101
|
The bundle crossing region is responsible for the inwardly rectifying internal spermine block of the Kir2.1 channel. Pflugers Arch 2013; 466:275-93. [PMID: 23873351 DOI: 10.1007/s00424-013-1322-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/03/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
Inward rectifier potassium channels conduct K(+) across the cell membrane more efficiently in the inward than outward direction in physiological conditions. Voltage-dependent and flow-dependent blocks of outward K(+) currents by intracellular polyamines (e.g., spermine (SPM)) have been proposed as the major mechanisms underlying inward rectification. In this study, we show that the SPM blocking affinity curve is shifted according to the shift in K(+) reversal potential. Moreover, the kinetics of SPM entry to and exit from the binding site are correlatively slowed by specific E224 and E299 mutations, which always also disrupt the flux coupling feature of SPM block. The entry rates carry little voltage dependence, whereas the exit rates are e-fold decelerated per ∼15 mV depolarization. Interestingly, the voltage dependence remains rather constant among WT and quite a few different mutant channels. This voltage dependence offers an unprecedented chance of mapping the location (electrical distance) of the SPM site in the pore because these kinetic data were obtained along the preponderant direction of K(+) current flow (outward currents for the entry rate and inward currents for the exit rate) and thus contamination from flow dependence should be negligible. Moreover, double mutations involving E224 and A178 or M183 seem to alter the height of the same asymmetrical barrier between the SPM binding site and the intracellular milieu. We conclude that the SPM site responsible for the inward rectifying block is located at an electrical distance of ∼0.5 from the inside and is involved in a flux coupling segment in the bundle crossing region of the pore. With preponderant outward K(+) flow, SPM is "pushed" to the outmost site of this segment (∼D172). On the other hand, the blocking SPM would be pushed to the inner end of this segment (∼M183-A184) with preponderant inward K(+) flow. Moreover, E224 and E299 very likely electrostatically interact with the other residues (e.g., R228, R260) in the cytoplasmic domain and then allosterically keep the bundle crossing region in an open conformation appropriate for the flux coupling block of SPM.
Collapse
|
102
|
Weiger TM, Hermann A. Cell proliferation, potassium channels, polyamines and their interactions: a mini review. Amino Acids 2013; 46:681-8. [PMID: 23820618 DOI: 10.1007/s00726-013-1536-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/13/2013] [Indexed: 01/18/2023]
Abstract
Polyamines, which are obligatory molecules involved in cell cycling and proliferation, are subject to a change in their free intracellular concentrations during the cell cycle. Potassium (K(+)) channels are also considered, but less well recognized, to be necessary for cell proliferation by either hyperpolarizing or depolarizing cells during the cell cycle. A block of polyamine synthesis as well as block or knockout of K(+) channels can halt cell proliferation. K(+) channels like BK (maxi calcium (Ca(2+))-activated K(+)), Kir (inward rectifier), M-type K(+)-and TASK (two-pore domain K(+)) channels or the delayed rectifier K(+) channels are modulated in their electrical properties by polyamines. Polyamines are most effective in blocking these channels when applied to the intracellular face of these channels except for TASK channels where they act only from the extracellular side. Quinidine, a general K(+) channel blocker, was found to reduce putrescine concentrations, to block the ornithine decarboxylase and halt cell proliferation. From these results, the question arises if there is an interaction between polyamines, K(+) channels and proliferation. It might be speculated that a decrease of intracellular polyamines allows more K(+) channels to be active, thus inducing hyperpolarization, while an increase of the polyamine concentration may block K(+) channel activity leading to depolarization of the membrane potential. On the other hand, a block or a deletion of K(+) channels may cause a decrease of the polyamine concentration in cells. More research is needed to test these hypotheses.
Collapse
Affiliation(s)
- Thomas M Weiger
- Division of Cellular and Molecular Neurobiology, Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria,
| | | |
Collapse
|
103
|
Visvanathan A, Ahmed K, Even-Faitelson L, Lleres D, Bazett-Jones DP, Lamond AI. Modulation of Higher Order Chromatin Conformation in Mammalian Cell Nuclei Can Be Mediated by Polyamines and Divalent Cations. PLoS One 2013; 8:e67689. [PMID: 23840764 PMCID: PMC3694102 DOI: 10.1371/journal.pone.0067689] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/20/2013] [Indexed: 11/23/2022] Open
Abstract
The organisation of the large volume of mammalian genomic DNA within cell nuclei requires mechanisms to regulate chromatin compaction involving the reversible formation of higher order structures. The compaction state of chromatin varies between interphase and mitosis and is also subject to rapid and reversible change upon ATP depletion/repletion. In this study we have investigated mechanisms that may be involved in promoting the hyper-condensation of chromatin when ATP levels are depleted by treating cells with sodium azide and 2-deoxyglucose. Chromatin conformation was analysed in both live and permeabilised HeLa cells using FLIM-FRET, high resolution fluorescence microscopy and by electron spectroscopic imaging microscopy. We show that chromatin compaction following ATP depletion is not caused by loss of transcription activity and that it can occur at a similar level in both interphase and mitotic cells. Analysis of both live and permeabilised HeLa cells shows that chromatin conformation within nuclei is strongly influenced by the levels of divalent cations, including calcium and magnesium. While ATP depletion results in an increase in the level of unbound calcium, chromatin condensation still occurs even in the presence of a calcium chelator. Chromatin compaction is shown to be strongly affected by small changes in the levels of polyamines, including spermine and spermidine. The data are consistent with a model in which the increased intracellular pool of polyamines and divalent cations, resulting from depletion of ATP, bind to DNA and contribute to the large scale hyper-compaction of chromatin by a charge neutralisation mechanism.
Collapse
Affiliation(s)
- Ashwat Visvanathan
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kashif Ahmed
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Liron Even-Faitelson
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - David Lleres
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David P. Bazett-Jones
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Angus I. Lamond
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
104
|
Abstract
Spermine (SPM) and spermidine, endogenous polyamines with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant, and other effects in vivo such as increasing longevity. These polyamines are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. The results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21-25-day-old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions without SPM. However, there was a robust increase in the spreading of Lucifer yellow through gap junctions to neighboring astrocytes when the cells were patched with intracellular solutions containing 1 mM SPM, a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM through gap junctions and further indicate a new role of polyamines in the regulation of the astroglial network under both normal and pathological conditions.
Collapse
|
105
|
Desforges B, Curmi PA, Bounedjah O, Nakib S, Hamon L, De Bandt JP, Pastré D. An intercellular polyamine transfer via gap junctions regulates proliferation and response to stress in epithelial cells. Mol Biol Cell 2013; 24:1529-43. [PMID: 23515223 PMCID: PMC3655814 DOI: 10.1091/mbc.e12-10-0729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Polyamines are essential for mammalian cell growth and proliferation, and their synthesis in cells or transport from the extracellular environment has attracted much attention, especially in cancer research. Here it is shown for the first time that polyamines can be transferred from cell to cell via gap junctions to coordinate cell growth. In the organism, quiescent epithelial cells have the potential to resume cycling as a result of various stimuli, including wound healing or oxidative stress. Because quiescent cells have a low polyamine level, resuming their growth requires an increase of their intracellular polyamine levels via de novo polyamine synthesis or their uptake from plasma. Another alternative, explored here, is an intercellular exchange with polyamine-rich cycling cells via gap junctions. We show that polyamines promote gap junction communication between proliferating cells by promoting dynamical microtubule plus ends at the cell periphery and thus allow polyamine exchange between cells. In this way, cycling cells favor regrowth in adjacent cells deprived of polyamines. In addition, intercellular interactions mediated by polyamines can coordinate the translational response to oxidative stress through the formation of stress granules. Some putative in vivo consequences of polyamine-mediated intercellular interactions are also discussed regarding cancer invasiveness and tissue regeneration.
Collapse
Affiliation(s)
- Bénédicte Desforges
- Institut National de la Santé et de la Recherche Médicale, UMR829, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Université Evry-Val d'Essonne, Evry 91025, France
| | | | | | | | | | | | | |
Collapse
|
106
|
Yamashita T, Nishimura K, Saiki R, Okudaira H, Tome M, Higashi K, Nakamura M, Terui Y, Fujiwara K, Kashiwagi K, Igarashi K. Role of polyamines at the G1/S boundary and G2/M phase of the cell cycle. Int J Biochem Cell Biol 2013; 45:1042-50. [PMID: 23500523 DOI: 10.1016/j.biocel.2013.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/02/2013] [Accepted: 02/24/2013] [Indexed: 11/26/2022]
Abstract
The role of polyamines at the G1/S boundary and in the G2/M phase of the cell cycle was studied using synchronized HeLa cells treated with thymidine or with thymidine and aphidicolin. Synchronized cells were cultured in the absence or presence of α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, plus ethylglyoxal bis(guanylhydrazone) (EGBG), an inhibitor of S-adenosylmethionine decarboxylase. When polyamine content was reduced by treatment with DFMO and EGBG, the transition from G1 to S phase was delayed. In parallel, the level of p27(Kip1) was greatly increased, so its mechanism was studied in detail. Synthesis of p27(Kip1) was stimulated at the level of translation by a decrease in polyamine levels, because of the existence of long 5'-untranslated region (5'-UTR) in p27(Kip1) mRNA. Similarly, the transition from the G2/M to the G1 phase was delayed by a reduction in polyamine levels. In parallel, the number of multinucleate cells increased by 3-fold. This was parallel with the inhibition of cytokinesis due to an unusual distribution of actin and α-tubulin at the M phase. Since an association of polyamines with chromosomes was not observed by immunofluorescence microscopy at the M phase, polyamines may have only a minor role in structural changes of chromosomes at the M phase. In general, the involvement of polyamines at the G2/M phase was smaller than that at the G1/S boundary.
