101
|
Sequencing of chondroitin sulfate oligosaccharides using a novel exolyase from a marine bacterium that degrades hyaluronan and chondroitin sulfate/dermatan sulfate. Biochem J 2017; 474:3831-3848. [PMID: 28963345 DOI: 10.1042/bcj20170591] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/28/2022]
Abstract
Glycosaminoglycans (GAGs) are a family of chemically heterogeneous polysaccharides that play important roles in physiological and pathological processes. Owing to the structural complexity of GAGs, their sophisticated chemical structures and biological functions have not been extensively studied. Lyases that cleave GAGs are important tools for structural analysis. Although various GAG lyases have been identified, exolytic lyases with unique enzymatic property are urgently needed for GAG sequencing. In the present study, a putative exolytic GAG lyase from a marine bacterium was recombinantly expressed and characterized in detail. Since it showed exolytic lyase activity toward hyaluronan (HA), chondroitin sulfate (CS), and dermatan sulfate (DS), it was designated as HCDLase. This novel exolyase exhibited the highest activity in Tris-HCl buffer (pH 7.0) at 30°C. Especially, it showed a specific activity that released 2-aminobenzamide (2-AB)-labeled disaccharides from the reducing end of 2-AB-labeled CS oligosaccharides, which suggest that HCDLase is not only a novel exolytic lyase that can split disaccharide residues from the reducing termini of sugar chains but also a useful tool for the sequencing of CS chains. Notably, HCDLase could not digest 2-AB-labeled oligosaccharides from HA, DS, or unsulfated chondroitin, which indicated that sulfates and bond types affect the catalytic activity of HCDLase. Finally, this enzyme combined with CSase ABC was successfully applied for the sequencing of several CS hexa- and octasaccharides with complex structures. The identification of HCDLase provides a useful tool for CS-related research and applications.
Collapse
|
102
|
Mensah SA, Cheng MJ, Homayoni H, Plouffe BD, Coury AJ, Ebong EE. Regeneration of glycocalyx by heparan sulfate and sphingosine 1-phosphate restores inter-endothelial communication. PLoS One 2017; 12:e0186116. [PMID: 29023478 PMCID: PMC5638341 DOI: 10.1371/journal.pone.0186116] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022] Open
Abstract
Vasculoprotective endothelium glycocalyx (GCX) shedding plays a critical role in vascular disease. Previous work demonstrated that GCX degradation disrupts endothelial cell (EC) gap junction connexin (Cx) proteins, likely blocking interendothelial molecular transport that maintains EC and vascular tissue homeostasis to resist disease. Here, we focused on GCX regeneration and tested the hypothesis that vasculoprotective EC function can be stimulated via replacement of GCX when it is shed. We used EC with [i] intact heparan sulfate (HS), the most abundant GCX component; [ii] degraded HS; or [iii] HS that was restored after enzyme degradation, by cellular self-recovery or artificially. Artificial HS restoration was achieved via treatment with exogenous HS, with or without the GCX regenerator and protector sphingosine 1- phosphate (S1P). In these cells we immunocytochemically examined expression of Cx isotype 43 (Cx43) at EC borders and characterized Cx-containing gap junction activity by measuring interendothelial spread of gap junction permeable Lucifer Yellow dye. With intact HS, 60% of EC borders expressed Cx43 and dye spread to 2.88 ± 0.09 neighboring cells. HS degradation decreased Cx43 expression to 30% and reduced dye spread to 1.87± 0.06 cells. Cellular self-recovery of HS restored baseline levels of Cx43 and dye transfer. Artificial HS recovery with exogenous HS partially restored Cx43 expression to 46% and yielded dye spread to only 1.03 ± 0.07 cells. Treatment with both HS and S1P, recovered HS and restored Cx43 to 56% with significant dye transfer to 3.96 ± 0.23 cells. This is the first evidence of GCX regeneration in a manner that effectively restores vasculoprotective EC communication.
