101
|
Placental growth factor: A review of literature and future applications. Pregnancy Hypertens 2018; 14:260-264. [PMID: 29555222 DOI: 10.1016/j.preghy.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
|
102
|
Palmer KR, Tong S, Kaitu'u-Lino TJ. Placental-specific sFLT-1: role in pre-eclamptic pathophysiology and its translational possibilities for clinical prediction and diagnosis. Mol Hum Reprod 2018; 23:69-78. [PMID: 27986932 DOI: 10.1093/molehr/gaw077] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/09/2016] [Indexed: 11/12/2022] Open
Abstract
Pre-eclampsia is a common obstetric complication globally responsible for a significant burden of maternal and perinatal morbidity and mortality. Central to its pathophysiology is the anti-angiogenic protein, soluble fms-like tyrosine kinase-1 (sFLT-1). sFLT-1 is released from a range of tissues into the circulation, where it antagonizes the activity of vascular endothelial growth factor and placental growth factor leading to endothelial dysfunction. It is this widespread endothelial dysfunction that produces the clinical features of pre-eclampsia including hypertension and proteinuria. There are multiple splice variants of sFLT-1. One, known as sFLT-1 e15a, evolved quite recently and is only present in humans and higher order primates. This sFLT-1 variant is also the main sFLT-1 secreted from the placenta. Recent work has shown that sFLT-1 e15a is significantly elevated in the placenta and circulation of women with pre-eclampsia. It is also biologically active, capable of causing endothelial dysfunction and the end-organ dysfunction seen in pre-eclampsia. Indeed, the over-expression of sFLT-1 e15a in mice recapitulates the pre-eclamptic phenotype in pregnancy. Therefore, here we propose that sFLT-1 e15a may be the sFLT-1 variant primarily responsible for pre-eclampsia, a uniquely human disease. Furthermore, this placental-specific sFLT-1 variant provides promise for use as an accurate biomarker in the prediction or diagnosis of pre-eclampsia.
Collapse
Affiliation(s)
- K R Palmer
- Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Rd, Clayton, 3168 Victoria, Australia.,Translational Obstetric Group, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, 3084 Victoria, Australia
| | - S Tong
- Translational Obstetric Group, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, 3084 Victoria, Australia
| | - T J Kaitu'u-Lino
- Translational Obstetric Group, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, 3084 Victoria, Australia
| |
Collapse
|
103
|
Bender, HR, Trau, HA, Duffy DM. Placental Growth Factor Is Required for Ovulation, Luteinization, and Angiogenesis in Primate Ovulatory Follicles. Endocrinology 2018; 159:710-722. [PMID: 29095972 PMCID: PMC5774250 DOI: 10.1210/en.2017-00739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022]
Abstract
Placental growth factor (PGF) is member of the vascular endothelial growth factor (VEGF) family of angiogenesis regulators. VEGFA is an established regulator of ovulation and formation of the corpus luteum. To determine whether PGF also mediates aspects of ovulation and luteinization, macaques received gonadotropins to stimulate multiple follicular development. Ovarian biopsies and whole ovaries were collected before (0 hours) and up to 36 hours after human chorionic gonadotropin (hCG) administration to span the ovulatory interval. PGF and VEGFA were expressed by both granulosa cells and theca cells. In follicular fluid, PGF and VEGFA levels were lowest before hCG. PGF levels remained low until 36 hours after hCG administration, when PGF increased sevenfold to reach peak levels. Follicular fluid VEGFA increased threefold to reach peak levels at 12 hours after hCG, then dropped to intermediate levels. To explore the roles of PGF and VEGFA in ovulation, luteinization, and follicular angiogenesis in vivo, antibodies were injected into the follicular fluid of naturally developed monkey follicles; ovariectomy was performed 48 hours after hCG, with ovulation expected about 40 hours after hCG. Intrafollicular injection of control immunoglobulin G resulted in no retained oocytes, follicle rupture, and structural luteinization, including granulosa cell hypertrophy and capillary formation in the granulosa cell layer. PGF antibody injection resulted in oocyte retention, abnormal rupture, and incomplete luteinization, with limited and disorganized angiogenesis. Injection of a VEGFA antibody resulted in oocyte retention and very limited follicle rupture or structural luteinization. These studies demonstrate that PGF, in addition to VEGFA, is required for ovulation, luteinization, and follicular angiogenesis in primates.
Collapse
Affiliation(s)
- Hannah R. Bender,
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Heidi A. Trau,
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Diane M. Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23501
| |
Collapse
|
104
|
Alahakoon TI, Zhang W, Arbuckle S, Zhang K, Lee V. Reduced angiogenic factor expression in intrauterine fetal growth restriction using semiquantitative immunohistochemistry and digital image analysis. J Obstet Gynaecol Res 2018; 44:861-872. [DOI: 10.1111/jog.13592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/23/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Thushari I. Alahakoon
- The University of Sydney, Westmead Clinical School; Sydney New South Wales Australia
- Westmead Institute for Maternal and Fetal Medicine; Westmead Hospital; Sydney New South Wales Australia
| | - Weiyi Zhang
- Westmead Institute for Maternal and Fetal Medicine; Westmead Hospital; Sydney New South Wales Australia
| | - Susan Arbuckle
- Anatomical Pathology; The Children's Hospital; Sydney New South Wales Australia
| | - Kewei Zhang
- The University of Sydney, Westmead Clinical School; Sydney New South Wales Australia
- Westmead Institute for Maternal and Fetal Medicine; Westmead Hospital; Sydney New South Wales Australia
| | - Vincent Lee
- The University of Sydney, Westmead Clinical School; Sydney New South Wales Australia
- Renal Medicine; Westmead Hospital; Sydney New South Wales Australia
| |
Collapse
|
105
|
Di Pietro M, Pascuali N, Parborell F, Abramovich D. Ovarian angiogenesis in polycystic ovary syndrome. Reproduction 2018; 155:R199-R209. [PMID: 29386378 DOI: 10.1530/rep-17-0597] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine pathology among women in reproductive age. Its main symptoms are oligo or amenorrhea, hyperandrogenism and the presence of ovarian cysts. It is also associated with infertility, obesity and insulin resistance. Mainly due to its heterogeneity, PCOS treatments are directed to manage its symptoms and to prevent associated diseases. The correct formation and regression of blood vessels during each ovarian cycle is indispensable for proper follicular development, ovulation and corpus luteum formation. The importance of these processes opened a new and promising field: ovarian angiogenesis. Vascular alterations characterize numerous pathologies, either with increased, decreased or abnormal angiogenesis. In the last years, several anomalies of ovarian angiogenesis have been described in women with PCOS. Therefore, it has been suggested that these alterations may be associated with the decreased - or lack of - ovulation rates and for the formation of cysts in the PCOS ovaries. Restoration of a proper vessel formation in the ovaries may lead to improved follicular development and ovulation in these patients. In the present review, we attempt to summarize the alterations in ovarian angiogenesis that have been described in women with PCOS. We also discuss the therapeutic approaches aimed to correct these alterations and their beneficial effects on the treatment of infertility in PCOS.
Collapse
Affiliation(s)
- Mariana Di Pietro
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IByME-CONICET)Buenos Aires, Argentina
| |
Collapse
|
106
|
Li Y, Lorca RA, Su EJ. Molecular and cellular underpinnings of normal and abnormal human placental blood flows. J Mol Endocrinol 2018; 60:R9-R22. [PMID: 29097590 PMCID: PMC5732864 DOI: 10.1530/jme-17-0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Abnormal placental function is well-established as a major cause for poor pregnancy outcome. Placental blood flow within the maternal uteroplacental compartment, the fetoplacental circulation or both is a vital factor in mediating placental function. Impairment in flow in either or both vasculatures is a significant risk factor for adverse pregnancy outcome, potentially impacting maternal well-being, affecting immediate neonatal health and even influencing the long-term health of the infant. Much remains unknown regarding the mechanistic underpinnings of proper placental blood flow. This review highlights the currently recognized molecular and cellular mechanisms in the development of normal uteroplacental and fetoplacental blood flows. Utilizing the entities of preeclampsia and fetal growth restriction as clinical phenotypes that are often evident downstream of abnormal placental blood flow, mechanisms underlying impaired uteroplacental and fetoplacental blood flows are also discussed. Deficiencies in knowledge, which limit the efficacy of clinical care, are also highlighted, underscoring the need for continued research on normal and abnormal placental blood flows.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Obstetrics and GynecologyDivision of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ramón A Lorca
- Department of Obstetrics and GynecologyDivision of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emily J Su
- Department of Obstetrics and GynecologyDivision of Maternal-Fetal Medicine/Division of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
107
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
108
|
Regulation of human feto-placental endothelial barrier integrity by vascular endothelial growth factors: competitive interplay between VEGF-A 165a, VEGF-A 165b, PIGF and VE-cadherin. Clin Sci (Lond) 2017; 131:2763-2775. [PMID: 29054861 PMCID: PMC5869853 DOI: 10.1042/cs20171252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/03/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023]
Abstract
The human placenta nourishes and protects the developing foetus whilst influencing maternal physiology for fetal advantage. It expresses several members of the vascular endothelial growth factor (VEGF) family including the pro-angiogenic/pro-permeability VEGF-A165a isoform, the anti-angiogenic VEGF-A165b, placental growth factor (PIGF) and their receptors, VEGFR1 and VEGFR2. Alterations in the ratio of these factors during gestation and in complicated pregnancies have been reported; however, the impact of this on feto-placental endothelial barrier integrity is unknown. The present study investigated the interplay of these factors on junctional occupancy of VE-cadherin and macromolecular leakage in human endothelial monolayers and the perfused placental microvascular bed. Whilst VEGF-A165a (50 ng/ml) increased endothelial monolayer albumin permeability (P<0.0001), equimolar concentrations of VEGF-A165b (P>0.05) or PlGF (P>0.05) did not. Moreover, VEGF-A165b (100 ng/ml; P<0.001) but not PlGF (100 ng/ml; P>0.05) inhibited VEGF-A165a-induced permeability when added singly. PlGF abolished the VEGF-A165b-induced reduction in VEGF-A165a-mediated permeability (P>0.05); PlGF was found to compete with VEGF-A165b for binding to Flt-1 at equimolar affinity. Junctional occupancy of VE-cadherin matched alterations in permeability. In the perfused microvascular bed, VEGF-A165b did not induce microvascular leakage but inhibited and reversed VEGF-A165a-induced loss of junctional VE-cadherin and tracer leakage. These results indicate that the anti-angiogenic VEGF-A165b isoform does not increase permeability in human placental microvessels or HUVEC primary cells and can interrupt VEGF-A165a-induced permeability. Moreover, the interplay of these isoforms with PIGF (and s-flt1) suggests that the ratio of these three factors may be important in determining the placental and endothelial barrier in normal and complicated pregnancies.
