101
|
Ikeno Y, Konno N, Cheon SH, Bolchi A, Ottonello S, Kitamoto K, Arioka M. Secretory Phospholipases A2 Induce Neurite Outgrowth in PC12 Cells through Lysophosphatidylcholine Generation and Activation of G2A Receptor. J Biol Chem 2005; 280:28044-52. [PMID: 15927955 DOI: 10.1074/jbc.m503343200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that secretory phospholipase A2 (sPLA2) and lysophosphatidylcholine (LPC) exhibit neurotrophin-like neuritogenic activity in the rat pheochromocytoma cell line PC12. In this study, we further analyzed the mechanism whereby sPLA2 displays neurite-inducing activity. Exogenously added mammalian group X sPLA2 (sPLA2-X), but not group IB and IIA sPLA2s, induced neuritogenesis, which correlated with the ability of sPLA2-X to liberate LPC into the culture media. In accordance, blocking the effect of LPC by supplementation of bovine serum albumin or phospholipase B attenuated neuritogenesis by sPLA2 or LPC. Overproduction or suppression of G2A, a G-protein-coupled receptor involved in LPC signaling, resulted in the enhancement or reduction of neuritogenesis induced by sPLA2 treatment. These results indicate that the neuritogenic effect of sPLA2 is mediated by generation of LPC and subsequent activation of G2A.
Collapse
Affiliation(s)
- Yutaka Ikeno
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
102
|
Kini RM. Structure–function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon 2005; 45:1147-61. [PMID: 15922780 DOI: 10.1016/j.toxicon.2005.02.018] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Phospholipase A(2) (PLA(2)) enzymes from snake venom are toxic and induce a wide spectrum of pharmacological effects, despite similarity in primary, secondary and tertiary structures and common catalytic properties. Thus, the structure-function relationships and the mechanism of this group of small proteins are subtle, complex and intriguing challenges. This review, taking the PLA(2) enzymes from spitting cobra (Naja nigricollis) venom as examples, describes the mechanism of anticoagulant effects. The strongly anticoagulant CM-IV inhibits both the extrinsic tenase and prothrombinase complexes, whereas the weakly anticoagulant PLA(2) enzymes (CM-I and CM-II) inhibit only the extrinsic tenase complex. CM-IV binds to factor Xa and interferes in its interaction with factor Va and the formation of prothrombinase complex. In contrast, CM-I and CM-II do not affect the formation of prothrombinase complex. In addition, CM-IV inhibits the extrinsic tenase complex by a combination of enzymatic and nonenzymatic mechanisms, while CM-I and CM-II inhibit by only enzymatic mechanism. These functional differences explain the disparity in the anticoagulant potency of N. nigricollis PLA(2) enzymes. Similarly, human secretory enzyme binds to factor Xa and inhibits the prothrombinase complex. We predicted the anticoagulant region of PLA(2) enzymes using a systematic and direct comparison of amino acid sequences. This region between 54 and 77 residues is basic in the strongly anticoagulant PLA(2) enzymes and neutral or negatively charged in weakly and non-anticoagulant enzymes. The prediction is validated independently by us and others using both site directed mutagenesis and synthetic peptides. Thus, strongly anticoagulant CM-IV binds to factor Xa (its target protein) through the specific anticoagulant site on its surface. In contrast, weakly anticoagulant enzymes, which lack the anticoagulant region fail to bind specifically to the target protein, factor Xa in the coagulation cascade. Thus, these studies strongly support the target model which suggests that protein-protein interaction rather than protein-phospholipid interaction determines the pharmacological specificity of PLA(2) enzymes.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
103
|
Nevalainen TJ, Eerola LI, Rintala E, Laine VJO, Lambeau G, Gelb MH. Time-resolved fluoroimmunoassays of the complete set of secreted phospholipases A2 in human serum. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:210-23. [PMID: 15863368 DOI: 10.1016/j.bbalip.2004.12.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 12/03/2004] [Accepted: 12/20/2004] [Indexed: 11/23/2022]
Abstract
Time-resolved fluoroimmunoassays (TR-FIA) were developed for all human secreted phospholipases A(2) (PLA(2)), viz. group (G) IB, GIIA, GIID, GIIE, GIIF, GIII, GV, GX and GXIIA PLA(2) and the GXIIB PLA(2)-like protein. Antibodies were raised in rabbits against recombinant human PLA(2) proteins and used in sandwich-type TR-FIAs as both catching and detecting antibodies, the latter after labeling with Europium. The antibodies were non-cross-reactive. The analytical sensitivities were 1 microg/L for the TR-FIA for GIB PLA(2), 1 microg/L (GIIA), 35 microg/L (GIID), 3 microg/L (GIIE), 4 microg/L (GIIF), 14 microg/L (GIII), 11 microg/L (GV), 2 microg/L (GX), 92 microg/L (GXIIA) and 242 microg/L (GXIIB). All secreted PLA(2)s were assayed by these TR-FIAs in serum samples from 34 patients (23 men and 11 women, mean age 53.2 years) treated in an intensive care unit for septic infections, and in control samples from 28 volunteer blood donors (14 men and 14 women, mean age 57.0 years). Five serum samples (3 in the sepsis group and 2 in the blood donor group) gave high TR-FIA signals that were reduced to background (blank) levels by the addition of non-immune rabbit IgG to the sera. This reactivity was assumed to be due to the presence of heterophilic antibodies in these subjects. In all other subjects, including septic patients and healthy blood donors, the TR-FIA signals for GIID, GIIE, GIIF, GIII, GV, GX and GXIIA PLA(2) and the GXIIB PLA(2)-like protein were at background (blank) levels. Four patients in the sepsis group had pancreatic involvement and elevated concentration of GIB PLA(2) in serum (median 19.0 microg/L, range 13.1-33.7 microg/L, n = 4) as compared to the healthy blood donors (median 1.8 microg/L, range 0.8-3.4 microg/L, n = 28, P < 0.0001). The concentration of GIIA PLA(2) in the sera of septic patients (median 315.7 microg/L, range 15.9-979.6 microg/L, n = 34) was highly elevated as compared to that of the blood donors (median 1.8 microg/L, range 0.8-5.8 microg/L, n = 28, P < 0.0001). Our current results confirmed elevated concentrations of GIB and GIIA PLA(2) in the sera of patients suffering from acute pancreatitis or septic infections, respectively, as compared to healthy subjects. However, in the same serum samples, the concentrations of the other secreted PLA(2)s, viz. GIID, GIIE, GIIF, GIII, GV, GX and GXIIA PLA(2) and the GXIIB PLA(2)-like protein were below the respective analytical sensitivities of the TR-FIAs. It is concluded that generalized bacterial infections do not lead to elevated serum levels of GIIE, GIIF, GIII, GV and GX PLA(2)s above the detection limits of the current TR-FIAs.
Collapse
|
104
|
Menschikowski M, Hagelgans A, Heyne B, Hempel U, Neumeister V, Goez P, Jaross W, Siegert G. Statins potentiate the IFN-γ-induced upregulation of group IIA phospholipase A2 in human aortic smooth muscle cells and HepG2 hepatoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:157-71. [PMID: 15863363 DOI: 10.1016/j.bbalip.2005.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 12/20/2004] [Accepted: 01/10/2005] [Indexed: 01/06/2023]
Abstract
The present study shows that the incubation of human aortic smooth muscle cells (HASMC) and HepG2 cells with atorvastatin and mevastatin as HMG-CoA reductase inhibitors potentiated the interferon-gamma (INF-gamma)-induced group IIA phospholipase A(2) (sPLA(2)-IIA) expression in a dose- and time-dependent manner. The effect of statins on sPLA(2)-IIA expression was reduced by mevalonate, farnesyl pyrophosphate and geranylgeranyl pyrophosphate. Inversely, inhibitors of the farnesyl transferase and geranylgeranyl transferase-I mimicked the effects of statins. Clostridium difficile toxin B (TcdB), Y-27632 and H-1152, functioning as inhibitors of Rho proteins and Rho-associated kinase, also augmented the sPLA(2)-IIA expression in combination with IFN-gamma. The same effects were observed when inhibitors of mitogen-activated/extracellular response protein kinase kinase (MEK), PD98059 or U0126 were used. Further, the Janus kinase-2 (Jak2)-specific inhibitor, AG-490 and inhibitors of nuclear factor-kappaB (NFkappaB) abrogated the sPLA(2)-IIA elevating effects of statins, TcdB and PD98059 in the presence of IFN-gamma. This cytokine alone increased the NFkappaB p65 and CAAT-enhancer-binding protein-beta (C/EBP-beta) activity in HASMC nuclear extract, but only C/EBP-beta was further augmented when the cells were incubated in addition to IFN-gamma with atorvastatin, H-1152, PD98059 or U0126. Moreover, after the incubation of cells with atorvastatin and IFN-gamma the stability of sPLA-(2)IIA mRNA significantly increased in comparison to those after incubation with IFN-gamma alone. In conclusion, the obtained data suggest that (i) the expression of sPLA(2)-IIA is negatively regulated by RhoA/Rho-associated kinase and MEK/ERK signaling pathways and (ii) statins, because of their ability to down-regulate these pathways, can potentiate the IFN-gamma-induced sPLA(2)-II expression at transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Mario Menschikowski
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Klinische Chemie und Laboratoriumsmedizin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Masuda S, Murakami M, Komiyama K, Ishihara M, Ishikawa Y, Ishii T, Kudo I. Various secretory phospholipase A2 enzymes are expressed in rheumatoid arthritis and augment prostaglandin production in cultured synovial cells. FEBS J 2005; 272:655-72. [PMID: 15670148 DOI: 10.1111/j.1742-4658.2004.04489.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although group IIA secretory phospholipase A2 (sPLA2-IIA) is known to be abundantly present in the joints of patients with rheumatoid arthritis (RA), expression of other sPLA2s in this disease has remained unknown. In this study, we examined the expression and localization of six sPLA2s (groups IIA, IID, IIE, IIF, V and X) in human RA. Immunohistochemistry of RA sections revealed that sPLA2-IIA was generally located in synovial lining and sublining cells and cartilage chondrocytes, sPLA2-IID in lymph follicles and capillary endothelium, sPLA2-IIE in vascular smooth muscle cells, and sPLA2-V in interstitial fibroblasts. Expression levels of these group II subfamily sPLA2s appeared to be higher in severe RA than in inactive RA. sPLA2-X was detected in synovial lining cells and interstitial fibers in both active and inactive RA sections. Expression of sPLA2-IIF was partially positive, yet its correlation with disease states was unclear. Expression of sPLA2 transcripts was also evident in cultured normal human synoviocytes, in which sPLA2-IIA and -V were induced by interleukin-1 and sPLA2-X was expressed constitutively. Adenovirus-mediated expression of sPLA2s in cultured synoviocytes resulted in increased prostaglandin E2 production at low ng x mL(-1) concentrations. Thus, multiple sPLA2s are expressed in human RA, in which they may play a role in the augmentation of arachidonate metabolism or exhibit other cell type-specific functions.
