By utilizing biobased monomers in enzymatic polymerizations, many advantageous green aspects can be fulfilled. For example, biobased monomers and enzyme catalysts are renewable materials that are derived from biomass feedstocks; enzymatic polymerizations are clean and energy saving processes; and no toxic residuals contaminate the final products. Therefore, synthesis of renewable polymers via enzymatic polymerizations of biobased monomers provides an opportunity for achieving green polymers and a future sustainable polymer industry, which will eventually play an essential role for realizing and maintaining a biobased and sustainable society.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.
| | - Katja Loos
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.
| |
Collapse
|
116
|
Tsai SW. Enantiopreference of Candida antarctica lipase B toward carboxylic acids: Substrate models and enantioselectivity thereof. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2014.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
117
|
Yukselen O, Timucin E, Sezerman U. Predicting the impact of mutations on the specific activity of Bacillus thermocatenulatus lipase using a combined approach of docking and molecular dynamics. J Mol Recognit 2016; 29:466-75. [PMID: 27074770 DOI: 10.1002/jmr.2545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 11/10/2022]
Abstract
Lipases are important biocatalysts owing to their ability to catalyze diverse reactions with exceptional substrate specificities. A combined docking and molecular dynamics (MD) approach was applied to study the chain-length selectivity of Bacillus thermocatenulatus lipase (BTL2) towards its natural substrates (triacylglycerols). A scoring function including electrostatic, van der Waals (vdW) and desolvation energies along with conformational entropy was developed to predict the impact of mutation. The native BTL2 and its 6 mutants (F17A, V175A, V175F, D176F, T178V and I320F) were experimentally analyzed to determine their specific activities towards tributyrin (C4) or tricaprylin (C8), which were used to test our approach. Our scoring methodology predicted the chain-length selectivity of BTL2 with 85.7% (6/7) accuracy with a positive correlation between the calculated scores and the experimental activity values (r = 0.82, p = 0.0004). Additionally, the impact of mutation on activity was predicted with 75% (9/12) accuracy. The described study represents a fast and reliable approach to accurately predict the effect of mutations on the activity and selectivity of lipases and also of other enzymes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Onur Yukselen
- Biological Sciences and Bioengineering, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| | - Emel Timucin
- Biological Sciences and Bioengineering, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| | - Ugur Sezerman
- Biostatistics and Medical Informatics, School of Medicine, Acibadem University, Istanbul, 34752, Turkey.
| |
Collapse
|
118
|
Solaesa ÁG, Sanz MT, Beltrán S, Melgosa R. Kinetic study and kinetic parameters of lipase-catalyzed glycerolysis of sardine oil in a homogeneous medium. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(15)61040-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
119
|
Yong SK, Lim BH, Saleh S, Tey LH. Optimisation, purification and characterisation of extracellular lipase from Botryococcus sudeticus (UTEX 2629). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
120
|
Castillo E, Casas-Godoy L, Sandoval G. Medium-engineering: a useful tool for modulating lipase activity and selectivity. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/boca-2015-0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe design of a specific reaction medium capable to enhance activity, stability, and productivity of biocatalysts has been a recurring topic of study during the last three decades. The remarkable properties and valuable applications of enzymes, especially lipases, have inspiried different strategies for improving their performance in near-anhydrous media. As lipases are the most frequently used enzymes in organic synthesis, understanding the influence of reaction media on their activity and selectivity is crucial. In this paper, we review the key features of lipases and demonstrate how medium-engineering is a useful tool to modulate the activity and selectivity of lipase-catalyzed reactions.