Collapse
|
109
|
Abstract
Angiogenesis plays an important role in controlling tissue development and maintaining normal tissue function. Dysregulated angiogenesis is implicated in the pathogenesis of a variety of diseases, particularly diabetes, cancers, and neurodegenerative disorders. As the major regulator of angiogenesis, the vascular endothelial growth factor (VEGF) family is composed of a group of crucial members including VEGF-B. While the physiological roles of VEGF-B remain debatable, increasing evidence suggests that this protein is able to protect certain type of cells from apoptosis under pathological conditions. More importantly, recent studies reveal that VEGF-B is involved in lipid transport and energy metabolism, implicating this protein in obesity, diabetes and related metabolic complications. This article summarizes the current knowledge and understanding of VEGF-B in physiology and pathology, and shed light on the therapeutic potential of this crucial protein.
Collapse
Affiliation(s)
- Hongyu Zhu
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| | - Mingming Gao
- b Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , GA , USA
| | - Xiangdong Gao
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| | - Yue Tong
- a State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
110
|
Accelerated growth of hemangioblastoma in pregnancy: the role of proangiogenic factors and upregulation of hypoxia-inducible factor (HIF) in a non-oxygen-dependent pathway. Neurosurg Rev 2017; 42:209-226. [DOI: 10.1007/s10143-017-0910-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/28/2022]
|
111
|
Song Y, Liu Z, Han Y, Gao W, Hao J, Zhong X, Wang D, Li Z. DNA methylation-mediated silencing of FLT1 in parthenogenetic porcine placentas. Placenta 2017; 58:86-89. [PMID: 28962701 DOI: 10.1016/j.placenta.2017.08.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/13/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
Studies show that perturbed expression of vascular endothelial growth factor (VEGF) family genes is related to abnormal development of parthenogenetic (PA) placenta. In this study, the methylation status of VEGF family genes were compared between PA and normal placentas using bisulfite sequencing PCR (BSP). Results showed no significant difference in the methylation of VEGF-A differentially methylated region (DMR), placental growth factor (PIGF) DMR, and kinase insert domain receptor (KDR) DMR, whereas FMS-like tyrosine kinase 1 (FLT1) DMR was hypermethylated in PA placentas. These results suggested that abnormal methylation of FLT1 DMR might trigger the developmental failure of porcine PA placentas.
Collapse
Affiliation(s)
- Yuning Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Zhiquan Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Yang Han
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Wei Gao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Jindong Hao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Xiaowei Zhong
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Dongxu Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China.
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
112
|
Van Bergen T, Hu TT, Etienne I, Reyns GE, Moons L, Feyen JHM. Neutralization of placental growth factor as a novel treatment option in diabetic retinopathy. Exp Eye Res 2017; 165:136-150. [PMID: 28965804 DOI: 10.1016/j.exer.2017.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/08/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
The current standard of care in clinical practice for diabetic retinopathy (DR), anti-vascular endothelial growth factor (VEGF) therapy, has shown a significant improvement in visual acuity. However, treatment response can be variable and might be associated with potential side effects. This study was designed to investigate inhibition of placental growth factor (PlGF) as a possible alternative therapy for DR. The effect of the anti-PlGF antibody (PL5D11D4) was preclinically evaluated in various animal models by investigating different DR hallmarks, including inflammation, neurodegeneration, vascular leakage and fibrosis. The in vivo efficacy was tested in diabetic streptozotocin (STZ) and Akimba models and in the laser induced choroidal neovascularization (CNV) mouse model. Intravitreal (IVT) administration of the anti-PlGF antibody was compared to anti-VEGFR-2 antibody (DC101), anti-VEGF antibody (B20), VEGF-Trap (aflibercept) and triamcinolone acetonide (TAAC). Vascular leakage was investigated in the mouse STZ model by fluorescein isothiocyanate labeled bovine serum albumin (FITC-BSA) perfusion and in the Akimba model by fluorescein angiography (FA). Repeated IVT administration of the anti-PlGF antibody reduced vascular leakage, which was comparable to a single administration of VEGFR-2 inhibition in the mouse STZ model. PL5D11D4 treatment did not alter retinal ganglion cell (RGC) density, as demonstrated by Brn3a staining, whereas DC101 significantly reduced RGC number with 20%. Immunohistological stainings were performed to investigate inflammation (CD45, F4/80) and fibrosis (collagen type 1a). In the CNV model, IVT injection(s) of PL5D11D4 dose-dependently reduced inflammation and fibrosis, as compared to PBS treatment. Equimolar single administration of the anti-PlGF antibody and aflibercept (21 nM) and TAAC decreased leukocyte and macrophage infiltration with 50%, whereas DC101 and B20 (21 nM) had no effect on the inflammatory response. Similar results were observed in the mouse STZ model on the number of microglia and macrophages in the retina. Repeated administration of PL5D11D4 (21 nM) and TAAC similarly reduced fibrosis, while no effect was observed after equimolar DC101, B20 nor aflibercept administration (21 nM). In summary, the anti-PlGF antibody showed comparable efficacy as well-characterized VEGF-inhibitor on the process of vascular leakage, but differentiates itself by also reducing inflammation and fibrosis, without triggering a neurodegenerative response.
Collapse
Affiliation(s)
- Tine Van Bergen
- ThromboGenics NV, Gaston Geenslaan 1, 3001 Heverlee, Belgium.
| | - Tjing-Tjing Hu
- ThromboGenics NV, Gaston Geenslaan 1, 3001 Heverlee, Belgium.
| | | | - Geert E Reyns
- ThromboGenics NV, Gaston Geenslaan 1, 3001 Heverlee, Belgium.
| | - Lieve Moons
- Department of Biology, Zoological Institute, KU Leuven, Leuven, Belgium.
| | - Jean H M Feyen
- ThromboGenics NV, Gaston Geenslaan 1, 3001 Heverlee, Belgium.
| |
Collapse
|
113
|
Natural cytotoxicity receptor 1 in mouse uNK cell maturation and function. Mucosal Immunol 2017; 10:1122-1132. [PMID: 28098245 DOI: 10.1038/mi.2016.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/29/2016] [Indexed: 02/04/2023]
Abstract
Early and midgestational decidua of mice genetically ablated for expression of the natural killer (NK) cell natural cytotoxicity receptor (NCR; Ncr1Gfp/Gfp mice) shows restricted angiogenesis and atypically small uterine (u)NK cells. We hypothesized that NCR1 inactivation disturbs maturation and angiokine production by uterine natural killer (uNK) cells. Using histological and morphometric approaches, we observed that Ncr1Gfp/Gfp but not control C57BL/6 (B6) implantation sites sustain immature, non-granulated uNK cells into midpregnancy. Mouse uNK cells can be subclassified by their reactivity with Dolichos biflorus agglutinin (DBA) lectin; DBA+ uNK cells with greater Ncr1 expression were investigated. DBA+ uNK cells from Ncr1Gfp/Gfp mice show delayed maturation as indicated by shorter diameters and fewer cytoplasmic granules. Granules in mature Ncr1Gfp/Gfp uNK cells are ultrastructurally abnormal and abundance of granule-associated proteins (perforin, granzyme) and of cytoplasmic proteins (vascular endothelial growth factor; placental growth factor) differs from controls. Leukocyte-leukocyte conjugate formation in gestation day 6.5 and 8.5 intact Ncr1Gfp/Gfp decidua was less frequent than in B6; however, this difference involved leukocytes other than DBA+ uNK cells. These studies strongly support roles for NCR1 and its ligands in normal pregnancy promotion.