Collapse
Affiliation(s)
- Tomoko Yamashita
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Yeo SJ, Jeong JH, Yu SN, Kim YG. Crystallization and preliminary X-ray crystallographic analysis of YgjG from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1070-2. [PMID: 22949197 DOI: 10.1107/s1744309112030886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/06/2012] [Indexed: 11/10/2022]
Abstract
Putrescine, one of the polyamines that are found in virtually all living organisms, has been implicated as an important biological material. The protein YgjG is involved in the putrescine-degradation pathway in Escherichia coli. The enzyme is a putrescine:2-oxoglutarate aminotransferase that belongs to the class III aminotransferases. In this study, YgjG from E. coli was overexpressed, purified and crystallized using the hanging-drop vapour-diffusion method. Diffraction data were collected to 2.1 Å resolution using synchrotron radiation. The crystal belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 121.1, b = 129.5, c = 131.3 Å, and is estimated to contain four molecules of YgjG per asymmetric unit.
Collapse
Affiliation(s)
- Seung-Joo Yeo
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | |
Collapse
|
108
|
Sakamoto A, Terui Y, Yamamoto T, Kasahara T, Nakamura M, Tomitori H, Yamamoto K, Ishihama A, Michael AJ, Igarashi K, Kashiwagi K. Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int J Biochem Cell Biol 2012; 44:1877-86. [PMID: 22814172 DOI: 10.1016/j.biocel.2012.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/07/2012] [Accepted: 07/10/2012] [Indexed: 01/26/2023]
Abstract
We have reported that polyamines increase cell viability at the stationary phase of cell growth through translational stimulation of ribosome modulation factor, and SpoT and RpoZ proteins involved in the synthesis and function of ppGpp in Escherichia coli. Since biofilm formation is also involved in cell viability, we looked for proteins involved in biofilm formation and cell viability whose synthesis is stimulated by polyamines at the level of translation. It was found that the synthesis of response regulators UvrY and CpxR in the two-component signal transducing systems and ribosome recycling factor (RRF) was increased by polyamines at the level of translation. Polyamine stimulation of the synthesis of UvrY and RRF was dependent on the existence of the inefficient initiation codons UUG and GUG in uvrY and frr mRNA, respectively; and polyamine stimulation of CpxR synthesis was dependent on the existence of an unusual location of a Shine-Dalgarno (SD) sequence in cpxR mRNA. Biofilm formation and cell viability in the absence of polyamines was increased by transformation of modified uvrY and cpxR genes, and cell viability by modified frr gene whose translation occurs effectively without polyamines. The results indicate that polyamines are necessary for both biofilm formation and cell viability.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Blagbrough IS, Metwally AA, Ghonaim HM. Asymmetrical N4,N9-diacyl spermines: SAR studies of nonviral lipopolyamine vectors for efficient siRNA delivery with silencing of EGFP reporter gene. Mol Pharm 2012; 9:1853-61. [PMID: 22224453 DOI: 10.1021/mp200428d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our aim is to study the effects of varying the two acyl moieties in synthesized N(4),N(9)-diacyl spermines on siRNA formulations and their delivery efficiency in cell lines. Six novel asymmetrical lipopolyamines, [N(4)-cholesteryloxy-3-carbonyl-N(9)-oleoyl-, N(4)-decanoyl-N(9)-oleoyl-, N(4)-decanoyl-N(9)-stearoyl-, N(4)-lithocholoyl-N(9)-oleoyl-, N(4)-myristoleoyl-N(9)-myristoyl-, and N(4)-oleoyl-N(9)-stearoyl]-1,12-diamino-4,9-diazadodecane, were assessed for their abilities to bind to siRNA, studied using a RiboGreen intercalation assay, and to form nanoparticles. Their siRNA delivery efficiencies were quantified in FEK4 primary skin cells and in an immortalized cancer cell line (HtTA) using a fluorescein-tagged siRNA, and compared with formulations of N(4),N(9)-dioleoyl-1,12-diamino-4,9-diazadodecane and of a leading transfecting agent, TransIT-TKO. Transfection was measured in terms of siRNA delivery and silencing of EGFP reporter gene in HeLa cells. By incorporating two different acyl moieties, changing their length and oxidation level in a controlled manner, we show efficient fluorescein-tagged siRNA formulation, delivery, and knock-down of EGFP reporter gene. N(4)-Oleoyl-N(9)-stearoyl spermine and N(4)-myristoleoyl-N(9)-myristoyl spermine are effective siRNA delivery vectors typically resulting in 89% cell delivery and gene silencing to 34% in the presence of serum, comparable with the results obtained with TransIT-TKO; adding a second lipid chain is better than incorporating a steroid moiety.
Collapse
Affiliation(s)
- Ian S Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath , Bath BA2 7AY, U.K
| | | | | |
Collapse
|
110
|
Terui Y, Akiyama M, Sakamoto A, Tomitori H, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K. Increase in cell viability by polyamines through stimulation of the synthesis of ppGpp regulatory protein and ω protein of RNA polymerase in Escherichia coli. Int J Biochem Cell Biol 2011; 44:412-22. [PMID: 22138225 DOI: 10.1016/j.biocel.2011.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/03/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
It is known that polyamines increase cell growth through stimulation of the synthesis of several kinds of proteins encoded by the so-called "polyamine modulon". We recently reported that polyamines also increase cell viability at the stationary phase of cell growth through stimulation of the synthesis of ribosome modulation factor, a component of the polyamine modulon. Accordingly, we looked for other proteins involved in cell viability whose synthesis is stimulated by polyamines. It was found that the synthesis of ppGpp regulatory protein (SpoT) and ω protein of RNA polymerase (RpoZ) was stimulated by polyamines at the level of translation. Stimulation of the synthesis of SpoT and RpoZ by polyamines was due to an inefficient initiation codon UUG in spoT mRNA and an unusual location of a Shine-Dalgarno (SD) sequence in rpoZ mRNA. Accordingly, the spoT and rpoZ genes are components of the polyamine modulon involved in cell viability. Reduced cell viability caused by polyamine deficiency was prevented by modified spoT and rpoZ genes whose synthesis was not influenced by polyamines. Under these conditions, the level of ppGpp increased in parallel with increase of SpoT protein. The results indicate that polyamine stimulation of synthesis of SpoT and RpoZ plays important roles for cell viability through stimulation of ppGpp synthesis by SpoT and modulation of RNA synthesis by ppGpp-RpoZ complex.
Collapse
Affiliation(s)
- Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
AMPA-type ionotropic glutamate receptors (iGluRs) represent the major excitatory neurotransmitter receptor in the developing and adult vertebrate CNS. They are crucial for the normal hardwiring of glutamatergic circuits but also fine tune synaptic strength by cycling into and out of synapses during periods of sustained patterned activity or altered homeostasis. AMPARs are grouped into two functionally distinct tetrameric assemblies based on the inclusion or exclusion of the GluA2 receptor subunit. GluA2-containing receptors are thought to be the most abundant AMPAR in the CNS, typified by their small unitary events, Ca(2+) impermeability and insensitivity to polyamine block. In contrast, GluA2-lacking AMPARs exhibit large unitary conductance, marked divalent permeability and nano- to micromolar polyamine affinity. Here, I review evidence for the existence of a third class of AMPAR which, though similarly Ca(2+) permeable, is characterized by its near-insensitivity to internal and external channel block by polyamines. This novel class of AMPAR is most notably found at multivesicular release synapses found in the avian auditory brainstem and mammalian retina. Curiously, these synapses lack NMDA-type iGluRs, which are conventionally associated with controlling AMPAR insertion. The lack of NMDARs suggests that a different set of rules may govern AMPAR cycling at these synapses. AMPARs with similar functional profiles are also found on some glial cells suggesting they may have a more widespread distribution in the mammalian CNS. I conclude by noting that modest changes to the ion-permeation pathway might be sufficient to retain divalent permeability whilst eliminating polyamine sensitivity. Consequently, this emerging AMPAR subclass need not be assembled from novel subunits, yet to be cloned, but could simply occur by varying the stoichiometry of existing proteins.