Collapse
|
121
|
Vaquero ME, Barriuso J, Martínez MJ, Prieto A. Properties, structure, and applications of microbial sterol esterases. Appl Microbiol Biotechnol 2016; 100:2047-61. [DOI: 10.1007/s00253-015-7258-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 11/28/2022]
|
122
|
Panda AK, Bisht SPS, Panigrahi AK, De Mandal S, Senthil Kumar N. Cloning and In Silico Analysis of a High-Temperature Inducible Lipase from Brevibacillus. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1975-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
123
|
|
124
|
Wang ZY, Bi YH, Yang RL, Duan ZQ, Nie LH, Li XQ, Zong MH, Wu J. The halo-substituent effect on Pseudomonas cepacia lipase-mediated regioselective acylation of nucleosides: A comparative investigation. J Biotechnol 2015; 212:153-8. [PMID: 26325198 DOI: 10.1016/j.jbiotec.2015.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022]
Abstract
In this work, comparative experiments were explored to investigate the substrate specificity of Pseudomonas cepacia lipase in regioselective acylation of nucleosides carrying various substituents (such as the H, F, Cl, Br, I) at 2'- and 5-positions. Experimental data indicated that the catalytic performance of the enzyme depended very much on the halo-substituents in nucleosides. The increased bulk of 2'-substituents in ribose moiety of the nucleoside might contribute to the improved 3'-regioselectivity (90-98%, nucleosides a-d) in enzymatic decanoylation, while the enhancement of regioselectivity (93-99%) in 3'-O-acylated nucleosides e-h could be attributable to the increasing hydrophobicity of the halogen atoms at 5-positions. With regard to the chain-length selectivity, P. cepacia lipase displayed the highest 3'-regioselectivity toward the longer chain (C14) as compared to shorter (C6 and C10) ones. The position, orientation and property of the substituent, specific structure of the lipase's active site, and acyl structure could account for the diverse results.
Collapse
Affiliation(s)
- Zhao-Yu Wang
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China; Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huai'an 223005, PR China.
| | - Yan-Hong Bi
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Rong-Ling Yang
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Zhang-Qun Duan
- Academy of State Administration of Grain, Beijing 100037, PR China
| | - Ling-Hong Nie
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Xiang-Qian Li
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China; Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huai'an 223005, PR China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, South China University of Technology, Guangzhou 510640, PR China
| | - Jie Wu
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| |
Collapse
|
125
|
|
126
|
Probing role of key residues in the divergent evolution of Yarrowia lipolytica lipase 2 and Aspergillus niger eruloyl esterase A. Microbiol Res 2015; 178:27-34. [DOI: 10.1016/j.micres.2015.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/09/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022]
|
127
|
Jammer S, Rizkov D, Gelman F, Lev O. Quantitative structure-activity relationship correlation between molecular structure and the Rayleigh enantiomeric enrichment factor. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:1370-1376. [PMID: 26153539 DOI: 10.1039/c5em00084j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It was recently demonstrated that under environmentally relevant conditions the Rayleigh equation is valid to describe the enantiomeric enrichment - conversion relationship, yielding a proportional constant called the enantiomeric enrichment factor, εER. In the present study we demonstrate a quantitative structure-activity relationship model (QSAR) that describes well the dependence of εER on molecular structure. The enantiomeric enrichment factor can be predicted by the linear Hansch model, which correlates biological activity with physicochemical properties. Enantioselective hydrolysis of sixteen derivatives of 2-(phenoxy)propionate (PPMs) have been analyzed during enzymatic degradation by lipases from Pseudomonas fluorescens (PFL), Pseudomonas cepacia (PCL), and Candida rugosa (CRL). In all cases the QSAR relationships were significant with R(2) values of 0.90-0.93, and showed high predictive abilities with internal and external validations providing QLOO(2) values of 0.85-0.87 and QExt(2) values of 0.8-0.91. Moreover, it is demonstrated that this model enables differentiation between enzymes with different binding site shapes. The enantioselectivity of PFL and PCL was dictated by electronic properties, whereas the enantioselectivity of CRL was determined by lipophilicity and steric factors. The predictive ability of the QSAR model demonstrated in the present study may serve as a helpful tool in environmental studies, assisting in source tracking of unstudied chiral compounds belonging to a well-studied homologous series.
