101
|
Suppression of Wnt Signaling and Osteogenic Changes in Vascular Smooth Muscle Cells by Eicosapentaenoic Acid. Nutrients 2017; 9:nu9080858. [PMID: 28796175 PMCID: PMC5579651 DOI: 10.3390/nu9080858] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
Abstract
Vascular medial calcification is often observed in patients with arteriosclerosis. It is also associated with systolic hypertension, wide pulse pressure, and fluctuation of blood pressure, which results in cardiovascular events. Eicosapentaenoic acid (EPA) has been shown to suppress vascular calcification in previous animal experiments. We investigated the inhibitory effects of EPA on Wnt signaling, which is one of the important signaling pathways involved in vascular calcification. Intake of food containing 5% EPA resulted in upregulation of the mRNA expression of Klotho, an intrinsic inhibitor of Wnt signaling, in the kidneys of wild-type mice. Expression levels of β-catenin, an intracellular signal transducer in the Wnt signaling pathway, were increased in the aortas of Klotho mutant (kl/kl) mice compared to the levels in the aortas of wild-type mice. Wnt3a or BIO, a GSK-3 inhibitor that activates β-catenin signaling, upregulated mRNA levels of AXIN2 and LEF1, Wnt signaling marker genes, and RUNX2 and BMP4, early osteogenic genes, in human aorta smooth muscle cells. EPA suppressed the upregulation of AXIN2 and BMP4. The effect of EPA was cancelled by T0070907, a PPARγ inhibitor. The results suggested that EPA could suppress vascular calcification via the inhibition of Wnt signaling in osteogenic vascular smooth muscle cells via PPARγ activation.
Collapse
|
102
|
Hum JM, O'Bryan L, Smith RC, White KE. Novel functions of circulating Klotho. Bone 2017; 100:36-40. [PMID: 27890549 PMCID: PMC5441975 DOI: 10.1016/j.bone.2016.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
A significant portion of the key biological functions of αKlotho (αKL) and its cognate ligand Fibroblast growth factor-23 (FGF23) have been revealed through the study of rare diseases of mineral metabolism. These findings have far reaching implications for common disorders such as chronic kidney disease-mineral bone disorder (CKD-MBD). αKL's predominant effect on mineral homeostasis is through its actions in the kidney as a co-receptor for FGF23, however emerging data has shed light on its capacity to act as a circulating factor through the cleavage of the transmembrane form of αKL ('mKL') to produce 'cleaved KL' or 'cKL'. This review summarizes new findings from studies using extended delivery of cKL to mouse models with phenotypes reflecting those arising in CKD-MBD.
Collapse
Affiliation(s)
- Julia M Hum
- Department of Medical and Molecular Genetics, Division of Molecular Genetics and Gene Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Biomedical Science, Marian University School of Osteopathic Medicine, Indianapolis, IN 46222, USA
| | - Linda O'Bryan
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Rosamund C Smith
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Kenneth E White
- Department of Medical and Molecular Genetics, Division of Molecular Genetics and Gene Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
103
|
Olauson H, Mencke R, Hillebrands JL, Larsson TE. Tissue expression and source of circulating αKlotho. Bone 2017; 100:19-35. [PMID: 28323144 DOI: 10.1016/j.bone.2017.03.043] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
αKlotho (Klotho), a type I transmembrane protein and a coreceptor for Fibroblast Growth Factor-23, was initially thought to be expressed only in a limited number of tissues, most importantly the kidney, parathyroid gland and choroid plexus. Emerging data may suggest a more ubiquitous Klotho expression pattern which has prompted reevaluation of the restricted Klotho paradigm. Herein we systematically review the evidence for Klotho expression in various tissues and cell types in humans and other mammals, and discuss potential reasons behind existing conflicting data. Based on current literature and tissue expression atlases, we propose a classification of tissues into high, intermediate and low/absent Klotho expression. The functional relevance of Klotho in organs with low expression levels remain uncertain and there is currently limited data on a role for membrane-bound Klotho outside the kidney. Finally, we review the evidence for the tissue source of soluble Klotho, and conclude that the kidney is likely to be the principal source of circulating Klotho in physiology.
Collapse
Affiliation(s)
- Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Rik Mencke
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tobias E Larsson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
104
|
Neyra JA, Hu MC. Potential application of klotho in human chronic kidney disease. Bone 2017; 100:41-49. [PMID: 28115282 PMCID: PMC5474175 DOI: 10.1016/j.bone.2017.01.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 01/13/2023]
Abstract
The extracellular domain of transmembrane alpha-Klotho (αKlotho, hereinafter simply called Klotho) is cleaved by secretases and released into the circulation as soluble Klotho. Soluble Klotho in the circulation starts to decline early in chronic kidney disease (CKD) stage 2 and urinary Klotho possibly even earlier in CKD stage 1. Therefore soluble Klotho could serve as an early and sensitive marker of kidney function decline. Moreover, preclinical animal data support Klotho deficiency is not just merely a biomarker, but a pathogenic factor for CKD progression and extrarenal CKD complications including cardiovascular disease and disturbed mineral metabolism. Prevention of Klotho decline, re-activation of endogenous Klotho production or supplementation of exogenous Klotho are all associated with attenuation of renal fibrosis, retardation of CKD progression, improvement of mineral metabolism, amelioration of cardiomyopathy, and alleviation of vascular calcification in CKD. Therefore Klotho is not only a diagnostic and/or prognostic marker for CKD, but the treatment of Klotho deficiency may be a promising strategy to prevent, retard, and decrease the burden of comorbidity in CKD.
Collapse
Affiliation(s)
- Javier A Neyra
- Department of Internal Medicine, University of Texas Southwestern Medical Center, USA; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, USA
| | - Ming Chang Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, USA; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, USA.
| |
Collapse
|
105
|
Yamada S, Giachelli CM. Vascular calcification in CKD-MBD: Roles for phosphate, FGF23, and Klotho. Bone 2017; 100:87-93. [PMID: 27847254 PMCID: PMC5429216 DOI: 10.1016/j.bone.2016.11.012] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/23/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023]
Abstract
Vascular calcification (VC) is highly prevalent in aging, diabetes mellitus, and chronic kidney disease (CKD). VC is a strong predictor of cardiovascular morbidity and mortality in the CKD population. Complex pathological mechanisms are involved in the development of VC, including osteochondrogenic differentiation and apoptosis of vascular smooth muscle cells, instability and release of extracellular vesicles loaded calcium and phosphate, and elastin degradation. Elevated serum phosphate is a late manifestation of CKD, and has been shown to accelerate mineral deposition in both the vessel wall and heart valves. α-Klotho and fibroblast growth factor 23 (FGF23) are emerging factors in CKD-mineral and bone disorder (CKD-MBD) and are thought to be involved in the pathogenesis of uremic VC. There are discordant reports regarding the biomedical effects of FGF23 on VC. In contrast, mounting evidence supports a well-supported protective role for α-Klotho on VC. Further studies are warranted to elucidate potential roles of FGF23 and α-Klotho in VC and to determine where and how they are synthesized in normal and disease conditions. A thorough systemic evaluation of the biomedical interplay of phosphate, FGF23, and α-Klotho may potentially lead to new therapeutic options for patients with CKD-MBD.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
106
|
Erben RG, Andrukhova O. FGF23-Klotho signaling axis in the kidney. Bone 2017; 100:62-68. [PMID: 27622885 DOI: 10.1016/j.bone.2016.09.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone protecting against the potentially deleterious effects of hyperphosphatemia by suppression of phosphate reabsorption and of active vitamin D hormone synthesis in the kidney. The kidney is one of the main target organs of FGF23 signaling. The purpose of this review is to highlight the recent advances in the area of FGF23-Klotho signaling in the kidney. During recent years, it has become clear that FGF23 acts independently on proximal and distal tubular epithelium. In proximal renal tubules, FGF23 suppresses phosphate reabsorption by a Klotho dependent activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and of serum/glucocorticoid-regulated kinase-1 (SGK1), leading to phosphorylation of the scaffolding protein Na+/H+ exchange regulatory cofactor (NHERF)-1 and subsequent internalization and degradation of sodium-phosphate cotransporters. In distal renal tubules, FGF23 augments calcium and sodium reabsorption by increasing the apical membrane expression of the epithelial calcium channel TRPV5 and of the sodium-chloride cotransporter NCC through a Klotho dependent activation of with-no-lysine kinase-4 (WNK4). In proximal and distal renal tubules, FGF receptor-1 is probably the dominant FGF receptor mediating the effects of FGF23 by forming a complex with membrane-bound Klotho in the basolateral membrane. The newly described sodium- and calcium-conserving functions of FGF23 may have major implications for the pathophysiology of diseases characterized by chronically increased circulating FGF23 concentrations such as chronic kidney disease.
Collapse
|
107
|
Hsia CCW, Ravikumar P, Ye J. Acute lung injury complicating acute kidney injury: A model of endogenous αKlotho deficiency and distant organ dysfunction. Bone 2017; 100:100-109. [PMID: 28347910 PMCID: PMC5621379 DOI: 10.1016/j.bone.2017.03.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022]
Abstract
The lung interfaces with atmospheric oxygen via a large surface area and is perfused by the entire venous return bearing waste products collected from the whole body. It is logical that the lung is endowed with generous anti-oxidative capacity derived both locally and from the circulation. The single-pass pleiotropic alpha-Klotho (αKlotho) protein was discovered when its genetic disruption led to premature multi-organ degeneration and early death. The extracellular domain of αKlotho is cleaved by secretases and released into circulation as endocrine soluble αKlotho protein, exerting wide-ranging cytoprotective effects including anti-oxidation on distant organs including the lung, which exhibits high sensitivity to circulating αKlotho insufficiency. Because circulating αKlotho is derived mainly from the kidney, acute kidney injury (AKI) leads to systemic αKlotho deficiency that in turn increases the risks of pulmonary complications, i.e., edema and inflammation, culminating in the acute respiratory distress syndrome. Exogenous αKlotho increases endogenous anti-oxidative capacity partly via activation of the Nrf2 pathway to protect lungs against injury caused by direct hyperoxia exposure or AKI. This article reviews the current knowledge of αKlotho antioxidation in the lung in the setting of AKI as a model of circulating αKlotho deficiency, an under-recognized condition that weakens innate cytoprotective defenses and contributes to the dysfunction in distant organs.