Collapse
|
114
|
Nejabati HR, Latifi Z, Ghasemnejad T, Fattahi A, Nouri M. Placental growth factor (PlGF) as an angiogenic/inflammatory switcher: lesson from early pregnancy losses. Gynecol Endocrinol 2017; 33:668-674. [PMID: 28447504 DOI: 10.1080/09513590.2017.1318375] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Placental growth factor (PlGF) is an angiogenic factor which belongs to vascular endothelial growth factor (VEGF) family. In addition to the angiogenic function of PlGF, in some conditions such as preeclampsia and early pregnancy losses, it can induce inflammatory reactions which could be accompanied with reduced angiogenesis. Hence, it is crucial to investigate inflammatory and angiogenic switching states and understand underlying mechanisms. PlGF is expressed in endometrium, placenta and trophoblast cells and is involved in maturation of uterine NK cells. Up-regulation of PlGF directs VEGF to VEGFR-2 and reinforces angiogenesis. However, when VEGF/VEGFR-2 signaling pathway is impaired, PlGF may shift to severe inflammation and cause tissue damages which could lead to early pregnancy losses. Downregulation of PlGF has also been reported in pregnancy complications. In this review, we discussed the role of PlGF in embryo implantation failure and early pregnancy loss and also possible mechanisms regarding the role of PlGF in angiogenic/inflammatory switching in early pregnancy losses. Furthermore, we summarized the effects of various compounds on PlGF expression and briefly talked about its therapeutic potential that may be an opportunity for prevention of pregnancy loss.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- a Women's Reproductive Health Research Center
- b Department of Clinical Biochemistry , Faculty of Medicine , and
| | - Zeinab Latifi
- b Department of Clinical Biochemistry , Faculty of Medicine , and
| | | | - Amir Fattahi
- a Women's Reproductive Health Research Center
- c Department of Reproductive Biology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Nouri
- c Department of Reproductive Biology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
115
|
Kay VR, Tayade C, Carmeliet P, Croy BA. Influences of placental growth factor on mouse retinal vascular development. Dev Dyn 2017. [PMID: 28646507 DOI: 10.1002/dvdy.24540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Placental growth factor (PGF) is important for wound-healing and vascular collaterogenesis. PGF deficiency is associated with preeclampsia, a hypertensive disease of human pregnancy. Offspring born to preeclamptic mothers display cognitive impairments and brain vascular and neurostructural deviations. Low PGF production during development may contribute to alterations in offspring cerebrovascular beds. Retina is a readily accessible part of the central nervous system with a well-described pattern of vascular development in mice. Impacts of PGF deficiency were addressed during mouse retinal vascularization. RESULTS Retinal vessels were compared between Pgf-/- and congenic C57BL/6 (B6) mice. PGF deficiency altered neonatal retinal vascularization patterns. Some anatomic alterations persisted into adulthood, particularly in males. Greater arterial wall collagen IV expression was found in adult Pgf-/- females. Pregnancy (studied in adult females at gestational days 11.5 or 18.5) induced subtle changes upon the mother's retinal vasculature but these pregnancy-induced changes did not differ between genotypes. Significant sex-related differences occurred between adult male and female B6 although sexually dimorphic retinal vascular differences were absent in B6 neonates. CONCLUSIONS Overall, PGF has a role in retinal vascular angiogenesis and vessel organization during development but does not affect retinal vessel adaptations in adult females during pregnancy. Developmental Dynamics 246:700-712, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vanessa R Kay
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB - Vesalius Research Center, University of Leuven, Department of Oncology, Leuven, Belgium
| | - B Anne Croy
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
116
|
Velagapudi S, Yalcinkaya M, Piemontese A, Meier R, Nørrelykke SF, Perisa D, Rzepiela A, Stebler M, Stoma S, Zanoni P, Rohrer L, von Eckardstein A. VEGF-A Regulates Cellular Localization of SR-BI as Well as Transendothelial Transport of HDL but Not LDL. Arterioscler Thromb Vasc Biol 2017; 37:794-803. [DOI: 10.1161/atvbaha.117.309284] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 11/16/2022]
Abstract
Objective—
Low- and high-density lipoproteins (LDL and HDL) must pass the endothelial layer to exert pro- and antiatherogenic activities, respectively, within the vascular wall. However, the rate-limiting factors that mediate transendothelial transport of lipoproteins are yet little known. Therefore, we performed a high-throughput screen with kinase drug inhibitors to identify modulators of transendothelial LDL and HDL transport.
Approach and Results—
Microscopy-based high-content screening was performed by incubating human aortic endothelial cells with 141 kinase-inhibiting drugs and fluorescent-labeled LDL or HDL. Inhibitors of vascular endothelial growth factor (VEGF) receptors (VEGFR) significantly decreased the uptake of HDL but not LDL. Silencing of VEGF receptor 2 significantly decreased cellular binding, association, and transendothelial transport of
125
I-HDL but not
125
I-LDL. RNA interference with VEGF receptor 1 or VEGF receptor 3 had no effect. Binding, uptake, and transport of HDL but not LDL were strongly reduced in the absence of VEGF-A from the cell culture medium and were restored by the addition of VEGF-A. The restoring effect of VEGF-A on endothelial binding, uptake, and transport of HDL was abrogated by pharmacological inhibition of phosphatidyl-inositol 3 kinase/protein kinase B or p38 mitogen-activated protein kinase, as well as silencing of scavenger receptor BI. Moreover, the presence of VEGF-A was found to be a prerequisite for the localization of scavenger receptor BI in the plasma membrane of endothelial cells.
Conclusions—
The identification of VEGF as a regulatory factor of transendothelial transport of HDL but not LDL supports the concept that the endothelium is a specific and, hence, druggable barrier for the entry of lipoproteins into the vascular wall.
Collapse
Affiliation(s)
- Srividya Velagapudi
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Mustafa Yalcinkaya
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Antonio Piemontese
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Roger Meier
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Simon Flyvbjerg Nørrelykke
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Damir Perisa
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Andrzej Rzepiela
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Michael Stebler
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Szymon Stoma
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Paolo Zanoni
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Lucia Rohrer
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| | - Arnold von Eckardstein
- From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.)
| |
Collapse
|
117
|
Rashidi B, Malekzadeh M, Goodarzi M, Masoudifar A, Mirzaei H. Green tea and its anti-angiogenesis effects. Biomed Pharmacother 2017; 89:949-956. [PMID: 28292023 DOI: 10.1016/j.biopha.2017.01.161] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/23/2017] [Accepted: 01/28/2017] [Indexed: 12/16/2022] Open
Abstract
The development of new blood vessels from a pre-existing vasculature (also known as angiogenesis) is required for many physiological processes including embryogenesis and post-natal growth. However, pathological angiogenesis is also a hallmark of cancer and many ischaemic and inflammatory diseases. The pro-angiogenic members of the VEGF family (vascular endothelial growth factor family), VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental growth factor (PlGF), and the related receptors, VEGFR-1, VEGFR-2 and VEGFR-3 have a central and decisive role in angiogenesis. Indeed, they are the targets for anti-angiogenic drugs currently approved. Green tea (from the Camellia sinensis plant) is one of the most popular beverages in the world. It is able to inhibit angiogenesis by different mechanisms such as microRNAs (miRNAs). Green tea and its polyphenolic substances (like catechins) show chemo-preventive and chemotherapeutic features in various types of cancer and experimental models for human cancers. The tea catechins, including (-)-epigallocatechin-3-gallate (EGCG), have multiple effects on the cellular proteome and signalome. Note that the polyphenolic compounds from green tea are able to change the miRNA expression profile associated with angiogenesis in various cancer types. This review focuses on the ability of the green tea constituents to suppress angiogenesis signaling and it summarizes the mechanisms by which EGCG might inhibit the VEGF family. We also highlighted the miRNAs affected by green tea which are involved in anti-angiogenesis.
Collapse
Affiliation(s)
- Bahman Rashidi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoush Malekzadeh
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Goodarzi
- Department of Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven - KULeuven, Kasteelpark Arenberg 30, B-3001 Heverlee, Belgium
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
118
|
Chon AH, Chavira ER, Wilson ML, Ingles SA, Llanes A, Chmait RH. The impact of laser surgery on angiogenic and anti-angiogenic factors in twin–twin transfusion syndrome: a prospective study. J Matern Fetal Neonatal Med 2017; 31:1085-1091. [DOI: 10.1080/14767058.2017.1309020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Andrew H. Chon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emiliano R. Chavira
- Department of Maternal-Fetal Medicine, San Gabriel Valley Perinatal Medical Group, Monterey Park, CA, USA
| | - Melissa L. Wilson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sue A. Ingles
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arlyn Llanes
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ramen H. Chmait
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
119
|
Zhou ZY, Huan LY, Zhao WR, Tang N, Jin Y, Tang JY. Spatholobi Caulis extracts promote angiogenesis in HUVECs in vitro and in zebrafish embryos in vivo via up-regulation of VEGFRs. JOURNAL OF ETHNOPHARMACOLOGY 2017; 200:74-83. [PMID: 27989880 DOI: 10.1016/j.jep.2016.10.075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spatholobi Caulis is a traditional blood-activating and stasis-dispelling herb medicine, which has been used to treat diseases related to blood stasis syndrome (BSS) by inhibiting platelet aggregation, stimulate hematopoiesis, etc. It has been demonstrated that pro-angiogenesis could improve BSS. However, the pro-angiogenic activity of Spatholobi Caulis was not well elucidated AIM OF STUDY: To determine the potential pro-angiogenic activity of Spatholobi Caulis and elucidate its underlying mechanism. The active fractions of Spatholobi Caulis were further screened. MATERIAL AND METHODS Gelatin precipitation and reversed-phase liquid chromatography (RPLC) were used to purify the methanol extracts of Spatholobi Caulis, respectively. The RPLC was also used to prepare fractions. Total flavonoids of purified methanol extracts of Spatholobi Caulis (PSC) were determined using ultraviolet spectrophotometry. The morphological observation of subintestinal vessel plexus (SIVs) and tyrosine kinase inhibitor II (VRI)-induced intersegmental blood vessels (ISVs) loss in transgenic zebrafish Tg(fli-1a: EGFP)y1 were selected to evaluate the pro-angiogenic activity of PSC in vivo. Cell proliferation by MTT assay and cell migration assay were used to evaluate the pro-angiogenesis effect of PSC in human umbilical vein endothelial cells (HUVECs) in vitro. Both zebrafish and HUVECs were used in screening active fractions of PSC. The mechanism of PSC promoting angiogenesis were studied by real-time PCR in zebrafish and western blotting in HUVECs. RESULTS Co-treatment PSC dramatically rescued VRI-induced ISVs loss in zebrafish embryos in a dose-dependent manner and 80% of the defective vascular recovered at the concentration of 30μg/ml compared with VRI-only group. PSC also concentration-dependently increased average sprouting number and diameter of SIVs in zebrafish embryo. Real-time PCR assay proved that PSC significantly restored the down regulation of VEGFRs including Flt-1, Kdr and Kdrl induced by VRI in zebrafish (P<0.001). Furthermore, PSC not only promoted proliferation and migration of normal HUVECs but also ameliorated VRI-induced HUVECs cytotoxicity. Western blotting assay showed that co-treatment of PSC increased the expression of VEGFRs and phosphorylation of MAPKs which decreased by VRI treatment. In addition, quality evaluation experiments showed that the content of total flavonoids of PSC reached 56.36% and the main pro-angiogenic fractions of PSC were F3, F4 and F5 both in zebrafish and HUVECs. CONCLUSIONS Our data demonstrated that PSC presented pro-angiogenic activity both in zebrafish and HUVECs, and principal pro-angiogenic active components were likely flavonoids. Thus, the current study provided evidence for the clinical usage of Spatholobi Caulis in promoting blood circulation and removing stasis in traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Li-Yun Huan
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Wai-Rong Zhao
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Nuo Tang
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jing-Yi Tang
- Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
120
|
Clegg LE, Mac Gabhann F. A computational analysis of in vivo VEGFR activation by multiple co-expressed ligands. PLoS Comput Biol 2017; 13:e1005445. [PMID: 28319199 PMCID: PMC5378411 DOI: 10.1371/journal.pcbi.1005445] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/03/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022] Open
Abstract
The splice isoforms of vascular endothelial growth A (VEGF) each have different affinities for the extracellular matrix (ECM) and the coreceptor NRP1, which leads to distinct vascular phenotypes in model systems expressing only a single VEGF isoform. ECM-immobilized VEGF can bind to and activate VEGF receptor 2 (VEGFR2) directly, with a different pattern of site-specific phosphorylation than diffusible VEGF. To date, the way in which ECM binding alters the distribution of isoforms of VEGF and of the related placental growth factor (PlGF) in the body and resulting angiogenic signaling is not well-understood. Here, we extend our previous validated cell-level computational model of VEGFR2 ligation, intracellular trafficking, and site-specific phosphorylation, which captured differences in signaling by soluble and immobilized VEGF, to a multi-scale whole-body framework. This computational systems pharmacology model captures the ability of the ECM to regulate isoform-specific growth factor distribution distinctly for VEGF and PlGF, and to buffer free VEGF and PlGF levels in tissue. We show that binding of immobilized growth factor to VEGF receptors, both on endothelial cells and soluble VEGFR1, is likely important to signaling in vivo. Additionally, our model predicts that VEGF isoform-specific properties lead to distinct profiles of VEGFR1 and VEGFR2 binding and VEGFR2 site-specific phosphorylation in vivo, mediated by Neuropilin-1. These predicted signaling changes mirror those observed in murine systems expressing single VEGF isoforms. Simulations predict that, contrary to the 'ligand-shifting hypothesis,' VEGF and PlGF do not compete for receptor binding at physiological concentrations, though PlGF is predicted to slightly increase VEGFR2 phosphorylation when over-expressed by 10-fold. These results are critical to design of appropriate therapeutic strategies to control VEGF availability and signaling in regenerative medicine applications.