Collapse
Affiliation(s)
- Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
112
|
Hamon L, Savarin P, Curmi PA, Pastré D. Rapid assembly and collective behavior of microtubule bundles in the presence of polyamines. Biophys J 2011; 101:205-16. [PMID: 21723831 DOI: 10.1016/j.bpj.2011.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 04/21/2011] [Accepted: 05/10/2011] [Indexed: 12/31/2022] Open
Abstract
Microtubules (MTs) are cylindrical cytoskeleton polymers composed of α-β tubulin heterodimers whose dynamic properties are essential to fulfill their numerous cellular functions. In response to spatial confinement, dynamic MTs, even in the absence of protein partners, were shown to self-organize into higher order structures (spindle or striped structures) which lead to interesting dynamical properties (MT oscillations). In this study, we considered the assembly and sensitivity of dynamic MTs when in bundles. To perform this study, spermine, a natural tetravalent polyamine present at high concentrations in all eukaryote cells, was used to trigger MT bundling while preserving MT dynamics. Interestingly, we first show that, near physiological ionic strengths, spermine promotes the bundling of MTs whereas it does not lead to aggregation of free tubulin, which would have been detrimental to MT polymerization. Experimental and theoretical results also indicate that, to obtain a high rate of bundle assembly, bundling should take place at the beginning of assembly when rapid rotational movements of short and newly nucleated MTs are still possible. On the other hand, the bundling process is significantly slowed down for long MTs. Finally, we found that short MT bundles exhibit a higher sensitivity to cold exposure than do isolated MTs. To account for this phenomenon, we suggest that a collective behavior takes place within MT bundles because an MT entering into a phase of shortening could increase the probability of the other MTs in the same bundle to enter into shortening phase due to their close proximity. We then elaborate on some putative applications of our findings to in vivo conditions including neurons.
Collapse
Affiliation(s)
- Loïc Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Institut National de la Santé et de la Recherche Médicale, U829, and Université Evry-Val d'Essonne, EA3637, Evry, France.
| | | | | | | |
Collapse
|
113
|
Igarashi K, Kashiwagi K. Protein-conjugated acrolein as a biochemical marker of brain infarction. Mol Nutr Food Res 2011; 55:1332-41. [PMID: 21732531 DOI: 10.1002/mnfr.201100068] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 04/27/2011] [Accepted: 05/04/2011] [Indexed: 01/09/2023]
Abstract
The relationship between acrolein (CH(2) =CH-CHO) and brain infarction is the focus of this review. It has been found that acrolein is produced mainly within cells from polyamines by polyamine oxidases (PAOs), especially from spermine by spermine oxidase during cell damage, and that acrolein is more toxic than reactive oxygen species (ROS) in a cell culture system. Thus, the possibility that acrolein and PAOs are good biochemical markers of stroke was tested because there are no other reliable biochemical markers at the early stage of stroke. Levels of protein-conjugated acrolein (PC-Acro) and PAOs (acrolein-producing enzymes) were significantly increased in the plasma of stroke patients. The multiplied value of PC-Acro by PAOs was nearly parallel with the size of stroke. Furthermore, when the combined measurements of PC-Acro, interleukin-6 (IL-6) and C-reactive protein (CRP) were evaluated along with age using a receiver operating characteristic (ROC) curve, even silent brain infarction (SBI), which is a small brain infarction, was indicated with approximately 84% sensitivity and specificity. These findings clearly indicate that acrolein is strongly correlated with cell damage during brain infarction.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | | |
Collapse
|
114
|
Daban JR. Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure. Micron 2011; 42:733-50. [PMID: 21703860 DOI: 10.1016/j.micron.2011.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/01/2011] [Indexed: 11/26/2022]
Abstract
The folding of the chromatin filament and, in particular, the organization of genomic DNA within metaphase chromosomes has attracted the interest of many laboratories during the last five decades. This review discusses our current understanding of chromatin higher-order structure based on results obtained with transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and different atomic force microscopy (AFM) techniques. Chromatin isolated from different cell types in buffers without cations form extended filaments with nucleosomes visible as separated units. In presence of low concentrations of Mg(2+), chromatin filaments are folded into fibers having a diameter of ∼ 30 nm. Highly compact fibers were obtained with isolated chromatin fragments in solutions containing 1-2mM Mg(2+). The high density of these fibers suggested that the successive turns of the chromatin filament are interdigitated. Similar results were obtained with reconstituted nucleosome arrays under the same ionic conditions. This led to the proposal of compact interdigitated solenoid models having a helical pitch of 4-5 nm. These findings, together with the observation of columns of stacked nucleosomes in different liquid crystal phases formed by aggregation of nucleosome core particles at high concentration, and different experimental evidences obtained using other approaches, indicate that face-to-face interactions between nucleosomes are very important for the formation of dense chromatin structures. Chromatin fibers were observed in metaphase chromosome preparations in deionized water and in buffers containing EDTA, but chromosomes in presence of the Mg(2+) concentrations found in metaphase (5-22 mM) are very compact, without visible fibers. Moreover, a recent cryo-electron microscopy analysis of vitreous sections of mitotic cells indicated that chromatin has a disordered organization, which does not support the existence of 30-nm fibers in condensed chromosomes. TEM images of partially denatured chromosomes obtained using different procedures that maintain the ionic conditions of metaphase showed that bulk chromatin in chromosomes is organized forming multilayered plate-like structures. The structure and mechanical properties of these plates were studied using cryo-EM, electron tomography, AFM imaging in aqueous media, and AFM-based nanotribology and force spectroscopy. The results obtained indicated that the chromatin filament forms a flexible two-dimensional network, in which DNA is the main component responsible for the mechanical strength observed in friction force measurements. The discovery of this unexpected structure based on a planar geometry has opened completely new possibilities for the understanding of chromatin folding in metaphase chromosomes. It was proposed that chromatids are formed by many stacked thin chromatin plates oriented perpendicular to the chromatid axis. Different experimental evidences indicated that nucleosomes in the plates are irregularly oriented, and that the successive layers are interdigitated (the apparent layer thickness is 5-6 nm), allowing face-to-face interactions between nucleosomes of adjacent layers. The high density of this structure is in agreement with the high concentration of DNA observed in metaphase chromosomes of different species, and the irregular orientation of nucleosomes within the plates make these results compatible with those obtained with mitotic cell cryo-sections. The multilaminar chromatin structure proposed for chromosomes allows an easy explanation of chromosome banding and of the band splitting observed in stretched chromosomes.
Collapse
Affiliation(s)
- Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
115
|
Bulk segregant analysis followed by high-throughput sequencing reveals the Neurospora cell cycle gene, ndc-1, to be allelic with the gene for ornithine decarboxylase, spe-1. EUKARYOTIC CELL 2011; 10:724-33. [PMID: 21515825 DOI: 10.1128/ec.00016-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
With the advent of high-throughput DNA sequencing, it is now straightforward and inexpensive to generate high-density small nucleotide polymorphism (SNP) maps. Here we combined high-throughput sequencing with bulk segregant analysis to expedite mutation mapping. The general map location of a mutation can be identified by a single backcross to a strain enriched in SNPs compared to a standard wild-type strain. Bulk segregant analysis simultaneously increases the likelihood of determining the precise nature of the mutation. We present here a high-density SNP map between Neurospora crassa Mauriceville-1-c (FGSC2225) and OR74A (FGSC2489), the strains most typically used by Neurospora researchers to carry out mapping crosses. We further have demonstrated the utility of the Mauriceville sequence and our approach by mapping the mutation responsible for the only existing temperature-sensitive (ts) cell cycle mutation in Neurospora, nuclear division cycle-1 (ndc-1). The single T-to-C point mutation maps to the gene encoding ornithine decarboxylase (ODC), spe-1 (NCU01271), and changes a Phe to a Ser residue within a highly conserved motif next to the catalytic site of the enzyme. By growth on spermidine and complementation with a wild-type spe-1 gene, we showed that the defect in spe-1 is responsible for the ts ndc-1 mutation. Based on our results, we propose changing ndc-1 to spe-1(ndc), which reflects that this mutation results in an ODC with a specific nuclear division defect.
Collapse
|
116
|
Schuster I, Bernhardt R. Interactions of natural polyamines with mammalian proteins. Biomol Concepts 2011; 2:79-94. [DOI: 10.1515/bmc.2011.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AbstractThe ubiquitously expressed natural polyamines putrescine, spermidine, and spermine are small, flexible cationic compounds that exert pleiotropic actions on various regulatory systems and, accordingly, are essentially involved in diverse life functions. These roles of polyamines result from their capability to interact with negatively charged regions of all major classes of biomolecules, which might act in response by changing their structures and functions. The present review deals with polyamine-protein interactions, thereby focusing on mammalian proteins. We discuss the various modes in which polyamines can interact with proteins, describe major types of affected functions illustrated by representative examples of involved proteins, and support information with respective structural evidence from elucidated three-dimensional structures. A specific focus is put on polyamine interactions at protein surfaces that can modulate the aggregation of proteins to organized structural networks as well as to toxic aggregates and, moreover, can play a role in important transient protein-protein interactions.