Collapse
Affiliation(s)
- Connie C W Hsia
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9034, United States of America.
| | - Priya Ravikumar
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9034, United States of America; Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9034, United States of America
| | - Jianfeng Ye
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9034, United States of America
| |
Collapse
|
108
|
Drew DA, Katz R, Kritchevsky S, Ix J, Shlipak M, Gutiérrez OM, Newman A, Hoofnagle A, Fried L, Semba RD, Sarnak M. Association between Soluble Klotho and Change in Kidney Function: The Health Aging and Body Composition Study. J Am Soc Nephrol 2017; 28:1859-1866. [PMID: 28104822 PMCID: PMC5461794 DOI: 10.1681/asn.2016080828] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/10/2016] [Indexed: 11/03/2022] Open
Abstract
CKD appears to be a condition of soluble klotho deficiency. Despite known associations between low soluble klotho levels and conditions that promote kidney damage, such as oxidative stress and fibrosis, little information exists regarding the longitudinal association between soluble klotho levels and change in kidney function. We assayed serum soluble α-klotho in 2496 participants within the Health Aging and Body Composition study, a cohort of older adults. The associations between soluble klotho levels and decline in kidney function (relative decline: eGFR decline ≥30%; absolute decline: eGFR decline >3 ml/min per year) and incident CKD (incident eGFR <60 ml/min per 1.73 m2 and >1 ml/min per year decline) were evaluated. We adjusted models for demographics, baseline eGFR, urine albumin-to-creatinine ratio, comorbidity, and measures of mineral metabolism. Among participants, the mean (SD) age was 75 (3) years, 52% were women, and 38% were black. Median (25th, 75th percentiles) klotho level was 630 (477, 817) pg/ml. In fully adjusted models, each two-fold higher level of klotho associated with lower odds of decline in kidney function (odds ratio, 0.78 [95% confidence interval, 0.66 to 0.93] for 30% decline in eGFR, and 0.85 [95% confidence interval, 0.73 to 0.98] for >3 ml/min per year decline in eGFR), but not of incident CKD (incident rate ratio, 0.90 [95% confidence interval, 0.78 to 1.04]). Overall, a higher soluble klotho level independently associated with a lower risk of decline in kidney function. Future studies should attempt to replicate these results in other cohorts and evaluate the underlying mechanism.
Collapse
Affiliation(s)
- David A Drew
- Department of Medicine, Division of Nephrology, Tufts Medical Center, Boston, Massachusetts;
| | - Ronit Katz
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington
| | - Stephen Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Joachim Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA and Nephrology Section, Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Michael Shlipak
- Kidney Health Research Collaborative, San Francisco VA Medical Center and University of California, San Francisco, San Francisco, California; Departments of
| | - Orlando M Gutiérrez
- Medicine and
- Epidemiology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Anne Newman
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Andy Hoofnagle
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington
| | - Linda Fried
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington
- Renal Section, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania and
| | - Richard D Semba
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Mark Sarnak
- Department of Medicine, Division of Nephrology, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
109
|
Mencke R, Hillebrands JL. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev 2017; 35:124-146. [PMID: 27693241 DOI: 10.1016/j.arr.2016.09.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
Abstract
Klotho is an anti-ageing protein that functions in many pathways that govern ageing, like regulation of phosphate homeostasis, insulin signaling, and Wnt signaling. Klotho expression levels and levels in blood decline during ageing. The vascular phenotype of Klotho deficiency features medial calcification, intima hyperplasia, endothelial dysfunction, arterial stiffening, hypertension, and impaired angiogenesis and vasculogenesis, with characteristics similar to aged human arteries. Klotho-deficient phenotypes can be prevented and rescued by Klotho gene expression or protein supplementation. High phosphate levels are likely to be directly pathogenic and are a prerequisite for medial calcification, but more important determinants are pathways that regulate cellular senescence, suggesting that deficiency of Klotho renders cells susceptible to phosphate toxicity. Overexpression of Klotho is shown to ameliorate medial calcification, endothelial dysfunction, and hypertension. Endogenous vascular Klotho expression is a controversial subject and, currently, no compelling evidence exists that supports the existence of vascular membrane-bound Klotho expression, as expressed in kidney. In vitro, Klotho has been shown to decrease oxidative stress and apoptosis in both SMCs and ECs, to reduce SMC calcification, to maintain the contractile SMC phenotype, and to prevent μ-calpain overactivation in ECs. Klotho has many protective effects with regard to the vasculature and constitutes a very promising therapeutic target. The purpose of this review is to explore the etiology of the vascular phenotype of Klotho deficiency and the therapeutic potential of Klotho in vascular disease.
Collapse
|
110
|
Sharaf El Din UA, Salem MM, Abdulazim DO. Is Fibroblast growth factor 23 the leading cause of increased mortality among chronic kidney disease patients? A narrative review. J Adv Res 2017; 8:271-278. [PMID: 28337344 PMCID: PMC5347517 DOI: 10.1016/j.jare.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
The death rate among chronic kidney disease patients is the highest compared to other chronic diseases. 60% of these fatalities are cardiovascular. Cardiovascular calcifications and chronic inflammation affect almost all chronic kidney disease patients and are associated with cardiovascular mortality. Fibroblast growth factor 23 is associated with vascular calcification. Systemic inflammation in chronic kidney disease patients is multifactorial. The role of systemic inflammation in the pathogenesis of vascular calcification was recently reappraised. Fibroblast growth factor 23 was accused as a direct stimulus of left ventricular hypertrophy, uremic inflammation, and impaired neutrophil function. This review will discuss the underlying mechanisms that underlie the link between Fibroblast growth factor 23 and increased mortality encountered among chronic kidney disease patients.
Collapse
Affiliation(s)
- Usama A.A. Sharaf El Din
- Nephrology Unit, Internal Medicine Department, School of Medicine, Cairo University, Egypt
- Corresponding author.
| | - Mona M. Salem
- Endocrinology Unit, Internal Medicine Department, School of Medicine, Cairo University, Egypt
| | - Dina O. Abdulazim
- Rheumatology and Rehabilitation Department, School of Medicine, Cairo University, Egypt
| |
Collapse
|
111
|
Mazzotta C, Manetti M, Rosa I, Romano E, Blagojevic J, Bellando-Randone S, Bruni C, Lepri G, Guiducci S, Ibba-Manneschi L, Matucci-Cerinic M. Proangiogenic effects of soluble α-Klotho on systemic sclerosis dermal microvascular endothelial cells. Arthritis Res Ther 2017; 19:27. [PMID: 28183357 PMCID: PMC5301388 DOI: 10.1186/s13075-017-1233-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/12/2017] [Indexed: 01/07/2023] Open
Abstract
Background Systemic sclerosis (SSc) is characterized by endothelial cell (EC) apoptosis, impaired angiogenesis and peripheral microvasculopathy. Soluble α-Klotho (sKl) is a pleiotropic molecule with multiple effects on ECs, including antioxidant and vasculoprotective activities. On the EC surface, sKl interacts with vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) and transient receptor potential canonical-1 (TRPC-1) cation channel to control EC homeostasis. Here, we investigated whether sKl might act as a protective factor to improve angiogenesis in dermal microvascular endothelial cells (MVECs) from SSc patients (SSc-MVECs). Methods Wound healing assay was performed on healthy dermal MVECs (H-MVECs) challenged with sera from healthy controls or SSc patients with or without the addition of sKl. Capillary morphogenesis on Matrigel was assessed in H-MVECs and SSc-MVECs at basal conditions and treated with sKl, as well as in H-MVECs challenged with healthy or SSc sera in presence or absence of sKl. The expression of α-Klotho, VEGF165b, VEGFR-2, TRPC-1, Ki67 and active caspase-3 in H-MVECs and SSc-MVECs was investigated by western blotting. Immunostaining for α-Klotho was performed in H-MVECs and SSc-MVECs, and in healthy and SSc skin sections. Results Treatment with sKl effectively counteracted the inihibitory effects of SSc sera on wound healing ability and angiogenic performance of H-MVECs. The addition of sKl significantly improved angiogenesis and maintained over time capillary-like tube formation in vitro by SSc-MVECs. Stimulation of SSc-MVECs with sKl resulted in the upregulation of the proliferation marker Ki67 in parallel with the downregulation of proapoptotic active caspase-3. The expression of α-Klotho was significantly lower in SSc-MVECs than in H-MVECs. The expression of TRPC-1 was also significantly decreased, while that of VEGFR-2 and VEGF165b was significantly increased, in SSc-MVECs compared with H-MVECs. Challenge with sKl either significantly increased TRPC-1 or decreased VEGF165b in SSc-MVECs. Ex vivo analyses revealed that α-Klotho immunostaining was almost absent in the dermal microvascular network of SSc skin compared with control skin. Conclusions Our findings provide the first evidence that α-Klotho is significantly decreased in the microvasculature in SSc skin and that sKl administration may effectively improve SSc-MVEC functions in vitro by acting as a powerful proangiogenic factor.
Collapse
Affiliation(s)
- Celestina Mazzotta
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy.
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy.,Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| | - Jelena Blagojevic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| | - Gemma Lepri
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
112
|
Dalton GD, Xie J, An SW, Huang CL. New Insights into the Mechanism of Action of Soluble Klotho. Front Endocrinol (Lausanne) 2017; 8:323. [PMID: 29250031 PMCID: PMC5715364 DOI: 10.3389/fendo.2017.00323] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022] Open
Abstract
The klotho gene encodes a type I single-pass transmembrane protein that contains a large extracellular domain, a membrane spanning segment, and a short intracellular domain. Klotho protein exists in several forms including the full-length membrane form (mKl) and a soluble circulating form [soluble klotho (sKl)]. mKl complexes with fibroblast growth factor receptors to form coreceptors for FGF23, which allows it to participate in FGF23-mediated signal transduction and regulation of phosphate and calcium homeostasis. sKl is present in the blood, urine, and cerebrospinal fluid where it performs a multitude of functions including regulation of ion channels/transporters and growth factor signaling. How sKl exerts these pleiotropic functions is poorly understood. One hurdle in understanding sKl's mechanism of action as a "hormone" has been the inability to identify a receptor that mediates its effects. In the body, the kidneys are a major source of sKl and sKl levels decline during renal disease. sKl deficiency in chronic kidney disease makes the heart susceptible to stress-induced injury. Here, we summarize the current knowledge of mKl's mechanism of action, the mechanistic basis of sKl's protective, FGF23-independent effects on the heart, and provide new insights into the mechanism of action of sKl focusing on recent findings that sKl binds sialogangliosides in membrane lipid rafts to regulate growth factor signaling.