Collapse
Affiliation(s)
- Lindsay E. Clegg
- Institute for Computational Medicine, Institute for NanoBioTechnology, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Feilim Mac Gabhann
- Institute for Computational Medicine, Institute for NanoBioTechnology, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
121
|
Siedlecki J, Wertheimer C, Wolf A, Liegl R, Priglinger C, Priglinger S, Eibl-Lindner K. Combined VEGF and PDGF inhibition for neovascular AMD: anti-angiogenic properties of axitinib on human endothelial cells and pericytes in vitro. Graefes Arch Clin Exp Ophthalmol 2017; 255:963-972. [DOI: 10.1007/s00417-017-3595-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/08/2017] [Accepted: 01/16/2017] [Indexed: 01/02/2023] Open
|
122
|
Newell LF, Holtan SG. Placental growth factor: What hematologists need to know. Blood Rev 2017; 31:57-62. [PMID: 27608972 PMCID: PMC5916812 DOI: 10.1016/j.blre.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022]
Abstract
Although first identified in placenta, the angiogenic factor known as placental growth factor (PlGF) can be widely expressed in ischemic or damaged tissues. Recent studies have indicated that PlGF is a relevant factor in the pathobiology of blood diseases including hemoglobinopathies and hematologic malignancies. Therapies for such blood diseases may one day be based upon these and ongoing investigations into the role of PlGF in sickle cell disease, acute and chronic leukemias, and complications related to hematopoietic cell transplantation. In this review, we summarize recent studies regarding the potential role of PlGF in blood disorders and suggest avenues for future research.
Collapse
Affiliation(s)
- Laura F Newell
- Oregon Health and Science University, Center for Hematologic Malignancies, Portland, OR, USA.
| | - Shernan G Holtan
- University of Minnesota, Blood and Marrow Transplant Program, Minneapolis, MN, USA.
| |
Collapse
|
123
|
Heterodimerisation between VEGFR-1 and VEGFR-2 and not the homodimers of VEGFR-1 inhibit VEGFR-2 activity. Vascul Pharmacol 2017; 88:11-20. [DOI: 10.1016/j.vph.2016.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/20/2016] [Indexed: 01/13/2023]
|
124
|
|
125
|
Dotterweich J, Schlegelmilch K, Keller A, Geyer B, Schneider D, Zeck S, Tower RJJ, Ebert R, Jakob F, Schütze N. Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells -Implications for myeloma bone disease. Bone 2016; 93:155-166. [PMID: 27519972 DOI: 10.1016/j.bone.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/24/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Physical interaction of skeletal precursors with multiple myeloma cells has been shown to suppress their osteogenic potential while favoring their tumor-promoting features. Although several transcriptome analyses of myeloma patient-derived mesenchymal stem cells have displayed differences compared to their healthy counterparts, these analyses insufficiently reflect the signatures mediated by tumor cell contact, vary due to different methodologies, and lack results in lineage-committed precursors. To determine tumor cell contact-mediated changes on skeletal precursors, we performed transcriptome analyses of mesenchymal stem cells and osteogenic precursor cells cultured in contact with the myeloma cell line INA-6. Comparative analyses confirmed dysregulation of genes which code for known disease-relevant factors and additionally revealed upregulation of genes that are associated with plasma cell homing, adhesion, osteoclastogenesis, and angiogenesis. Osteoclast-derived coupling factors, a dysregulated adipogenic potential, and an imbalance in favor of anti-anabolic factors may play a role in the hampered osteoblast differentiation potential of mesenchymal stem cells. Angiopoietin-Like 4 (ANGPTL4) was selected from a list of differentially expressed genes as a myeloma cell contact-dependent target in skeletal precursor cells which warranted further functional analyses. Adhesion assays with full-length ANGPTL4-coated plates revealed a potential role of this protein in INA-6 cell attachment. This study expands knowledge of the myeloma cell contact-induced signature in the stromal compartment of myelomatous bones and thus offers potential targets that may allow detection and treatment of myeloma bone disease at an early stage.
Collapse
Affiliation(s)
- Julia Dotterweich
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Katrin Schlegelmilch
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Alexander Keller
- DNA-Analytics Core Facility, Biocenter and Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Beate Geyer
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Doris Schneider
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Sabine Zeck
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Robert J J Tower
- Section Biomedical Imaging, MOIN CC, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Regina Ebert
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany.
| | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| |
Collapse
|
126
|
Palm MM, Dallinga MG, van Dijk E, Klaassen I, Schlingemann RO, Merks RMH. Computational Screening of Tip and Stalk Cell Behavior Proposes a Role for Apelin Signaling in Sprout Progression. PLoS One 2016; 11:e0159478. [PMID: 27828952 PMCID: PMC5102492 DOI: 10.1371/journal.pone.0159478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/24/2016] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis involves the formation of new blood vessels by sprouting or splitting of existing blood vessels. During sprouting, a highly motile type of endothelial cell, called the tip cell, migrates from the blood vessels followed by stalk cells, an endothelial cell type that forms the body of the sprout. To get more insight into how tip cells contribute to angiogenesis, we extended an existing computational model of vascular network formation based on the cellular Potts model with tip and stalk differentiation, without making a priori assumptions about the differences between tip cells and stalk cells. To predict potential differences, we looked for parameter values that make tip cells (a) move to the sprout tip, and (b) change the morphology of the angiogenic networks. The screening predicted that if tip cells respond less effectively to an endothelial chemoattractant than stalk cells, they move to the tips of the sprouts, which impacts the morphology of the networks. A comparison of this model prediction with genes expressed differentially in tip and stalk cells revealed that the endothelial chemoattractant Apelin and its receptor APJ may match the model prediction. To test the model prediction we inhibited Apelin signaling in our model and in an in vitro model of angiogenic sprouting, and found that in both cases inhibition of Apelin or of its receptor APJ reduces sprouting. Based on the prediction of the computational model, we propose that the differential expression of Apelin and APJ yields a "self-generated" gradient mechanisms that accelerates the extension of the sprout.