Collapse
Affiliation(s)
- Seiko Masuda
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
106
|
Van Biervliet S, Van Biervliet JP, Robberecht E, Christophe A. Docosahexaenoic acid trials in cystic fibrosis: A review of the rationale behind the clinical trials. J Cyst Fibros 2005; 4:27-34. [PMID: 15752678 DOI: 10.1016/j.jcf.2004.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 11/08/2004] [Indexed: 12/22/2022]
Affiliation(s)
- S Van Biervliet
- Cystic Fibrosis Centre UZ Ghent, Paediatric Gastroenterology, Ghent University Hospital, Belgium.
| | | | | | | |
Collapse
|
107
|
Singh G, Gourinath S, Sarvanan K, Sharma S, Bhanumathi S, Betzel C, Yadav S, Srinivasan A, Singh TP. Crystal structure of a carbohydrate induced homodimer of phospholipase A2 from Bungarus caeruleus at 2.1Å resolution. J Struct Biol 2005; 149:264-72. [PMID: 15721580 DOI: 10.1016/j.jsb.2004.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 11/15/2004] [Indexed: 11/22/2022]
Abstract
This is the first crystal structure of a carbohydrate induced dimer of phospholipase A(2) (PLA(2)). This is an endogenous complex formed between two PLA(2) molecules and two mannoses. It was isolated from Krait venom (Bungarus caeruleus) and crystallized as such. The complete amino acid sequence of PLA(2) was determined using cDNA method. Three-dimensional structure of the complex has been solved with molecular replacement method and refined to a final R-factor of 0.192 for all the data in the resolution range 20.0-2.1A. The presence of mannose molecules in the protein crystals was confirmed using dinitrosalicylic acid test and the molecular weight of the dimer was verified with MALDI-TOF. As indicated by dynamic light scattering and analytical ultracentrifugation the dimer was also stable in solution. The good quality non-protein electron density at the interface of two PLA(2) molecules enabled us to model two mannoses. The mannoses are involved extensively in interactions with protein atoms of both PLA(2) molecules. Some of the critical amino acid residues such as Asp 49 and Tyr 31, which are part of the substrate-binding site, are found facing the interface and interacting with mannoses. The structure of the complex clearly shows that the dimerization is caused by mannoses and it results in the loss of enzymatic activity.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
|
109
|
Kuwata H, Yamamoto S, Takekura A, Murakami M, Kudo I. Group IIA secretory phospholipase A2 is a unique 12/15-lipoxygenase-regulated gene in cytokine-stimulated rat fibroblastic 3Y1 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1686:15-23. [PMID: 15522818 DOI: 10.1016/j.bbalip.2004.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 07/13/2004] [Accepted: 07/15/2004] [Indexed: 11/29/2022]
Abstract
We have proposed previously that the expression of group IIA secretory phospholipase A(2) (sPLA(2)-IIA), an enzyme implicated in inflammation, is under the control of group IVA cytosolic phospholipase A(2) (cPLA(2)) and 12/15-lipoxygense (12/15-LOX) in cytokine-stimulated rat fibroblastic 3Y1 cells. Here, we show that the reduction of cytokine-stimulated sPLA(2)-IIA induction by the cPLA(2) inhibitor arachidonyl trifluoromethyl ketone (AACOCF(3)) is partially overcome by the addition of various lysophospholipids, such as lysophosphatidylcholine (LysoPC). Furthermore, this lysophospholipid effect was enhanced by further addition of 12/15-LOX products, such as 12(S)- or 15(S)-hydroxyeicosatetraenoic acid (HETE) and 13(S)-hydroxyoctadecadienoic acid (HODE), thus substantiating the hypothesis that the expression of sPLA(2)-IIA is selectively regulated by lipid products of the cPLA(2)-12/15-LOX pathway. In an attempt to identify a set of 12/15-LOX-regulated genes, the cDNA subtraction technique, followed by Northern blotting, was performed to screen particular clones, the expression of which was suppressed by the LOX inhibitor nordihydroguaiaretic acid (NDGA). NDGA-sensitive clones identified thus far included sPLA(2)-IIA, cytoplasmic signaling intermediates, several oxygenases, extracellular matrices, secretory proteins, and other cellular proteins. Of these genes, however, only the expression of sPLA(2)-IIA and 14-3-3eta was enhanced by 12/15-LOX expression. Taken together, our data suggest that sPLA(2)-IIA represents a particular group of genes, the transcription of which is up-regulated by 12/15-LOX metabolites.
Collapse
Affiliation(s)
- Hiroshi Kuwata
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | |
Collapse
|
110
|
Yagami T, Ueda K, Sakaeda T, Okamura N, Nakazato H, Kuroda T, Hata S, Sakaguchi G, Itoh N, Hashimoto Y, Fujimoto M. Effects of an endothelin B receptor agonist on secretory phospholipase A2-IIA-induced apoptosis in cortical neurons. Neuropharmacology 2005; 48:291-300. [PMID: 15695168 DOI: 10.1016/j.neuropharm.2004.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 05/27/2004] [Accepted: 09/16/2004] [Indexed: 10/26/2022]
Abstract
Endothelin (ET), a vasoconstrictive peptide, acts as an anti-apoptotic factor, and endothelin receptor B (ETB receptor) is associated with neuronal survival in the brain. Human group IIA secretory phospholipase A2 (sPLA2-IIA) is expressed in the cerebral cortex after brain ischemia and causes neuronal cell death via apoptosis. In primary cultures of rat cortical neurons, we investigated the effects of an ETB receptor agonist, ET-3, on sPLA2-IIA-induced cell death. sPLA2-IIA caused neuronal cell death in a concentration- and time-dependent manner. ET-3 significantly prevented neurons from undergoing sPLA2-IIA-induced cell death. These agonists reversed sPLA2-IIA-induced apoptotic features such as the condensation of chromatin and the fragmentation of DNA. Before cell death, sPLA2-IIA potentiated the influx of Ca2+ into neurons. Blockers of the L-type voltage-dependent calcium channel (L-VSCC) not only suppressed the Ca2+ influx, but also exhibited neuroprotective effects. As well as L-VSCC blockers, ET-3 significantly prevented neurons from sPLA2-IIA-induced Ca2+ influx. An ETB receptor antagonist, BQ788, inhibited the effects of ET-3. The present cortical cultures contained few non-neuronal cells, indicating that the ETB receptor agonist affected the survival of neurons directly, but not indirectly via non-neuronal cells. In conclusion, we demonstrate that the ETB receptor agonist rescues cortical neurons from sPLA2-IIA-induced apoptosis. Furthermore, the present study suggests that the inhibition of L-VSCC contributes to the neuroprotective effects of the ETB receptor agonist.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Discovery Research Laboratories, Shionogi and Co, Ltd., 12-4 Sagisu 5-Chome, Fukushima-ku, Osaka 553-0002, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Ghesquiere SAI, Gijbels MJJ, Anthonsen M, van Gorp PJJ, van der Made I, Johansen B, Hofker MH, de Winther MPJ. Macrophage-specific overexpression of group IIa sPLA2 increases atherosclerosis and enhances collagen deposition. J Lipid Res 2005; 46:201-10. [PMID: 15576846 DOI: 10.1194/jlr.m400253-jlr200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vessel wall characterized by the accumulation of lipid-laden macrophages and fibrotic material. The initiation of the disease is accompanied by the accumulation of modified lipoproteins in the vessel wall. Group IIa secretory phospholipase A2 (sPLA2 IIa) is a key candidate player in the enzymatic modification of low density lipoproteins. To study the role of sPLA2 IIa in macrophages during atherogenesis, transgenic mice were generated using the human sPLA2 IIa gene and the CD11b promoter. Bone marrow transplantation to LDL receptor-deficient mice was performed to study sPLA2 IIa in atherosclerosis. After 10 weeks of high-fat diet, mice overexpressing sPLA2 IIa in macrophages showed 2.3-fold larger lesions compared with control mice. Pathological examination revealed that sPLA2 IIa-expressing mice had increased collagen in their lesions, independent of lesion size. However, smooth muscle cells or fibroblasts in the lesions were not affected. Other parameters studied, including T-cells and cell turnover, were not significantly affected by overexpression of sPLA2 IIa in macrophages. These data clearly show that macrophage sPLA2 IIa is a proatherogenic factor and suggest that the enzyme regulates collagen production in the plaque and thus fibrotic cap development.