Collapse
Affiliation(s)
- George D. Dalton
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, United States
| | - Jian Xie
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Sung-Wan An
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- *Correspondence: Chou-Long Huang,
| |
Collapse
|
113
|
2,3,5,4'-Tetrahydroxystilbene-2-O- β-D-glucoside Promotes Expression of the Longevity Gene Klotho. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3128235. [PMID: 27885332 PMCID: PMC5112329 DOI: 10.1155/2016/3128235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022]
Abstract
The longevity gene klotho has numerous physiological functions, such as regulating calcium and phosphorus levels, delaying senescence, improving cognition, reducing oxidative stress, and protecting vascular endothelial cells. This study tested whether 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG), a small molecule with antiaging effects, regulates the expression and physiological effects of klotho. Our results showed that THSG dose-dependently increased the luciferase reporter activity of the klotho gene, reversed the decrease in mRNA and protein expression of klotho which was induced by angiotensin II in NRK-52E renal tubular epithelial cells, and increased klotho mRNA expression in the cerebral cortex, hippocampus, testis, and kidney medulla of spontaneously hypertensive rats. THSG also reduced the number of senescent cells induced by angiotensin II and improved the antioxidant capacity and enhanced the bone strength in vivo. Based on klotho's role in promoting cognition, regulating bone metabolism, and improving renal function, the effect of THSG on klotho expression will be beneficial to the functional improvement or enhancement of the expressed organs or tissues.
Collapse
|
114
|
Sharaf El Din UAA, Salem MM, Abdulazim DO. Vascular calcification: When should we interfere in chronic kidney disease patients and how? World J Nephrol 2016; 5:398-417. [PMID: 27648404 PMCID: PMC5011247 DOI: 10.5527/wjn.v5.i5.398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/20/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) patients are endangered with the highest mortality rate compared to other chronic diseases. Cardiovascular events account for up to 60% of the fatalities. Cardiovascular calcifications affect most of the CKD patients. Most of this calcification is related to disturbed renal phosphate handling. Fibroblast growth factor 23 and klotho deficiency were incriminated in the pathogenesis of vascular calcification through different mechanisms including their effects on endothelium and arterial wall smooth muscle cells. In addition, deficient klotho gene expression, a constant feature of CKD, promotes vascular pathology and shares in progression of the CKD. The role of gut in the etio-pathogenesis of systemic inflammation and vascular calcification is a newly discovered mechanism. This review will cover the medical history, prevalence, pathogenesis, clinical relevance, different tools used to diagnose, the ideal timing to prevent or to withhold the progression of vascular calcification and the different medications and medical procedures that can help to prolong the survival of CKD patients.
Collapse
|
115
|
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone known to suppress phosphate reabsorption and vitamin D hormone production in the kidney. Klotho was originally discovered as an anti-aging factor, but the functional role of Klotho is still a controversial issue. Three major functions have been proposed, a hormonal function of soluble Klotho, an enzymatic function as glycosidase, and the function as an obligatory co-receptor for FGF23 signaling. The purpose of this review is to highlight the recent advances in the area of FGF23 and Klotho signaling in the kidney, in the parathyroid gland, in the cardiovascular system, in bone, and in the central nervous system. During recent years, major new functions of FGF23 and Klotho have been discovered in these organ systems. Based on these novel findings, FGF23 has emerged as a pleiotropic endocrine and auto-/paracrine factor influencing not only mineral metabolism but also cardiovascular function.
Collapse
|
116
|
Kim HK, Jeong BH. Lack of functional KL-VS polymorphism of the KLOTHO gene in the Korean population. Genet Mol Biol 2016; 39:370-3. [PMID: 27560364 PMCID: PMC5004824 DOI: 10.1590/1678-4685-gmb-2015-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/04/2015] [Indexed: 05/29/2023] Open
Abstract
The functional variant of the Klotho "KL-VS" stretch, which includes six
polymorphisms in linkage disequilibrium, is reportedly associated with healthy aging
and longevity in European and American populations. Among Asian populations, this
variant has been observed in the Indian population but not in the Iranian population.
An association between KL-VS polymorphism and aging has not been reported in Koreans.
To investigate whether the KL-VS polymorphism could be associated with healthy aging
and longevity in a Korean population, we analyzed genotype and allele frequencies of
the KL-VS variant in a large Korean population sample. The KL-VS variant was not
found in 874 Korean individuals. Thus, it is not possible to test its association to
aging in the East Asian populations.
Collapse
Affiliation(s)
- Hee-Kwon Kim
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk, Republic of Korea.,Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk, Republic of Korea.,Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk Republic of Korea
| |
Collapse
|
117
|
Kalaitzidis RG, Duni A, Siamopoulos KC. Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease. Int Urol Nephrol 2016; 48:1657-66. [PMID: 27215557 DOI: 10.1007/s11255-016-1325-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
The Klotho gene displays an extremely shortened life span with loss of function missense mutations leading to premature multiple organ failure, thus resembling human premature aging syndromes. The transmembrane form of Klotho protein functions as an obligatory co-receptor for FGF23. Klotho and FGF23 are crucial components for the regulation of vitamin D metabolism and subsequently blood phosphate levels. The secreted Klotho protein has multiple regulatory functions, including effects on electrolyte homeostasis, on growth factor pathways as well as on oxidative stress, which are currently the object of extensive research. Klotho protein deficiency is observed in many experimental and clinical disease models. Genetic polymorphisms such as the G-395A polymorphism in the promoter region of the Klotho gene have been associated with the development of essential hypertension. The kidneys are the primary site of Klotho production, and renal Klotho is decreased in CKD, followed by a reduction in plasma Klotho. Klotho deficiency has been both associated with progression of CKD as well as with its cardinal systemic manifestations, including cardiovascular disease. Thus, Klotho has been suggested both as a risk biomarker for early detection of CKD and additionally as a potential therapeutic tool in the future.
Collapse
Affiliation(s)
- Rigas G Kalaitzidis
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece.
| | - Anila Duni
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | | |
Collapse
|
118
|
Wehling-Henricks M, Li Z, Lindsey C, Wang Y, Welc SS, Ramos JN, Khanlou N, Kuro-O M, Tidball JG. Klotho gene silencing promotes pathology in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet 2016; 25:2465-2482. [PMID: 27154199 DOI: 10.1093/hmg/ddw111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/10/2016] [Accepted: 04/08/2016] [Indexed: 11/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease involving progressive loss of muscle regenerative capacity and increased fibrosis. We tested whether epigenetic silencing of the klotho gene occurs in the mdx mouse model of DMD and whether klotho silencing is an important feature of the disease. Our findings show that klotho undergoes muscle-specific silencing at the acute onset of mdx pathology. Klotho experiences increased methylation of CpG sites in its promoter region, which is associated with gene silencing, and increases in a repressive histone mark, H3K9me2. Expression of a klotho transgene in mdx mice restored their longevity, reduced muscle wasting, improved function and greatly increased the pool of muscle-resident stem cells required for regeneration. Reductions of fibrosis in late, progressive stages of the mdx pathology achieved by transgene expression were paralleled by reduced expression of Wnt target genes (axin-2), transforming growth factor-beta (TGF-β1) and collagens types 1 and 3, indicating that Klotho inhibition of the profibrotic Wnt/TGFβ axis underlies its anti-fibrotic effect in aging, dystrophic muscle. Thus, epigenetic silencing of klotho during muscular dystrophy contributes substantially to lost regenerative capacity and increased fibrosis of dystrophic muscle during late progressive stages of the disease.
Collapse
Affiliation(s)
| | - Zhenzhi Li
- Department of Integrative Biology and Physiology
| | | | - Ying Wang
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606, USA
| | | | | | - Négar Khanlou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1732, USA
| | - Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - James G Tidball
- Department of Integrative Biology and Physiology .,Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1732, USA
| |
Collapse
|
119
|
Abstract
Alpha-Klotho (αKlotho) protein is encoded by the gene, Klotho, and functions as a coreceptor for endocrine fibroblast growth factor-23. The extracellular domain of αKlotho is cleaved by secretases and released into the circulation where it is called soluble αKlotho. Soluble αKlotho in the circulation starts to decline in chronic kidney disease (CKD) stage 2 and urinary αKlotho in even earlier CKD stage 1. Therefore soluble αKlotho is an early and sensitive marker of decline in kidney function. Preclinical data from numerous animal experiments support αKlotho deficiency as a pathogenic factor for CKD progression and extrarenal CKD complications including cardiac and vascular disease, hyperparathyroidism, and disturbed mineral metabolism. αKlotho deficiency induces cell senescence and renders cells susceptible to apoptosis induced by a variety of cellular insults including oxidative stress. αKlotho deficiency also leads to defective autophagy and angiogenesis and promotes fibrosis in the kidney and heart. Most importantly, prevention of αKlotho decline, upregulation of endogenous αKlotho production, or direct supplementation of soluble αKlotho are all associated with attenuation of renal fibrosis, retardation of CKD progression, improvement of mineral metabolism, amelioration of cardiac function and morphometry, and alleviation of vascular calcification in CKD. Therefore in rodents, αKlotho is not only a diagnostic and prognostic marker for CKD but the enhancement of endogenous or supplement of exogenous αKlotho are promising therapeutic strategies to prevent, retard, and decrease the comorbidity burden of CKD.
Collapse
Affiliation(s)
- J A Neyra
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - M C Hu
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
120
|
Buendía P, Ramírez R, Aljama P, Carracedo J. Klotho Prevents Translocation of NFκB. VITAMINS AND HORMONES 2016; 101:119-50. [PMID: 27125740 DOI: 10.1016/bs.vh.2016.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Klotho protein is a β-glucuronidase capable of hydrolyzing steroid β-glucuronides. Two molecules are produced by the Klotho gene, a membrane bound form and a circulating form. This protein is recognized as an antiaging gene with pleiotropic functions. The activation of cellular systems is associated with the pathogenesis of several chronic and degenerative diseases associated with an inflammatory state. Inflammation is characterized by an activation of NFκB. Klotho suppresses nuclear factor NFκB activation and the subsequent transcription of proinflammatory genes. This review focuses on the current understanding of Klotho protein function and its relationship with NFκB regulation, emphasizing its potential involvement in the pathophysiologic process.