Collapse
Affiliation(s)
- S Jammer
- The Casali Center of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
128
|
Frampton MB, Marquardt D, Jones TRB, Harroun TA, Zelisko PM. Macrocyclic Oligoesters Incorporating a Cyclotetrasiloxane Ring. Biomacromolecules 2015; 16:2091-100. [PMID: 26061086 DOI: 10.1021/acs.biomac.5b00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrocyclic oligoester structures based on a cyclotetrasiloxane core consisting of tricyclic (60+ atoms) and pentacycylic (130+ atoms) species were identified as the major components of a lipase-mediated transesterification reaction. Moderately hydrophobic solvents with log P values in the range of 2-3 were more suitable than those at lower or higher log P values. Temperature had little effect on total conversion and yield of the oligoester macrocycles, except when a reaction temperature of 100 °C was employed. At this temperature, the amount of the smaller macrocycle was greatly increased, but at the expense of the larger oligoester. For immobilized lipase B from Candida antarctica (N435), longer chain length esters and diols were more conducive to the synthesis of the macrocycles. Langmuir isotherms indicated that monolayers subjected to multiple compression/expansion cycles exhibited a reversible collapse mechanism different from that expected for linear polysiloxanes.
Collapse
Affiliation(s)
- Mark B Frampton
- †Department of Chemistry and Centre for Biotechnology and ‡Department of Physics, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| | - Drew Marquardt
- †Department of Chemistry and Centre for Biotechnology and ‡Department of Physics, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| | - Tim R B Jones
- †Department of Chemistry and Centre for Biotechnology and ‡Department of Physics, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| | - Thad A Harroun
- †Department of Chemistry and Centre for Biotechnology and ‡Department of Physics, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| | - Paul M Zelisko
- †Department of Chemistry and Centre for Biotechnology and ‡Department of Physics, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| |
Collapse
|
129
|
Tong X, Busk PK, Lange L. Characterization of a newsn-1,3-regioselective triacylglycerol lipase fromMalbranchea cinnamomea. Biotechnol Appl Biochem 2015; 63:471-8. [DOI: 10.1002/bab.1394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/05/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoxue Tong
- Section for Sustainable Biotechnology; Department of Chemistry and Bioscience; Aalborg University Copenhagen; Denmark
| | - Peter Kamp Busk
- Section for Sustainable Biotechnology; Department of Chemistry and Bioscience; Aalborg University Copenhagen; Denmark
- Barentzymes A/S; A C Meyers Vaenge 15; Copenhagen SV Denmark
| | - Lene Lange
- Section for Sustainable Biotechnology; Department of Chemistry and Bioscience; Aalborg University Copenhagen; Denmark
- Barentzymes A/S; A C Meyers Vaenge 15; Copenhagen SV Denmark
| |
Collapse
|
130
|
Effect of two series ionic liquids based on non-nutritive sweeteners on catalytic activity and stability of the industrially important lipases from Candida rugosa and Rhizopus delemar. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
131
|
The 3D model of the lipase/acyltransferase from Candida parapsilosis, a tool for the elucidation of structural determinants in CAL-A lipase superfamily. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1400-11. [PMID: 26123263 DOI: 10.1016/j.bbapap.2015.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022]
Abstract
Because lipids are hydrophobic, the development of efficient bioconversions in aqueous media free of organic solvents is particularly challenging for green oleochemistry. Within this aim, enzymes exhibiting various abilities to catalyze acyltransfer reaction in water/lipid systems have been identified. Among these, CpLIP2 from Candida parapsilosis has been characterized as a lipase/acyltransferase, able to catalyze acyltransfer reactions preferentially to hydrolysis in the presence of particularly low acyl acceptor concentration and high thermodynamic activity of water (aw>0.9). Lipase/acyltransferases are thus of great interest, being able to produce new esters at concentrations above the thermodynamic equilibrium of hydrolysis/esterification with limited to no release of free fatty acids. Here, we present a 3D model of CpLIP2 based on homologies with crystallographic structures of Pseudozyma antarctica lipase A. Indeed, the two enzymes have 31% of identity in their primary sequence, yielding a same general structure, but different catalytic properties. The quality of the calculated CpLIP2 model was confirmed by several methods. Limited proteolysis confirmed the location of some loops at the surface of the protein 3D model. Directed mutagenesis also supported the structural model constructed on CAL-A template: the functional properties of various mutants were consistent with their structure-based putative involvement in the oxyanion hole, substrate specificity, acyltransfer or hydrolysis catalysis and structural stability. The CpLIP2 3D model, in comparison with CAL-A 3D structure, brings insights for the elucidation and improvement of the structural determinants involved in the exceptional acyltransferase properties of this promising biocatalyst and of homologous enzymes of the same family.