Collapse
Affiliation(s)
- Solomon A. Mensah
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Ming J. Cheng
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Homa Homayoni
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Brian D. Plouffe
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Arthur J. Coury
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Eno E. Ebong
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
103
|
Williams A, He W, Cress BF, Liu X, Alexandria J, Yoshizawa H, Nishimura K, Toida T, Koffas M, Linhardt RJ. Cloning and Expression of Recombinant Chondroitinase ACII and Its Comparison to the Arthrobacter aurescens Enzyme. Biotechnol J 2017; 12:10.1002/biot.201700239. [PMID: 28799715 PMCID: PMC5695571 DOI: 10.1002/biot.201700239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/26/2017] [Indexed: 01/20/2023]
Abstract
Chondroitin sulfates are the glycosaminoglycan chains of proteoglycans critical in the normal development and pathophysiology of all animals. Chondroitinase ACII, a polysaccharide lyase originally isolated from Arthrobacter aurescens IAM 110 65, which is widely used in the analysis and study of chondroitin structure, is no longer commercially available. The aim of the current study is to prepare recombinant versions of this critical enzyme for the glycobiology research community. Two versions of recombinant chondroitinase ACII are prepared in Escherichia coli, and their activity, stability, specificity, and action pattern are examined, along with a non-recombinant version secreted by an Arthrobacter strain. The recombinant enzymes are similar to the enzyme obtained from Arthrobacter for all examined properties, except for some subtle specificity differences toward uncommon chondroitin sulfate substrates. These differences are believed to be due to either post-translational modification of the Arthrobacter-secreted enzyme or other subtle structural differences between the recombinant and natural enzymes. The secreted chondroitinase can serve as a suitable replacement for the original enzyme that is currently unavailable, while the recombinant ones can be applied generally in the structural determination of most standard chondroitin sulfates.
Collapse
Affiliation(s)
- Asher Williams
- Department Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wenqin He
- Department Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Brady F Cress
- Department Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xinyue Liu
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jordanne Alexandria
- Department Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Hiroki Yoshizawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kazuhiro Nishimura
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Mattheos Koffas
- Department Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
104
|
Bagherieh M, Kheirollahi A, Shahaboddin ME, Khajeh K, Golestani A. Calcium and TNFα additively affect the chondroitinase ABC I activity. Int J Biol Macromol 2017; 103:1201-1206. [DOI: 10.1016/j.ijbiomac.2017.05.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 12/28/2022]
|
105
|
Kheirollahi A, Khajeh K, Golestani A. Rigidifying flexible sites: An approach to improve stability of chondroitinase ABC I. Int J Biol Macromol 2017; 97:270-278. [DOI: 10.1016/j.ijbiomac.2017.01.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/24/2022]
|
106
|
Wende FJ, Gohil S, Nord LI, Helander Kenne A, Sandström C. 1D NMR methods for determination of degree of cross-linking and BDDE substitution positions in HA hydrogels. Carbohydr Polym 2017; 157:1525-1530. [DOI: 10.1016/j.carbpol.2016.11.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/25/2016] [Accepted: 11/10/2016] [Indexed: 12/01/2022]
|
107
|
Zhu C, Zhang J, Zhang J, Jiang Y, Shen Z, Guan H, Jiang X. Purification and characterization of chondroitinase ABC from Acinetobacter sp. C26. Int J Biol Macromol 2017; 95:80-86. [DOI: 10.1016/j.ijbiomac.2016.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/09/2016] [Accepted: 10/15/2016] [Indexed: 10/20/2022]
|
108
|
|
109
|
By-products of Scyliorhinus canicula, Prionace glauca and Raja clavata: A valuable source of predominantly 6S sulfated chondroitin sulfate. Carbohydr Polym 2017; 157:31-37. [DOI: 10.1016/j.carbpol.2016.09.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022]
|
110
|
Daneshjou S, Dabirmanesh B, Rahimi F, Khajeh K. Porous silicon nanoparticle as a stabilizing support for chondroitinase. Int J Biol Macromol 2017; 94:852-858. [DOI: 10.1016/j.ijbiomac.2016.10.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/08/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022]
|
111
|
Raleigh A, McCarty W, Chen A, Meinert C, Klein T, Sah R. 6.7 Synovial Joints: Mechanobiology and Tissue Engineering of Articular Cartilage and Synovial Fluid ☆. COMPREHENSIVE BIOMATERIALS II 2017:107-134. [DOI: 10.1016/b978-0-12-803581-8.09304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
112
|