Collapse
Affiliation(s)
- P Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - R Ramírez
- Alcalá de Henares University, Madrid, Spain
| | - P Aljama
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - J Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
121
|
Rubinek T, Modan-Moses D. Klotho and the Growth Hormone/Insulin-Like Growth Factor 1 Axis: Novel Insights into Complex Interactions. VITAMINS AND HORMONES 2016; 101:85-118. [PMID: 27125739 DOI: 10.1016/bs.vh.2016.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (IGF)-1 axis is pivotal for many metabolic functions, including proper development and growth of bones, skeletal muscles, and adipose tissue. Defects in the axis' activity during childhood result in growth abnormalities, while increased secretion of GH from the pituitary results in acromegaly. In order to keep narrow physiologic concentration, GH and IGF-1 secretion and activity are tightly regulated by hypothalamic, pituitary, endocrine, paracrine, and autocrine factors. Klotho was first discovered as an aging-suppressor gene. Mice that do not express klotho die prematurely with multiple symptoms of aging, several of them are also characteristic of decreased GH/IGF-1 axis activity. Klotho is highly expressed in the brain, the kidney, and parathyroid and pituitary glands, but can also serve as a circulating hormone by its shedding, forming soluble klotho that can be detected in blood, cerebrospinal fluid, and urine. Several lines of evidence suggest an association between klotho levels and activity of the GH/IGF-1 axis: the GH-secreting cells in the anterior pituitary of klotho-deficient mice are hypotrophic; klotho levels are altered in subjects with pathologies of the GH/IGF-1 axis; and accumulating data indicate that klotho is a direct regulator of GH secretion. Thus, klotho seems to be a new player in the intricate regulation of the GH/IGF-1 axis.
Collapse
Affiliation(s)
- T Rubinek
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - D Modan-Moses
- The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
122
|
Hensel N, Schön A, Konen T, Lübben V, Förthmann B, Baron O, Grothe C, Leifheit-Nestler M, Claus P, Haffner D. Fibroblast growth factor 23 signaling in hippocampal cells: impact on neuronal morphology and synaptic density. J Neurochem 2016; 137:756-69. [PMID: 26896818 DOI: 10.1111/jnc.13585] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/18/2016] [Accepted: 02/09/2016] [Indexed: 12/16/2022]
Abstract
Endocrine fibroblast growth factor 23 (FGF23) is predominantly secreted by osteocytes and facilitates renal phosphate excretion. However, FGF23 is also present in cerebrospinal fluid. In chronic kidney disease, FGF23 serum levels are excessively elevated and associated with learning and memory deficits. Structural plasticity of the hippocampus such as formation of new synapses or an altered dendritic arborization comprises a cellular and morphological correlate of memory formation. Therefore, we hypothesize that FGF23 alters hippocampal neuron morphology and synapses. To address this, we prepared primary murine hippocampal cultures and incubated them with recombinant FGF23 alone or together with a soluble isoform of its co-receptor α-Klotho. Neuronal expression of a fluorescent reporter allowed for a detailed evaluation of the neuronal morphology by Sholl analysis. Additionally, we evaluated synaptic density, identified by stainings, for synaptic markers. We show an enhanced number of primary neurites combined with a reduced arborization, resulting in a less complex morphology of neurons treated with FGF23. Moreover, FGF23 enhances the synaptic density in a FGF-receptor (FGF-R) dependent manner. Finally, we addressed the corresponding signaling events downstream of FGF-R employing a combination of western blots and quantitative immunofluorescence. Interestingly, FGF23 induces phospholipase Cγ activity in primary hippocampal neurons. Co-application of soluble α-Klotho leads to activation of the Akt-pathway and modifies FGF23-impact on neuronal morphology and synaptic density. Compared with other FGFs, this alternative signaling pattern is a possible reason for differential effects of FGF23 on hippocampal neurons and may thereby contribute to learning and memory deficits in chronic kidney disease patients. In this study, we show that fibroblast growth factor 23 inhibits neuronal ramification and enhances the synaptic density in primary hippocampal cultures accompanied by phospholipase Cγ-activation. Co-application of the co-receptor α-Klotho leads to an Akt-activation and further modifies neuronal morphology and number of synapses. Those effects provide a mechanistic basis for memory deficits in patients suffering from chronic kidney disease (CKD) characterized by excessively elevated FGF23 levels as well as memory deficits.
Collapse
Affiliation(s)
- Niko Hensel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Anne Schön
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Timo Konen
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Verena Lübben
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | | | - Olga Baron
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
123
|
Kinoshita S, Kawai M. The FGF23/KLOTHO Regulatory Network and Its Roles in Human Disorders. VITAMINS AND HORMONES 2016; 101:151-74. [PMID: 27125741 DOI: 10.1016/bs.vh.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The functions of Klotho (KL) are multifaceted and include the regulation of aging and mineral metabolism. It was originally identified as the gene responsible for premature aging-like symptoms in mice and was subsequently shown to function as a coreceptor in the fibroblast growth factor (FGF) 23 signaling pathway. The discovery of KL as a partner for FGF23 led to significant advances in understanding of the molecular mechanisms underlying phosphate and vitamin D metabolism, and simultaneously clarified the pathogenic roles of the FGF23 signaling pathway in human diseases. These novel insights led to the development of new strategies to combat disorders associated with the dysregulated metabolism of phosphate and vitamin D, and clinical trials on the blockade of FGF23 signaling in X-linked hypophosphatemic rickets are ongoing. Molecular and functional insights on KL and FGF23 have been discussed in this review and were extended to how dysregulation of the FGF23/KL axis causes human disorders associated with abnormal mineral metabolism.
Collapse
Affiliation(s)
- S Kinoshita
- Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan
| | - M Kawai
- Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan.
| |
Collapse
|
124
|
Maltare A, Nietz AK, Laszczyk AM, Dunn TS, Ballestas ME, Accavitti-Loper MA, King GD. Development and characterization of monoclonal antibodies to detect klotho. Monoclon Antib Immunodiagn Immunother 2016; 33:420-7. [PMID: 25513981 DOI: 10.1089/mab.2014.0040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although antibodies are commercially available to allow investigation into the biology of the age-regulating protein Klotho, problems with antibody specificity and application functionality are significant barriers to progress. Chief among these limitations is the inability of current tools to allow in vivo validation of binding partners originally identified through transfection of tagged proteins. To overcome this barrier, we generated a series of hybridoma cell lines by immunizing rats with a GST-KL1 fusion protein. Purified antibodies generated from these cell lines differentially detect human or mouse Klotho protein via Western blot, immunocyto/histochemistry, and immunoprecipitation. Specificity of antibody binding to Klotho was confirmed by mass spectrometry following immunoprecipitation. With this confidence in antibody specificity, co-immunoprecipitation was utilized to validate the interaction of Klotho/FGFR and Klotho/wnt7a in mouse kidney lysates.
Collapse
Affiliation(s)
- Astha Maltare
- 1 Department of Neurobiology, University of Alabama at Birmingham , Alabama
| | | | | | | | | | | | | |
Collapse
|
125
|
Chang JR, Guo J, Wang Y, Hou YL, Lu WW, Zhang JS, Yu YR, Xu MJ, Liu XY, Wang XJ, Guan YF, Zhu Y, Du J, Tang CS, Qi YF. Intermedin1-53 attenuates vascular calcification in rats with chronic kidney disease by upregulation of α-Klotho. Kidney Int 2016; 89:586-600. [PMID: 26880455 DOI: 10.1016/j.kint.2015.12.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 11/18/2015] [Accepted: 12/03/2015] [Indexed: 01/19/2023]
Abstract
Deficiency in α-Klotho is involved in the pathogenesis of vascular calcification. Since intermedin (IMD)1-53 (a calcitonin/calcitonin gene-related peptide) protects against vascular calcification, we studied whether IMD1-53 inhibits vascular calcification by upregulating α-Klotho. A rat model of chronic kidney disease (CKD) with vascular calcification induced by the 5/6 nephrectomy plus vitamin D3 was used for study. The aortas of rats with CKD showed reduced IMD content but an increase of its receptor, calcitonin receptor-like receptor, and its receptor modifier, receptor activity-modifying protein 3. IMD1-53 treatment reduced vascular calcification. The expression of α-Klotho was greatly decreased in the aortas of rats with CKD but increased in the aortas of IMD1-53-treated rats with CKD. In vitro, IMD1-53 increased α-Klotho protein level in calcified vascular smooth muscle cells. α-Klotho knockdown blocked the inhibitory effect of IMD1-53 on vascular smooth muscle cell calcification and their transformation into osteoblast-like cells. The effect of IMD1-53 to upregulate α-Klotho and inhibit vascular smooth muscle cell calcification was abolished by knockdown of its receptor or its modifier protein, or treatment with the protein kinase A inhibitor H89. Thus, IMD1-53 may attenuate vascular calcification by upregulating α-Klotho via the calcitonin receptor/modifying protein complex and protein kinase A signaling.
Collapse
Affiliation(s)
- Jin Rui Chang
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated with the Capital Medical University, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China; Insititute of Basic Medicine Science, Xi'an Medical University, Xi'an, China
| | - Jun Guo
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated with the Capital Medical University, Beijing, China
| | - Yue Wang
- Renal Department, Peking University Third Hospital, Beijing, China
| | - Yue Long Hou
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated with the Capital Medical University, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei Wei Lu
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated with the Capital Medical University, Beijing, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jin Sheng Zhang
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated with the Capital Medical University, Beijing, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ming Jiang Xu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Xiu Ying Liu
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiu Jie Wang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - You Fei Guan
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yi Zhu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Jie Du
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated with the Capital Medical University, Beijing, China
| | - Chao Shu Tang
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated with the Capital Medical University, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yong Fen Qi
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated with the Capital Medical University, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
126
|
Kawai M. The FGF23/Klotho axis in the regulation of mineral and metabolic homeostasis. Horm Mol Biol Clin Investig 2016; 28:55-67. [DOI: 10.1515/hmbci-2015-0068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/07/2016] [Indexed: 11/15/2022]
Abstract
AbstractThe function of fibroblast growth factor (FGF) 23 has been suggested to be multifaceted beyond its canonical function as a regulator of mineral metabolism. FGF23 was originally shown to play a central role in phosphate (Pi) and vitamin D metabolism, and a number of diseases associated with dysregulated Pi metabolism have been attributed to abnormal FGF23 signaling activities. The discovery of Klotho as a co-receptor for FGF23 signaling has also accelerated understanding on the molecular mechanisms underlying Pi and vitamin D metabolism. In addition to these canonical functions, FGF23 has recently been implicated in a number of metabolic diseases including chronic kidney disease-associated complications, cardiovascular diseases, and obesity-related disorders; however, the physiological significance and molecular mechanisms of these emerging roles of FGF23 remain largely unknown. Molecular and functional insights into the FGF23 pathway will be discussed in the present review, with an emphasis on its role in human disorders related to dysregulated Pi metabolism as well as metabolic disorders.