Collapse
Affiliation(s)
- Stijn A I Ghesquiere
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Saiga A, Uozumi N, Ono T, Seno K, Ishimoto Y, Arita H, Shimizu T, Hanasaki K. Group X secretory phospholipase A2 can induce arachidonic acid release and eicosanoid production without activation of cytosolic phospholipase A2 alpha. Prostaglandins Other Lipid Mediat 2005; 75:79-89. [PMID: 15789617 DOI: 10.1016/j.prostaglandins.2004.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice. We found that Pyrrophenone, a cPLA2alpha-specific inhibitor, did not suppress the sPLA2-X-induced potent AA release and prostaglandin E2 formation in mouse spleen cells. Furthermore, the amount of AA released by sPLA2-X from spleen cells was not significantly altered by cPLA2alpha deficiency. These results suggest that sPLA2-X induces potent AA release without activation of cPLA2a, which might be relevant to eicosanoid production in some pathological states where cPLA2a is not activated.
Collapse
Affiliation(s)
- Akihiko Saiga
- Shionogi Research Laboratories, Shionogi and Co. Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Ergot alkaloids have been the mainstay of acute migraine therapy for most of the 20th century. They have been supplanted by sumatriptan-like drugs ('triptans'), which, while keeping some of the ergotś mechanisms of action, show improved safety profiles due to their increased receptor selectivity. However, triptans are still far from being perfect drugs: they can constrict human coronary arteries at therapeutic doses and, therefore, are contra-indicated in the presence of cardiovascular disease. Another problem with these agents is recurrence of moderate-to-severe pain within 24 h of initial headache relief. While mechanism-driven drug design has led to the development of various novel, albeit still imperfect, acute antimigraine medications, only a few new prophylactic agents have been made available to migraine clinicians. The efficacy of most, if not all of them has been discovered serendipitously. This is probably due to the fact that, while the pathophysiology of a migraine attack is now reasonably understood, the mechanisms leading to an attack are still mostly unknown. This update analyses the profile of some antimigraine drugs in clinical trials, their mode of action and their potential advantages or drawbacks over already available agents.
Collapse
Affiliation(s)
- Christian Waeber
- Department of Radiology, Massachusetts General Hospital/Harvard Medical School, CNY149 Room 6403, 149 13th Street, Charlestown, Massachusetts, MA 02129, USA
| |
Collapse
|
114
|
Macchioni L, Corazzi L, Nardicchi V, Mannucci R, Arcuri C, Porcellati S, Sposini T, Donato R, Goracci G. Rat Brain Cortex Mitochondria Release Group II Secretory Phospholipase A2 under Reduced Membrane Potential. J Biol Chem 2004; 279:37860-9. [PMID: 15231825 DOI: 10.1074/jbc.m303855200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of brain mitochondrial phospholipase(s) A(2) (PLA(2)) might contribute to cell damage and be involved in neurodegeneration. Despite the potential importance of the phenomenon, the number, identities, and properties of these enzymes are still unknown. Here, we demonstrate that isolated mitochondria from rat brain cortex, incubated in the absence of respiratory substrates, release a Ca(2+)-dependent PLA(2) having biochemical properties characteristic to secreted PLA(2) (sPLA(2)) and immunoreacting with the antibody raised against recombinant type IIA sPLA(2) (sPLA(2)-IIA). Under identical conditions, no release of fumarase in the extramitochondrial medium was observed. The release of sPLA(2) from mitochondria decreases when mitochondria are incubated in the presence of respiratory substrates such as ADP, malate, and pyruvate, which causes an increase of transmembrane potential determined by cytofluorimetric analysis using DiOC(6)(3) as a probe. The treatment of mitochondria with the uncoupler carbonyl cyanide 3-chlorophenylhydrazone slightly enhances sPLA(2) release. The increase of sPLA(2) specific activity after removal of mitochondrial outer membrane indicates that the enzyme is associated with mitoplasts. The mitochondrial localization of the enzyme has been confirmed by electron microscopy in U-251 astrocytoma cells and by confocal laser microscopy in the same cells and in PC-12 cells, where the structurally similar isoform type V-sPLA(2) has mainly nuclear localization. In addition to sPLA(2), mitochondria contain another phospholipase A(2) that is Ca(2+)-independent and sensitive to bromoenol lactone, associated with the outer mitochondrial membrane. We hypothesize that, under reduced respiratory rate, brain mitochondria release sPLA(2)-IIA that might contribute to cell damage.
Collapse
Affiliation(s)
- Lara Macchioni
- Department of Internal Medicine, Division of Biochemistry, University of Perugia, I-06125 Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
The three known human Group IV phospholipase A2 (PLA2) paralogs, Group IVA, IVB and IVC, were overexpressed in Sf9 insect cells using the baculovirus expression system. An endogenous, calcium-independent PLA2 activity was identified in the insect cell lysates, which can be inhibited by bromoenol lactone (BEL). The Group IV PLA2 enzymes were characterized in overexpressing insect cell lysates in the presence of BEL, enabling their differentiation from the endogenous PLA2 activity. Group IVC PLA2 was found to have significant lysophospholipase activity, while Group IVB PLA2 did not. Of the three paralogs, only the Group IVA PLA2 shows enhanced activity in the presence of PIP2, which enables its differential detection in cell homogenates. RT-PCR was used to demonstrate the presence of all three enzymes in human U937 and human WISH cells, while only Group IVA and Group IVB PLA2 were detected in murine P388D1 cells and human astrocytes at the mRNA level.
Collapse
Affiliation(s)
- Karin Killermann Lucas
- Department of Chemistry and Biochemistry, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
116
|
Ohno M, Chijiwa T, Oda-Ueda N, Ogawa T, Hattori S. Molecular evolution of myotoxic phospholipases A2 from snake venom. Toxicon 2004; 42:841-54. [PMID: 15019486 DOI: 10.1016/j.toxicon.2003.11.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
After two decades of study, we draw the conclusion that venom-gland phospholipase A2 (PLA2) isozymes, including PLA2 myotoxins of Crotalinae snakes, have evolved in an accelerated manner to acquire their diverse physiological activities. In this review, we describe how accelerated evolution of venom PLA2 isozymes was discovered. This type of evolution is fundamental for other venom isozyme systems. Accelerated evolution of venom PLA2 isozyme genes is due to rapid change in exons, but not in introns and the flanking regions, being completely opposite to the case of the ordinary isozyme genes. The molecular mechanism by which proper base substitutions had occurred in the particular sites of venom isozyme genes is a puzzle to be solved in future studies. It should be noted that accelerated evolution occurred until the isozymes had acquired their particular function and, since then, they have evolved with less frequent mutation, possibly for functional conservation. We also found that interisland mutations occurred in venom PLA2 isozymes. The relationships between mutation and its driving force are speculative and the real mechanism remains a mystery.
Collapse
Affiliation(s)
- Motonori Ohno
- Department of Applied Life Science, Faculty of Engineering, Sojo University, Kumamoto 860-0082, Japan.
| | | | | | | | | |
Collapse
|
117
|
Yagami T, Ueda K, Sakaeda T, Itoh N, Sakaguchi G, Okamura N, Hori Y, Fujimoto M. Protective effects of a selective L-type voltage-sensitive calcium channel blocker, S-312-d, on neuronal cell death. Biochem Pharmacol 2004; 67:1153-65. [PMID: 15006551 DOI: 10.1016/j.bcp.2003.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
Amyloid beta protein (Abeta)- and human group IIA secretory phospholipase A(2) (sPLA(2)-IIA)-induced neuronal cell death have been established as in vitro models for Alzheimer's disease (AD) and stroke. Both sPLA(2)-IIA and Abeta causes neuronal apoptosis by increasing the influx of Ca(2+) through L-type voltage-sensitive Ca(2+) channel (L-VSCC). In the present study, we evaluated effects of a selective L-VSCC blocker, S-(+)-methyl 4,7-dihydro-3-isobutyl-6-methyl-4-(3-nitro-phenyl)thieno[2,3-b]pyridine-5-carboxylate (S-312-d), on Abeta- and sPLA(2)-IIA-induced neuronal apoptosis in primary cultures of rat cortical neurons. S-312-d significantly rescued cortical neurons from Abeta- and sPLA(2)-IIA-induced cell death. Both cell death stimuli caused the appearance of apoptotic features such as plasma membrane blebs, chromatin condensation, and DNA fragmentation. S-312-d completely suppressed these apoptotic features. Before apoptosis, the two death ligands markedly enhanced an influx of Ca(2+) into neurons. S-312-d significantly prevented neurons from sPLA(2)-IIA- and Abeta-induced Ca(2+) influx. Furthermore, the neuroprotective effect of S-312-d was more potent than that of another L-VSCC blocker, nimodipine. On the other hand, blockers of other VSCCs such as the N-type and P/Q-type calcium channels had no effect on the neuronal cell death, apoptotic features and Ca(2+) influx. In conclusion, we demonstrated that S-312-d rescues cortical neurons from Abeta- and sPLA(2)-IIA-induced apoptosis.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Discovery Research Laboratories, Shionogi and Co., Ltd., 12-4, Sagisu 5-Choume, Fukushima-Ku, Osaka 553-0002, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Lindstrom T, Bennett P. Transcriptional regulation of genes for enzymes of the prostaglandin biosynthetic pathway. Prostaglandins Leukot Essent Fatty Acids 2004; 70:115-35. [PMID: 14683688 DOI: 10.1016/j.plefa.2003.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous studies over the years have demonstrated changes in prostaglandin (PG) levels in intrauterine tissues in association with labour, and PG administration has long been used to induce delivery. While it is now widely accepted that PGs play a major role in human parturition, the complex regulation of their levels is still being elucidated, with the focus on the transcriptional control of the enzymes responsible for the various steps in PG biosynthesis and catabolism.