Collapse
Affiliation(s)
- Margriet M. Palm
- Life Sciences Group, Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
| | | | - Erik van Dijk
- Life Sciences Group, Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Roeland M. H. Merks
- Life Sciences Group, Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| |
Collapse
|
127
|
Targeting the angio-proteostasis network: Combining the forces against cancer. Pharmacol Ther 2016; 167:1-12. [DOI: 10.1016/j.pharmthera.2016.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/14/2016] [Indexed: 01/24/2023]
|
128
|
Placental Growth Factor Is Secreted by the Human Endometrium and Has Potential Important Functions during Embryo Development and Implantation. PLoS One 2016; 11:e0163096. [PMID: 27711226 PMCID: PMC5053405 DOI: 10.1371/journal.pone.0163096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 09/02/2016] [Indexed: 11/19/2022] Open
Abstract
Embryo implantation requires synchronized dialogue between the receptive endometrium and activated blastocyst via locally produced soluble mediators. During the mid-secretory (MS) phase of the menstrual cycle, increased glandular secretion into the uterine lumen provides important mediators that modulate the endometrium and support the conceptus during implantation. Previously we demonstrated the importance of vascular endothelial growth factor (VEGF) in the human uterus, particularly with respect to embryo implantation. In the current study, proteomic analysis of human uterine lavage fluid identified the presence of placental growth factor (PlGF) a homolog of VEGF, that binds the VEGF receptor 1 (VEGFR1). Analysis of immunostaining for PlGF in human endometrial tissue across the menstrual cycle (from both fertile and infertile women) revealed PlGF was predominantly localised to glandular and luminal epithelial cells, with staining in the decidualising stromal cells surrounding the maternal spiral arteries in the secretory phase of the menstrual cycle. Immunoreactive PlGF was also detected in subpopulations of endometrial leukocytes. Functional studies demonstrated that culturing mouse embryos with recombinant human (rh)PlGF enhanced blastocyst cell number and outgrowth. Furthermore, treatment of human endometrial epithelial cells (EEC) with rhPlGF enhanced EEC adhesion. Taken together, these data demonstrate that PlGF is abundant in the human endometrium, and secreted into the uterine lumen where it mediates functional changes in cellular adhesion with important roles in implantation.
Collapse
|
129
|
Lecarpentier E, Atallah A, Guibourdenche J, Hebert-Schuster M, Vieillefosse S, Chissey A, Haddad B, Pidoux G, Evain-Brion D, Barakat A, Fournier T, Tsatsaris V. Fluid Shear Stress Promotes Placental Growth Factor Upregulation in Human Syncytiotrophoblast Through the cAMP-PKA Signaling Pathway. Hypertension 2016; 68:1438-1446. [PMID: 27698065 DOI: 10.1161/hypertensionaha.116.07890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/03/2016] [Accepted: 09/11/2016] [Indexed: 12/21/2022]
Abstract
The effects of fluid shear stress (FSS) on the human syncytiotrophoblast and its biological functions have never been studied. During pregnancy, the syncytiotrophoblast is the main source of placental growth factor (PlGF), a proangiogenic factor involved in the placental angiogenesis and the vascular adaptation to pregnancy. The role of FSS in regulating PlGF expression in syncytiotrophoblasts is unknown. We investigated the impact of FSS on the production and secretion of the PlGF by the human syncytiotrophoblasts in primary cell culture. Laminar and continuous FSS (1 dyn cm-2) was applied to human syncytiotrophoblasts cultured in a parallel-plate flow chambers. Secreted levels of PlGF, sFlt-1 (soluble fms-like tyrosin kinase-1), and prostaglandin E2 were tested by immunologic assay. PlGF levels of mRNA and intracellular protein were examined by RT-PCR and Western blot, respectively. Intracellular cAMP levels were examined by time-resolved fluorescence resonance energy transfer cAMP accumulation assay. Production of cAMP and PlGF secretion was significantly increased in FSS conditions compared with static conditions. Western blot analysis of cell extracts exposed to FSS showed an increased phosphorylation of protein kinase A substrates and cAMP response element-binding protein on serine 133. FSS-induced phosphorylation of cAMP response element-binding protein and upregulation of PlGF were prevented by inhibition of protein kinase A with H89 (3 μmol/L). FSS also triggers intracellular calcium flux, which increases the synthesis and release of prostaglandin E2. The enhanced intracellular cAMP in FSS conditions was blocked by COX1/COX2 (cyclooxygenase) inhibitors, suggesting that the increase in prostaglandin E2 production could activate the cAMP/protein kinase A pathway in an autocrine/paracrine fashion. FSS activates the cAMP/protein kinase A pathway leading to upregulation of PlGF in human syncytiotrophoblast.
Collapse
Affiliation(s)
- Edouard Lecarpentier
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.).
| | - Anthony Atallah
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Jean Guibourdenche
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Marylise Hebert-Schuster
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Sarah Vieillefosse
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Audrey Chissey
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Bassam Haddad
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Guillaume Pidoux
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Daniele Evain-Brion
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Abdul Barakat
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Thierry Fournier
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Vassilis Tsatsaris
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| |
Collapse
|
130
|
Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 2016; 91:30-8. [PMID: 27353702 PMCID: PMC4996701 DOI: 10.1016/j.bone.2016.06.013] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 02/08/2023]
Abstract
Vascular endothelial growth factor-A (VEGF) is one of the most important growth factors for regulation of vascular development and angiogenesis. Since bone is a highly vascularized organ and angiogenesis plays an important role in osteogenesis, VEGF also influences skeletal development and postnatal bone repair. Compromised bone repair and regeneration in many patients can be attributed to impaired blood supply; thus, modulation of VEGF levels in bones represents a potential strategy for treating compromised bone repair and improving bone regeneration. This review (i) summarizes the roles of VEGF at different stages of bone repair, including the phases of inflammation, endochondral ossification, intramembranous ossification during callus formation and bone remodeling; (ii) discusses different mechanisms underlying the effects of VEGF on osteoblast function, including paracrine, autocrine and intracrine signaling during bone repair; (iii) summarizes the role of VEGF in the bone regenerative procedure, distraction osteogenesis; and (iv) reviews evidence for the effects of VEGF in the context of repair and regeneration techniques involving the use of scaffolds, skeletal stem cells and growth factors.
Collapse
Affiliation(s)
- Kai Hu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
131
|
Expression and Function of Placenta Growth Factor: Implications for Abnormal Placentation. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760300048-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
132
|
Mowa CN, Jesmin S, Sakuma I, Usip S, Togashi H, Yoshioka M, Hattori Y, Papka R. Characterization of Vascular Endothelial Growth Factor (VEGF) in the Uterine Cervix over Pregnancy: Effects of Denervation and Implications for Cervical Ripening. J Histochem Cytochem 2016; 52:1665-74. [PMID: 15557221 DOI: 10.1369/jhc.4a6455.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bilateral neurectomy of the pelvic nerve (BLPN) that carries uterine cervix-related sensory nerves induces dystocia, and administration of its vasoactive neuropeptides induces changes in the cervical microvasculature, resembling those that occur in the ripening cervix. This study was designed to test the hypothesis that (a) the cervix of pregnant rats expresses vascular endothelial growth factor (VEGF) and components of the angiogenic signaling pathway [VEGF receptors (Flt-1, KDR), activity of protein kinase B, Akt (phosphorylated Akt), and endothelial nitric oxide synthase (eNOS)] and von Willebrand Factor (vWF) and that these molecules undergo changes with pregnancy, and (b) bilateral pelvic neurectomy (BLPN) alters levels of VEGF concentration in the cervix. Using RT-PCR and sequencing, two VEGF isoforms, 120 and 164, were identified in the rat cervix. VEGF, VEGF receptor-1 (Flt-1), eNOS, and vWF immunoreactivities (ir) were localized in the microvasculature of cervical stroma. Their protein levels increased during pregnancy but decreased to control levels by 2 days postpartum. VEGF receptor-2 (KDR)-ir was confined to the epithelium of the endocervix. BLPN downregulated levels of VEGF by a third. Therefore, the components of the angiogenic signaling pathway are expressed in the cervix and change over pregnancy. Furthermore, angiogenic and sensory neuronal factors may be important in regulating the dynamic microvasculature in the ripening cervix and may subsequently play a role in cervical ripening and the birth process.
Collapse
Affiliation(s)
- C N Mowa
- Dept. of Neurobiology, Northeastern Ohio Universities College of Medicine, 4209 State Rt. 44, Rootstown, OH 44272, USA.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Andersen LB, Jørgensen JS, Herse F, Andersen MS, Christesen HT, Dechend R. The association between angiogenic markers and fetal sex: Implications for preeclampsia research. J Reprod Immunol 2016; 117:24-9. [PMID: 27359072 DOI: 10.1016/j.jri.2016.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/04/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Current research suggests sexual dimorphism between the male and female fetoplacental units, but with unknown relevance for preeclampsia. We investigated the association between fetal sex and concentrations of the angiogenic markers soluble Fms-like kinase 1 (sFlt-1), placental growth factor (PlGF), and sFlt-1/PlGF ratio in first and second-third trimester in women with/without preeclampsia, and the impact of fetal sex on the prognostic value of angiogenic markers for preeclampsia. STUDY DESIGN Observational study in a prospective, population-based cohort of 2110 singleton pregnancies with 150 preeclampsia cases. RESULTS Higher sFlt-1 concentrations were observed for women carrying female fetuses in first trimester (all, 1107.65 vs. 992.27pg/ml; preeclampsia cases, 1118.79 vs. 934.49pg/ml, p<0.05) and in second-third trimester (all, 1130.03 vs. 1043.15pg/ml; preeclampsia, 1480.30 vs. 1152.86pg/ml, p<0.05), with similar findings for the sFlt-1/PlGF ratio concentrations in first (29.67 vs. 27.39 p<0.05) and second-third trimester (3.56 vs. 3.22, p<0.05). In first trimester, log transformed concentrations of PlGF, sFlt-1 and sFlt-1/PlGF (all participants) and sFlt-1 (preeclampsia cases) associated with fetal sex in adjusted analyses (p<0.05). In second-third trimester, only log(sFlt-1) associated with fetal sex (all, p=0.028; preeclampsia, p=0.067) In receiver operating curve analysis, prediction of early-onset preeclampsia by sFlt-1/PlGF tended to be superior in pregnancies with female vs. male fetuses (p=0.06). CONCLUSION Sexual dimorphism was observed for concentrations of angiogenic markers. Female fetal sex was associated to higher sFlt-1 and sFlt-1/PlGF ratio concentrations in both healthy pregnancies and women developing preeclampsia. Fetal sex should be considered in research and clinical use of angiogenic markers.