Collapse
|
127
|
Semba RD, Ferrucci L, Sun K, Simonsick E, Turner R, Miljkovic I, Harris T, Schwartz AV, Asao K, Kritchevsky S, Newman AB. Low Plasma Klotho Concentrations and Decline of Knee Strength in Older Adults. J Gerontol A Biol Sci Med Sci 2016; 71:103-8. [PMID: 26359247 PMCID: PMC4706099 DOI: 10.1093/gerona/glv077] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/18/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Although the "anti-aging hormone" klotho is associated with sarcopenia in mice, the relationship between klotho and muscle strength in older adults is not well known. METHODS Plasma klotho concentrations were measured in 2,734 older adults, aged 71-80 years, who participated in the Health, Aging and Body Composition Study, a prospective observational cohort study conducted in Memphis, TN and Pittsburgh, PA. Knee extension strength was measured using isokinetic dynamometry at baseline and follow-up 2 and 4 years later. Knee extension strength was normalized for weight. RESULTS At baseline, participants in the highest tertile of plasma klotho had higher knee extension strength (β = .72, standard error [SE] = .018, p < .0001) compared with those in the lowest tertile in a multivariable linear regression model adjusting for age, sex, race, smoking, study site, C-reactive protein, interleukin-6, and diabetes. Participants in the highest tertile of plasma klotho at baseline had less of a decline in knee strength over 4 years of follow-up (β = -.025, SE = .011, p = .02) compared with those in the lowest tertile in a multivariable linear regression model adjusting for the same covariates above. CONCLUSIONS Plasma klotho concentrations were an independent predictor of changes in knee strength over time in older adults. Further studies are needed to identify the biological mechanisms by which circulating klotho could modify skeletal muscle strength.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | | | - Kai Sun
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Randi Turner
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Tamara Harris
- Intramural Research Program, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, Maryland
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco School of Medicine
| | - Keiko Asao
- Department of Preventive Medicine, University of Tennessee, Memphis
| | - Stephen Kritchevsky
- Sticht Center on Aging, Wake Forest University, Winston-Salem, North Carolina
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| |
Collapse
|
128
|
Donate-Correa J, Martín-Núñez E, Mora-Fernández C, Muros-de-Fuentes M, Pérez-Delgado N, Navarro-González JF. Klotho in cardiovascular disease: Current and future perspectives. World J Biol Chem 2015; 6:351-357. [PMID: 26629318 PMCID: PMC4656911 DOI: 10.4331/wjbc.v6.i4.351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/31/2015] [Accepted: 09/08/2015] [Indexed: 02/05/2023] Open
Abstract
Protein Klotho, beyond its role as a regulator of the phosphatemia, is also involved in the maintaining of the cardiovascular health, being associated its alterations with the development of cardiovascular damage and increased morbi-mortality. For all this, nowadays Klotho is the subject of a thorough research which is focused on uncover its intimate mechanisms of action, and in analyzing the utility of its modulation as a potential strategy with clinical applicability. Molecular mechanisms of Klotho are not well understood but an emerging research area links Klotho deficiency with vascular pathology. Changes in this protein have been associated with cardiovascular-related complications like inflammation, vascular calcification, and endothelial dysfunction. All this is particularly relevant if considering the recent discovery of Klotho expression in vascular tissue.
Collapse
|
129
|
Massó A, Sánchez A, Gimenez-Llort L, Lizcano JM, Cañete M, García B, Torres-Lista V, Puig M, Bosch A, Chillon M. Secreted and Transmembrane αKlotho Isoforms Have Different Spatio-Temporal Profiles in the Brain during Aging and Alzheimer's Disease Progression. PLoS One 2015; 10:e0143623. [PMID: 26599613 PMCID: PMC4658185 DOI: 10.1371/journal.pone.0143623] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/06/2015] [Indexed: 12/28/2022] Open
Abstract
The Klotho protein is a β-glucuronidase, and its overexpression is associated with life extension. Its mechanism of action is not fully understood, although it has been recently reported that αKlotho improves synaptic and cognitive functions, and it may also influence a variety of structures and functions during CNS maturation and aging. The αKlotho gene has two transcripts, one encoding a transmembrane isoform (m-KL), and the other a putative secreted isoform (s-KL). Unfortunately, little is known about the secreted αKlotho isoform, since available antibodies cannot discriminate s-KL from the KL1 domain cleaved from the transmembrane isoform. This study shows, for the first time, that the klotho transcript produced by alternative splicing generates a stable protein (70 kDa), and that in contrast to the transmembrane Klotho isoform, it is ten times more abundant in the brain than in the kidney suggesting that the two isoforms may have different functions. We also studied whether klotho expression in the CNS was influenced by aging, Alzheimer's disease (AD), or a healthy lifestyle, such as voluntary moderate continuous exercise. We observed a strong correlation between high expression levels of the two klotho transcripts and the healthy status of the animals. Expression of Klotho in brain areas decayed more rapidly in the 3xTg-AD model of AD than in healthy animals, whilst moderate continuous exercise in adulthood prevents the decline in expression of both klotho transcripts.
Collapse
Affiliation(s)
- Anna Massó
- Departament Bioquímica i Biologia Molecular, Universitat Autònoma Barcelona, Bellaterra, Spain
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Angela Sánchez
- Departament Bioquímica i Biologia Molecular, Universitat Autònoma Barcelona, Bellaterra, Spain
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Lydia Gimenez-Llort
- Institut de Neurociencies, Universitat Autònoma Barcelona, Bellaterra, Spain
- Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jose Miguel Lizcano
- Departament Bioquímica i Biologia Molecular, Universitat Autònoma Barcelona, Bellaterra, Spain
- Institut de Neurociencies, Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Manuel Cañete
- Departament Bioquímica i Biologia Molecular, Universitat Autònoma Barcelona, Bellaterra, Spain
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Belen García
- Departament Bioquímica i Biologia Molecular, Universitat Autònoma Barcelona, Bellaterra, Spain
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Virginia Torres-Lista
- Institut de Neurociencies, Universitat Autònoma Barcelona, Bellaterra, Spain
- Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Meritxell Puig
- Departament Bioquímica i Biologia Molecular, Universitat Autònoma Barcelona, Bellaterra, Spain
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Assumpció Bosch
- Departament Bioquímica i Biologia Molecular, Universitat Autònoma Barcelona, Bellaterra, Spain
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Miguel Chillon
- Departament Bioquímica i Biologia Molecular, Universitat Autònoma Barcelona, Bellaterra, Spain
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma Barcelona, Bellaterra, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
130
|
Dai D, Wang Q, Li X, Liu J, Ma X, Xu W. Klotho inhibits human follicular thyroid cancer cell growth and promotes apoptosis through regulation of the expression of stanniocalcin-1. Oncol Rep 2015; 35:552-8. [PMID: 26531219 DOI: 10.3892/or.2015.4358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The new anti-aging gene Klotho has been identified as a multi-functional humoral factor which influences multiple biological processes, including tumor progression. Although ample evidence indicates that Klotho plays important roles in cervical, lung and breast cancer, the role and mechanism of Klotho in thyroid cancer are still unclear. The present study aimed to investigate the effects and mechanisms of Klotho in human thyroid cancer cell lines FTC133 and FTC238. Klotho overexpression markedly reduced thyroid cancer FTC133 and FTC238 cell proliferation and enhanced apoptosis, whereas, Klotho silencing in the FTC133 and FTC238 cells increased cell growth. Moreover, soluble human KL1 (sKL) and Klotho overexpression had a similar effect on FTC133 and FTC238 cell growth. A high level of Klotho was also found to be associated with a low level of stanniocalcin 1 (STC1) in both the FTC133 and FTC238 cell lines. STC1 silencing significantly inhibited thyroid cancer cell proliferation, whereas recombinant human STC1 (hSTC1) markedly enhanced cell proliferation. In addition, our study demonstrated that hSTC1 treatment attenuated Klotho-induced inhibition of cell proliferation and promotion of apoptosis. Our data revealed the existence of a moderating effect between Klotho and STC1, where Klotho may inhibit thyroid tumor progression by inhibiting the tumor marker level of STC1.
Collapse
Affiliation(s)
- Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Qi Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xiaoying Ma
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
131
|
Zhou X, Chen K, Wang Y, Schuman M, Lei H, Sun Z. Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis. J Am Soc Nephrol 2015; 27:1765-76. [PMID: 26471128 DOI: 10.1681/asn.2015010093] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate-limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/-) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency-induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/-) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency-induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis.
Collapse
Affiliation(s)
- Xiaoli Zhou
- Department of Cardiology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kai Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yongjun Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mariano Schuman
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Han Lei
- Department of Cardiology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
132
|
Abstract
The aim of this study was to analyze the placental expression and allele status of promoter region of Klotho in association with preeclampsia, which represents the most common hypertensive disease of pregnancy. Klotho mRNA and protein levels were determined using real-time PCR and Western blot, respectively, in placental tissue samples obtained from 34 patients affected with preeclampsia and 34 controls. A PCR-based genotyping analysis was carried out in the promoter region of Klotho gene. Moreover, expression levels of pluripotency markers, Nanog and Oct4, and telomere length were assessed using real-time PCR. Klotho mRNA and protein levels were reduced in preeclamptic placentas compared with controls. -744delA single-nucleotide polymorphism was significantly associated with preeclampsia. In pathological placentas, there was a downregulation of pluripotency markers and a reduced telomere length. This study is the first to evaluate the placental expression level of Klotho in association with preeclampsia. Further analyses will clarify its role in the pathogenesis of this pregnancy hypertensive disorder.