Collapse
Affiliation(s)
- Inge Schuster
- 1Institute for Theoretical Chemistry, University Vienna, A-1090 Vienna, Austria
| | - Rita Bernhardt
- 2Institute of Biochemistry, Saarland University, Campus B2.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
117
|
Yoshida M, Mizoi M, Saiki R, Kobayashi E, Saeki N, Wakui K, Kusaka T, Takizawa H, Kashiwado K, Suzuki N, Fukuda K, Nakamura T, Watanabe S, Tada K, Tomitori H, Kashiwagi K, Igarashi K. Relationship between metabolic disorders and relative risk values of brain infarction estimated by protein-conjugated acrolein, IL-6 and CRP together with age. Clin Chim Acta 2011; 412:339-42. [DOI: 10.1016/j.cca.2010.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 10/30/2010] [Accepted: 11/01/2010] [Indexed: 11/28/2022]
|
118
|
Abstract
Polyamines are essential for normal cell growth and exist mainly as RNA-polyamine complexes in cells. Thus, effects of polyamines on protein synthesis have been studied. It was found that several kinds of protein synthesis, which are important for cell growth, were enhanced by polyamines at the level of translation. We proposed that a group of genes whose expression is enhanced by polyamines at the level of translation be referred to as a "polyamine modulon." In Escherichia coli, most members of the polyamine modulon thus far identified were transcription factors. These transcription factors enhanced the synthesis of several kinds of mRNA and tRNA, and also rRNA. In this way, polyamines enhanced growth of E. coli. We also succeeded in identifying three kinds of "polyamine modulon" in mammalian cells. One of the mechanisms of polyamine stimulation at the molecular level was due to the stabilization of the bulged-out region of double-stranded RNA in mRNA. The procedures used to identify components of the polyamine modulon are described in this chapter.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | | |
Collapse
|
119
|
Saiki R, Park H, Ishii I, Yoshida M, Nishimura K, Toida T, Tatsukawa H, Kojima S, Ikeguchi Y, Pegg AE, Kashiwagi K, Igarashi K. Brain infarction correlates more closely with acrolein than with reactive oxygen species. Biochem Biophys Res Commun 2010; 404:1044-9. [PMID: 21187074 DOI: 10.1016/j.bbrc.2010.12.107] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 12/21/2010] [Indexed: 11/25/2022]
Abstract
Although it is thought that the major factor responsible for cell damage is reactive oxygen species (ROS), our recent studies have shown that acrolein is more toxic than ROS. Thus, the relative importance of acrolein and ROS in cell damage during brain infarction was compared using photochemically induced thrombosis model mice. The levels of acrolein-conjugated albumin, and of 4-hydroxynonenal (HNE)-conjugated albumin and 8-OHdG were evaluated as indicators of damage produced by acrolein and ROS, respectively. The increase in acrolein-conjugated albumin was much greater than the increase in HNE-conjugated albumin or 8-OHdG, suggesting that acrolein is more strongly involved in cell damage than ROS during brain infarction. It was also shown that infarction led more readily to RNA damage than to DNA or phospholipid damage. As a consequence, polyamines were released from RNA, and acrolein was produced from polyamines, especially from spermine by spermine oxidase. Production of acrolein from spermine by spermine oxidase was clarified using spermine synthase-deficient Gy mice and transglutaminase 2-knockout mice, in which spermine content is negligible or spermidine/spermine N(1)-acetyltransferase activity is elevated.
Collapse
Affiliation(s)
- Ryotaro Saiki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Matsuda H, Hayashi M, Okada M. Voltage-dependent block by internal spermine of the murine inwardly rectifying K+ channel, Kir2.1, with asymmetrical K+ concentrations. J Physiol 2010; 588:4673-81. [PMID: 20962011 DOI: 10.1113/jphysiol.2010.194480] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Effects of internal spermine on outward single-channel currents through a strongly inwardly rectifying K(+) channel (Kir2.1) were studied at asymmetrical K(+) concentrations (30 mm external and 150 mm internal K(+)). The current-voltage (I-V) relation for the single channel was almost linear and reversed at -37 ± 3 mV (V(R); n = 19). The channel conductance was 26.3 ± 1.3 pS (n = 24). The open-time and closed-time histograms were fitted with a single exponential function. Internal spermine at a concentration of 1-100 nm reduced the open time of the outward currents in a concentration-dependent manner and produced a blocked state. The steady-state open probability of the outward current decreased with larger depolarizations in both the absence and presence of internal spermine. The steady-state open probability with asymmetrical K(+) and symmetrical (150 mm external and internal K(+)) concentrations plotted against driving force (V - V(R)) coincided with smaller depolarizations in the absence of spermine and larger depolarizations and higher spermine concentrations in the presence of spermine. The blocking rate constants and unblock rates with 30 mm and 150 mm external K(+) were similar at the same driving force. The dissociation constant-membrane potential relation for 30 mm external K(+) was shifted in the negative direction from that for 150 mm external K(+) by 36 mV. These results suggested that the blocking kinetics depends on driving force to produce driving force-dependent inward rectification when the equilibrium potential for K(+) is altered by changing external K(+) and that the energy barriers and wells for blocking ions from passing or lodging are not stable but affected by external K(+) ions.
Collapse
Affiliation(s)
- Hiroko Matsuda
- Department of Physiology, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan.
| | | | | |
Collapse
|
121
|
Ouameur AA, Bourassa P, Tajmir-Riahi HA. Probing tRNA interaction with biogenic polyamines. RNA (NEW YORK, N.Y.) 2010; 16:1968-1979. [PMID: 20729276 PMCID: PMC2941105 DOI: 10.1261/rna.1994310] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 07/15/2010] [Indexed: 05/29/2023]
Abstract
Biogenic polyamines are found to modulate protein synthesis at different levels. This effect may be explained by the ability of polyamines to bind and influence the secondary structure of tRNA, mRNA, and rRNA. We report the interaction between tRNA and the three biogenic polyamines putrescine, spermidine, spermine, and cobalt(III)hexamine at physiological conditions, using FTIR spectroscopy, capillary electrophoresis, and molecular modeling. The results indicated that tRNA was stabilized at low biogenic polyamine concentration, as a consequence of polyamine interaction with the backbone phosphate group. The main tRNA reactive sites for biogenic polyamine at low concentration were guanine-N7/O6, uracil-O2/O4, adenine-N3, and 2'OH of the ribose. At high polyamine concentration, the interaction involves guanine-N7/O6, adenine-N7, uracil-O2 reactive sites, and the backbone phosphate group. The participation of the polycation primary amino group, in the interaction and the presence of the hydrophobic contact, are also shown. The binding affinity of biogenic polyamine to tRNA molecule was in the order of spermine > spermidine > putrescine with K(Spm) = 8.7 × 10(5) M(-1), K(Spd) = 6.1 × 10(5) M(-1), and K(Put) = 1.0 × 10(5) M(-1), which correlates with their positively charged amino group content. Hill analysis showed positive cooperativity for the biogenic polyamines and negative cooperativity for cobalt-hexamine. Cobalt(III)hexamine contains high- and low-affinity sites in tRNA with K(1) = 3.2 × 10(5) M(-1) and K(2) = 1.7 × 10(5) M(-1), that have been attributed to the interactions with guanine-N7 sites and the backbone PO(2) group, respectively. This mechanism of tRNA binding could explain the condensation phenomenon observed at high Co(III) content, as previously shown in the Co(III)-DNA complexes.
Collapse
Affiliation(s)
- Amin Ahmed Ouameur
- Department of Chemistry-Biology, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | |
Collapse
|
122
|
Fürtig B, Wenter P, Pitsch S, Schwalbe H. Probing mechanism and transition state of RNA refolding. ACS Chem Biol 2010; 5:753-65. [PMID: 20536261 DOI: 10.1021/cb100025a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kinetics and the atomic detail of RNA refolding are only poorly understood. It has been proposed that conformations with transient base pairing interaction are populated during RNA refolding, but a detailed description of those states is lacking. By NMR and CD spectroscopy, we examined the refolding of a bistable RNA and the influence of urea, Mg(2+), and spermidine on its refolding kinetics. The bistable RNA serves as a model system and exhibits two almost equally stable ground-state conformations. We designed a photolabile caged RNA to selectively stabilize one of the two ground-state conformations and trigger RNA refolding by in situ light irradiation in the NMR spectrometer. We can show that the refolding kinetics of the bistable RNA is modulated by urea, Mg(2+), and spermidine by different mechanisms. From a statistical analysis based on elementary rate constants, we deduce the required number of base pairs that need to be destabilized during the refolding transition and propose a model for the transition state of the folding reaction.
Collapse
Affiliation(s)
- Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max von Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Philipp Wenter
- Laboratory of Nucleic Acid Chemistry, École Polytechnique Fédérale de Lausanne, EPFL-BCH, 1015 Lausanne, France
| | - Stefan Pitsch
- Laboratory of Nucleic Acid Chemistry, École Polytechnique Fédérale de Lausanne, EPFL-BCH, 1015 Lausanne, France
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max von Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
123
|
Abstract
Owing to preferential electrostatic adsorption of multivalent cations on highly anionic surfaces, natural multivalent polyamines and especially quadrivalent spermine can be considered as potential regulators of the complex dynamical properties of anionic MTs (microtubules). Indeed, the C-terminal tails of tubulin display many negative residues in a row which should enable the formation of a correlated liquid-like phase of multivalent counterions on its surface. Although it is known that polyamine counterions promote MT assembly in vitro, little is known about the relevance of this interaction in vivo. In the present study, we have explored the relationship between polyamine levels and MT assembly in HeLa and epithelial NRK (normal rat kidney) cells using DFMO (α-difluoromethylornithine), an irreversible inhibitor of ornithine decarboxylase, and APCHA [N-(3-aminopropyl)-N-cyclohexylamine], a spermine synthase inhibitor. Under conditions of intracellular polyamine depletion, the MT network is clearly disrupted and the MT mass decreases. Addition of spermine to polyamine-depleted cells reverses this phenotype and rapidly promotes the extensions of the MT network. Finally, we show that polyamine levels modulate the coating of MTs with MAP4 (MT-associated protein 4), an MT-stabilizing protein, and the spatial distribution of EB1 (end-binding protein 1), an MT plus-end-binding protein. In addition, polyamines favour the formation of gap junctions in NRK cells, a process which requires MT extensions at the cell periphery. The present study provides a basis for a better understanding of the role played by polyamines in MT assembly and establishes polyamine metabolism as a potential cellular target for modulating MT functions.