Collapse
Affiliation(s)
- Tamsin Lindstrom
- Faculty of Medicine, Institute of Reproductive and Developmental Biology, Parturition Research Group, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
119
|
Abstract
Mammalian cells contain several structurally different phospholipase (PLA2) enzymes that exhibit distinct localisation, function and mechanisms of regulation. PLA2 isozymes have been postulated to play significant roles in the parturition process. Both secretory and cytosolic PLA2 isozymes have been identified in human gestational tissues, and there is differential expression of these PLA2 isozymes in human fetal membranes and placenta obtained at preterm and term. The aims of this commentary are: (1) to review recent data concerning the expression, role and regulation of PLA2 isozymes in human gestational tissues; and (2) to present novel data demonstrating the regulation of PLA2 isozymes in human gestational tissues by nuclear factor-kappa B (NF-kappaB) and peroxisome proliferator-activated receptor (PPAR)-g.
Collapse
Affiliation(s)
- M Lappas
- Mercy Perinatal Research Center, Mercy Hospital for Women, 126 Clarendon Street, East Melbourne 3002, Australia.
| | | |
Collapse
|
120
|
Leistad L, Feuerherm AJ, Ostensen M, Faxvaag A, Johansen B. Presence of secretory group IIa and V phospholipase A2 and cytosolic group IVα phospholipase A2 in chondrocytes from patients with rheumatoid arthritis. ACTA ACUST UNITED AC 2004; 42:602-10. [PMID: 15259375 DOI: 10.1515/cclm.2004.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractBoth secretory and cytosolic phospholipase A
Collapse
Affiliation(s)
- Lilian Leistad
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
121
|
Miya N, Oguchi S, Watanabe I, Kanmatsuse K. Relation of Secretory Phospholipase A2 and High-Sensitivity C-Reactive Protein to Chlamydia Pneumoniae Infection in Acute Coronary Syndromes. Circ J 2004; 68:628-33. [PMID: 15226626 DOI: 10.1253/circj.68.628] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Recently it has become clear that inflammatory changes play a part in the development of atherosclerosis, including coronary artery disease, and Chlamydia pneumoniae (C. pneumoniae) is thought to be a proinflammatory factor. The plasma concentration of high-sensitive C-reactive protein (hs-CRP) is a potential predictor of outcome in atherosclerotic diseases. Recent interest has focused on secretory group IIA phospholipase A(2) (sPLA (2)) in regard to the progression of atherosclerotic disease. METHODS AND RESULTS The concentrations of sPLA(2), hs-CRP, and the titers of C. pneumoniae IgG and IgA antibodies were measured in blood samples. The study groups were an acute coronary syndrome (ACS) group, old myocardial infarction/angina pectoris (OMI/AP) group, and a control group. The concentrations of sPLA(2) and hs-CRP in the ACS group and the OMI/AP group were higher than in the control group. The titers of C. pneumoniae IgG and IgA were higher in the ACS group than in the control group. The sPLA(2) concentration was higher in those who were positive to C. pneumoniae IgG/IgA than in those who were negative. CONCLUSION Increased concentrations of sPLA(2) reflect participation in the progression of coronary artery disease. The sPLA(2) concentration was higher in patients positive for C. pneumoniae than in those negative for C. pneumoniae, so C. pneumoniae infection poses a greater risk for ACS in those individuals than in those who are free of such infection.
Collapse
Affiliation(s)
- Norio Miya
- Second Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
122
|
Abstract
Secretory phospholipase A2 (sPLA2) is a growing family of structurally related, disulfide-rich, low molecular weight, lipolytic enzymes with a His-Asp catalytic dyad. sPLA2s are distributed in a wide variety of vertebrate and invertebrate animals, plants, bacteria, and viruses, and there are 10 catalytically active sPLA2 isozymes in mammals. Although the structural bases for mammalian sPLA2s have been well documented, their physiological functions are still subject to debate. Individual mammalian sPLA2s have distinct enzymatic properties and display distinct tissue expression patterns, suggesting that each enzyme acts on distinct phospholipid membrane moieties in vivo. In this article, we briefly review our latest understanding of the possible physiological functions of sPLA2s, in keeping with their diverse actions on mammalian and nonmammalian cell membranes.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | |
Collapse
|
123
|
Yagami T, Ueda K, Asakura K, Okamura N, Sakaeda T, Sakaguchi G, Itoh N, Hashimoto Y, Nakano T, Fujimoto M. Effect of Gas6 on secretory phospholipase A(2)-IIA-induced apoptosis in cortical neurons. Brain Res 2003; 985:142-9. [PMID: 12967718 DOI: 10.1016/s0006-8993(03)03043-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gas6, a product of the growth-arrest-specific gene 6, protects cortical neurons from amyloid beta protein (Abeta)-induced apoptosis. Neuronal apoptosis is also caused by human group IIA secretory phospholipase A(2) (sPLA(2)-IIA), which is expressed in the cerebral cortex after brain ischemia. sPLA(2)-IIA induces Ca(2+) influx via L-type voltage-sensitive calcium channels (L-VSCCs), leading to its neurotoxicity. In the present study, we investigated effects of Gas6 on sPLA(2)-IIA-induced cell death in primary cultures of rat cortical neurons. sPLA(2)-IIA caused neuronal cell death in a concentration- and time-dependent manner. Gas6 significantly prevented neurons from sPLA(2)-IIA-induced cell death. Gas6 suppressed sPLA(2)-IIA-induced apoptotic features such as the condensation of chromatin and the fragmentation of DNA. Prior to cell death, sPLA(2)-IIA increased the influx of Ca(2+) into neurons through L-VSCCs. Gas6 significantly inhibited the sPLA(2)-IIA-induced Ca(2+) influx. The blocker of L-VSCCs also suppressed sPLA(2)-IIA-induced neuronal cell death. The cortical cultures contained few non-neuronal cells, indicating that Gas6 affected the survival of neurons directly, but not indirectly via non-neuronal cells. In conclusion, we demonstrate that Gas6 rescues cortical neurons from sPLA(2)-IIA-induced apoptosis. Furthermore, the present study indicates that inhibition of L-VSCC contributes to the neuroprotective effect of Gas6.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Discovery Research Laboratories, Shionogi and Co. Ltd., 12-4 Sagisu 5-Chome, Fukushima-ku, Osaka 553-0002, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Murakami M, Nakashima K, Kamei D, Masuda S, Ishikawa Y, Ishii T, Ohmiya Y, Watanabe K, Kudo I. Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. J Biol Chem 2003; 278:37937-47. [PMID: 12835322 DOI: 10.1074/jbc.m305108200] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current evidence suggests that two forms of prostaglandin (PG) E synthase (PGES), cytosolic PGES and membrane-bound PGES (mPGES) -1, preferentially lie downstream of cyclooxygenase (COX) -1 and -2, respectively, in the PGE2 biosynthetic pathway. In this study, we examined the expression and functional aspects of the third PGES enzyme, mPGES-2, in mammalian cells and tissues. mPGES-2 was synthesized as a Golgi membrane-associated protein, and spontaneous cleavage of the N-terminal hydrophobic domain led to the formation of a truncated mature protein that was distributed in the cytosol with a trend to be enriched in the perinuclear region. In several cell lines, mPGES-2 promoted PGE2 production via both COX-1 and COX-2 in the immediate and delayed responses with modest COX-2 preference. In contrast to the marked inducibility of mPGES-1, mPGES-2 was constitutively expressed in various cells and tissues and was not increased appreciably during tissue inflammation or damage. Interestingly, a considerable elevation of mPGES-2 expression was observed in human colorectal cancer. Collectively, mPGES-2 is a unique PGES that can be coupled with both COXs and may play a role in the production of the PGE2 involved in both tissue homeostasis and disease.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Considerable progress has been made in characterizing the individual participant enzymes and their relative contributions in the generation of eicosanoids, lipid mediators derived from arachidonic acid, such as prostaglandins and leukotrienes. However, the role of individual phospholipase (PL) A(2) enzymes in providing arachidonic acid to the downstream enzymes for eicosanoid generation in biologic processes has not been fully elucidated. In this review, we will provide an overview of the classification of the families of PLA(2) enzymes, their putative mechanisms of action, and their role(s) in eicosanoid generation and inflammation.
Collapse
Affiliation(s)
- Bruno L Diaz
- Division of Cell Biology, National Cancer Institute-INCA, R André Cavalcanti 37, Centro, Rio de Janeiro 20231-050, Brazil.
| | | |
Collapse
|
126
|
Prostaglandin E receptors in bile ducts of hepatolithiasis patients and the pathobiological significance for cholangitis. Clin Gastroenterol Hepatol 2003. [PMID: 15017670 DOI: 10.1016/s1542-3565(03)00133-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS In hepatolithiasis, chronic proliferative cholangitis may influence the progression of the disease. Prostaglandin (PG) E(2) experimentally causes morphologic changes to intrahepatic bile ducts, analogous to the changes found in cholangitis. This study was designed to gain an understanding of the involvement of PGE(2) and PGE receptor (EP) subtypes in the development of cholangitis. METHODS The expression levels of secretory-type group IIA phospholipase A(2) (sPLA(2)-IIA) and cyclooxygenase (COX)-2 as well as EP subtypes were determined in the bile ducts with change of cholangitis. In in vitro experiments, growth promotion and mucin secretagogue properties of biliary epithelial cells in response to EP-selective agonists or antagonists were studied. RESULTS The messenger RNA (mRNA) level of sPLA(2)-IIA and the protein and mRNA levels of COX-2 were significantly increased in the bile ducts of patients with hepatolithiasis compared with the levels of the bile ducts of control subjects. These changes were associated with a concomitant increase in PGE(2) and total mucin concentrations in the bile. The mRNAs of EP subtypes EP(2), EP(3), and EP(4) but not EP(1) were amplified in the bile ducts. Treatment with an EP(4)-selective agonist (ONO-AE1-329) caused a dose-dependent increase in DNA synthesis, colony number, and mucin secretion in the cells. Conversely, treatment with an EP(4)-selective antagonist (ONO-AE3-208) abolished the biological effects of PGE(2) on the cells. CONCLUSIONS In hepatolithiasis, an enhanced synthesis of sPLA(2)-/COX-2-derived PGE(2) and its actions mediated via the EP(4) receptor in the bile ducts may be of pathobiological significance for chronic proliferative cholangitis.