Collapse
|
133
|
Baldan A, Giusti A, Bosi C, Malaventura C, Musso M, Forni GL, Volpato S, Zuliani G, Borgna-Pignatti C. Klotho, a new marker for osteoporosis and muscle strength in β-thalassemia major. Blood Cells Mol Dis 2015; 55:396-401. [PMID: 26460265 DOI: 10.1016/j.bcmd.2015.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022]
Abstract
Aim of this study was to compare plasma levels of the secreted protein Klotho in β-thalassemia major patients and in healthy controls. Also, we examined the existence of correlations between the protein level and osteoporosis, poor muscle strength and fractures. A total of 106 patients with β-thalassemia major and 95 healthy blood donors were enrolled. Klotho level in plasma was measured by mean of an ELISA test and the hand-grip strength using a dynamometer. Intact parathyroid hormone (PTH), 25-hydroxy vitamin D (Vitamin D), serum calcium (Ca), phosphate (P), total alkaline phosphatase (ALP), ferritin, creatinine were measured by standard clinical techniques. DXA was used to measure bone mineral density (BMD) at the lumbar spine (L2-L4), femoral neck and total hip. We found that the Klotho protein concentration was lower in the blood of patients with β-thalassemia major than in healthy controls, and it was directly correlated to the hand-grip strength. In β-thalassemia major patients, the secreted Klotho was lower than in healthy controls. The preliminary investigation into the correlation between markers of osteo- and sarcopenia and Klotho demonstrated a decreased Klotho concentration in β-TM patients and a higher probability of having had fragility fractures.
Collapse
Affiliation(s)
- Alessandro Baldan
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Italy; Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy.
| | - Andrea Giusti
- Bone Clinic, Department of Gerontology and Musculoskeletal Sciences, Galliera Hospital, Genoa, Italy
| | - Cristina Bosi
- Department of Medical Sciences, Section of Internal and Cardio-Respiratory Medicine, University of Ferrara, Italy
| | - Cristina Malaventura
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Italy
| | - Marco Musso
- Center of Microcitemia and Congenital Anemias, Galliera Hospital, Genoa, Italy
| | - Gian Luca Forni
- Center of Microcitemia and Congenital Anemias, Galliera Hospital, Genoa, Italy
| | - Stefano Volpato
- Department of Medical Sciences, Section of Internal and Cardio-Respiratory Medicine, University of Ferrara, Italy
| | - Giovanni Zuliani
- Department of Medical Sciences, Section of Internal and Cardio-Respiratory Medicine, University of Ferrara, Italy
| | | |
Collapse
|
134
|
Abstract
Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.
Collapse
Affiliation(s)
- Ao Bian
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Javier A Neyra
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | - Ming Zhan
- Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
135
|
Mencke R, Harms G, Mirković K, Struik J, Van Ark J, Van Loon E, Verkaik M, De Borst MH, Zeebregts CJ, Hoenderop JG, Vervloet MG, Hillebrands JL. Membrane-bound Klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc Res 2015; 108:220-31. [PMID: 26116633 DOI: 10.1093/cvr/cvv187] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 06/23/2015] [Indexed: 01/29/2023] Open
Abstract
AIMS Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD), a disease state that is strongly associated with loss of renal and systemic (alpha-)Klotho. Reversely, murine Klotho deficiency causes marked medial calcification. It is therefore thought that Klotho conveys a vasculoprotective effect. Klotho expression in the vessel wall, however, is disputed. METHODS AND RESULTS We assessed Klotho expression in healthy human renal donor arteries (n = 9), CKD (renal graft recipient) arteries (n = 10), carotid endarterectomy specimens (n = 8), other elastic arteries (three groups of n = 3), and cultured human aortic smooth muscle cells (HASMCs) (three primary cell lines), using immunohistochemistry (IHC), immunofluorescence, quantitative reverse transcriptase-polymerase chain reaction, and western blotting (WB). We have extensively validated anti-Klotho antibody KM2076 by comparing staining patterns with other anti-Klotho antibodies (SC-22220, SC-22218, and AF1819), competition assays with recombinant Klotho, IHC on Klotho-deficient kl/kl mouse kidney, and WB with recombinant Klotho. Using KM2076, we could not detect full-length Klotho in vascular tissues or HASMCs. On the mRNA level, using primers against all four exon junctions, klotho expression could not be detected either. Fibroblast growth factor 23 (FGF23) injections in mice induced FGF23 signalling in kidneys but not in the aorta, indicating the absence of Klotho-dependent FGF23 signalling in the aorta. CONCLUSION Using several independent and validated methods, we conclude that full-length, membrane-bound Klotho is not expressed in healthy or uraemic human vascular tissue.
Collapse
Affiliation(s)
- Rik Mencke
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, HPC EA10, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | - Geert Harms
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, HPC EA10, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | - Katarina Mirković
- Department of Internal Medicine (Division of Nephrology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joyce Struik
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Joris Van Ark
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, HPC EA10, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | - Ellen Van Loon
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melissa Verkaik
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Martin H De Borst
- Department of Internal Medicine (Division of Nephrology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Clark J Zeebregts
- Department of Surgery (Division of Vascular Surgery), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, HPC EA10, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | | |
Collapse
|
136
|
Ligumsky H, Rubinek T, Merenbakh-Lamin K, Yeheskel A, Sertchook R, Shahmoon S, Aviel-Ronen S, Wolf I. Tumor Suppressor Activity of Klotho in Breast Cancer Is Revealed by Structure–Function Analysis. Mol Cancer Res 2015; 13:1398-407. [DOI: 10.1158/1541-7786.mcr-15-0141] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/10/2015] [Indexed: 11/16/2022]
|
137
|
Prather AA, Epel ES, Arenander J, Broestl L, Garay BI, Wang D, Dubal DB. Longevity factor klotho and chronic psychological stress. Transl Psychiatry 2015; 5:e585. [PMID: 26080320 PMCID: PMC4490291 DOI: 10.1038/tp.2015.81] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/31/2022] Open
Abstract
Chronic psychological stress is associated with accelerated aging and premature morbidity and mortality; however, the biology linking chronic psychological stress and its maladaptive effects remains largely unknown. Klotho is a pleiotropic hormone that regulates the aging process and promotes better brain and body health. Whether klotho is linked to psychosocial stress or its negative impact in humans has not been investigated. To address this gap, we recruited 178 healthy women who were either chronically high-stress maternal caregivers for a child with autism spectrum disorder (n = 90) or low-stress control mothers of a typically developing child (n = 88). We found that women under high chronic stress displayed significantly lower levels of the longevity hormone klotho compared with low-stress controls (t(176) = 2.92, P = 0.004; d = 0.44), and the decrease among those under high stress was age-dependent. In addition, high-stress caregivers who reported more depressive symptoms displayed even lower klotho levels compared with low-stress participants. These findings provide the first evidence that klotho levels are sensitive to psychosocial stressors and raise the possibility that klotho may serve as a novel biological link connecting stress, depression and risk for accelerated disease development. Furthermore, these findings have important implications for understanding the plasticity of the aging process and may represent a therapeutic target for mitigating the deleterious effects of chronic psychological stress on health and well-being.
Collapse
Affiliation(s)
- A A Prather
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Department of Psychiatry, University of California, San Francisco, 3333 California Street, Suite 465, San Francisco, CA 94118, USA E-mail:
| | - E S Epel
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - J Arenander
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - L Broestl
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - B I Garay
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - D Wang
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - D B Dubal
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA,Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA. E-mail:
| |
Collapse
|
138
|
Sato S, Kawamata Y, Takahashi A, Imai Y, Hanyu A, Okuma A, Takasugi M, Yamakoshi K, Sorimachi H, Kanda H, Ishikawa Y, Sone S, Nishioka Y, Ohtani N, Hara E. Ablation of the p16(INK4a) tumour suppressor reverses ageing phenotypes of klotho mice. Nat Commun 2015; 6:7035. [PMID: 25923845 PMCID: PMC4421814 DOI: 10.1038/ncomms8035] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/26/2015] [Indexed: 01/08/2023] Open
Abstract
The p16INK4a tumour suppressor has an established role in the implementation of cellular senescence in stem/progenitor cells, which is thought to contribute to organismal ageing. However, since p16INK4a knockout mice die prematurely from cancer, whether p16INK4a reduces longevity remains unclear. Here we show that, in mutant mice homozygous for a hypomorphic allele of the α-klotho ageing-suppressor gene (klkl/kl), accelerated ageing phenotypes are rescued by p16INK4a ablation. Surprisingly, this is due to the restoration of α-klotho expression in klkl/kl mice and does not occur when p16INK4a is ablated in α-klotho knockout mice (kl−/−), suggesting that p16INK4a is an upstream regulator of α-klotho expression. Indeed, p16INK4a represses α-klotho promoter activity by blocking the functions of E2Fs. These results, together with the observation that the expression levels of p16INK4a are inversely correlated with those of α-klotho throughout ageing, indicate that p16INK4a plays a previously unrecognized role in downregulating α-klotho expression during ageing. The protein p16INK4a promotes senescence in tissue stem cells and thereby contributes to organismal ageing. Here the authors reveal that p16INK4a also downregulates expression of a-klotho, thereby revealing an additional ageing-promoting function of 16INK4a that is independent from its role in senescence.
Collapse
Affiliation(s)
- Seidai Sato
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.,Department of Respiratory Medicine and Rheumatology, University of Tokushima Graduate School of Medicine, Tokushima 770-8503, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yuka Kawamata
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akiko Takahashi
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yoshinori Imai
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Aki Hanyu
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Atsushi Okuma
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Masaki Takasugi
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Kimi Yamakoshi
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Hiroyuki Sorimachi
- Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroaki Kanda
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yuichi Ishikawa
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Saburo Sone
- Department of Respiratory Medicine and Rheumatology, University of Tokushima Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, University of Tokushima Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Naoko Ohtani
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Eiji Hara
- Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.,Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
139
|
CHEN CHENG, MAO HUIJUAN, YU XIANGBO, SUN BIN, ZENG MING, ZHAO XIUFEN, QIAN JUN, LIU JIA, XING CHANGYING. Effect of secondary hyperparathyroidism serum on endothelial cells and intervention with Klotho. Mol Med Rep 2015; 12:1983-90. [DOI: 10.3892/mmr.2015.3606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 03/09/2015] [Indexed: 11/05/2022] Open
|
140
|
Kim JH, Hwang KH, Park KS, Kong ID, Cha SK. Biological Role of Anti-aging Protein Klotho. J Lifestyle Med 2015; 5:1-6. [PMID: 26528423 PMCID: PMC4608225 DOI: 10.15280/jlm.2015.5.1.1] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/16/2015] [Indexed: 12/15/2022] Open
Abstract
Klotho-deficient mice have accelerated aging phenotypes, whereas overexpression of Klotho in mice extends lifespan. Klotho is an anti-aging single-pass membrane protein predominantly produced in the kidney, with shedding of the amino-terminal extracellular domain into the systemic circulation. Circulating levels of soluble Klotho decrease with age, and the klotho gene is associated with increased risk of age-related diseases. The three forms of Klotho protein have distinct functions. Membrane Klotho forms a complex with fibroblast growth factor (FGF) receptors, functions as an obligatory co-receptor for FGF23, which is involved in aging and the development of chronic diseases via regulation of Pi and vitamin D metabolism. Secreted Klotho functions as a humoral factor with pleiotropic activities including regulation of oxidative stress, growth factor signaling, and ion homeostasis. Secreted Klotho is also involved in organ protection. The intracellular form of Klotho suppresses inflammation-mediated cellular senescence and mineral metabolism. Herein we provide a brief overview of the structure and function and recent research about Klotho.