Collapse
|
124
|
Piron J, Choveau FS, Amarouch MY, Rodriguez N, Charpentier F, Mérot J, Baró I, Loussouarn G. KCNE1-KCNQ1 osmoregulation by interaction of phosphatidylinositol-4,5-bisphosphate with Mg2+ and polyamines. J Physiol 2010; 588:3471-83. [PMID: 20660559 DOI: 10.1113/jphysiol.2010.195313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
KCNQ1 osmosensitivity is of physiological and pathophysiological relevance in epithelial and cardiac cells, but the mechanism involved remains elusive. In COS-7 cells expressing the KCNE1-KCNQ1 fusion protein, extracellular hypoosmolarity and hyperosmolarity modify the channel biophysical parameters. These changes are consistent with hypoosmolarity increasing the level of membrane phosphatidylinositol-4,5-bisphosphate (PIP(2)), which in turn upregulates KCNE1-KCNQ1 channels. We showed that increasing PIP(2) levels with a water-soluble PIP(2) analogue prevented channel upregulation in hypoosmotic condition, suggesting a variation of the channel-PIP(2) interaction during channel osmoregulation. Furthermore, we showed that polyamines and Mg(2+), already known to tonically inhibit KCNQ channels by screening PIP(2) negative charges, are involved in the osmoregulatory process. Indeed, intracellular Mg(2+) removal and polyamines chelation inhibited the channel osmoregulation. Thus, the dilution of those cations during cell swelling might decrease channel inhibition and explain the channel upregulation by hypoosmolarity. To support this idea, we quantified the role of Mg(2+) in the osmodependent channel activity. Direct measurement of intracellular [Mg(2+)] variations during osmotic changes and characterization of the channel Mg(2+) sensitivity showed that Mg(2+) participates significantly to the osmoregulation. Using intracellular solutions that mimic the variation of Mg(2+) and polyamines, we were able to recapitulate the current amplitude variations in response to extracellular osmolarity changes. Altogether, these results support the idea of a modulation of the channel-PIP(2) interactions by Mg(2+) and polyamines during cell volume changes. It is likely that this mechanism applies to other channels that are sensitive to both osmolarity and PIP(2).
Collapse
Affiliation(s)
- Julien Piron
- INSERM U915, l'Institut du Thorax, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Terui Y, Tabei Y, Akiyama M, Higashi K, Tomitori H, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K. Ribosome modulation factor, an important protein for cell viability encoded by the polyamine modulon. J Biol Chem 2010; 285:28698-707. [PMID: 20628056 DOI: 10.1074/jbc.m110.111195] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We searched for proteins whose synthesis is enhanced by polyamines at the stationary phase of cell growth using an Escherichia coli polyamine-requiring mutant in which cell viability is greatly decreased by polyamine deficiency. The synthesis of ribosome modulation factor (RMF) was strongly enhanced by polyamines at the level of translation at the stationary phase of cell growth. In rmf mRNA, a Shine-Dalgarno (SD) sequence is located 11 nucleotides upstream of the initiation codon AUG. When the SD sequence was moved to the more common position 8 nucleotides upstream of the initiation codon, the degree of polyamine stimulation was reduced, although the level of RMF synthesis was markedly increased. Polyamine stimulation of RMF synthesis was found to be caused by a selective structural change of the bulged-out region of the initiation site of rmf mRNA. The decrease in cell viability caused by polyamine deficiency was prevented by the addition of a modified rmf gene whose synthesis is not influenced by polyamines. The results indicate that polyamines enhance cell viability of E. coli at least in part by enhancing RMF synthesis.
Collapse
Affiliation(s)
- Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Fuell C, Elliott KA, Hanfrey CC, Franceschetti M, Michael AJ. Polyamine biosynthetic diversity in plants and algae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:513-20. [PMID: 20227886 DOI: 10.1016/j.plaphy.2010.02.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 05/04/2023]
Abstract
Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage.
Collapse
Affiliation(s)
- Christine Fuell
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR47UA, UK
| | | | | | | | | |
Collapse
|
127
|
Igarashi K, Kashiwagi K. Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:506-12. [PMID: 20159658 DOI: 10.1016/j.plaphy.2010.01.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 01/16/2010] [Accepted: 01/19/2010] [Indexed: 05/20/2023]
Abstract
Polyamine content in cells is regulated by biosynthesis, degradation and transport. In Escherichia coli, there are two polyamine uptake systems, namely spermidine-preferential (PotABCD) and putrescine-specific (PotFGHI), which belong to the family of ATP binding cassette transporters. Putrescine-ornithine and cadaverine-lysine antiporters, PotE and CadB, each consisting of 12 transmembrane segments, are important for cell growth at acidic pH. Spermidine excretion protein (MdtJI) was also recently identified. When putrescine was used as energy source, PuuP functioned as a putrescine transporter. In Saccharomyces cerevisiae, there are four kinds of polyamine uptake proteins (DUR3, SAM3, GAP1 and AGP2), consisting of either 12 or 16 transmembrane segments. Among them, DUR3 and SAM3 mostly contribute to polyamine uptake. There are also five kinds of polyamine excretion proteins (TPO1-5), consisting of 12 transmembrane segments. Among them, TPO1 and TPO5 are the most active proteins. Since a polyamine metabolizing enzyme, spermidine/spermine N(1)-acetyltransferase, is not present in yeast, five kinds of excretion proteins may exist. The current status of polyamine transport in mammalian and plant cells are reviewed.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | | |
Collapse
|
128
|
Yasui K, Uegaki M, Shiraki K, Ishimizu T. Enhanced solubilization of membrane proteins by alkylamines and polyamines. Protein Sci 2010; 19:486-93. [PMID: 20054831 DOI: 10.1002/pro.326] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Around 25% of proteins in living organisms are membrane proteins that perform many critical functions such as synthesis of biomolecules and signal transduction. Membrane proteins are extracted from the lipid bilayer and solubilized with a detergent for biochemical characterization; however, their solubilization is an empirical technique and sometimes insufficient quantities of proteins are solubilized in aqueous buffer to allow characterization. We found that addition of alkylamines and polyamines to solubilization buffer containing a detergent enhanced solubilization of membrane proteins from microsomes. The solubilization of polygalacturonic acid synthase localized at the plant Golgi membrane was enhanced by up to 9.9-fold upon addition of spermidine to the solubilization buffer. These additives also enhanced the solubilization of other plant membrane proteins localized in other organelles such as the endoplasmic reticulum and plasma membrane as well as that of an animal Golgi-localized membrane protein. Thus, addition of alkylamines and polyamines to solubilization buffer is a generally applicable method for effective solubilization of membrane proteins. The mechanism of the enhancement of solubilization is discussed.
Collapse
Affiliation(s)
- Kazutoshi Yasui
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
129
|
Yamamichi S, Nishitani M, Nishimura N, Matsushita Y, Hasumi K. Polyamine-promoted autoactivation of plasma hyaluronan-binding protein. J Thromb Haemost 2010; 8:559-66. [PMID: 19817990 DOI: 10.1111/j.1538-7836.2009.03641.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Plasma hyaluronan-binding protein (PHBP), a protease implicated in extracellular proteolysis, consists of multiple domains: an N-terminal region (NTR), three epidermal growth factor (EGF)-like domains, a kringle domain, and a protease domain. PHBP circulates as a single-chain proenzyme (pro-PHBP), which is converted to an active, two-chain form through autoproteolysis. OBJECTIVE To understand the mechanism of autoactivation. Here, we report that polyamine induces the formation of pro-PHBP autoactivation complex, in which an intermolecular interaction between NTR and the third EGF-like domain (E3) plays a role. METHODS Using a series of pro-PHBP mutants that partially lack functional domains, polyamine-induced pro-PHBP autoactivation was investigated in terms of enzyme activity, protein interaction, and inhibition by carminic acid, an anthraquinone compound identified in this study. RESULTS Polyamine enhanced intermolecular binding of pro-PHBP, but not of mutant pro-PHBP that partially lacked NTR (DeltaN). Carminic acid inhibited intermolecular pro-PHBP binding and specifically abolished polyamine-induced autoactivation. NTR bound to pro-PHBP and DeltaN, but its binding was minimal to a mutant that lacked E3. The NTR-DeltaN binding was inhibited by a combination of polyamine and carminic acid, but each compound alone was ineffective. CONCLUSIONS We infer from the data that (i) polyamine modulates intramolecular NTR-E3 interaction to allow intermolecular binding between NTR and E3 in another pro-PHBP molecule to form an autoactivation complex, and (ii) carminic acid inhibits polyamine-modulated intermolecular NTR-E3 binding. Polyamine concentrations are higher in cells and tissues with inflammation and malignancy. Polyamine leakage from legions through cell death or tissue injury may account for physiologically relevant pro-PHBP activation.