Expression, purification and characterization of GAPDH-ChSase ABC I from Proteus vulgaris in Escherichia coli. Protein Expr Purif 2016; 128:36-41. [DOI: 10.1016/j.pep.2016.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 11/18/2022]
|
113
|
Yamada J, Jinno S. Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus. J Comp Neurol 2016; 525:1234-1249. [DOI: 10.1002/cne.24132] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
| |
Collapse
|
114
|
Bentzer P, Fisher J, Kong HJ, Mörgelin M, Boyd JH, Walley KR, Russell JA, Linder A. Heparin-binding protein is important for vascular leak in sepsis. Intensive Care Med Exp 2016; 4:33. [PMID: 27704481 PMCID: PMC5050173 DOI: 10.1186/s40635-016-0104-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Elevated plasma levels of heparin-binding protein (HBP) are associated with risk of organ dysfunction and mortality in sepsis, but little is known about causality and mechanisms of action of HBP. The objective of the present study was to test the hypothesis that HBP is a key mediator of the increased endothelial permeability observed in sepsis and to test potential treatments that inhibit HBP-induced increases in permeability. METHODS Association between HBP at admission with clinical signs of increased permeability was investigated in 341 patients with septic shock. Mechanisms of action and potential treatment strategies were investigated in cultured human endothelial cells and in mice. RESULTS Following adjustment for comorbidities and Acute Physiology and Chronic Health Evaluation (APACHE) II, plasma HBP concentrations were weakly associated with fluid overload during the first 4 days of septic shock and the degree of hypoxemia (PaO2/FiO2) as measures of increased systemic and lung permeability, respectively. In mice, intravenous injection of recombinant human HBP induced a lung injury similar to that observed after lipopolysaccharide injection. HBP increased permeability of vascular endothelial cell monolayers in vitro, and enzymatic removal of luminal cell surface glycosaminoglycans (GAGs) using heparinase III and chondroitinase ABC abolished this effect. Similarly, unfractionated heparins and low molecular weight heparins counteracted permeability increased by HBP in vitro. Intracellular, selective inhibition of protein kinase C (PKC) and Rho-kinase pathways reversed HBP-mediated permeability effects. CONCLUSIONS HBP is a potential mediator of sepsis-induced acute lung injury through enhanced endothelial permeability. HBP increases permeability through an interaction with luminal GAGs and activation of the PKC and Rho-kinase pathways. Heparins are potential inhibitors of HBP-induced increases in permeability.
Collapse
Affiliation(s)
- Peter Bentzer
- Department of Anesthesia and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden.,Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Centre for Heart Lung Innovation, Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Jane Fisher
- Department of Infectious Diseases, University of Lund and Skåne University Hospital, Getingevägen, Lund, SE-221 85, Sweden.,Centre for Heart Lung Innovation, Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - HyeJin Julia Kong
- Centre for Heart Lung Innovation, Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mattias Mörgelin
- Department of Infectious Diseases, University of Lund and Skåne University Hospital, Getingevägen, Lund, SE-221 85, Sweden
| | - John H Boyd
- Centre for Heart Lung Innovation, Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Keith R Walley
- Centre for Heart Lung Innovation, Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - James A Russell
- Centre for Heart Lung Innovation, Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Adam Linder
- Department of Infectious Diseases, University of Lund and Skåne University Hospital, Getingevägen, Lund, SE-221 85, Sweden. .,Centre for Heart Lung Innovation, Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
115
|
Improvement of expression level of polysaccharide lyases with new tag GAPDH in E. coli. J Biotechnol 2016; 236:159-65. [DOI: 10.1016/j.jbiotec.2016.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 11/22/2022]
|
116
|
Hyaluronidase and Chondroitinase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:75-87. [DOI: 10.1007/5584_2016_54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
117
|
Wang S, Sugahara K, Li F. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria. Glycoconj J 2016; 33:841-851. [PMID: 27526113 DOI: 10.1007/s10719-016-9720-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022]
Abstract
Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.
Collapse
Affiliation(s)
- Shumin Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and Shenzhen Research Institute, Shandong University, Jinan, 250100, Peoples, Republic of China
| | - Kazuyuki Sugahara
- Proteoglycan Signaling and Therapeutics Research Group, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo, 001-0021, Japan.
- Department of Pathobiochemistry, Faculty of Pharmacy, Nagoya, Aichi, 468-8503, Japan.