Collapse
|
127
|
Scott KF, Graham GG, Bryant KJ. Secreted phospholipase A2 enzymes as therapeutic targets. Expert Opin Ther Targets 2003; 7:427-40. [PMID: 12783578 DOI: 10.1517/14728222.7.3.427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Homology cloning through in silico database search analysis has led to the definition of ten structurally-related mammalian secreted phospholipase A(2) (sPLA(2)) enzyme forms at present, each expressed in a species-, genotype- and cell-type-specific manner and with different enzymatic properties. These studies have shown that models based on the premise that there is only one PLA(2) drug target are now inadequate. Type IIA sPLA(2) remains the most advanced clinical target, with rationally designed inhibitors in Phase II clinical trials. However, progress in our understanding of the functional role of the ten secreted enzymes in phospholipid (PL) metabolism and in eicosanoid-mediated disorders, together with their emerging activity-independent and receptor-mediated functions, is likely to significantly impact on current and future drug development efforts.
Collapse
Affiliation(s)
- Kieran F Scott
- St Vincent's Hospital Clinical School, School of Medical Sciences, The University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
128
|
Boilard E, Bourgoin SG, Bernatchez C, Poubelle PE, Surette ME. Interaction of low molecular weight group IIA phospholipase A2 with apoptotic human T cells: role of heparan sulfate proteoglycans. FASEB J 2003; 17:1068-80. [PMID: 12773489 DOI: 10.1096/fj.02-0938com] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human group IIA phospholipase A2 (hIIA PLA2) is a 14 kDa secreted enzyme associated with inflammatory diseases. A newly discovered property of hIIA PLA2 is the binding affinity for the heparan sulfate proteoglycan (HSPG) glypican-1. In this study, the binding of hIIA PLA2 to apoptotic human T cells was investigated. Little or no exogenous hIIA PLA2 bound to CD3-activated T cells but significant binding was measured on activated T cells induced to undergo apoptosis by anti-CD95. Binding to early apoptotic T cells was greater than to late apoptotic cells. The addition of heparin and the hydrolysis of HSPG by heparinase III only partially inhibited hIIA PLA2 binding to apoptotic cells, suggesting an interaction with both HSPG and other binding protein(s). Two low molecular weight HSPG were coimmunoprecipitated with hIIA PLA2 from apoptotic T cells, but not from living cells. Treatment of CD95-stimulated T cells with hIIA PLA2 resulted in the release of arachidonic acid but not oleic acid from cells and this release was blocked by heparin and heparinase III. Altogether, these results suggest a role for hIIA PLA2 in the release of arachidonic acid from apoptotic cells through interactions with HSPG and its potential implication in the progression of inflammatory diseases.
Collapse
Affiliation(s)
- Eric Boilard
- Pilot Therapeutics Inc., 2000 Daniel Island Dr., Suite 440, Charleston, SC 29492, USA.
| | | | | | | | | |
Collapse
|
129
|
Yagami T, Ueda K, Asakura K, Nakazato H, Hata S, Kuroda T, Sakaeda T, Sakaguchi G, Itoh N, Hashimoto Y, Hori Y. Human group IIA secretory phospholipase A2 potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels in cultured rat cortical neurons. J Neurochem 2003; 85:749-58. [PMID: 12694401 DOI: 10.1046/j.1471-4159.2003.01712.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian group IIA secretory phospholipase A2 (sPLA2-IIA) generates prostaglandin D2 (PGD2) and triggers apoptosis in cortical neurons. However, mechanisms of PGD2 generation and apoptosis have not yet been established. Therefore, we examined how second messengers are involved in the sPLA2-IIA-induced neuronal apoptosis in primary cultures of rat cortical neurons. sPLA2-IIA potentiated a marked influx of Ca2+ into neurons before apoptosis. A calcium chelator and a blocker of the L-type voltage-sensitive Ca2+ channel (L-VSCC) prevented neurons from sPLA2-IIA-induced neuronal cell death in a concentration-dependent manner. Furthermore, the L-VSCC blocker ameliorated sPLA2-IIA-induced morphologic alterations and apoptotic features such as condensed chromatin and fragmented DNA. Other blockers of VSCCs such as N type and P/Q types did not affect the neurotoxicity of sPLA2-IIA. Blockers of L-VSCC significantly suppressed sPLA2-IIA-enhanced Ca2+ influx into neurons. Moreover, reactive oxygen species (ROS) were generated prior to apoptosis. Radical scavengers reduced not only ROS generation, but also the sPLA2-IIA-induced Ca2+ influx and apoptosis. In conclusion, we demonstrated that sPLA2-IIA potentiates the influx of Ca2+ into neurons via L-VSCC. Furthermore, the present study suggested that eicosanoids and ROS generated during arachidonic acid oxidative metabolism are involved in sPLA2-IIA-induced apoptosis in cooperation with Ca2+.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Discovery Research Laboratories, Shionogi and Co. Ltd, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Murakami M, Masuda S, Shimbara S, Bezzine S, Lazdunski M, Lambeau G, Gelb MH, Matsukura S, Kokubu F, Adachi M, Kudo I. Cellular arachidonate-releasing function of novel classes of secretory phospholipase A2s (groups III and XII). J Biol Chem 2003; 278:10657-67. [PMID: 12522102 DOI: 10.1074/jbc.m211325200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Here we report cellular arachidonate (AA) release and prostaglandin (PG) production by novel classes of secretory phospholipase A(2)s (sPLA(2)s), groups III and XII. Human group III sPLA(2) promoted spontaneous AA release, which was augmented by interleukin-1, in HEK293 transfectants. The central sPLA(2) domain alone was sufficient for its in vitro enzymatic activity and for cellular AA release at the plasma membrane, whereas either the unique N- or C-terminal domain was required for heparanoid-dependent action on cells to augment AA release, cyclooxygenase-2 induction, and PG production. Group III sPLA(2) was constitutively expressed in two human cell lines, in which other sPLA(2)s exhibited different stimulus inducibility. Human group XII sPLA(2) had a weak enzymatic activity in vitro and minimally affects cellular AA release and PG production. Cells transfected with group XII sPLA(2) exhibited abnormal morphology, suggesting a unique functional aspect of this enzyme. Based on the present results as well as our current analyses on the group I/II/V/X sPLA(2)s, general properties of cellular actions of a full set of mammalian sPLA(2)s in regulating AA metabolism are discussed.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Hansford KA, Reid RC, Clark CI, Tyndall JDA, Whitehouse MW, Guthrie T, McGeary RP, Schafer K, Martin JL, Fairlie DP. D-Tyrosine as a chiral precusor to potent inhibitors of human nonpancreatic secretory phospholipase A2 (IIa) with antiinflammatory activity. Chembiochem 2003; 4:181-5. [PMID: 12616631 DOI: 10.1002/cbic.200390029] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Few reported inhibitors of secretory phospholipase A(2) enzymes truly inhibit the IIa human isoform (hnpsPLA(2)-IIa) noncovalently at submicromolar concentrations. Herein, the simple chiral precursor D-tyrosine was derivatised to give a series of potent new inhibitors of hnpsPLA(2)-IIa. A 2.2-A crystal structure shows an inhibitor bound in the active site of the enzyme, chelated to a Ca(2+) ion through carboxylate and amide oxygen atoms, H-bonded through an amide NH group to His48, with multiple hydrophobic contacts and a T-shaped aromatic-group-His6 interaction. Antiinflammatory activity is also demonstrated for two compounds administered orally to rats.
Collapse
Affiliation(s)
- Karl A Hansford
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland Brisbane, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Zhao H, Kinnunen PKJ. Modulation of the activity of secretory phospholipase A2 by antimicrobial peptides. Antimicrob Agents Chemother 2003; 47:965-71. [PMID: 12604528 PMCID: PMC149322 DOI: 10.1128/aac.47.3.965-971.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antimicrobial peptides magainin 2, indolicidin, and temporins B and L were found to modulate the hydrolytic activity of secretory phospholipase A(2) (sPLA(2)) from bee venom and in human lacrimal fluid. More specifically, hydrolysis of phosphatidylcholine (PC) liposomes by bee venom sPLA(2) at 10 micro M Ca(2+) was attenuated by these peptides while augmented product formation was observed in the presence of 5 mM Ca(2+). The activity of sPLA(2) towards anionic liposomes was significantly enhanced by the antimicrobial peptides at low [Ca(2+)] and was further enhanced in the presence of 5 mM Ca(2+). Similarly, with 5 mM Ca(2+) the hydrolysis of anionic liposomes was enhanced significantly by human lacrimal fluid sPLA(2), while that of PC liposomes was attenuated. These results indicate that concerted action of antimicrobial peptides and sPLA(2) could improve the efficiency of the innate response to infections. Interestingly, inclusion of a cationic gemini surfactant in the vesicles showed an essentially similar pattern on sPLA(2) activity, suggesting that the modulation of the enzyme activity by the antimicrobial peptides may involve also charge properties of the substrate surface.