Collapse
|
132
|
Palermo G, Bauer I, Campomanes P, Cavalli A, Armirotti A, Girotto S, Rothlisberger U, De Vivo M. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets. PLoS Comput Biol 2015; 11:e1004231. [PMID: 26111155 PMCID: PMC4481349 DOI: 10.1371/journal.pcbi.1004231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022] Open
Abstract
The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the “membrane-access” and the “acyl chain-binding” pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH’s mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts. We describe a new structural enzymatic framework to regulate substrate specificity in lipid-degrading enzymes such as fatty acid amide hydrolase (FAAH), a key enzyme for the endocannabinoid lipid signaling that hydrolyzes a variety of lipids, however with different catalytic rates. The identified novel mechanism and key features for lipid selection in FAAH are then analysed in the context of other relevant lipid-degrading enzymes. Through the integration of microsecond-long molecular dynamics simulations with mutagenesis and kinetic experiments, our study suggests that structural flexibility, gating residues and multiple cavities in one catalytic site are keys to lipid selection in the endocannabinoid system. Our results suggest that the structural framework proposed here could likely be a general enzymatic strategy of other lipid-degrading enzymes to select the preferred lipid substrate within a broad spectrum of biologically active lipids. This new, and likely general, structural framework for lipid selection in FAAH could therefore now encourage additional experimental verifications of the role of ligand and structural flexibility, as regulated by key gating residues at the boundaries of multiple cavities forming a single catalytic site, as observed in several other lipid-degrading enzymes.
Collapse
Affiliation(s)
- Giulia Palermo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Genova, Italy
| | - Inga Bauer
- CompuNet, Istituto Italiano di Tecnologia, Genova, Italy
| | - Pablo Campomanes
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrea Cavalli
- CompuNet, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Armirotti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Genova, Italy
- * E-mail:
| |
Collapse
|
133
|
Vaquero ME, de Eugenio LI, Martínez MJ, Barriuso J. A novel calb-type lipase discovered by fungal genomes mining. PLoS One 2015; 10:e0124882. [PMID: 25898146 PMCID: PMC4405274 DOI: 10.1371/journal.pone.0124882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/18/2015] [Indexed: 01/20/2023] Open
Abstract
The fungus Pseudozyma antarctica produces a lipase (CalB) with broad substrate specificity, stability, high regio- and enantio-selectivity. It is active in non-aqueous organic solvents and at elevated temperatures. Hence, CalB is a robust biocatalyst for chemical conversions on an industrial scale. Here we report the in silico mining of public metagenomes and fungal genomes to discover novel lipases with high homology to CalB. The candidates were selected taking into account homology and conserved motifs criteria, as well as, phylogeny and 3D model analyses. The most promising candidate (PlicB) presented interesting structural properties. PlicB was expressed in a heterologous host, purified and partially characterized. Further experiments will allow finding novel catalytic properties with biotechnological interest.