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and Shenzhen Research Institute, Shandong University, Jinan, 250100, Peoples, Republic of China.
| |
Collapse
|
118
|
Nazari-Robati M, Golestani A, Asadikaram G. Improvement of proteolytic and oxidative stability of Chondroitinase ABC I by cosolvents. Int J Biol Macromol 2016; 91:812-7. [PMID: 27311501 DOI: 10.1016/j.ijbiomac.2016.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/26/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
Abstract
Recently, utilization of the enzyme Chondroitinase ABC I (cABC I) has received considerable attention in treatment of spinal cord injury. cABC I removes chondroitin sulfate proteoglycans which are inhibitory to axon growth and enhances nerve regeneration. Therefore, determination of cABC I resistance to proteolysis and oxidation provides valuable information for optimizing its clinical application. In this work, proteolytic stability of cABC I to trypsin and chymotrypsin as well as its oxidative resistance to H2O2 was measured. Moreover, the effect of cosolvents glycerol, sorbitol and trehalose on cABC I proteolytic and oxidative stability was determined. The results indicated that cABC I is highly susceptible to proteolysis and oxidation. Comparison of proteolytic patterns demonstrated a high degree of similarity which confirmed the exposure of specific regions of cABC I to proteolysis. However, proteolytic degradation was significantly reduced in the presence of cosolvents. In addition, cosolvents decreased the rate of both cABC I proteolytic and oxidative inactivation. Notably, the degree of stabilization provided by these cosolvents varied greatly. These findings indicated the high potential of cosolvents in protein stabilization to proteolysis and oxidative inactivation.
Collapse
Affiliation(s)
- Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - GholamReza Asadikaram
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
119
|
Palukuru UP, Hanifi A, McGoverin CM, Devlin S, Lelkes PI, Pleshko N. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy. Anal Chim Acta 2016; 926:79-87. [PMID: 27216396 DOI: 10.1016/j.aca.2016.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/16/2016] [Indexed: 11/18/2022]
Abstract
Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model of OA. Partial least squares (PLS) regression using NIR spectra as input predicted the MIR-determined compositional parameters of PG/collagen within 6% of actual values. These results indicate that NIR spectral data can be used to assess molecular changes that occur with cartilage degradation, and further, the data provide a foundation for future clinical studies where NIR fiber optic probes can be used to assess the progression of cartilage degradation.
Collapse
Affiliation(s)
- Uday P Palukuru
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Arash Hanifi
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Cushla M McGoverin
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Sean Devlin
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Peter I Lelkes
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, USA.
| |
Collapse
|
120
|
Namburi RB, Berteau O, Spillmann D, Rossi M. Chondroitinase AC: A host-associated genetic feature of Helicobacter bizzozeronii. Vet Microbiol 2016; 186:21-7. [DOI: 10.1016/j.vetmic.2016.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/16/2022]
|
121
|
Matrix Metalloproteinases During Axonal Regeneration, a Multifactorial Role from Start to Finish. Mol Neurobiol 2016; 54:2114-2125. [PMID: 26924318 DOI: 10.1007/s12035-016-9801-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
By proteolytic cleavage, matrix metalloproteinases (MMPs) not only remodel the extracellular matrix (ECM) but they also modify the structure and activity of other proteinases, growth factors, signaling molecules, cell surface receptors, etc. Their vast substrate repertoire adds a complex extra dimension of biological control and turns MMPs into important regulatory nodes in the protease web. In the central nervous system (CNS), the detrimental impact of elevated MMP activities has been well-described for traumatic injuries and many neurodegenerative diseases. Nonetheless, there is ample proof corroborating MMPs as fine regulators of CNS physiology, and well-balanced MMP activity is instrumental to development, plasticity, and repair. In this manuscript, we review the emerging evidence for MMPs as beneficial modulators of axonal regeneration in the mammalian CNS. By exploring the multifactorial causes underlying the inability of mature axons to regenerate, and describing how MMPs can help to overcome these hurdles, we emphasize the benign actions of these Janus-faced proteases.