Collapse
Affiliation(s)
- Hongxia Zhao
- Helsinki Biophysics & Biomembrane Group, Institute of Biomedicine, FIN-00014 University of Helsinki, Finland
| | | |
Collapse
|
133
|
Schmitt M, Lehr M. High-performance liquid chromatographic assay with ultraviolet spectrometric detection for the evaluation of inhibitors of secretory phospholipase A(2). J Chromatogr B Analyt Technol Biomed Life Sci 2003; 783:327-33. [PMID: 12482475 DOI: 10.1016/s1570-0232(02)00710-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A non-radioactive spectrometric assay for the evaluation of inhibitors of pancreatic group IB and non-pancreatic group IIA secretory phospholipase A(2) (sPLA(2)) is described. Mixed-micelles consisting of 1 mM of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol and 6 mM of sodium deoxycholate were used as substrate. The enzyme activity was determined directly without any sample clean-up by measuring the sPLA(2)-mediated oleic acid release with reversed-phase HPLC and UV-detection at 200 nm. The known sPLA(2) inhibitors MJ33 and AR-C 67047MI were analyzed in this assay for their inhibitory potency. While MJ33 revealed only a very weak inhibition of group IB and IIA sPLA(2) at the highest test concentration (33 microM), AR-C 67047MI proved to be a potent inhibitor of both enzymes with IC(50)-values of 0.36 and 0.14 microM, respectively.
Collapse
Affiliation(s)
- Melanie Schmitt
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Hittorfstrasse 58-62, D-48149, Münster, Germany
| | | |
Collapse
|
134
|
Koprivnjak T, Peschel A, Gelb MH, Liang NS, Weiss JP. Role of charge properties of bacterial envelope in bactericidal action of human group IIA phospholipase A2 against Staphylococcus aureus. J Biol Chem 2002; 277:47636-44. [PMID: 12359734 DOI: 10.1074/jbc.m205104200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian Group IIA phospholipases A(2) (PLA(2)) potently kill Staphylococcus aureus. Highly cationic properties of these PLA(2) are important for Ca(2+)-independent binding and cell wall penetration, prerequisites for Ca(2+)-dependent degradation of membrane phospholipids and bacterial killing. To further delineate charge properties of the bacterial envelope important in Group IIA PLA(2) action against S. aureus, we examined the effects of mutations that prevent specific modifications of cell wall (dltA) and cell membrane (mprF) polyanions. In comparison to the parent strain, isogenic dltA(-) bacteria are approximately 30-100x more sensitive to PLA(2), whereas mprF(-) bacteria are <3-fold more sensitive. Differences in PLA(2) sensitivity of intact bacteria reflect differences in cell wall, not cell membrane, properties since protoplasts from all three strains are equally sensitive to PLA(2). A diminished positive charge in PLA(2) reduces PLA(2) binding and antibacterial activity. In contrast, diminished cell wall negative charge by substitution of (lipo)teichoic acids with d-alanine reduces antibacterial activity of bound PLA(2), but not initial PLA(2) binding. Therefore, the potent antistaphylococcal activity of Group IIA PLA(2) depends on cationic properties of the enzyme that promote binding to the cell wall, and polyanionic properties of cell wall (lipo)teichoic acids that promote attack of membrane phospholipids by bound PLA(2).
Collapse
Affiliation(s)
- Tomaz Koprivnjak
- Department of Microbiology, University of Iowa, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246, USA
| | | | | | | | | |
Collapse
|
135
|
Sanchez T, Moreno JJ. Calcium-independent phospholipase A2 through arachidonic acid mobilization is involved in Caco-2 cell growth. J Cell Physiol 2002; 193:293-8. [PMID: 12384982 DOI: 10.1002/jcp.10162] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several studies indicate that phospholipase A(2) (PLA(2)) expression and/or activation account for the high levels of arachidonic acid (AA) detected in cancer and, together with the elevated expression of cyclooxygenase-2, lead to cell proliferation and tumor formation. Using Caco-2 cells, a human colorectal carcinoma cell, we studied the role of high-molecular-weight PLA(2)s, cytosolic PLA(2) (cPLA(2)), and calcium-independent PLA(2) (iPLA(2)) in the AA cascade and in cell growth. Treatment with an antisense oligonucleotide against cPLA(2)alpha decreased [(3)H]AA release induced by ionophore A23187 or by a phorbol ester but did not affect the release of [(3)H]AA, [(3)H]thymidine incorporation, or Caco-2 growth induced by fetal calf serum (FCS). However, these parameters were significantly modified by iPLA(2) inhibitors and by an antisense oligonucleotide against iPLA(2)beta. Our results show that iPLA(2) was involved in AA release and the subsequent prostaglandin production induced by serum. Moreover, these data indicate that iPLA(2) may be involved in the signaling pathways involved in the control of Caco-2 proliferation.
Collapse
Affiliation(s)
- Teresa Sanchez
- Department of Physiology, Faculty of Pharmacy, Barcelona University, Barcelona, Spain
| | | |
Collapse
|
136
|
Fuentes L, Hernández M, Nieto ML, Sánchez Crespo M. Biological effects of group IIA secreted phosholipase A(2). FEBS Lett 2002; 531:7-11. [PMID: 12401194 DOI: 10.1016/s0014-5793(02)03401-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Group IIA secreted phospholipase A(2) (sPLA(2)-IIA) is the most abundant element in human tissues of a large family of low molecular weight phospholipases A(2), which shows properties different from those displayed by the cytosolic phospholipase A(2) involved in the release of arachidonic acid. sPLA(2)-IIA behaves as a ligand for a group of receptors inside the C-type multilectin mannose receptor family and also interacts with heparan sulfate proteoglycans such as glypican, the dermatan/chondroitin sulfate-rich decorin, and the chondroitin sulfate-rich versican, thus being able to internalize to specific compartments within the cell and producing biological responses. This review provides a short summary of the biological actions of sPLA(2)-IIA on intracellular signaling pathways.
Collapse
Affiliation(s)
- Lucía Fuentes
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, 47005, Valladolid, Spain
| | | | | | | |
Collapse
|
137
|
Fonteh AN. Differential effects of arachidonoyl trifluoromethyl ketone on arachidonic acid release and lipid mediator biosynthesis by human neutrophils. Evidence for different arachidonate pools. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3760-70. [PMID: 12153573 DOI: 10.1046/j.1432-1033.2002.03070.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The goal of this study was to determine the effects of a putative specific cytosolic phospholipase A2 inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3), on arachidonic acid (AA) release and lipid mediator biosynthesis by ionophore-stimulated human neutrophils. Initial studies indicated that AACOCF3 at concentrations 0-10 micro m did not affect AA release from neutrophils. In contrast, AACOCF3 potently inhibited leukotriene B4 formation by ionophore-stimulated neutrophils (IC50 approximately 2.5 micro m). Likewise, AACOCF3 significantly inhibited the biosynthesis of platelet activating factor. In cell-free assay systems, 10 micro m AACOCF3 inhibited 5-lipoxygenase and CoA-independent transacylase activities. [3H]AA labeling studies indicated that the specific activities of cell-associated AA mimicked that of leukotriene B4 and PtdCho/PtdIns, while the specific activities of AA released into the supernatant fluid closely mimicked that of PtdEtn. Taken together, these data argue for the existence of segregated pools of arachidonate in human neutrophils. One pool of AA is linked to lipid mediator biosynthesis while another pool provides free AA that is released from cells. Additionally, the data suggest that AACOCF3 is also an inhibitor of CoA-independent transacylase and 5-lipoxygenase. Thus, caution should be exercised in using AACOCF3 as an inhibitor of cytosolic phospholipase A2 in whole cell assays because of the complexity of AA metabolism.
Collapse
Affiliation(s)
- Alfred N Fonteh
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
138
|
Abstract
Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (AA), a precursor of eicosanoids including prostaglandins and leukotrienes. The same reaction also produces lysophosholipids, which represent another class of lipid mediators. So far, at least 19 enzymes that possess PLA2 activity have been identified and cloned in mammals. The secretory PLA2 (sPLA2) family, in which 10 isozymes have been identified, consists of low-molecular weight, Ca2+-requiring secretory enzymes that have been implicated in a number of biological processes, such as modification of eicosanoid generation, inflammation, and host defense. The cytosolic PLA2 (cPLA2) family consists of three enzymes, among which cPLA2alpha has been paid much attention by researchers as an essential component of the initiation of AA metabolism. The activation of cPLA2alpha is tightly regulated by Ca2+ and phosphorylation. The Ca2+-independent PLA2 (iPLA2) family contains two enzymes and may play a major role in phospholipid remodeling. The platelet-activating factor (PAF) acetylhydrolase (PAF-AH) family contains four enzymes that exhibit unique substrate specificity toward PAF and/or oxidized phospholipids. Degradation of these bioactive phospholipids by PAF-AHs may lead to the termination of inflammatory reaction and atherosclerosis.