Collapse
Affiliation(s)
- L B Andersen
- HCA Research, Hans Christian Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark; Institute for Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - J S Jørgensen
- Institute for Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; Department of Obstetrics and Gynecology, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark; Odense Patient data Explorative Network (OPEN), Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark; Odense Child Cohort, Hans Christian Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - F Herse
- Experimental and Clinical Research Center, Max-Delbrueck Center and Charité Berlin and HELIOS Clinic Berlin-Buch, Lindenberger Weg 80, 13125 Berlin, Germany
| | - M S Andersen
- Department of Endocrinology, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - H T Christesen
- HCA Research, Hans Christian Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark; Institute for Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; Odense Child Cohort, Hans Christian Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - R Dechend
- Odense Child Cohort, Hans Christian Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark; Experimental and Clinical Research Center, Max-Delbrueck Center and Charité Berlin and HELIOS Clinic Berlin-Buch, Lindenberger Weg 80, 13125 Berlin, Germany
| |
Collapse
|
134
|
Wang L, Lee AYW, Wigg JP, Peshavariya H, Liu P, Zhang H. miR-126 Regulation of Angiogenesis in Age-Related Macular Degeneration in CNV Mouse Model. Int J Mol Sci 2016; 17:ijms17060895. [PMID: 27338342 PMCID: PMC4926429 DOI: 10.3390/ijms17060895] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
miR-126 has recently been implicated in modulating angiogenic factors in vascular development. Understandings its biological significance might enable development of therapeutic interventions for diseases like age-related macular degeneration (AMD). We aimed to determine the role of miR-126 in AMD using a laser-induced choroidal neovascularization (CNV) mouse model. CNV was induced by laser photocoagulation in C57BL/6 mice. The CNV mice were transfected with scrambled miR or miR-126 mimic. The expression of miR-126, vascular endothelial growth factor-A (VEGF-A), Kinase insert domain receptor (KDR) and Sprouty-related EVH1 domain-containing protein 1 (SPRED-1) in ocular tissues were analyzed by qPCR and Western blot. The overexpression effects of miR-126 were also proven on human microvascular endothelial cells (HMECs). miR-126 showed a significant decrease in CNV mice (p < 0.05). Both mRNA and protein levels of VEGF-A, KDR and SPRED-1 were upregulated with CNV; these changes were ameliorated by restoration of miR-126 (p < 0.05). CNV was reduced after miR-126 transfection. Transfection of miR-126 reduced the HMECs 2D-capillary-like tube formation (p < 0.01) and migration (p < 0.01). miR-126 has been shown to be a negative modulator of angiogenesis in the eye. All together these results high lights the therapeutic potential of miR-126 suggests that it may contribute as a putative therapeutic target for AMD in humans.
Collapse
Affiliation(s)
- Lei Wang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Amy Yi Wei Lee
- Department of Pharmacology and Therapeutics, Drug Delivery Unit, Centre for Eye Research Australia, University of Melbourne, East Melbourne VIC 3000, Australia.
| | - Jonathan P Wigg
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne VIC 3000, Australia.
| | - Hitesh Peshavariya
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne VIC 3000, Australia.
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Hong Zhang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne VIC 3000, Australia.
| |
Collapse
|
135
|
Hollborn M, Reichmuth K, Prager P, Wiedemann P, Bringmann A, Kohen L. Osmotic induction of placental growth factor in retinal pigment epithelial cells in vitro: contribution of NFAT5 activity. Mol Biol Rep 2016; 43:803-14. [PMID: 27230578 DOI: 10.1007/s11033-016-4016-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/17/2016] [Indexed: 01/03/2023]
Abstract
One risk factor of neovascular age-related macular degeneration is systemic hypertension; hypertension is mainly caused by extracellular hyperosmolarity after consumption of dietary salt. In retinal pigment epithelial (RPE) cells, high extracellular osmolarity induces vascular endothelial growth factor (VEGF)-A (Hollborn et al. in Mol Vis 21:360-377, 2015). The aim of the present study was to determine whether extracellular hyperosmolarity and chemical hypoxia trigger the expression of further VEGF family members including placental growth factor (PlGF) in human RPE cells. Hyperosmotic media were made up by addition of 100 mM NaCl or sucrose. Chemical hypoxia was induced by CoCl2. Gene expression was quantified by real-time RT-PCR, and secretion of PlGF-2 was investigated with ELISA. Nuclear factor of activated T cell 5 (NFAT5) was depleted using siRNA. Extracellular hyperosmolarity triggered expression of VEGF-A, VEGF-D, and PlGF genes, and secretion of PlGF-2. Hypoosmolarity decreased PlGF gene expression. Hypoxia induced expression of VEGF-A, VEGF-B, VEGF-D, and PlGF genes. Extracellular hyperosmolarity and hypoxia produced additive PlGF gene expression. Both hyperosmolarity and hypoxia induced expression of KDR and FLT-4 receptor genes, while hyperosmolarity caused neuropilin-2 and hypoxia neuropilin-1 gene expression. The hyperosmotic, but not the hypoxic, PlGF gene expression was in part mediated by NFAT5. The expression of PlGF in RPE cells depends on the extracellular osmolarity. The data suggest that high consumption of dietary salt may exacerbate the angiogenic response of RPE cells in the hypoxic retina via transcriptional activation of various VEGF family member genes.
Collapse
Affiliation(s)
- Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, 04103, Leipzig, Germany.
| | - Konrad Reichmuth
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, 04103, Leipzig, Germany
| | - Philipp Prager
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, 04103, Leipzig, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, 04103, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, 04103, Leipzig, Germany
| | - Leon Kohen
- Department of Ophthalmology and Eye Hospital, Faculty of Medicine, University of Leipzig, Liebigstrasse 10-14, 04103, Leipzig, Germany.,Helios Klinikum Aue, Aue, Germany
| |
Collapse
|
136
|
Van der Veken B, De Meyer GR, Martinet W. Intraplaque neovascularization as a novel therapeutic target in advanced atherosclerosis. Expert Opin Ther Targets 2016; 20:1247-57. [PMID: 27148888 DOI: 10.1080/14728222.2016.1186650] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Atherosclerosis is a lipid-driven inflammatory process with a tremendously high mortality due to acute cardiac events. There is an emerging need for new therapies to stabilize atherosclerotic lesions. Growing evidence suggests that intraplaque (IP) neovascularisation and IP hemorrhages are important contributors to plaque instability. AREAS COVERED Neovascularization is a complex process that involves different growth factors and inflammatory mediators of which their individual significance in atherosclerosis remains poorly understood. This review discusses different aspects of IP neovascularization in atherosclerosis including the potential treatment opportunities to stabilize advanced plaques. Furthermore, we highlight the development of accurate and feasible in vivo imaging modalities for IP neovascularization to prevent acute events. EXPERT OPINION Although lack of a valuable animal model of IP neovascularization impeded the investigation of a causal and straightforward link between neovascularization and atherosclerosis, recent evidence shows that vein grafts in ApoE*3 Leiden mice as well as plaques in ApoE(-/-) Fbn1(C1039G+/-) mice are useful models for intraplaque neovessel research. Even though interference with vascular endothelial growth factor (VEGF) signalling has been widely investigated, new therapeutic opportunities have emerged. Cell metabolism, in particular glycolysis and fatty acid oxidation, appears to perform a crucial role in the development of IP neovessels and thereby serves as a promising target.
Collapse
Affiliation(s)
- Bieke Van der Veken
- a Laboratory of Physiopharmacology , University of Antwerp , Antwerp , Belgium
| | - Guido Ry De Meyer
- a Laboratory of Physiopharmacology , University of Antwerp , Antwerp , Belgium
| | - Wim Martinet
- a Laboratory of Physiopharmacology , University of Antwerp , Antwerp , Belgium
| |
Collapse
|
137
|
Abstract
Vascular endothelial growth factor (VEGF) plays a fundamental role in angiogenesis and endothelial cell biology, and has been the subject of intense study as a result. VEGF acts via a diverse and complex range of signaling pathways, with new targets constantly being discovered. This review attempts to summarize the current state of knowledge regarding VEGF cell signaling in endothelial and cardiovascular biology, with a particular emphasis on its role in angiogenesis.
Collapse
Affiliation(s)
- Ian Evans
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, Rayne Building, 5 University Street, London, WC1E 6JF, UK,
| |
Collapse
|
138
|
Chen HM, Tsai CH, Hung WC. Foretinib inhibits angiogenesis, lymphangiogenesis and tumor growth of pancreatic cancer in vivo by decreasing VEGFR-2/3 and TIE-2 signaling. Oncotarget 2016; 6:14940-52. [PMID: 25909285 PMCID: PMC4558127 DOI: 10.18632/oncotarget.3613] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/14/2015] [Indexed: 12/11/2022] Open
Abstract
Foretinib, a multiple kinase inhibitor undergoing clinical trials, could suppress the activity of hepatocyte growth factor (HGF) receptor c-MET and vascular endothelial growth factor receptor-2 (VEGFR-2). In addition, Foretinib may inhibit two critical lymphangiogenic signaling receptors VEGFR-3 and TIE-2. However, the effect of Foretinib on lymphatic endothelial cells (LECs) in vitro and lymphangiogenesis in vivo is still unknown. We found Foretinib decreased basal- and HGF-induced c-MET activity at low concentrations. However, Foretinib only reduced the proliferation of pancreatic cancer cells at high concentration reflecting the intrinsic chemoresistance of pancreatic cancer cells. Foretinib inhibited VEGF-A, VEGF-C and Angiopoetin-2 (ANG-2)-stimulated tube formation and sprouting of LECs by reducing VEGFR-2, VEGFR-3 and TIE-2 activation and increased apoptosis of LECs. In xenograft animal study, Foretinib suppressed tumor growth by inhibiting proliferation, angiogenesis and lymphangiogenesis. Additionally, Foretinib inhibited angiogenesis and lymphangiogenesis more significantly and exhibited low detrimental effect in orthotopic animal study. Collectively, we suggested that Foretinib simultaneously inhibits cancer cells and LECs to reduce pancreatic tumor growth in vivo and demonstrated for the first time that Foretinib suppresses angiogenesis and lymphangiogenesis by blocking VEGFR-2/3 and TIE-2 signaling.