Collapse
|
122
|
Shioiri T, Tsuchimoto J, Watanabe H, Sugiura N. Sequence determination of synthesized chondroitin sulfate dodecasaccharides. Glycobiology 2016; 26:592-606. [PMID: 26791444 DOI: 10.1093/glycob/cww008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/15/2016] [Indexed: 11/14/2022] Open
Abstract
Chondroitin sulfate (CS) is a linear acidic polysaccharide composed of repeating disaccharide units of glucuronic acid and N-acetyl-d-galactosamine. The polysaccharide is modified with sulfate groups at different positions by a variety of sulfotransferases. CS chains exhibit various biological and pathological functions by interacting with cytokines and growth factors and regulating their signal transduction. The fine structure of the CS chain defines its specific biological roles. However, structural analysis of CS has been restricted to disaccharide analysis, hampering the understanding of the structure-function relationship of CS chains. Here, we chemo-enzymatically synthesized CS dodecasaccharides having various sulfate modifications using a bioreactor system of bacterial chondroitin polymerase mutants and various CS sulfotransferases. We developed a sequencing method for CS chains using the CS dodecasaccharides. The method consists of (i) labeling a reducing end with 2-aminopyridine (PA), (ii) partial digestion of CS with testicular hyaluronidase, followed by separation of PA-conjugated oligosaccharides with different chain lengths, (iii) limited digestion of these oligosaccharides with chondroitin lyase AC II into disaccharides, followed by labeling with 2-aminobenzamide, (iv) CS disaccharide analysis using a dual-fluorescence HPLC system (reversed-phase ion-pair and ion-exchange chromatography), and (v) estimation of the composition by calculating individual disaccharide ratios. This CS chain sequencing allows characterization of CS-modifying enzymes and provides a useful tool toward understanding the structure-function relationship of CS chains.
Collapse
Affiliation(s)
- Tatsumasa Shioiri
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Jun Tsuchimoto
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
123
|
Soliman MK, Agarwal A, Sarwar S, Hanout M, Sadiq MA, Do DV, Nguyen QD. Pharmacologic Vitreolysis in Vascular Diseases of the Retina. Ophthalmic Surg Lasers Imaging Retina 2016; 47:60-8. [PMID: 26731211 DOI: 10.3928/23258160-20151214-09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 10/22/2015] [Indexed: 11/20/2022]
Abstract
Vascular diseases of the retina such as diabetic retinopathy and vascular occlusions account for a large proportion of visual morbidity and blindness worldwide. The role of vitreous in the pathogenesis of these conditions has been increasingly recognized. Despite advances in the surgical technique of pars plana vitrectomy, the use of intravitreal agents for the lysis of vitreous has received attention, guided largely by promising results from the trials involving patients with non-vascular retinal diseases such as vitreomacular traction. The purpose of this review is to provide a comprehensive summary of the present knowledge on pathophysiologic basis of pharmacologic vitreolysis and its efficacy in vascular diseases of the retina. A review of completed and ongoing clinical trials will be presented, along with insights into future directions of this therapy.
Collapse
|
124
|
Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets. Neural Plast 2016; 2016:5214961. [PMID: 26881114 PMCID: PMC4736403 DOI: 10.1155/2016/5214961] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 11/17/2022] Open
Abstract
Synapses are specialized structures that mediate rapid and efficient signal transmission between neurons and are surrounded by glial cells. Astrocytes develop an intimate association with synapses in the central nervous system (CNS) and contribute to the regulation of ion and neurotransmitter concentrations. Together with neurons, they shape intercellular space to provide a stable milieu for neuronal activity. Extracellular matrix (ECM) components are synthesized by both neurons and astrocytes and play an important role in the formation, maintenance, and function of synapses in the CNS. The components of the ECM have been detected near glial processes, which abut onto the CNS synaptic unit, where they are part of the specialized macromolecular assemblies, termed perineuronal nets (PNNs). PNNs have originally been discovered by Golgi and represent a molecular scaffold deposited in the interface between the astrocyte and subsets of neurons in the vicinity of the synapse. Recent reports strongly suggest that PNNs are tightly involved in the regulation of synaptic plasticity. Moreover, several studies have implicated PNNs and the neural ECM in neuropsychiatric diseases. Here, we highlight current concepts relating to neural ECM and PNNs and describe an in vitro approach that allows for the investigation of ECM functions for synaptogenesis.