Collapse
Affiliation(s)
- S Yamamichi
- Department of Applied Biological Science, Tokyo Noko University, 3-5-8 Saiwaicho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | |
Collapse
|
130
|
Kanerva K, Mäkitie LT, Bäck N, Andersson LC. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking. Exp Cell Res 2010; 316:1896-906. [PMID: 20188728 DOI: 10.1016/j.yexcr.2010.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 11/25/2022]
Abstract
Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.
Collapse
Affiliation(s)
- Kristiina Kanerva
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
131
|
Uemura T, Higashi K, Takigawa M, Toida T, Kashiwagi K, Igarashi K. Polyamine modulon in yeast—Stimulation of COX4 synthesis by spermidine at the level of translation. Int J Biochem Cell Biol 2009; 41:2538-45. [DOI: 10.1016/j.biocel.2009.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 08/11/2009] [Indexed: 11/27/2022]
|
132
|
Ivanov IP, Atkins JF, Michael AJ. A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation. Nucleic Acids Res 2009; 38:353-9. [PMID: 19920120 PMCID: PMC2811004 DOI: 10.1093/nar/gkp1037] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In many eukaryotic mRNAs one or more short 'upstream' open reading frames, uORFs, precede the initiator of the main coding sequence. Upstream ORFs are functionally diverse as illustrated by their variety of features in polyamine pathway biosynthetic mRNAs. Their propensity to act as sensors for regulatory circuits and to amplify the signals likely explains their occurrence in most polyamine pathway mRNAs. The uORF-mediated polyamine responsive autoregulatory circuits found in polyamine pathway mRNAs exemplify the translationally regulated dynamic interface between components of the proteome and metabolism.
Collapse
Affiliation(s)
- Ivaylo P Ivanov
- BioSciences Institute, University College Cork, Cork, Ireland and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | | | | |
Collapse
|
133
|
Heinick A, Urban K, Roth S, Spies D, Nunes F, Phanstiel O, Liebau E, Lüersen K. Caenorhabditis elegans P5B-type ATPase CATP-5 operates in polyamine transport and is crucial for norspermidine-mediated suppression of RNA interference. FASEB J 2009; 24:206-17. [PMID: 19762559 DOI: 10.1096/fj.09-135889] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Physiological polyamines are required in various biological processes. In the current study, we used norspermidine, a structural analog of the natural polyamine spermidine, to investigate polyamine uptake in the model organism Caenorhabditis elegans. Norspermidine was found to have two remarkable effects: it is toxic for the nematode, without affecting its food, Escherichia coli; and it hampers RNA interference. By characterizing a norspermidine-resistant C. elegans mutant strain that has been isolated in a genetic screen, we demonstrate that both effects, as well as the uptake of a fluorescent polyamine-conjugate, depend on the transporter protein CATP-5, a novel P(5B)-type ATPase. To our knowledge, CATP-5 represents the first P(5)-type ATPase that is associated with the plasma membrane, being expressed in the apical membrane of intestinal cells and the excretory cell. Moreover, genetic interaction studies using C. elegans polyamine synthesis mutants indicate that CATP-5 has a function redundant to polyamine synthesis and link reduced polyamine levels to retarded postembryonic development, reduced brood size, shortened life span, and small body size. We suggest that CATP-5 represents a crucial component of the pharmacologically important polyamine transport system, the molecular nature of which has not been identified so far in metazoa.
Collapse
Affiliation(s)
- Alexander Heinick
- Institute for Animal Physiology, Westfalian Wilhelms University, Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Coburn RF. Polyamine effects on cell function: Possible central role of plasma membrane PI(4,5)P2. J Cell Physiol 2009; 221:544-51. [DOI: 10.1002/jcp.21899] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
135
|
Lönnberg H. Solid-phase synthesis of oligonucleotide conjugates useful for delivery and targeting of potential nucleic acid therapeutics. Bioconjug Chem 2009; 20:1065-94. [PMID: 19175328 DOI: 10.1021/bc800406a] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olignucleotide-based drugs show promise as a novel form of chemotherapy. Among the hurdles that have to be overcome on the way of applicable nucleic acid therapeutics, inefficient cellular uptake and subsequent release from endosomes to cytoplasm appear to be the most severe ones. Covalent conjugation of oligonucleotides to molecules that expectedly facilitate the internalization, targets the conjugate to a specific cell-type or improves the parmacokinetics offers a possible way to combat against these shortcomings. Since workable chemistry is a prerequisite for biological studies, development of efficient and reproducible methods for preparation of various types of oligonucleotide conjugates has become a subject of considerable importance. The present review summarizes the advances made in the solid-supported synthesis of oligonucleotide conjugates aimed at facilitating the delivery and targeting of nucleic acid drugs.
Collapse
Affiliation(s)
- Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland.
| |
Collapse
|
136
|
Anumonwo JMB, Lopatin AN. Cardiac strong inward rectifier potassium channels. J Mol Cell Cardiol 2009; 48:45-54. [PMID: 19703462 DOI: 10.1016/j.yjmcc.2009.08.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/13/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
Cardiac I(K1) and I(KACh) are the major potassium currents displaying classical strong inward rectification, a unique property that is critical for their roles in cardiac excitability. In the last 15 years, research on I(K1) and I(KACh) has been propelled by the cloning of the underlying inwardly rectifying potassium (Kir) channels, the discovery of the molecular mechanism of strong rectification and the linking of a number of disorders of cardiac excitability to defects in genes encoding Kir channels. Disease-causing mutations in Kir genes have been shown experimentally to affect one or more of the following channel properties: structure, assembly, trafficking, and regulation, with the ultimate effect of a gain- or a loss-of-function of the channel. It is now established that I(K1) and I(KACh) channels are heterotetramers of Kir2 and Kir3 subunits, respectively. Each homomeric Kir channel has distinct biophysical and regulatory properties, and individual Kir subunits often display different patterns of regional, cellular, and membrane distribution. These differences are thought to underlie important variations in the physiological properties of I(K1) and I(KACh). It has become increasingly clear that the contribution of I(K1) and I(KACh) channels to cardiac electrical activity goes beyond their long recognized role in the stabilization of resting membrane potential and shaping the late phase of action potential repolarization in individual myocytes but extends to being critical elements determining the overall electrical stability of the heart.
Collapse
Affiliation(s)
- Justus M B Anumonwo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | | |
Collapse
|
137
|
N’soukpoé-Kossi CN, Ahmed Ouameur A, Thomas T, Thomas TJ, Tajmir-Riahi HA. Interaction of tRNA with antitumor polyamine analogues. Biochem Cell Biol 2009; 87:621-30. [DOI: 10.1139/o09-036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We studied the interaction between tRNA and three polyamine analogues (1,11-diamino-4,8-diazaundecane·4HCl (333), 3,7,11,15-tetrazaheptadecane·4HCl (BE-333), and 3,7,11,15,19-pentazahenicosane·5HCl (BE-3333)) using FTIR, UV-visible, and CD spectroscopic methods. Spectroscopic evidence showed that polyamine analogues bound tRNA via guanine N7, adenine, uracil O2, and the backbone phosphate (PO 2– ) groups, while the most reactive sites for biogenic polyamines were guanine N7/O6, adenine N7, uracil O2, and sugar 2′-OH groups as well as the backbone phosphate group. The binding constants of polyamine analogue – tRNA recognition were lower than those of the biogenic polyamine – tRNA complexes, with K333 = 2.8 (±0.5) × 104, KBE-333 = 3.7 (±0.7) × 104, KBE-3333 = 4.0 (±0.9) × 104, Kspm = 8.7 (±0.9) × 105, Kspd = 6.1 (±0.7) × 105, and Kput = 1.0 (±0.3) × 105 mol/L. tRNA remained in the A-family conformation; however, it aggregated at high polyamine analogue concentrations.
Collapse
Affiliation(s)
- C. N. N’soukpoé-Kossi
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
- Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - A. Ahmed Ouameur
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
- Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - T. Thomas
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
- Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - T. J. Thomas
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
- Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - H. A. Tajmir-Riahi
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
- Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| |
Collapse
|
138
|
Modulation of cellular function by polyamines. Int J Biochem Cell Biol 2009; 42:39-51. [PMID: 19643201 DOI: 10.1016/j.biocel.2009.07.009] [Citation(s) in RCA: 631] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 12/13/2022]
Abstract
Polyamines (putrescine, spermidine and spermine) are essential for normal cell growth. The polyamine levels in cells are regulated by biosynthesis, degradation, and transport. Polyamines can modulate the functions of DNA, nucleotide triphosphates, proteins, and especially RNA because most polyamines exist in a polyamine-RNA complex in cells. Thus, the major focus on this review is on the role of polyamines in protein synthesis. In addition, effects of polyamines on B to Z conversion of DNA, transcription, phosphorylation of proteins, cell cycle progression, apoptosis and ion channels, especially NMDA receptors, are outlined. The function of eIF5A is also briefly discussed. Finally, a correlation between acrolein, produced from polyamines by polyamine oxidases, and chronic renal failure or brain stroke is summarized. Increased levels of polyamine oxidases and acrolein are good markers of chronic renal failure and brain stroke.