Collapse
Affiliation(s)
- Ichiro Kudo
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | |
Collapse
|
139
|
Jaross W, Eckey R, Menschikowski M. Biological effects of secretory phospholipase A(2) group IIA on lipoproteins and in atherogenesis. Eur J Clin Invest 2002; 32:383-93. [PMID: 12059982 DOI: 10.1046/j.1365-2362.2002.01000.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Secretory phospholipase A(2) group IIA(sPLA(2) IIA) can be produced and secreted by various cell types either constitutionally or as an acute-phase reactant upon stimulation by proinflammatory cytokines. The enzyme prefers phosphatidylethanolamine and phosphatidylserine as substrates. One important biological function may be the hydrolytic destruction of bacterial membranes. It has been demonstrated, however, that sPLA(2) can also hydrolyse the phospholipid monolayers of high density lipoprotein (HDL) and low density lipoprotein (LDL) in vitro. Secretory phospholipase A(2)-modified LDL show increased affinity to glycosaminoglycans and proteoglycans, a tendency to aggregate, and an enhanced ability to deliver cholesterol to cells. Incubation of cultured macrophages with PLA(2)-treated LDL and HDL is associated with increased intracellular lipid accumulation, resulting in the formation of foam cells. Elevated sPLA(2)(IIA) activity in blood serum leads to an increased clearance of serum cholesterol. Secretory phospholipase A(2)(IIA) can also be detected in the intima, adventitia and media of the atherosclerotic wall not only in developed lesions but also in very early stages of atherosclerosis. The presence of DNA of Chlamydia pneumoniae, herpes simplex virus, and cytomegalovirus was found to be associated with sPLA(2)(IIA) expression and other signs of local inflammation. Thus, sPLA(2)(IIA) appears to be one important link between the lipid and the inflammation hypothesis of atherosclerosis.
Collapse
Affiliation(s)
- Werner Jaross
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technical University of Dresden, Germany.
| | | | | |
Collapse
|
140
|
Murakami M, Yoshihara K, Shimbara S, Sawada M, Inagaki N, Nagai H, Naito M, Tsuruo T, Moon TC, Chang HW, Kudo I. Group IID heparin-binding secretory phospholipase A(2) is expressed in human colon carcinoma cells and human mast cells and up-regulated in mouse inflammatory tissues. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2698-707. [PMID: 12047378 DOI: 10.1046/j.1432-1033.2002.02938.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Group IID secretory phospholipase A(2) (sPLA(2)-IID), a heparin-binding sPLA(2) that is closely related to sPLA(2)-IIA, augments stimulus-induced cellular arachidonate release in a manner similar to sPLA(2)-IIA. Here we identified the residues of sPLA(2)-IID that are responsible for heparanoid binding, are and therefore essential for cellular function. Mutating four cationic residues in the C-terminal portion of sPLA(2)-IID resulted in abolition of its ability to associate with cell surface heparan sulfate and to enhance stimulus-induced delayed arachidonate release, cyclooxygenase-2 induction, and prostaglandin generation in 293 cell transfectants. As compared with several other group II subfamily sPLA(2)s, which were equally active on A23187- and IL-1-primed cellular membranes, sPLA(2)-IID showed apparent preference for A23187-primed membranes. Several human colon carcinoma cell lines expressed sPLA(2)-IID and sPLA(2)-X constitutively, the former of which was negatively regulated by IL-1. sPLA(2)-IID, but not other sPLA(2) isozymes, was expressed in human cord blood-derived mast cells. The expression of sPLA(2)-IID was significantly altered in several tissues of mice with experimental inflammation. These results indicate that sPLA(2)-IID may be involved in inflammation in cell- and tissue-specific manners under particular conditions.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Sugiyama M, Ohtani K, Izuhara M, Koike T, Suzuki K, Imamura S, Misaki H. A novel prokaryotic phospholipase A2. Characterization, gene cloning, and solution structure. J Biol Chem 2002; 277:20051-8. [PMID: 11897786 DOI: 10.1074/jbc.m200264200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Until now, phospholipase A(2) (PLA(2); EC 3.1.14) has been found only from eukaryotic sources. In the present study, we found a secreted PLA(2), which is produced by a soil bacterium, Streptomyces violaceoruber A-2688, demonstrating that the enzyme is the first phospholipase A(2) identified in prokaryote. After characterization of the novel PLA(2), a gene encoding the enzyme was cloned, sequenced, and overexpressed using a Streptomyces host-vector system. The amino acid sequence showed that the prokaryotic PLA(2) has only four cysteines and less homology to the eukaryotic ones, which have 12-16 cysteines. The solution structures of the prokaryotic PLA(2), bound and unbound with calcium(II) ion, were determined by using the NMR technique and structure calculation. The overall structure of the S. violaceoruber PLA(2), which is composed of only five alpha-helices, is completely different from those of eukaryotic PLA(2)s, which consist of beta-sheets and alpha-helices. The structure of the calcium-binding domain is obviously distinct from that without the ion; the ligands for the calcium(II) ion are the two carboxylates of Asp(43) (monodentate) and Asp(65) (bidentate), the carbonyl oxygen of Leu(44), and three water molecules. A calcium-binding experiment showed that the calcium dissociation constant ( approximately 5 mm) for the prokaryotic PLA(2) is much larger than those of eukaryotic ones.
Collapse
Affiliation(s)
- Masanori Sugiyama
- Institute of Pharmaceutical Sciences, Faculty of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | |
Collapse
|
142
|
Murakami M, Yoshihara K, Shimbara S, Lambeau G, Gelb MH, Singer AG, Sawada M, Inagaki N, Nagai H, Ishihara M, Ishikawa Y, Ishii T, Kudo I. Cellular arachidonate-releasing function and inflammation-associated expression of group IIF secretory phospholipase A2. J Biol Chem 2002; 277:19145-55. [PMID: 11877435 DOI: 10.1074/jbc.m112385200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Here we report the cellular arachidonate (AA)-releasing function of group IIF secretory phospholipase A(2) (sPLA(2)-IIF), a sPLA(2) enzyme uniquely containing a longer C-terminal extension. sPLA(2)-IIF increased spontaneous and stimulus-dependent release of AA, which was supplied to downstream cyclooxygenases and 5-lipoxygenase for eicosanoid production. sPLA(2)-IIF also enhanced interleukin 1-stimulated expression of cyclooxygenase-2 and microsomal prostaglandin E synthase. AA release by sPLA(2)-IIF was facilitated by oxidative modification of cellular membranes. Cellular actions of sPLA(2)-IIF occurred independently of the heparan sulfate proteoglycan glypican, which acts as a functional adaptor for other group II subfamily sPLA(2)s. Confocal microscopy revealed the location of sPLA(2)-IIF on the plasma membrane. The unique C-terminal extension was crucial for its plasma membrane localization and optimal cellular functions. sPLA(2)-IIF expression was increased in various tissues from lipopolysaccharide-treated mice and in ears of mice with experimental atopic dermatitis. In human rheumatoid arthritic joints, sPLA(2)-IIF was detected in synovial lining cells, capillary endothelial cells, and plasma cells. These results suggest that sPLA(2)-IIF is a potent regulator of AA metabolism and participates in the inflammatory process under certain conditions.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Yagami T, Ueda K, Asakura K, Hayasaki-Kajiwara Y, Nakazato H, Sakaeda T, Hata S, Kuroda T, Takasu N, Hori Y. Group IB secretory phospholipase A2 induces neuronal cell death via apoptosis. J Neurochem 2002; 81:449-61. [PMID: 12065654 DOI: 10.1046/j.1471-4159.2002.00800.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Group IB secretory phospholipase A2 (sPLA2-IB) mediates cell proliferation, cell migration, hormone release and eicosanoid production via its receptor in peripheral tissues. In the CNS, high-affinity binding sites of sPLA2-IB have been documented. However, it remains obscure whether sPLA2-IB causes biologic or pathologic response in the CNS. To this end, we examined effects of sPLA2-IB on neuronal survival in primary cultures of rat cortical neurons. sPLA2-IB induced neuronal cell death in a concentration-dependent manner. This death was a delayed response requiring a latent time for 6 h; sPLA2-IB-induced neuronal cell death was accompanied with apoptotic blebbing, condensed chromatin, and fragmented DNA, exhibiting apoptotic features. Before cell death, sPLA2-IB liberated arachidonic acid (AA) and generated prostaglandin D2 (PGD2) from neurons. PGD2 and its metabolite, Delta12-PGJ2, exhibited neurotoxicity. Inhibitors of sPLA2 and cyclooxygenase-2 (COX-2) significantly suppressed not only AA release, but also PGD2 generation. These inhibitors significantly prevented neurons from sPLA2-IB-induced neuronal cell death. In conclusion, we demonstrate a novel biological response, apoptosis, of sPLA2-IB in the CNS. Furthermore, the present study suggests that PGD2 metabolites, especially Delta12-PGJ2, might mediate sPLA2-IB-induced apoptosis.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Discovery Research Laboratories and Developmental Research Laboratories, Shionogi and Co., Ltd, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Aho VV, Nevalainen TJ, Paavilainen V, Saari KM. Group II phospholipase A2 content of tears in patients with senile cataract and primary open-angle glaucoma. Eur J Ophthalmol 2002; 12:40-3. [PMID: 11936442 DOI: 10.1177/112067210201200108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the group II phospholipase A2 (PLA2) content of tears in patients with senile cataract or primary open-angle glaucoma (POAG) and to compare it with the PLA2 content of tears in age-matched healthy controls. METHODS The PLA2 concentration of tears was measured with time-resolved fluoroimmunoassay in 21 patients with senile cataract, 23 patients with POAG and in 40 healthy controls. RESULTS The PLA2 content of tears was 38.3+/-30.1 microg/ml in patients with senile cataract, 32.1+/-22.3 microg/ml in patients with POAG, and 36.6+/-31.1 microg/ml in healthy controls. There were no significant differences between the patient and the control groups. CONCLUSIONS We conclude that neither senile cataract nor POAG has any effect on the PLA2 content of tears.