Collapse
|
125
|
Hannesson KO, Ytteborg E, Takle H, Enersen G, Bæverfjord G, Pedersen ME. Sulphated glycosaminoglycans and proteoglycans in the developing vertebral column of juvenile Atlantic salmon (Salmo salar). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1029-1051. [PMID: 25963942 PMCID: PMC4495713 DOI: 10.1007/s10695-015-0067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
In the present study, the distribution of sulphated glycosaminoglycans (GAGs) in the developing vertebral column of Atlantic salmon (Salmo salar) at 700, 900, 1100 and 1400 d° was examined by light microscopy. The mineralization pattern was outlined by Alizarin red S and soft structures by Alcian blue. The temporal and spatial distribution patterns of different types of GAGs: chondroitin-4-sulphate/dermatan sulphate, chondroitin-6-sulphate, chondroitin-0-sulphate and keratan sulphate were addressed by immunohistochemistry using monoclonal antibodies against the different GAGs. The specific pattern obtained with the different antibodies suggests a unique role of the different GAG types in pattern formation and mineralization. In addition, the distribution of the different GAG types in normal and malformed vertebral columns from 15 g salmon was compared. A changed expression pattern of GAGs was found in the malformed vertebrae, indicating the involvement of these molecules during the pathogenesis. The molecular size of proteoglycans (PGs) in the vertebrae carrying GAGs was analysed with western blotting, and mRNA transcription of the PGs aggrecan, decorin, biglycan, fibromodulin and lumican by real-time qPCR. Our study reveals the importance of GAGs in development of vertebral column also in Atlantic salmon and indicates that a more comprehensive approach is necessary to completely understand the processes involved.
Collapse
|
126
|
Study the effect of His-tag on chondroitinase ABC I based on characterization of enzyme. Int J Biol Macromol 2015; 78:96-101. [DOI: 10.1016/j.ijbiomac.2015.03.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 03/21/2015] [Accepted: 03/26/2015] [Indexed: 11/22/2022]
|
127
|
The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth. PLoS One 2015; 10:e0131105. [PMID: 26107959 PMCID: PMC4481269 DOI: 10.1371/journal.pone.0131105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/28/2015] [Indexed: 11/22/2022] Open
Abstract
Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.
Collapse
|
128
|
Deng YP, Sun Y, Hu L, Li ZH, Xu QM, Pei YL, Huang ZH, Yang ZG, Chen C. Chondroitin sulfate proteoglycans impede myelination by oligodendrocytes after perinatal white matter injury. Exp Neurol 2015; 269:213-23. [PMID: 25862289 DOI: 10.1016/j.expneurol.2015.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 03/09/2015] [Accepted: 03/31/2015] [Indexed: 01/22/2023]
Abstract
Hypomyelination is the major cause of neurodevelopmental deficits that are associated with perinatal white matter injury. Chondroitin sulfate proteoglycans (CSPGs) are known to exert inhibitory effects on the migration and differentiation of oligodendrocytes (OLs). However, few studies describe the roles of CSPGs in myelination by OLs and the cognitive dysfunction that follows perinatal white matter injury. Here, we examined the alterations in the expression of CSPGs and their functional impact on the maturation of OLs and myelination in a neonatal rat model of hypoxic-ischemic (HI) brain injury. Three-day-old Sprague-Dawley rats underwent a right common carotid artery ligation and were exposed to hypoxia (6% oxygen for 2.5h). Rats were given chondroitinase ABC (cABC) via an intracerebroventricular injection to digest CSPGs. Animals were sacrificed at 7, 14, 28 and 56days after HI injury and the accompanying surgical procedure. We found that the expression of CSPGs was significantly up-regulated in the cortical regions surrounding the white matter after HI injury. cABC successfully degraded CSPGs in the rats that received cABC. Immunostaining showed decreased expression of the pre-oligodendrocyte marker O4 in the cingulum, external capsule and corpus callosum in HI+cABC rats compared to HI rats. However HI+cABC rats exhibited greater maturation of OLs than did HI rats, with increased expression of O1 and myelin basic protein in the white matter. Furthermore, using electron microscopy, we demonstrated that myelin formation was enhanced in HI+cABC rats, which had an increased number of myelinated axons and decreased G-ratios of myelin compared to HI rats. Finally, HI+cABC rats performed better in the Morris water maze task than HI rats, which indicates an improvement in cognitive ability. Our results suggest that CSPGs inhibit both the maturation of OLs and the process of myelination after neonatal HI brain injury. The data also raise the possibility that modifying CSPGs may repair this type of lesion associated with demyelination.