Collapse
|
139
|
Enhancement of the synthesis of RpoE and StpA by polyamines at the level of translation in escherichia coli under heat shock conditions. J Bacteriol 2009; 191:5348-57. [PMID: 19542278 DOI: 10.1128/jb.00387-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteins whose synthesis is enhanced by polyamines at the level of translation were identified with a polyamine-requiring mutant cultured in the presence of 0.1% glucose and 0.02% glutamate at 42 degrees C. Polyamines had a greater effect on cell growth at 42 degrees C than at 37 degrees C. At 42 degrees C, the synthesis of RpoE (sigma(24)) and StpA, which are involved in the transcription of a number of heat shock response genes, was stimulated by polyamines at the level of translation. In the rpoE and stpA mRNAs, a Shine-Dalgarno (SD) sequence is located at 13 and 12 nucleotides, respectively, upstream of the initiation codon AUG. When the SD sequences were moved to the more common position 7 nucleotides upstream of the initiation codon AUG, the degree of polyamine stimulation was reduced, although the level of RpoE and StpA synthesis was markedly increased. The mechanism underlying polyamine stimulation of RpoE synthesis was then studied. Polyamine stimulation of RpoE synthesis was reduced by changing the bulged-out structure in the initiation site of rpoE mRNA, although the level of RpoE synthesis increased. A selective structural change of this bulged-out region induced by spermidine at 42 degrees C was observed by circular dichroism. Polyamine stimulation of fMet-tRNA binding to ribosomes at 42 degrees C also disappeared by changing the bulged-out structure in the initiation site of rpoE mRNA. The results suggest that polyamines enhance the synthesis of RpoE by changing the bulged-out structure in the initiation site of rpoE mRNA.
Collapse
|
140
|
Nishimura K, Okudaira H, Ochiai E, Higashi K, Kaneko M, Ishii I, Nishimura T, Dohmae N, Kashiwagi K, Igarashi K. Identification of proteins whose synthesis is preferentially enhanced by polyamines at the level of translation in mammalian cells. Int J Biochem Cell Biol 2009; 41:2251-61. [PMID: 19427401 DOI: 10.1016/j.biocel.2009.04.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/25/2009] [Accepted: 04/29/2009] [Indexed: 11/17/2022]
Abstract
In Escherichia coli, several proteins whose synthesis is enhanced by polyamines at the level of translation have been identified. We looked for proteins that are similarly regulated in eukaryotes using a mouse mammary carcinoma FM3A cell culture system. Polyamine deficiency was induced by adding an inhibitor of ornithine decarboxylase, alpha-difluoromethylornithine, to the medium. Proteins enhanced by polyamines were determined by comparison of protein levels in control and polyamine-deficient cells using two-dimensional gel electrophoresis, and were identified by Edman degradation and/or LC/MALDI-TOF/TOF tandem mass spectrometry. Polyamine stimulation of the synthesis of these proteins at the level of translation was confirmed by measuring levels of the corresponding mRNAs and proteins, and levels of the [(35)S]methionine pulse-labeled proteins. The proteins identified in this way were T-complex protein 1, beta subunit (Cct2); heterogeneous nuclear ribonucleoprotein L (Hnrpl); and phosphoglycerate mutase 1 (Pgam1). Since Cct2 was most strongly enhanced by polyamines among three proteins, the mechanism of polyamine stimulation of Cct2 synthesis was studied using NIH3T3 cells transiently transfected with genes encoding Cct2-EGFP fusion mRNA with normal or mutated 5'-untranslated region (5'-UTR) of Cct2 mRNA. Polyamines most likely enhanced ribosome shunting on the 5'-UTR of Cct2 mRNA.
Collapse
Affiliation(s)
- Kazuhiro Nishimura
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Role of Mg(2+) block of the inward rectifier K(+) current in cardiac repolarization reserve: A quantitative simulation. J Mol Cell Cardiol 2009; 47:76-84. [PMID: 19303883 DOI: 10.1016/j.yjmcc.2009.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 03/01/2009] [Accepted: 03/10/2009] [Indexed: 11/21/2022]
Abstract
Different K(+) currents serve as "repolarization reserve" or a redundant repolarizing mechanism that protects against excessive prolongation of the cardiac action potential and therefore arrhythmia. Impairment of the inward rectifier K(+) current (I(K1)) has been implicated in the pathogenesis of cardiac arrhythmias. The characteristics of I(K1) reflect the kinetics of channel block by intracellular cations, primarily spermine (a polyamine) and Mg(2+), whose cellular levels may vary under various pathological conditions. However, the relevance of endogenous I(K1) blockers to the repolarization reserve is still not fully understood in detail. Here we used a mathematical model of a cardiac ventricular myocyte which quantitatively reproduces the dynamics of I(K1) block to examine the effects of the intracellular spermine and Mg(2+) concentrations, through modifying I(K1), on the action potential repolarization. Our simulation indicated that an I(K1) transient caused by relief of Mg(2+) block flows during early phase 3. Increases in the intracellular spermine/Mg(2+) concentration, or decreases in the intracellular Mg(2+) concentration, to levels outside their normal ranges prolonged action potential duration by decreasing the I(K1) transient. Moreover, reducing both the rapidly activating delayed rectifier current (I(Kr)) and the I(K1) transient caused a marked retardation of repolarization and early afterdepolarization because they overlap in the voltage range at which they flow. Our results indicate that the I(K1) transient caused by relief of Mg(2+) block is an important repolarizing current, especially when I(Kr) is reduced, and that abnormal intracellular free spermine/Mg(2+) concentrations may be a missing risk factor for malignant arrhythmias in I(Kr)-related acquired (drug-induced) and congenital long QT syndromes.
Collapse
|
142
|
Maruyoshi K, Nonaka K, Sagane T, Demura T, Yamaguchi T, Matsumori N, Oishi T, Murata M. Conformational change of spermidine upon interaction with adenosine triphosphate in aqueous solution. Chemistry 2009; 15:1618-26. [PMID: 19130510 DOI: 10.1002/chem.200801961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Endogenous polyamines, represented by putrescine, spermidine, and spermine, are known to exert their physiological functions by interacting with polyanionic biomolecules such as DNA, RNA, adenosine triphosphate (ATP), and phospholipids. Very few examples of conformation analysis have been reported for these highly flexible polymethylene compounds, mainly due to the lack of appropriate methodologies. To understand the molecular basis of the weak interaction between polyamines and polyanions that underlies their physiological functions, we aimed to elucidate the solution conformation of spermidine by using diastereospecifically deuterated and (13)C-labeled derivatives (1-7), which were designed to diagnose the orientation of seven conformationally relevant bonds in spermidine. (1)H-(1)H and (13)C-(1)H NMR coupling constants ((3)J(H,H) and (3)J(C,H)) were successfully determined for a spermidine-ATP complex. The relevant coupling constants markedly decreased upon complexation. The results reveal that spermidine, when interacting with ATP, undergoes changes that make the conformation more bent and forms the complex with the triphosphate part of ATP in an orientation-sensitive manner.
Collapse
Affiliation(s)
- Keisuke Maruyoshi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Lee J, Sperandio V, Frantz DE, Longgood J, Camilli A, Phillips MA, Michael AJ. An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J Biol Chem 2009; 284:9899-907. [PMID: 19196710 DOI: 10.1074/jbc.m900110200] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Polyamines are small organic cations found in all cells, and the biosynthetic pathway is well described in eukaryotes and Escherichia coli. The characterized pathway uses decarboxylated S-adenosylmethionine as the aminopropyl group donor to form spermidine from putrescine by the key enzymes S-adenosylmethionine decarboxylase and spermidine synthase. We report here the in vivo characterization of an alternative polyamine biosynthetic pathway from Vibrio cholerae, the causative agent of human cholera. The pathway uses aspartate beta-semialdehyde as the aminopropyl group donor and consists of a fused protein containing l-2,4-diaminobutyrate aminotransferase and l-2,4-diaminobutyrate decarboxylase, a carboxynorspermidine dehydrogenase (CANSDH), and a carboxynorspermidine decarboxylase (CANSDC). We show that in V. cholerae, this pathway is required for synthesis of both sym-norspermidine and spermidine. Heterologous expression of the V. cholerae pathway in E. coli results in accumulation of the nonnative polyamines diaminopropane and sym-norspermidine. Genetic deletion of the V. cholerae CANSDC led to accumulation of carboxynorspermidine, whereas deletion of either CANSDC or the putative CANSDH led to loss of sym-norspermidine and spermidine. These results allowed unambiguous identification of the gene encoding CANSDH. Furthermore, deletion of either CANSDH or CANSDC led to a 50-60% reduction in growth rate of planktonic cells and severely reduced biofilm formation, which could be rescued by exogenously supplied sym-norspermidine but not spermidine. The pathway was not required for infectivity in a mouse model of V. cholerae infection. Notably, the alternative polyamine biosynthetic pathway is widespread in bacteria and is likely to play a previously unrecognized role in the biology of these organisms.