Collapse
Affiliation(s)
- Hsiu-Mei Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan, Republic of China
| | - Chia-Hua Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan, Republic of China
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan, Republic of China
| |
Collapse
|
139
|
Strong Correlation Between mRNA Expression Levels of HIF-2α, VEGFR1, VEGFR2 and MMP2 in Laryngeal Carcinoma. Pathol Oncol Res 2016; 22:741-6. [PMID: 27075652 DOI: 10.1007/s12253-016-0059-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/06/2016] [Indexed: 01/06/2023]
Abstract
The hypoxia that arises due to the rapid proliferation of tumor cells is a fundamental driving force for the canonical pathway of neovascularization. In the current study we report a very strong correlation between mRNA expression levels of HIF-2α (but not HIF-1α), VEGFR-1, VEGFR-2 and MMP2 in ex vivo samples from laryngeal carcinoma. Sixty-three samples from patients with histopathologically verified carcinoma of the larynx were examined in this study. Total RNA was isolated from both normal and tumor fresh frozen tissues of each patient and real-time quantitative PCR reactions were performed. The mRNA expression levels of HIF-1α, HIF-2α, VEGFR1, VEGFR2 and MMP2 were acquired. We found strong positive correlations between mRNA expression levels of HIF-2α and VEGFR-1, r s (98) = .671, p < .0005; HIF-2α and VEGFR-2, r s (98) = .742, p < .0005; HIF-2α and MMP2, r s (98) = .566, p < .0005; VEGFR-1 and VEGFR-2, r s (98) = .791, p < .0005; VEGFR-1 and MMP2, r s (98) = .709, p < .0005; VEGFR-2 and MMP2, r s (98) = .793, p < .0005. Our results provide evidence for the regulatory connection between HIF-2α and VEGFR-1, VEGFR-2 and MMP2 in the light of ETS1/ HIF-2α regulatory axis on a non-in-vitro level in carcinoma tissue, uncover some of the differences between the homologues HIF-1α and HIF-2α and round up and support the results from different experimental models in this field.
Collapse
|
140
|
Ke H, Masoumi KC, Ahlqvist K, Seckl MJ, Rydell-Törmänen K, Massoumi R. Nemo-like kinase regulates the expression of vascular endothelial growth factor (VEGF) in alveolar epithelial cells. Sci Rep 2016; 6:23987. [PMID: 27035511 PMCID: PMC4817507 DOI: 10.1038/srep23987] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/17/2016] [Indexed: 01/08/2023] Open
Abstract
The canonical Wnt signaling can be silenced either through β-catenin-mediated ubiquitination and degradation or through phosphorylation of Tcf and Lef by nemo-like kinase (NLK). In the present study, we generated NLK deficient animals and found that these mice become cyanotic shortly before death because of lung maturation defects. NLK-/- lungs exhibited smaller and compressed alveoli and the mesenchyme remained thick and hyperplastic. This phenotype was caused by epithelial activation of vascular endothelial growth factor (VEGF) via recruitment of Lef1 to the promoter of VEGF. Elevated expression of VEGF and activation of the VEGF receptor through phosphorylation promoted an increase in the proliferation rate of epithelial and endothelial cells. In summary, our study identifies NLK as a novel signaling molecule for proper lung development through the interconnection between epithelial and endothelial cells during lung morphogenesis.
Collapse
Affiliation(s)
- Hengning Ke
- Molecular Tumor Pathology, Department of Laboratory Medicine, Lund University, Sweden
| | | | - Kristofer Ahlqvist
- Molecular Tumor Pathology, Department of Laboratory Medicine, Lund University, Sweden
| | - Michael J Seckl
- Department of Medical Oncology, Imperial College Healthcare NHS Trust and Imperial College London, London, UK
| | | | - Ramin Massoumi
- Molecular Tumor Pathology, Department of Laboratory Medicine, Lund University, Sweden
| |
Collapse
|
141
|
Akrami H, Mahmoodi F, Havasi S, Sharifi A. PlGF knockdown inhibited tumor survival and migration in gastric cancer cell via PI3K/Akt and p38MAPK pathways. Cell Biochem Funct 2016; 34:173-80. [PMID: 26968576 DOI: 10.1002/cbf.3176] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/24/2016] [Accepted: 02/16/2016] [Indexed: 11/10/2022]
Abstract
The molecular signalling of placental growth factor (PlGF), a member of the vascular endothelial growth factor family, was not uncovered in human adenocarcinoma gastric cell line (AGS). The purpose of this study was to examine the inhibitory effects of PlGF knockdown on cell proliferation, apoptosis and migration through p38 mitogen-activated protein kinase (p38MAPK) and PI3K pathways in human adenocarcinoma gastric cell line (AGS). To study PlGF knockdown effect, AGS cells were treated with 40 pmol of small interfering RNA (siRNA) related to PlGF gene and also a scrambled siRNA as control. Trypan Blue and Anexin V staining of AGS cells treated with PlGF-specific siRNA showed induction of apoptosis. Wound healing assay and zymography indicated that cellular migration and matrix metalloproteinases activities were reduced in response to PlGF knockdown. Phosphorylation of Akt and p38MAPK was reduced in AGS cells treated with PlGF-specific siRNA. PlGF knockdown decreased transcripts of PI3K, Akt, p38MAPK, PCNA, Caspase-3, OCT3/OCT4 and CD44, but elevated p53 and SOX2 transcripts. Our results indicated that PlGF knockdown decreased migration and induced apoptosis through PI3K/Akt1 and p38MAPK signal transduction in AGS cells.
Collapse
Affiliation(s)
- Hassan Akrami
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Fatemeh Mahmoodi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Somaye Havasi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Amene Sharifi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
142
|
Mizuuchi M, Cindrova-Davies T, Olovsson M, Charnock-Jones DS, Burton GJ, Yung HW. Placental endoplasmic reticulum stress negatively regulates transcription of placental growth factor via ATF4 and ATF6β: implications for the pathophysiology of human pregnancy complications. J Pathol 2016; 238:550-61. [PMID: 26648175 PMCID: PMC4784173 DOI: 10.1002/path.4678] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/21/2015] [Accepted: 11/27/2015] [Indexed: 01/05/2023]
Abstract
Low maternal circulating concentrations of placental growth factor (PlGF) are one of the hallmarks of human pregnancy complications, including fetal growth restriction (FGR) and early-onset pre-eclampsia (PE). Currently, PlGF is used clinically with other biomarkers to screen for high-risk cases, although the mechanisms underlying its regulation are largely unknown. Placental endoplasmic reticulum (ER) stress has recently been found to be elevated in cases of FGR, and to an even greater extent in early-onset PE complicated with FGR. ER stress activates the unfolded protein response (UPR); attenuation of protein translation and a reduction in cell growth and proliferation play crucial roles in the pathophysiology of these complications of pregnancy. In this study, we further identified that ER stress regulates release of PlGF. We first observed that down-regulation of PlGF protein was associated with nuclear localization of ATF4, ATF6α and ATF6β in the syncytiotrophoblast of placentae from PE patients. Transcript analysis showed a decrease of PlGF mRNA, and an increase from genes encoding those UPR transcription factors in placentae from cases of early-onset PE, but not of late-onset (>34 weeks) PE, compared to term controls. Further investigations indicated a strong correlation between ATF4 and PlGF mRNA levels only (r = - 0.73, p < 0.05). These results could be recapitulated in trophoblast-like cells exposed to chemical inducers of ER stress or hypoxia-reoxygenation. The stability of PlGF transcripts was unchanged. The use of small interfering RNA specific for transcription factors in the UPR pathways revealed that ATF4 and ATF6β, but not ATF6α, modulate PlGF transcription. To conclude, ATF4 and ATF6β act synergistically in the negative regulation of PlGF mRNA expression, resulting in reduced PlGF secretion by the trophoblast in response to stress. Therefore, these results further support the targeting of placental ER stress as a potential new therapeutic intervention for these pregnancy complications.
Collapse
Affiliation(s)
- Masahito Mizuuchi
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, UK
| | - Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, UK
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Sweden
| | - D Stephen Charnock-Jones
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, UK
- National Institute for Health Research, Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, UK
| | - Hong Wa Yung
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, UK
| |
Collapse
|
143
|
Ohshima M, Yamaguchi Y, Ambe K, Horie M, Saito A, Nagase T, Nakashima K, Ohki H, Kawai T, Abiko Y, Micke P, Kappert K. Fibroblast VEGF-receptor 1 expression as molecular target in periodontitis. J Clin Periodontol 2016; 43:128-37. [PMID: 26932322 DOI: 10.1111/jcpe.12495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2015] [Indexed: 01/08/2023]
Abstract
AIM Degradation of extracellular matrices is an integral part in periodontitis. For antagonizing this pathophysiological mechanism, we aimed at identifying gene expression profiles in disease progression contributing periodontitis-associated fibroblasts (PAFs) versus normal gingival fibroblasts to determine their molecular repertoire, and exploit it for therapeutic intervention. MATERIALS AND METHODS Applying an exploratory analysis using a small number of microarrays in combination with a three dimensional (3D) in vitro culture model that incorporates some aspects of periodontitis, PAFs were initially characterized by gene-expression analyses, followed by targeted gene down-regulation and pharmacological intervention in vitro. Further, immunohistochemistry was applied for phosphorylation analyses in tissue specimens. RESULTS PAFs were characterized by 42 genes being commonly up-regulated >1.5-fold, and by five genes that were concordantly down-regulated (<0.7-fold). Expression of vascular endothelial growth factor (VEGF)-receptor 1 (Flt-1) was highly enhanced, and was thus further explored in in vitro culture models of periodontal fibroblasts without accounting for the microbiome. Phosphorylation of the VEGF-receptor 1 was enhanced in PAFs. Receptor inhibition by a specific VEGF-receptor inhibitor or intrinsic down-regulation by RNAi of the VEGF-receptor kinase in 3D gel cultures resulted in significant reduction in collagen degradation associated with increased tissue inhibitor of metalloproteinase expression, suggesting that Flt-1 may contribute to periodontitis. CONCLUSION Based on the finding that VEGF-receptor kinase inhibition impaired collagen degradation pathways, Flt-1 may represent a candidate for therapeutic approaches in periodontitis.