Collapse
Affiliation(s)
- Maria E. Vaquero
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura I. de Eugenio
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Maria J. Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
134
|
Xiao Z, Hou X, Lyu X, Zhao JY, Xi L, Li J, Lu JR. Enzymatic synthesis of aroma acetoin fatty acid esters by immobilized Candida antarctica lipase B. Biotechnol Lett 2015; 37:1671-7. [DOI: 10.1007/s10529-015-1834-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/02/2015] [Indexed: 11/29/2022]
|
135
|
Buckley RM, Stubbe J. Chemistry with an artificial primer of polyhydroxybutyrate synthase suggests a mechanism for chain termination. Biochemistry 2015; 54:2117-25. [PMID: 25741756 PMCID: PMC4684083 DOI: 10.1021/bi501405b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Polyhydroxybutyrate
(PHB) synthases (PhaCs) catalyze the conversion
of 3-(R)-hydroxybutyryl CoA (HBCoA) to PHB, which
is deposited as granules in the cytoplasm of microorganisms. The class
I PhaC from Caulobacter crescentus (PhaCCc) is a highly soluble protein with a turnover number of 75 s–1 and no lag phase in coenzyme A (CoA) release. Studies
with [1-14C]HBCoA and PhaCCc monitored by sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE)
and autoradiography reveal that the rate of elongation is much faster
than the rate of initiation. Priming with the artificial primer [3H]sTCoA and monitoring for CoA release reveal a single CoA/PhaC,
suggesting that the protein is uniformly loaded and that the elongation
process could be studied. Reaction of sT-PhaCCc with [1-14C]HBCoA revealed that priming with sTCoA increased the uniformity
of elongation, allowing distinct polymerization species to be observed
by SDS–PAGE and autoradiography. However, in the absence of
HBCoA, [3H]sT-PhaC unexpectedly generates [3H]sDCoA with a rate constant of 0.017 s–1. We propose
that the [3H]sDCoA forms via attack of CoA on the oxoester
of the [3H]sT-PhaC chain, leaving the synthase attached
to a single HB unit. Comparison of the relative rate constants of
thiolysis by CoA and elongation by PhaCCc, and the size
of the PHB polymer generated in vivo, suggests a mechanism for chain
termination and reinitiation.
Collapse
Affiliation(s)
- Rachael M Buckley
- †Department of Chemistry and ‡Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - JoAnne Stubbe
- †Department of Chemistry and ‡Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
136
|
Kingsley LJ, Lill MA. Substrate tunnels in enzymes: structure-function relationships and computational methodology. Proteins 2015; 83:599-611. [PMID: 25663659 DOI: 10.1002/prot.24772] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 12/14/2022]
Abstract
In enzymes, the active site is the location where incoming substrates are chemically converted to products. In some enzymes, this site is deeply buried within the core of the protein, and, in order to access the active site, substrates must pass through the body of the protein via a tunnel. In many systems, these tunnels act as filters and have been found to influence both substrate specificity and catalytic mechanism. Identifying and understanding how these tunnels exert such control has been of growing interest over the past several years because of implications in fields such as protein engineering and drug design. This growing interest has spurred the development of several computational methods to identify and analyze tunnels and how ligands migrate through these tunnels. The goal of this review is to outline how tunnels influence substrate specificity and catalytic efficiency in enzymes with buried active sites and to provide a brief summary of the computational tools used to identify and evaluate these tunnels.
Collapse
Affiliation(s)
- Laura J Kingsley
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | | |
Collapse
|
137
|
Goswami A, Van Lanen SG. Enzymatic strategies and biocatalysts for amide bond formation: tricks of the trade outside of the ribosome. MOLECULAR BIOSYSTEMS 2015; 11:338-53. [PMID: 25418915 PMCID: PMC4304603 DOI: 10.1039/c4mb00627e] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Amide bond-containing (ABC) biomolecules are some of the most intriguing and functionally significant natural products with unmatched utility in medicine, agriculture and biotechnology. The enzymatic formation of an amide bond is therefore a particularly interesting platform for engineering the synthesis of structurally diverse natural and unnatural ABC molecules for applications in drug discovery and molecular design. As such, efforts to unravel the mechanisms involved in carboxylate activation and substrate selection has led to the characterization of a number of structurally and functionally distinct protein families involved in amide bond synthesis. Unlike ribosomal synthesis and thio-templated synthesis using nonribosomal peptide synthetases, which couple the hydrolysis of phosphoanhydride bond(s) of ATP and proceed via an acyl-adenylate intermediate, here we discuss two mechanistically alternative strategies: ATP-dependent enzymes that generate acylphosphate intermediates and ATP-independent transacylation strategies. Several examples highlighting the function and synthetic utility of these amide bond-forming strategies are provided.