Collapse
Affiliation(s)
- Ji-Hee Kim
- Departments of Physiology and Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyu-Hee Hwang
- Departments of Physiology and Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyu-Sang Park
- Departments of Physiology and Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea ; Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - In Deok Kong
- Departments of Physiology and Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea ; Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seung-Kuy Cha
- Departments of Physiology and Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Korea ; Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea ; Nuclear Receptor Research Consortium, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
141
|
Yokoyama JS, Sturm VE, Bonham LW, Klein E, Arfanakis K, Yu L, Coppola G, Kramer JH, Bennett DA, Miller BL, Dubal DB. Variation in longevity gene KLOTHO is associated with greater cortical volumes. Ann Clin Transl Neurol 2015; 2:215-30. [PMID: 25815349 PMCID: PMC4369272 DOI: 10.1002/acn3.161] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Identifying genetic variation associated with brain structures in aging may elucidate new biologic mechanisms underlying resilience to cognitive decline. We investigated whether carrying one copy of the protective haplotype "KL-VS" in longevity gene KLOTHO (KL) is associated with greater gray matter volume in healthy human aging compared to carrying no copies. METHODS We performed unbiased whole-brain analysis in cognitively normal older adults from two independent cohorts to assess the relationship between KL-VS and gray matter volume using voxel-based morphometry. RESULTS We found that KL-VS heterozygosity was associated with greater volume in right dorsolateral prefrontal cortex (rDLPFC). Because rDLPFC is important for executive function, we analyzed working memory and processing speed in individuals. KL-VS heterozygosity was associated with enhanced executive function. Larger rDLPFC volume correlated with better executive function across the lifespan examined. Statistical analysis suggested that volume partially mediates the effect of genotype on cognition. INTERPRETATION These results suggest that variation in KL is associated with bigger brain volume and better function.
Collapse
Affiliation(s)
- Jennifer S Yokoyama
- Department of Neurology, University of California San FranciscoSan Francisco, California, 94158
| | - Virginia E Sturm
- Department of Neurology, University of California San FranciscoSan Francisco, California, 94158
| | - Luke W Bonham
- Department of Neurology, University of California San FranciscoSan Francisco, California, 94158
| | - Eric Klein
- Department of Neurology and Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at University of California Los AngelesLos Angeles, California, 90095
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of TechnologyChicago, Illinois, 60616
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicago, Illinois, 60612
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicago, Illinois, 60612
| | - Giovanni Coppola
- Department of Neurology and Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at University of California Los AngelesLos Angeles, California, 90095
| | - Joel H Kramer
- Department of Neurology, University of California San FranciscoSan Francisco, California, 94158
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicago, Illinois, 60612
| | - Bruce L Miller
- Department of Neurology, University of California San FranciscoSan Francisco, California, 94158
| | - Dena B Dubal
- Department of Neurology, University of California San FranciscoSan Francisco, California, 94158
| |
Collapse
|
142
|
Abstract
Ageing, a progressive structural and functional decline, is considered to be a major risk factor for virtually all ageing-associated pathologies and disabilities, including Alzheimer's disease, Parkinson's disease, stroke, diabetes, atherosclerosis and certain cancers. Biogerontology research has now been largely directed towards finding novel drug targets to decelerate the ageing process and attain healthy ageing in order to delay the onset of all ageing-related diseases. H2S has been reported to exert vasodilatory, antioxidant, antiapoptotic and anti-inflammatory actions and has been shown to act as a signalling molecule, neuromodulator and cytoprotectant. Intriguingly, H2S has been reported to regulate cell cycle and survival in healthy cells which suggests that it may regulate cell fate and hence the ageing process. This chapter sets out to provide an overview of the current knowledge regarding the involvement of H2S in ageing, with a specific focus on the invertebrate model nematode C. elegans.
Collapse
Affiliation(s)
- Bedoor Qabazard
- MRC-HPA Centre for Environment and Health, Analytical and Environmental Sciences Division, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | | |
Collapse
|
143
|
Takei Y, Minamizaki T, Yoshiko Y. Functional diversity of fibroblast growth factors in bone formation. Int J Endocrinol 2015; 2015:729352. [PMID: 25873956 PMCID: PMC4383271 DOI: 10.1155/2015/729352] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/23/2014] [Accepted: 08/31/2014] [Indexed: 01/01/2023] Open
Abstract
The functional significance of fibroblast growth factor (FGF) signaling in bone formation has been demonstrated through genetic loss-of-function and gain-of-function approaches. FGFs, comprising 22 family members, are classified into three subfamilies: canonical, hormone-like, and intracellular. The former two subfamilies activate their signaling pathways through FGF receptors (FGFRs). Currently, intracellular FGFs appear to be primarily involved in the nervous system. Canonical FGFs such as FGF2 play significant roles in bone formation, and precise spatiotemporal control of FGFs and FGFRs at the transcriptional and posttranscriptional levels may allow for the functional diversity of FGFs during bone formation. Recently, several research groups, including ours, have shown that FGF23, a member of the hormone-like FGF subfamily, is primarily expressed in osteocytes/osteoblasts. This polypeptide decreases serum phosphate levels by inhibiting renal phosphate reabsorption and vitamin D3 activation, resulting in mineralization defects in the bone. Thus, FGFs are involved in the positive and negative regulation of bone formation. In this review, we focus on the reciprocal roles of FGFs in bone formation in relation to their local versus systemic effects.
Collapse
Affiliation(s)
- Yuichiro Takei
- Department of Calcified Tissue Biology, Hiroshima University Institute of Biomedical & Health Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Institute of Biomedical & Health Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Institute of Biomedical & Health Sciences, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
- *Yuji Yoshiko:
| |
Collapse
|
144
|
Wolf MTF, An SW, Nie M, Bal MS, Huang CL. Klotho up-regulates renal calcium channel transient receptor potential vanilloid 5 (TRPV5) by intra- and extracellular N-glycosylation-dependent mechanisms. J Biol Chem 2014; 289:35849-57. [PMID: 25378396 PMCID: PMC4276853 DOI: 10.1074/jbc.m114.616649] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/30/2014] [Indexed: 11/06/2022] Open
Abstract
The anti-aging protein Klotho is a type 1 membrane protein produced predominantly in the distal convoluted tubule. The ectodomain of Klotho is cleaved and secreted into the urine to regulate several ion channels and transporters. Secreted Klotho (sKL) up-regulates the TRPV5 calcium channel from the cell exterior by removing sialic acids from N-glycan of the channel and inhibiting its endocytosis. Because TRPV5 and Klotho coexpress in the distal convoluted tubule, we investigated whether Klotho regulates TRPV5 action from inside the cell. Whole-cell TRPV5-mediated channel activity was recorded in HEK cells coexpressing TRPV5 and sKL or membranous Klotho (mKL). Transfection of sKL, but not mKL, produced detectable Klotho protein in cell culture media. As for sKL, mKL increased TRPV5 current density. The role of sialidase activity of mKL acting inside is supported by findings that mutations of putative sialidase activity sites in sKL and mKL abrogated the regulation of TRPV5 but that the extracellular application of a sialidase inhibitor prevented the regulation of TRPV5 by sKL only. Mechanistically, coexpression with a dominant-negative dynamin II prevented the regulation of TRPV5 by sKL but not by mKL. In contrast, blocking forward trafficking by brefeldin A prevented the effect with mKL but not with sKL. Therefore, Klotho up-regulates TRPV5 from both the inside and outside of cells. The intracellular action of Klotho is likely due to enhanced forward trafficking of channel proteins, whereas the extracellular action is due to inhibition of endocytosis. Both effects involve putative Klotho sialidase activity. These effects of Klotho may play important roles regarding calcium reabsorption in the kidney.
Collapse
Affiliation(s)
| | - Sung-Wan An
- Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | | | | | - Chou-Long Huang
- Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| |
Collapse
|
145
|
Martín-Núñez E, Donate-Correa J, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Implications of Klotho in vascular health and disease. World J Cardiol 2014; 6:1262-1269. [PMID: 25548616 PMCID: PMC4278161 DOI: 10.4330/wjc.v6.i12.1262] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/13/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) is a prevalent condition in general population and the first cause of death overall. Klotho, a pleiotropic protein related to longevity that acts as a co-receptor of the fibroblast growth factor 23, has been proposed as a key regulator of the development of CVD. In the few clinical studies made, it has been observed a relationship between low levels of soluble Klotho and the occurrence and severity of CVD, as well as a reduction of cardiovascular risk when they are high. Also, different polymorphisms of human Klotho gene have been related to the incidence of cardiovascular events. Moreover, several experimental studies indicate that this protein acts in the maintenance of vascular homeostasis. Klotho improves endothelial dysfunction through promotion of NO production and mediates anti-inflammatory and anti-aging effects such as suppression of adhesion molecules expression, attenuation of nuclear factor-kappa B or inhibition of Wnt signaling. Furthermore, this protein is related to the attenuation of vascular calcification as well as prevention of cardiac hypertrophy. The expression of this protein in the vascular wall implies a new scenario for the treatment of vascular disorders. The purpose of this review is to provide an overview of the relationship between the Klotho protein and CVD, in addition to its role in the maintenance of functional vascular integrity.