Collapse
Affiliation(s)
- Mitsuhiro Ohshima
- Department of Biochemistry, Ohu University School of Pharmaceutical Sciences, Koriyama, Fukushima, Japan
| | - Yoko Yamaguchi
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Kimiharu Ambe
- Department of Morphological Biology, Ohu University School of Dentistry, Koriyama, Fukushima, Japan
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Keisuke Nakashima
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, Fukuoka, Japan
| | - Hidero Ohki
- First Department of Oral Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Toshihisa Kawai
- Department of Immunology, The Forsyth Institute, Cambridge, MA, USA
| | - Yoshimitsu Abiko
- Department of Molecular Biology and Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Hospital, Uppsala, Sweden
| | - Kai Kappert
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
144
|
Latzer P, Schlegel U, Theiss C. Morphological Changes of Cortical and Hippocampal Neurons after Treatment with VEGF and Bevacizumab. CNS Neurosci Ther 2016; 22:440-50. [PMID: 26861512 PMCID: PMC5067574 DOI: 10.1111/cns.12516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/21/2015] [Accepted: 01/02/2016] [Indexed: 01/13/2023] Open
Abstract
Aims Vascular endothelial growth factor (VEGF) is a hallmark of glioblastoma multiforme (GBM) and plays an important role in brain development and function. Recently, it has been reported that treatment of GBM patients with bevacizumab, an anti‐VEGF antibody, may cause a decline in neurocognitive function and compromise quality of life. Therefore, we investigated the effects of VEGF and bevacizumab on the morphology and on survival of neurons and glial cells. Methods Dissociated cortical and hippocampal cell cultures of juvenile rats were treated with VEGF, bevacizumab, and VEGF + bevacizumab. Neuronal and glial cell viability was analyzed, and the morphology of neurons was objectified by morphometric analysis. Results In cortical cultures, bevacizumab significantly decreased the number of neurons after 20 days and the number of glial cells subsequent 30 days. Additionally, an increase in the dendritic length of cortical neurons was obvious after 10 days of incubation with bevacizumab, but returned to control level after 30 days. In hippocampal cultures, cell viability was not affected by bevacizumab; however, dendritic length increased at day 10, but decreased after long‐term treatment. Conclusion Therefore, bevacizumab obviously has a cytotoxic effect in cortical cultures and decreases the dendritic length in hippocampal neurons after long‐term treatment.
Collapse
Affiliation(s)
- Pauline Latzer
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Uwe Schlegel
- Department of Neurology, Knappschaftskrankenhaus, Ruhr University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
145
|
A novel association of neuropilin-1 and MUC1 in pancreatic ductal adenocarcinoma: role in induction of VEGF signaling and angiogenesis. Oncogene 2016; 35:5608-5618. [PMID: 26804176 PMCID: PMC4960005 DOI: 10.1038/onc.2015.516] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/03/2015] [Accepted: 11/27/2015] [Indexed: 12/28/2022]
Abstract
We report that MUC1, a transmembrane glycoprotein that is overexpressed in >80% of pancreatic ductal adenocarcinoma (PDA) induced a pro-angiogenic tumor microenvironment by increasing the levels of neuropilin-1 (NRP1, a co-receptor of VEGF) and its ligand, VEGF. Expression of tumor-associated MUC1 (tMUC1) positively correlated with NRP1 levels in human and mouse PDA. Further, tMUC1hi PDA cells secreted high levels of VEGF and expressed high levels of VEGF receptor 2 and its phosphorylated forms as compared to tMUC1low/null PDA. This enabled the tMUC1hi/NRP1hi PDA cells to a) induce endothelial cell tube formation, b) generate long ectopic blood vessels and c) enhance distant metastasis in a zebrafish xenograft model. Concurrently, the proteins associated with epithelial to mesenchymal transition, N-cadherin and Vimentin, were highly induced in these tMUC1/NRP1hi PDA cells. Hence, blocking signaling via the NRP1-VEGF axis significantly reduced tube formation, new vessel generation, and metastasis induced by tMUC1hi PDA cells. Finally, we show that blocking the interaction between VEGF165 and NRP1 with a NRP1 antagonist significantly reduced VEGFR signaling and PDA tumor growth in vivo. Taken together, our data suggests a novel molecular mechanism by which tMUC1 may modulate NRP1-dependent VEGFR signaling in PDA cells.
Collapse
|
146
|
Ferrara N, Adamis AP, Albeck M, Sredni B. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov 2016; 15:385-403. [PMID: 26775688 DOI: 10.1038/nrd.2015.17] [Citation(s) in RCA: 662] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The targeting of vascular endothelial growth factor A (VEGFA), a crucial regulator of both normal and pathological angiogenesis, has revealed innovative therapeutic approaches in oncology and ophthalmology. The first VEGFA inhibitor, bevacizumab, was approved by the US Food and Drug Administration in 2004 for the first-line treatment of metastatic colorectal cancer, and the first VEGFA inhibitors in ophthalmology, pegaptanib and ranibizumab, were approved in 2004 and 2006, respectively. To mark this tenth anniversary of anti-VEGFA therapy, we discuss the discovery of VEGFA, the successes and challenges in the development of VEGFA inhibitors and the impact of these agents on the treatment of cancers and ophthalmic diseases.
Collapse
Affiliation(s)
- Napoleone Ferrara
- University of California, San Diego, La Jolla, California, 92093, USA
| | | | | | | |
Collapse
|
147
|
Placental growth factor 2 — A potential therapeutic strategy for chronic myocardial ischemia. Int J Cardiol 2016; 203:534-42. [DOI: 10.1016/j.ijcard.2015.10.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/17/2022]
|
148
|
Holtan SG, Arora M. Angiogenic factors and inflammation in steroid-refractory acute graft-vs-host disease. Transl Res 2016; 167:80-7. [PMID: 26117290 PMCID: PMC5747967 DOI: 10.1016/j.trsl.2015.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/25/2015] [Accepted: 06/01/2015] [Indexed: 01/29/2023]
Abstract
Steroid-refractory acute graft-vs-host disease (aGVHD) remains a frequent and often fatal complication of allogeneic hematopoietic cell transplantation. Recent evidence suggests that angiogenic factors-growth factors that contribute to blood vessel development-may be involved in tissue healing and restitution after inflammatory insults such as aGVHD. However, some angiogenic factors may also be involved in inflammation and worsen clinical outcomes. In this review, we summarize the data relevant to angiogenic factors that may contribute to healing after aGVHD (epidermal growth factor and vascular endothelial growth factor A) and angiogenic factors that may promote inflammation after aGVHD (placental growth factor and follistatin). It is currently unknown whether changes in these factors are a cause or a consequence of aGVHD. Mechanistic studies in the coming years will clarify their roles and identify new pathways for improving outcomes in steroid-refractory aGVHD.
Collapse
Affiliation(s)
- Shernan G Holtan
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minn.
| | - Mukta Arora
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minn
| |
Collapse
|
149
|
Sargent KM, Clopton DT, Lu N, Pohlmeier WE, Cupp AS. VEGFA splicing: divergent isoforms regulate spermatogonial stem cell maintenance. Cell Tissue Res 2015; 363:31-45. [PMID: 26553653 DOI: 10.1007/s00441-015-2297-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Abstract
Despite being well-known for regulating angiogenesis in both normal and tumorigenic environments, vascular endothelial growth factor A (VEGFA) has been recently implicated in male fertility, namely in the maintenance of spermatogonial stem cells (SSC). The VEGFA gene can be spliced into multiple distinct isoforms that are either angiogenic or antiangiogenic in nature. Although studies have demonstrated the alternative splicing of VEGFA, including the divergent roles of the two isoform family types, many investigations do not differentiate between them. Data concerning VEGFA in the mammalian testis are limited, but the various angiogenic isoforms appear to promote seminiferous cord formation and to form a gradient across which cells may migrate. Treatment with either antiangiogenic isoforms of VEGFA or with inhibitors to angiogenic signaling impair these processes. Serendipitously, expression of KDR, the primary receptor for both types of VEGFA isoforms, was observed on male germ cells. These findings led to further investigation of the way that VEGFA elicits avascular functions within testes. Following treatment of donor perinatal male mice with either antiangiogenic VEGFA165b or angiogenic VEGFA164 isoforms, seminiferous tubules were less colonized following transplantation with cells from VEGFA165b-treated donors. Thus, VEGFA165b and possibly other antiangiogenic isoforms of VEGFA reduce SSC number either by promoting premature differentiation, inducing cell death, or by preventing SSC formation. Thus, angiogenic isoforms of VEGFA are hypothesized to promote SSC self-renewal, and the divergent isoforms are thought to balance one another to maintain SSC homeostasis in vivo.
Collapse
Affiliation(s)
- Kevin M Sargent
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Debra T Clopton
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Ningxia Lu
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - William E Pohlmeier
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, A224i Animal Science Building, 3940 Fair Street, Lincoln, NE 68583-0908, USA.
| |
Collapse
|
150
|
van Helden J, Weiskirchen R. Analytical evaluation of the novel soluble fms-like tyrosine kinase 1 and placental growth factor assays for the diagnosis of preeclampsia. Clin Biochem 2015; 48:1113-9. [DOI: 10.1016/j.clinbiochem.2015.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 11/25/2022]
|