Collapse
Affiliation(s)
- Anwesha Goswami
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY 40536, USA.
| | | |
Collapse
|
138
|
Pöhnlein M, Hausmann R, Lang S, Syldatk C. Enzymatic synthesis and modification of surface-active glycolipids. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Martin Pöhnlein
- Institute of Process Engineering in Life Sciences; Section II: Technical Biology; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology; Bioprocess Engineering; University Hohenheim; Stuttgart Germany
| | - Siegmund Lang
- Institute of Biochemistry and Biotechnology; Section of Biotechnology; TU Braunschweig; Braunschweig Germany
| | - Christoph Syldatk
- Institute of Process Engineering in Life Sciences; Section II: Technical Biology; Karlsruhe Institute of Technology; Karlsruhe Germany
| |
Collapse
|
139
|
Eby JM, Peretti SW. Performance in synthetic applications of a yeast surface display-based biocatalyst. RSC Adv 2015. [DOI: 10.1039/c5ra04039f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Organic synthesis with surface-displayed lipase: alkyl esters of fatty acids. Compared performance to commercial preparations. Catalyst is reusable and stable up to 50–60 °C. Kinetics of surface-displayed synthesis of butyl decanoate.
Collapse
Affiliation(s)
- J. M. Eby
- North Carolina State University
- Department of Chemical and Biomolecular Engineering
- Raleigh
- USA
| | - S. W. Peretti
- North Carolina State University
- Department of Chemical and Biomolecular Engineering
- Raleigh
- USA
| |
Collapse
|
140
|
Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Prog Lipid Res 2015; 57:40-54. [DOI: 10.1016/j.plipres.2014.12.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/30/2014] [Accepted: 12/18/2014] [Indexed: 01/12/2023]
|
141
|
Tao Y, Chen G, Pavlidis IV, Jiang Y, Qie L, Cui C, Liu L, Chen B, Tan T. A water-dependent kinetics guide for complex lipase-mediated synthesis of biolubricants in a water activity control reactor. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00995b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water-dependent kinetic model for a lipase-mediated reaction with multiple substrates and products in a water activity control reactor was developed.
Collapse
Affiliation(s)
- Yifeng Tao
- National Energy R&D Center for Biorefinery
- Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Guohua Chen
- Optical, Mechanical and Electronic Integration Lab
- College of Mechanical and Electronic Technology
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Ioannis V. Pavlidis
- Institute of Biochemistry
- Dept. of Biotechnology and Enzyme Catalysis
- Greifswald University
- Greifswald 17487
- Germany
| | - Yang Jiang
- National Energy R&D Center for Biorefinery
- Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Longfei Qie
- Optical, Mechanical and Electronic Integration Lab
- College of Mechanical and Electronic Technology
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Caixia Cui
- National Energy R&D Center for Biorefinery
- Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Luo Liu
- National Energy R&D Center for Biorefinery
- Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Biqiang Chen
- National Energy R&D Center for Biorefinery
- Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery
- Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| |
Collapse
|
142
|
Frampton MB, Jones TRB, Zelisko PM. Cyclotetrasiloxane frameworks for the chemoenzymatic synthesis of oligoesters. RSC Adv 2015. [DOI: 10.1039/c4ra14828b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lipase-mediated synthesis of branched and polycyclic polyester systems based on a cyclotetrasiloxane core.