Collapse
Affiliation(s)
- Ying-Ping Deng
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Yi Sun
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Lan Hu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Zhi-Hua Li
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Quan-Mei Xu
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Yi-Ling Pei
- School of Public Health, Fudan University, Shanghai, China
| | - Zhi-Heng Huang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Zhen-Gang Yang
- Institute of Brain Science, Fudan University, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China.
| |
Collapse
|
129
|
Critical Role of a Loop at C-Terminal Domain on the Conformational Stability and Catalytic Efficiency of Chondroitinase ABC I. Mol Biotechnol 2015; 57:727-34. [DOI: 10.1007/s12033-015-9864-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
130
|
Expression of hyaluronidase-4 in a rat spinal cord hemisection model. Asian Spine J 2015; 9:7-13. [PMID: 25705329 PMCID: PMC4330222 DOI: 10.4184/asj.2015.9.1.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 12/04/2022] Open
Abstract
Study Design Examination of hyaluronidase-4 (Hyal-4) expression in a rat spinal cord hemisection model. Purpose To determine the status of Hyal-4 expression after hemisection of the spinal cord, and the relationship between its expression and that of chondroitin sulfate proteoglycans (CSPGs). Overview of Literature CSPGs are expressed at the site of spinal cord injury and inhibit axon regeneration. Administration of exogenous chrondroitinase ABC (ChABC), derived from bacteria, digested CSPGs and promoted axonal regrowth. Using a rat hemisection model, we have demonstrated peak CSPGs levels at by 3 weeks after injury but then decreased spontaneously. Could there be an endogenous enzyme similar to ChABC in the spinal cord? It has been suggested that Hyal-4 is involved in CSPG degradation. Methods A rat hemisection model was prepared and spinal cord frozen sections were prepared at 4 days and 1, 2, 3, 4, 5, and 6 weeks post-cordotomy and stained for CSPGs and Hyal-4 and subjected to Western blotting. Results CSPGs appeared at the injury site at 4 days after hemisection, reached a peak after 3 weeks, and then decreased. Hyal-4 was observed around the injury site from 4 days after cordotomy and increased until after 5-6 weeks. Double staining showed Hyal-4 around CSPGs. Western blotting identified a band corresponding to Hyal-4 from 4 days after hemisection. Conclusions Hyal-4 was expressed in a rat hemisection model in areas surrounding CSPGs, and as its peak was delayed compared with that of CSPGs. These results suggest the involvement of Hyal-4 in the digestion of CSPGs.
Collapse
|
131
|
Wang W, Han W, Cai X, Zheng X, Sugahara K, Li F. Cloning and characterization of a novel chondroitin sulfate/dermatan sulfate 4-O-endosulfatase from a marine bacterium. J Biol Chem 2015; 290:7823-32. [PMID: 25648894 DOI: 10.1074/jbc.m114.629154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886-27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17-65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications.
Collapse
Affiliation(s)
- Wenshuang Wang
- From the National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China and
| | - Wenjun Han
- From the National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China and
| | - Xingya Cai
- From the National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China and
| | - Xiaoyu Zheng
- From the National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China and
| | - Kazuyuki Sugahara
- the Proteoglycan Signaling and Therapeutics Research Group, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo 001-0021, Japan
| | - Fuchuan Li
- From the National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, 27 South Shanda Road, Jinan 250100, China and
| |
Collapse
|
132
|
Chen Z, Li Y, Feng Y, Chen L, Yuan Q. Enzyme activity enhancement of chondroitinase ABC I from Proteus vulgaris by site-directed mutagenesis. RSC Adv 2015. [DOI: 10.1039/c5ra15220h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Arg660 was found as a new active site and Asn795Ala and Trp818Ala mutants showed higher activities than the wild type based on molecular docking simulation analysis for the first time.