Collapse
Affiliation(s)
- V V Aho
- Department of Ophthalmology, University of Turku, Finland
| | | | | | | |
Collapse
|
145
|
Mustonen P, van Willigen G, Lassila R. Epinephrine--via activation of p38-MAPK--abolishes the effect of aspirin on platelet deposition to collagen. Thromb Res 2001; 104:439-49. [PMID: 11755955 DOI: 10.1016/s0049-3848(01)00388-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanism by which epinephrine enhances experimental thrombosis in the presence of aspirin is poorly understood. In this study, we set to explore, in aspirinised platelet-rich plasma (PRP), the effect of epinephrine (100 nmol/l) on platelet deposition to immobilised collagen and the subsequent involvement of several intracellular pathways. Under these experimental conditions, which allow platelet aggregation on top of the collagen-adherent platelets, epinephrine increased platelet deposition by 55-86%. This enhancement could be specifically prohibited by the alpha(2A)-adrenoceptor antagonist, atipamezole, the p38 mitogen-activated protein kinase (p38MAPK) inhibitor SB203580, and the cytosolic phospholipase A(2) (cPLA(2)) inhibitor, mepacrine. The effect of epinephrine coincided with increased phosphorylation of p38MAPK and cPLA(2) and with arachidonic acid (AA) release from platelet membrane. We conclude that epinephrine enhanced platelet deposition on collagen in aspirinised PRP via a mechanism dependent on both free AA in platelet cytosol (released by cPLA(2)) and p38MAPK.
Collapse
Affiliation(s)
- P Mustonen
- Wihuri Research Institute, Kalliolinnantie 4, FIN-00140 Helsinki, Finland
| | | | | |
Collapse
|
146
|
Yagami T, Ueda K, Asakura K, Hori Y. Deterioration of axotomy-induced neurodegeneration by group IIA secretory phospholipase A2. Brain Res 2001; 917:230-4. [PMID: 11640909 DOI: 10.1016/s0006-8993(01)02994-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phospholipase A2 (PLA2) is proposed to play a role in the repair of the ruptured membrane after axotomy. In neonatal rats, we examined the effect of Group IIA secretory PLA2 (sPLA2-IIA) on axotomy-induced cell death of motoneurons. sPLA2-IIA significantly induced death of axotomized motoneurons. Indoxam, a specific inhibitor for sPLA2-IIA, protected motoneurons from the sPLA2-IIA-induced deterioration. The present study indicated that sPLA2-IIA possessed neurotoxic effect rather than neuroprotective effect against facial nerve.
Collapse
Affiliation(s)
- T Yagami
- Discovery Research Laboratories, Shionogi and Co., Ltd., 12-4 Sagisu 5-Chome, Fukushima-ku, 553-0002, Osaka, Japan.
| | | | | | | |
Collapse
|
147
|
Fonteh AN, Marion CR, Barham BJ, Edens MB, Atsumi G, Samet JM, High KP, Chilton FH. Enhancement of mast cell survival: a novel function of some secretory phospholipase A(2) isotypes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4161-71. [PMID: 11591736 DOI: 10.4049/jimmunol.167.8.4161] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study tested the hypothesis that certain secretory phospholipase A(2) (sPLA(2)) isotypes act in a cytokine-like fashion through cell surface receptors to influence mast cell survival. Initial experiments revealed that sPLA(2) activity and sPLA(2) receptor expression are increased, and mast cells lost their capacity to maintain membrane asymmetry upon cytokine depletion. Groups IB and III, but not group IIA PLA(2), prevented the loss of membrane asymmetry. Similarly, group IB prevented nucleosomal DNA fragmentation in mast cells. Providing putative products of sPLA(2) hydrolysis to cytokine-depleted mast cells did not influence survival. Furthermore, catalytic inactivation of sPLA(2) did not alter its capacity to prevent apoptosis. Inhibition of protein synthesis using cycloheximide or actinomycin reversed the antiapoptotic effect of sPLA(2). Additionally, both wild-type and catalytically inactive group IB PLA(2) induced IL-3 synthesis in mast cells. However, adding IL-3-neutralizing Ab did not change Annexin V(FITC) binding and only partially inhibited thymidine incorporation in sPLA(2)-supplemented mast cells. In contrast, IL-3-neutralizing Ab inhibited both Annexin V(FITC) binding and thymidine incorporation in mast cells maintained with IL-3. sPLA(2) enhanced phosphoinositide 3'-kinase activity, and a specific inhibitor of phosphoinositide 3'-kinase reversed the antiapoptotic effects of sPLA(2). Likewise, sPLA(2) increased the degradation of I-kappaBalpha, and specific inhibitors of nuclear factor kappa activation (NF-kappaB) reversed the antiapoptotic effects of sPLA(2). Together, these experiments reveal that certain isotypes of sPLA(2) enhance the survival of mast cells in a cytokine-like fashion by activating antiapoptotic signaling pathways independent of IL-3 and probably via sPLA(2) receptors rather than sPLA(2) catalytic products.
Collapse
Affiliation(s)
- A N Fonteh
- Department of Internal Medicine, Section on Pulmonary and Critical Care Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Houliston RA, Wheeler-Jones CP. sPLA(2) cooperates with cPLA(2)alpha to regulate prostacyclin synthesis in human endothelial cells. Biochem Biophys Res Commun 2001; 287:881-7. [PMID: 11573947 DOI: 10.1006/bbrc.2001.5681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first step in prostacyclin (PGI(2)) synthesis involves the generation of arachidonic acid (AA) from membrane phospholipids mediated by the 85 kDa cytosolic phospholipase A(2) (cPLA(2)alpha). The current study examined the effects of secretory PLA(2)s (sPLA(2)s) on PGI(2) production by human umbilical vein endothelial cells (HUVEC). We demonstrate that exposure of HUVEC to sPLA(2) dose- and time-dependently enhances AA release and PGI(2) generation. sPLA(2)-stimulated AA mobilisation was blocked by AACOCF(3), an inhibitor of cPLA(2)alpha, suggesting cross-talk between the two classes of PLA(2). sPLA(2) induced the phosphorylation of cPLA(2)alpha and enhanced the phosphorylation states of p42/44(mapk), p38(mapk), and JNK, concomitant with elevated AA and PGI(2) release. The MEK inhibitor PD98059 attenuated sPLA(2)-stimulated cPLA(2)alpha phosphorylation and PGI(2) release. These data show that sPLA(2) cooperates with cPLA(2)alpha in a MAPK-dependent manner to regulate PGI(2) generation and suggests that cross-talk between sPLA(2) and cPLA(2)alpha is a physiologically important mechanism for enhancing prostanoid production in endothelial cells.
Collapse
Affiliation(s)
- R A Houliston
- Department of Veterinary Basic Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, United Kingdom.
| | | |
Collapse
|
149
|
Mizenina O, Musatkina E, Yanushevich Y, Rodina A, Krasilnikov M, de Gunzburg J, Camonis JH, Tavitian A, Tatosyan A. A novel group IIA phospholipase A2 interacts with v-Src oncoprotein from RSV-transformed hamster cells. J Biol Chem 2001; 276:34006-12. [PMID: 11427522 DOI: 10.1074/jbc.m011320200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a novel isoform of phospholipase A(2). This enzyme was designated srPLA(2) because it was discovered while analyzing the proteins interacting with different forms of the v-Src oncoproteins isolated from Rous sarcoma virus-transformed hamster cells. It contains all the functional regions of the PLA(2) group IIA proteins but differs at its C-terminal end where there is an additional stretch of 8 amino acids. The SrPLA(2) isoform was detected as a 17-kDa precursor in cells and as a mature 14-kDa form secreted in culture medium. A direct interaction of the 17-kDa precursor with the Src protein was observed in lysates of transformed cells. Both the 17- and 14-kDa forms were found to be phosphorylated on tyrosine. To our knowledge, this is the first report of a PLA(2) group II protein that is tyrosine phosphorylated. We surmise that srPLA(2) interacts with the Src protein at the cell membrane during the process of its maturation.
Collapse
Affiliation(s)
- O Mizenina
- Institute of Carcinogenesis, Cancer Research Center, Kashirskoye shosse, 24, 115 478, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
Secretory phospholipase A(2) (PLA(2)) can be proatherogenic both in the circulation and in the arterial wall. In blood plasma, PLA(2) can modify the circulating lipoproteins and so induce formation of small dense LDL particles, which are associated with increased risk for cardiovascular disease. In the arterial wall, PLA(2) can hydrolyze lipoproteins. The PLA(2)-modified lipoproteins bind tightly to extracellular proteoglycans, which may lead to their enhanced retention in the arterial wall. The modified lipoproteins may also aggregate and fuse, which can lead to accumulation of their lipids within the extracellular matrix. The PLA(2)-modified particles are more susceptible to further modifications by other enzymes and agents and can be taken up by macrophages, leading to accumulation of intracellular lipids. In addition, lysophospholipids and free fatty acids, the hydrolysis products of PLA(2), promote atherogenesis. Thus, these lipid mediators can be carried, either by the PLA(2)-modified lipoproteins themselves or by albumin, into the arterial cells, which then undergo functional alterations. This may, in turn, lead to specific changes in the extracellular matrix, which increase the retention and accumulation of lipoproteins within the matrix. In the present article, we discuss the possible actions of PLA(2) enzymes, especially PLA(2)-IIA, in the arterial wall during atherogenesis.
Collapse
Affiliation(s)
- E Hurt-Camejo
- AstraZeneca R&D, Cell Biology and Biochemistry, Mölndal, Sweden.
| | | | | | | | | |
Collapse
|