Collapse
Affiliation(s)
- M. B. Frampton
- Department of Chemistry and Centre for Biotechnology
- Brock University
- St. Catharines
- Canada
| | - T. R. B. Jones
- Department of Chemistry and Centre for Biotechnology
- Brock University
- St. Catharines
- Canada
| | - P. M. Zelisko
- Department of Chemistry and Centre for Biotechnology
- Brock University
- St. Catharines
- Canada
| |
Collapse
|
143
|
Duchiron SW, Pollet E, Givry S, Avérous L. Mixed systems to assist enzymatic ring opening polymerization of lactide stereoisomers. RSC Adv 2015. [DOI: 10.1039/c5ra18954c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enzymatic ring opening polymerization of both enantiomers of lactide was performed in toluene. The eROP was kinetically improved by solvent assisted method (by TEA) and gave 6 time faster reaction.
Collapse
Affiliation(s)
- S. W. Duchiron
- BioTeam/ICPEES-ECPM
- UMR CNRS 7515
- Université de Strasbourg
- 67087 Strasbourg
- France
| | - E. Pollet
- BioTeam/ICPEES-ECPM
- UMR CNRS 7515
- Université de Strasbourg
- 67087 Strasbourg
- France
| | - S. Givry
- OSIRIS/J. SOUFFLET S.A
- 10300 Nogent sur Seine
- France
| | - L. Avérous
- BioTeam/ICPEES-ECPM
- UMR CNRS 7515
- Université de Strasbourg
- 67087 Strasbourg
- France
| |
Collapse
|
144
|
Steudle AK, Subinya M, Nestl BM, Stubenrauch C. Hydrolysis of Hydrophobic Esters in a Bicontinuous Microemulsion Catalysed by Lipase B fromCandida antarctica. Chemistry 2014; 21:2691-700. [DOI: 10.1002/chem.201405335] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 11/08/2022]
|
145
|
Tong X, Lange L, Grell MN, Busk PK. Hydrolysis of wheat arabinoxylan by two acetyl xylan esterases from Chaetomium thermophilum. Appl Biochem Biotechnol 2014; 175:1139-52. [PMID: 25369895 DOI: 10.1007/s12010-014-1348-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
The thermophilic filamentous ascomycete Chaetomium thermophilum produces functionally diverse hemicellulases when grown on hemicellulose as carbon source. Acetyl xylan esterase (EC 3.1.1.72) is an important accessory enzyme in hemicellulose biodegradation. Although the genome of C. thermophilum has been sequenced, its carbohydrate esterases are not annotated yet. We applied peptide pattern recognition (PPR) tool for sequence analysis of the C. thermophilum genome, and 11 carbohydrate esterase genes were discovered. Furthermore, we cloned and heterologously expressed two putative acetyl xylan esterase genes, CtAxeA and CtAxeB, in Pichia pastoris. The recombinant proteins, rCtAxeA and rCtAxeB, released acetic acids from p-nitrophenyl acetate and water-insoluble wheat arabinoxylan. These results indicate that CtAxeA and CtAxeB are true acetyl xylan esterases. For both recombinant esterases, over 93 % of the initial activity was retained after 24 h of incubation at temperatures up to 60 °C, and over 90 % of the initial activity was retained after 24 h of incubation in different buffers from pH 4.0 to 9.0 at 4 and 50 °C. The overall xylose yield from wheat arabinoxylan hydrolysis was 8 % with xylanase treatment and increased to 34 % when xylanase was combined with rCtAxeA and rCtAxeB. In sum, the present study first report the biochemical characterization of two acetyl xylan esterases from C. thermophilum, which are efficient in hydrolyzing hemicellulose with potential application in biomass bioconversion to high value chemicals or biofuels.