Collapse
|
146
|
de Souza Pacheco APA, Goncalves M. Klotho: its various functions and association with sickle cell disease subphenotypes. Rev Bras Hematol Hemoter 2014; 36:430-6. [PMID: 25453654 PMCID: PMC4318548 DOI: 10.1016/j.bjhh.2014.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
The Klotho protein, whose gene has predominant renal expression, acts in the control of serum phosphorus and 1,25-dihydroxyvitamin D3 and regulates the function of ion channels. It also participates in the mechanism of protection against oxidative stress and acts on the vascular endothelium by inducing the production of nitric oxide. Mutations that reflect defects in the Klotho gene expression may be implicated in the onset of osteonecrosis, priapism, and leg ulcers in patients with sickle cell disease, as a result of oxidative stress and endothelial impairment, important factors in the development and severity of this disease. Previous reports regarding the association of Klotho single nucleotide polymorphisms with sickle cell disease subphenotypes have found that these polymorphisms are important to identify genetic markers of risk in these individuals and allow early and more effective therapeutic intervention.
Collapse
Affiliation(s)
| | - Marilda Goncalves
- Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA, Brazil; Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil.
| |
Collapse
|
147
|
Sun Y, Zhou G, Gui T, Shimokado A, Nakanishi M, Oikawa K, Sato F, Muragaki Y. Elevated serum 1,25(OH)2-vitamin D3 level attenuates renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction in kl/kl mice. Sci Rep 2014; 4:6563. [PMID: 25297969 PMCID: PMC5377451 DOI: 10.1038/srep06563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/12/2014] [Indexed: 12/28/2022] Open
Abstract
Previous studies have suggested that Klotho provides reno-protection against unilateral ureteral obstruction (UUO)-induced renal tubulointerstitial fibrosis (RTF). Because the existing studies are mainly performed using heterozygous Klotho mutant (HT) mice, we focused on the effect of UUO on homozygous Klotho mutant (kl/kl) mice. UUO kidneys from HT mice showed a significantly higher level of RTF and TGF-β/Smad3 signaling than wild-type (WT) mice, whereas both were greatly suppressed in kl/kl mice. Primary proximal tubular epithelial culture cells isolated from kl/kl mice showed no suppression in TGF-β1-induced epithelial mesenchymal transition (EMT) compared to those from HT mice. In the renal epithelial cell line NRK52E, a large amount of inorganic phosphate (Pi), FGF23, or calcitriol was added to the medium to mimic the in vivo homeostasis of kl/kl mice. Neither Pi nor FGF23 antagonized TGF-β1-induced EMT. In contrast, calcitriol ameliorated TGF-β1-induced EMT in a dose dependent manner. A vitamin D3-deficient diet normalized the serum 1,25 (OH)2 vitamin D3 level in kl/kl mice and enhanced UUO-induced RTF and TGF-β/Smad3 signaling. In conclusion, the alleviation of UUO-induced RTF in kl/kl mice was due to the TGF-β1 signaling suppression caused by an elevated serum 1, 25(OH)2 vitamin D3.
Collapse
Affiliation(s)
- Yujing Sun
- 1] First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan [2] Department of Pathology, School of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan 250012, PR China
| | - Gengyin Zhou
- Department of Pathology, School of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan 250012, PR China
| | - Ting Gui
- 1] First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan [2]
| | - Aiko Shimokado
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Masako Nakanishi
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Kosuke Oikawa
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Fuyuki Sato
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Yasuteru Muragaki
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| |
Collapse
|
148
|
Guan X, Nie L, He T, Yang K, Xiao T, Wang S, Huang Y, Zhang J, Wang J, Sharma K, Liu Y, Zhao J. Klotho suppresses renal tubulo-interstitial fibrosis by controlling basic fibroblast growth factor-2 signalling. J Pathol 2014; 234:560-72. [PMID: 25130652 DOI: 10.1002/path.4420] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/14/2014] [Accepted: 08/01/2014] [Indexed: 12/14/2022]
Abstract
Increased basic fibroblast growth factor-2 (FGF2) and reduced Klotho have both been reported to be closely associated with renal fibrosis. However, the relationship between Klotho and FGF2 remains unclear. We demonstrate that FGF2 induced tubulo-epithelial plasticity in cultured HK-2 cells, accompanied by a reduction in Klotho expression, whereas recombinant Klotho protein could inhibit the action of FGF2. The FGF2 effects required extracellular signal-regulated protein kinase 1/2 activation, which was suppressed by Klotho. Moreover, Klotho also restrained FGF2-induced fibroblast proliferation and activation. The inhibitory effect of Klotho on the activity of FGF2 was likely due to its potent ability to compete with FGF2 binding to FGF receptor 1. Unilateral ureteral obstruction (UUO)-induced renal fibrosis was associated with an increase in FGF2 and a reduction in Klotho expression in wild-type mice, whereas FGF2(-/-) mice largely preserved Klotho expression and developed only mild renal fibrosis after obstructive injury. Furthermore, administration of Klotho protein in UUO mice significantly reduced renal fibrosis, concomitant with a marked suppression of FGF2 production and signalling. These studies demonstrate a feedback loop between Klotho depletion and FGF2 activation in renal fibrosis. Our results also suggest that Klotho treatment reduces renal fibrosis, at least in part, by inhibiting FGF2 signalling.
Collapse
Affiliation(s)
- Xu Guan
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Centre of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Buendía P, Carracedo J, Soriano S, Madueño JA, Ortiz A, Martín-Malo A, Aljama P, Ramírez R. Klotho Prevents NFκB Translocation and Protects Endothelial Cell From Senescence Induced by Uremia. J Gerontol A Biol Sci Med Sci 2014; 70:1198-209. [PMID: 25246106 DOI: 10.1093/gerona/glu170] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 08/14/2014] [Indexed: 12/25/2022] Open
Abstract
In patients with renal disease, uremia raises oxidative stress and senescence in endothelial cells, which can lead to endothelial dysfunction and cardiovascular disease. Klotho protein is a β-glucuronidase capable of hydrolyzing steroid β-glucuronides. This protein is recognized as an antiaging gene, that modulate both stress-induced senescence and functional response. The aim of the study was to investigate how senescence and oxidative stress induced by uremia in endothelial cells affects Klotho expression and whether intra or extracellular Klotho has effects on the response of these cells. Senescence and oxidative stress was obtained by exposure to uremic serum. Telomere length, the enzyme β-galactosidase, and oxidative stress were studied by flow cytometry. Nuclear factor kappa B activity was determined by electrophoretic mobility shift assay. The expression of Klotho decreased with the uremia and preceded the manifestations of cell aging. Levels of intracellular Klotho decreases associated to endothelial senescence, and exogenous Klotho prevents cellular senescence by inhibiting the increase in oxidative stress induced by uremia and diminished the nuclear factor kappa B-DNA binding ability.
Collapse
Affiliation(s)
- Paula Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Hospital Universitaro Reina Sofía, Córdoba, Spain
| | - Julia Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Hospital Universitaro Reina Sofía, Córdoba, Spain.
| | - Sagrario Soriano
- Nephrology Unit, Hospital Universitaro Reina Sofía, Córdoba, Spain
| | - Juan Antonio Madueño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Hospital Universitaro Reina Sofía, Córdoba, Spain
| | - Alberto Ortiz
- REDinREN, Servicio de Nefrología, Fundación para la Investigación Biomédica del Hospital Universitario La Paz, Instituto de Salud Carlos III, Fondos FEDER, Madrid, Spain. Unidad de Diálisis, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Rafael Ramírez
- REDinREN, Servicio de Nefrología, Fundación para la Investigación Biomédica del Hospital Universitario La Paz, Instituto de Salud Carlos III, Fondos FEDER, Madrid, Spain. Physiology Department, Alcala de Henares University, Madrid, Spain
| |
Collapse
|
150
|
Park SJ, Chung YH, Lee JH, Dang DK, Nam Y, Jeong JH, Kim YS, Nabeshima T, Shin EJ, Kim HC. Growth Hormone-Releaser Diet Attenuates Cognitive Dysfunction in Klotho Mutant Mice via Insulin-Like Growth Factor-1 Receptor Activation in a Genetic Aging Model. Endocrinol Metab (Seoul) 2014; 29:336-48. [PMID: 25309793 PMCID: PMC4192803 DOI: 10.3803/enm.2014.29.3.336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/26/2013] [Accepted: 12/13/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND It has been recognized that a defect in klotho gene expression accelerates the degeneration of multiple age-sensitive traits. Accumulating evidence indicates that aging is associated with declines in cognitive function and the activity of growth hormone (GH)/insulin-like growth factor-1 (IGF-1). METHODS In this study, we examined whether a GH-releaser diet could be effective in protecting against cognitive impairment in klotho mutant mice. RESULTS The GH-releaser diet significantly induced the expression of IGF-1 and IGF-1 receptors in the hippocampus of klotho mutant mice. Klotho mutant mice showed significant memory impairments as compared with wild-type mice. In addition, the klotho mutation significantly decreased the expression of cell survival/antiapoptotic factors, including phospho-Akt (p-Akt)/phospho-glycogen synthase kinase3β (p-GSK3β), phospho-extracellular signal-related kinase (p-ERK), and Bcl-2, but significantly increased those of cell death/proapoptotic factors, such as phospho-c-jun N-terminal kinase (p-JNK), Bax, and cleaved caspase-3 in the hippocampus. Treatment with GH-releaser diet significantly attenuated both decreases in the expression of cell survival/antiapoptotic factors and increases in the expression of cell death/proapoptotic factors in the hippocampus of klotho mutant mice. In addition, klotho mutation-induced oxidative stress was significantly attenuated by the GH-releaser diet. Consequently, a GH-releaser diet significantly improved memory function in the klotho mutant mice. GH-releaser diet-mediated actions were significantly reversed by JB-1, an IGF-1 receptor antagonist. CONCLUSION The results suggest that a GH-releaser diet attenuates oxidative stress, proapoptotic changes and consequent dysfunction in klotho mutant mice by promoting IGF-1 expression and IGF-1 receptor activation.
Collapse
Affiliation(s)
- Seok Joo Park
- Neuropsychopharmacology and Toxicology Program, Kangwon National University College of Pharmacy, Chunchon, Korea
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | - Yoon Hee Chung
- Department of Anatomy, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jeong Hyun Lee
- Neuropsychopharmacology and Toxicology Program, Kangwon National University College of Pharmacy, Chunchon, Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, Kangwon National University College of Pharmacy, Chunchon, Korea
| | - Yunsung Nam
- Neuropsychopharmacology and Toxicology Program, Kangwon National University College of Pharmacy, Chunchon, Korea
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yong Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care and Science, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, Kangwon National University College of Pharmacy, Chunchon, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, Kangwon National University College of Pharmacy, Chunchon, Korea
| |
Collapse
|