Collapse
Affiliation(s)
- Jeongmi Lee
- Departments of Pharmacology, Microbiology, and Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Fleidervish IA, Libman L, Katz E, Gutnick MJ. Endogenous polyamines regulate cortical neuronal excitability by blocking voltage-gated Na+ channels. Proc Natl Acad Sci U S A 2008; 105:18994-9. [PMID: 19020082 PMCID: PMC2596226 DOI: 10.1073/pnas.0803464105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Indexed: 12/27/2022] Open
Abstract
Because the excitable properties of neurons in the neocortex depend on the characteristics of voltage-gated Na(+) channels, factors which regulate those characteristics can fundamentally modify the dynamics of cortical circuits. Here, we report on a novel neuromodulatory mechanism that links the availability of Na(+) channels to metabolism of polyamines (PAs) in the cerebral cortex. Using single channel and whole-cell recordings, we found that products of PA metabolism, the ubiquitous aliphatic polycations spermine and spermidine, are endogenous blockers of Na(+) channels in layer 5 pyramidal cells. Because the blockade is activity-dependent, it is particularly effective against Na(+) channels which fail to inactivate rapidly and thus underlie the persistent Na(+) current. At the level of the local cortical circuit, pharmacological depletion of PAs led to increased spontaneous spiking and periods of hypersynchronous discharge. Our data suggest that changes in PA levels, whether associated with normal brain states or pathological conditions, profoundly modify Na(+) channel availability and thereby shape the integrative behavior of single neurons and neocortical circuits.
Collapse
Affiliation(s)
- Ilya A Fleidervish
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
145
|
Yoshida M, Tomitori H, Machi Y, Hagihara M, Higashi K, Goda H, Ohya T, Niitsu M, Kashiwagi K, Igarashi K. Acrolein toxicity: Comparison with reactive oxygen species. Biochem Biophys Res Commun 2008; 378:313-8. [PMID: 19032949 DOI: 10.1016/j.bbrc.2008.11.054] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
The toxicity of acrolein was compared with that of reactive oxygen species using a mouse mammary carcinoma FM3A cell culture system. Complete inhibition of cell growth was accomplished with 10 microM acrolein, 100 microM H(2)O(2), and 20 microM H(2)O(2) plus 1mM vitamin C, which produce ()OH, suggesting that toxicity of acrolein is more severe than H(2)O(2) and nearly equal to that of ()OH, when these compounds were added extracellularly. Acrolein toxicity was prevented by N-acetyl-l-cysteine and N-benzylhydroxylamine, and attenuated by putrescine and spermidine. Toxicity of H(2)O(2) was prevented by glutathione peroxidase plus N-acetyl-l-cysteine, pyruvate, catalase, and reduced by polyphenol, and toxicity of ()OH was prevented by glutathione peroxidase plus N-acetyl-l-cysteine, pyruvate, catalase and reduced by N-acetyl-l-cysteine. The results indicate that prevention of cell toxicity by N-acetyl-l-cysteine was more effective with acrolein than with ()OH. Protein and DNA synthesis was damaged primarily by acrolein and reactive oxygen species, respectively.
Collapse
Affiliation(s)
- Madoka Yoshida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Higashi K, Terui Y, Suganami A, Tamura Y, Nishimura K, Kashiwagi K, Igarashi K. Selective Structural Change by Spermidine in the Bulged-out Region of Double-stranded RNA and Its Effect on RNA Function. J Biol Chem 2008; 283:32989-94. [DOI: 10.1074/jbc.m806027200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
147
|
Spermine biphasically affects N-type calcium channel currents in adult dorsal root ganglion neurons of the rat. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2437-43. [DOI: 10.1016/j.bbamem.2008.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 06/18/2008] [Accepted: 07/09/2008] [Indexed: 11/20/2022]
|
148
|
Role of polyamine transport in Streptococcus pneumoniae response to physiological stress and murine septicemia. Microb Pathog 2008; 45:167-72. [DOI: 10.1016/j.micpath.2008.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/10/2008] [Accepted: 05/10/2008] [Indexed: 11/20/2022]
|
149
|
KUCHERYAVYKH YURIYV, SHUBA YAROSLAVM, ANTONOV SERGEIM, INYUSHIN MIKHAILY, CUBANO LUIS, PEARSON WADEL, KURATA HARLEY, REICHENBACH ANDREAS, VEH RÜDIGERW, NICHOLS COLING, EATON MISTYJ, SKATCHKOV SERGUEIN. Complex rectification of Müller cell Kir currents. Glia 2008; 56:775-90. [PMID: 18293411 PMCID: PMC9930535 DOI: 10.1002/glia.20652] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although Kir4.1 channels are the major inwardly rectifying channels in glial cells and are widely accepted to support K+- and glutamate-uptake in the nervous system, the properties of Kir4.1 channels during vital changes of K+ and polyamines remain poorly understood. Therefore, the present study examined the voltage-dependence of K+ conductance with varying physiological and pathophysiological external [K+] and intrapipette spermine ([SP]) concentrations in Müller glial cells and in tsA201 cells expressing recombinant Kir4.1 channels. Two different types of [SP] block were characterized: "fast" and "slow." Fast block was steeply voltage-dependent, with only a low sensitivity to spermine and strong dependence on extracellular potassium concentration, [K+]o. Slow block had a strong voltage sensitivity that begins closer to resting membrane potential and was essentially [K+]o-independent, but with a higher spermine- and [K+]i-sensitivity. Using a modified Woodhull model and fitting i/V curves from whole cell recordings, we have calculated free [SP](in) in Müller glial cells as 0.81 +/- 0.24 mM. This is much higher than has been estimated previously in neurons. Biphasic block properties underlie a significantly varying extent of rectification with [K+] and [SP]. While confirming similar properties of glial Kir and recombinant Kir4.1, the results also suggest mechanisms underlying K+ buffering in glial cells: When [K+]o is rapidly increased, as would occur during neuronal excitation, "fast block" would be relieved, promoting potassium influx to glial cells. Increase in [K+]in would then lead to relief of "slow block," further promoting K+-influx.
Collapse
Affiliation(s)
- YURIY V. KUCHERYAVYKH
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, PR
| | - YAROSLAV M. SHUBA
- International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kiev, 01024 Ukraine
| | - SERGEI M. ANTONOV
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223 Russia
| | - MIKHAIL Y. INYUSHIN
- Department of Physiology, Universidad Central del Caribe, School of Medicine, Bayamón, PR
| | - LUIS CUBANO
- Department of Anatomy and Cell Biology, Universidad Central del Caribe, School of Medicine, Bayamón, PR
| | - WADE L. PEARSON
- Department of Cell Biology and Physiology, Washington University, School of Medicine, St. Louis, MO
| | - HARLEY KURATA
- Department of Cell Biology and Physiology, Washington University, School of Medicine, St. Louis, MO
| | - ANDREAS REICHENBACH
- Paul Flechsig Institute of Brain Research, Leipzig University, D-04109 Leipzig, Germany
| | - RÜDIGER W. VEH
- Institute of Integrative Neuroanatomy, Charité, Philipstrasse 12, Berlin, Germany
| | - COLIN G. NICHOLS
- Department of Cell Biology and Physiology, Washington University, School of Medicine, St. Louis, MO
| | - MISTY J. EATON
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, PR
| | - SERGUEI N. SKATCHKOV
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, PR,Department of Physiology, Universidad Central del Caribe, School of Medicine, Bayamón, PR,Correspondence to: S. N. Skatchkov, Departments of Biochemistry and Physiology, School of Medicine, Universidad Central del Caribe, Box 60-327, Bayamón, Puerto Rico, USA 00960-6032.
| |
Collapse
|
150
|
Higashi K, Terui Y, Inomata E, Katagiri D, Nomura Y, Someya T, Nishimura K, Kashiwagi K, Kawai G, Igarashi K. Selective structural change of bulged-out region of double-stranded RNA containing bulged nucleotides by spermidine. Biochem Biophys Res Commun 2008; 370:572-7. [PMID: 18396151 DOI: 10.1016/j.bbrc.2008.03.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
Polyamines are essential for cell growth due to effects mainly at the level of translation. These effects likely involve a structural change, induced by polyamines, of the bulged-out region of double-stranded RNA that is different from changes induced by Mg(2+). Structural changes were studied using U6-34, a model RNA of U6 small nuclear RNA containing bulged nucleotides. Binding of NS1-2 peptide derived from the RNA binding site of NS1 protein, to U6-34 was inhibited by spermidine but not by Mg(2+). A selective conformational change of the bases in the bulged-out region of U6-34 induced by spermidine was observed by NMR. The selective effect of spermidine was lost when the bulged-out region of U6-34 was removed in U6-34(Delta5). The binding of NS1-2 peptide to U6-34(Delta5) was inhibited both by spermidine and Mg(2+). The selective structural change of U6-34 by spermidine was confirmed by circular dichroism.
Collapse
Affiliation(s)
- Kyohei Higashi
- Department of Clinical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|