Collapse
Affiliation(s)
- Xiaoxue Tong
- Section for Sustainable Biotechnology, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
146
|
Milisavljević A, Stojanović M, Carević M, Mihailović M, Veličković D, Milosavić N, Bezbradica D. Lipase-Catalyzed Esterification of Phloridzin: Acyl Donor Effect on Enzymatic Affinity and Antioxidant Properties of Esters. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5027259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ana Milisavljević
- Department of Biochemical Engineering and Biotechnology, Faculty
of Technology and Metallurgy, and ‡Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Stojanović
- Department of Biochemical Engineering and Biotechnology, Faculty
of Technology and Metallurgy, and ‡Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Carević
- Department of Biochemical Engineering and Biotechnology, Faculty
of Technology and Metallurgy, and ‡Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Mladen Mihailović
- Department of Biochemical Engineering and Biotechnology, Faculty
of Technology and Metallurgy, and ‡Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Dušan Veličković
- Department of Biochemical Engineering and Biotechnology, Faculty
of Technology and Metallurgy, and ‡Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Nenad Milosavić
- Department of Biochemical Engineering and Biotechnology, Faculty
of Technology and Metallurgy, and ‡Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology, Faculty
of Technology and Metallurgy, and ‡Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
147
|
Enzyme activity in liquid lipase melts as a step towards solvent-free biology at 150 °C. Nat Commun 2014; 5:5058. [PMID: 25284507 DOI: 10.1038/ncomms6058] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/21/2014] [Indexed: 11/09/2022] Open
Abstract
Water molecules play a number of critical roles in enzyme catalysis, including mass transfer of substrates and products, nucleophilicity and proton transfer at the active site, and solvent shell-mediated dynamics for accessing catalytically competent conformations. The pervasiveness of water in enzymolysis therefore raises the question concerning whether biocatalysis can be undertaken in the absence of a protein hydration shell. Lipase-mediated catalysis has been undertaken with reagent-based solvents and lyophilized powders, but there are no examples of molecularly dispersed enzymes that catalyse reactions at sub-solvation levels within solvent-free melts. Here we describe the synthesis, properties and enzyme activity of self-contained reactive biofluids based on solvent-free melts of lipase-polymer surfactant nanoconjugates. Desiccated substrates in liquid (p-nitrophenyl butyrate) or solid (p-nitrophenyl palmitate) form can be mixed or solubilized, respectively, into the enzyme biofluids, and hydrolysed in the solvent-free state. Significantly, the efficiency of product formation increases as the temperature is raised to 150 °C.
Collapse
|
148
|
Patel V, Nambiar S, Madamwar D. An extracellular solvent stable alkaline lipase from Pseudomonas sp. DMVR46: Partial purification, characterization and application in non-aqueous environment. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
149
|
Ye R, Hayes DG, Burton R. Effects of Particle Size of Sucrose Suspensions and Pre-incubation of Enzymes on Lipase-Catalyzed Synthesis of Sucrose Oleic Acid Esters. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2537-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
150
|
Aromatic amino acid mutagenesis at the substrate binding pocket of Yarrowia lipolytica lipase Lip2 affects its activity and thermostability. ScientificWorldJournal 2014; 2014:382581. [PMID: 25197700 PMCID: PMC4147282 DOI: 10.1155/2014/382581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/19/2014] [Indexed: 11/21/2022] Open
Abstract
The lipase2 from Yarrowia lipolytica (YLLip2) is a yeast lipase exhibiting high homologous to filamentous fungal lipase family. Though its crystal structure has been resolved, its structure-function relationship has rarely been reported. By contrast, there are two amino acid residues (V94 and I100) with significant difference in the substrate binding pocket of YLLip2; they were subjected to site-directed mutagenesis (SDM) to introduce aromatic amino acid mutations. Two mutants (V94W and I100F) were created. The enzymatic properties of the mutant lipases were detected and compared with the wild-type. The activities of mutant enzymes dropped to some extent towards p-nitrophenyl palmitate (pNPC16) and their optimum temperature was 35°C, which was 5°C lower than that of the wild-type. However, the thermostability of I100F increased 22.44% after incubation for 1 h at 40°C and its optimum substrate shifted from p-nitrophenyl laurate (pNPC12) to p-nitrophenyl caprate (pNPC10). The above results demonstrated that the two substituted amino acid residuals have close relationship with such enzymatic properties as thermostability and substrate selectivity.
Collapse
|