Collapse
Affiliation(s)
- Zhenya Chen
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Ye Li
- Department of Biotechnology
- Beijing Polytechnic
- Beijing 100029
- China
| | - Yue Feng
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Liang Chen
- Department of Biotechnology
- Beijing Polytechnic
- Beijing 100029
- China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
133
|
Asimakopoulou AP, Malavaki C, Afratis NA, Theocharis AD, Lamari FN, Karamanos NK. Validated capillary electrophoretic assays for disaccharide composition analysis of galactosaminoglycans in biologic samples and drugs/nutraceuticals. Methods Mol Biol 2015; 1229:129-141. [PMID: 25325950 DOI: 10.1007/978-1-4939-1714-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Capillary electrophoresis is a separation technique with high resolving power and sensitivity with applications in glycosaminoglycan analysis. In this chapter, we present validated protocols for determining the variously sulfated chondroitin or dermatan sulfate-derived disaccharides. These approaches involve degradation of the polysaccharides with specific chondro/dermato-lyases and electrophoretic analysis with capillary zone electrophoresis in a low pH operating buffer and reversed polarity. This methodology has been applied to drug/nutraceutical formulations or to biologic samples (blood serum, lens capsule) and has been validated. Analysis of biologic tissue samples is often more demanding in terms of detection sensitivity, and thus concentration pretreatment steps and/or a derivatization step with 2-aminoacridone are often advisable.
Collapse
Affiliation(s)
- Athanasia P Asimakopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 1414, 26504, Patras, Greece
| | | | | | | | | | | |
Collapse
|
134
|
Sivak WN, White JD, Bliley JM, Tien LW, Liao HT, Kaplan DL, Marra KG. Delivery of chondroitinase ABC and glial cell line-derived neurotrophic factor from silk fibroin conduits enhances peripheral nerve regeneration. J Tissue Eng Regen Med 2014; 11:733-742. [PMID: 25424415 DOI: 10.1002/term.1970] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/18/2014] [Accepted: 10/27/2014] [Indexed: 01/26/2023]
Abstract
Nerve conduits are a proven strategy for guiding axon regrowth following injury. This study compares degradable silk-trehalose films containing chondroitinase ABC (ChABC) and/or glial cell line-derived neurotrophic factor (GDNF) loaded within a silk fibroin-based nerve conduit in a rat sciatic nerve defect model. Four groups of silk conduits were prepared, with the following silk-trehalose films inserted into the conduit: (a) empty; (b) 1 µg GDNF; (3) 2 U ChABC; and (4) 1 µg GDNF/2 U ChABC. Drug release studies demonstrated 20% recovery of GDNF and ChABC at 6 weeks and 24 h, respectively. Six conduits of each type were implanted into 15 mm sciatic nerve defects in Lewis rats; conduits were explanted for histological analysis at 6 weeks. Tissues stained with Schwann cell S-100 antibody demonstrated an increased density of cells in both GDNF- and ChABC-treated groups compared to empty control conduits (p < 0.05). Conduits loaded with GDNF and ChABC also demonstrated higher levels of neuron-specific PGP 9.5 protein when compared to controls (p < 0.05). In this study we demonstrated a method to enhance Schwann cell migration and proliferation and also foster axonal regeneration when repairing peripheral nerve gap defects. Silk fibroin-based nerve conduits possess favourable mechanical and degradative properties and are further enhanced when loaded with ChABC and GDNF. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wesley N Sivak
- Department of Plastic Surgery, University of Pittsburgh, PA, USA
| | - James D White
- Department of Biomedical Engineering, Tufts University, Boston, MA, USA
| | | | - Lee W Tien
- Department of Biomedical Engineering, Tufts University, Boston, MA, USA
| | - Han Tsung Liao
- Department of Plastic Surgery, University of Pittsburgh, PA, USA
- Department of Plastic and Reconstructive Surgery, Craniofacial Research Centre, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Boston, MA, USA
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
135
|
Abstract
Even after 20 years of granting orphan status for chondroitinase by US FDA, there is no visible outcome in terms of clinical use. The reasons are many. One of them could be lack of awareness regarding the biological application of the enzyme. The biological activity of chondroitinase is due to its ability to act on chondroitin sulfate proteoglycans (CSPGs). CSPGs are needed for normal functioning of the body. An increase or decrease in the level of CSPGs results in various pathological conditions. Chondroitinase is useful in conditions where there is an increase in the level of CSPGs, namely spinal cord injury, vitreous attachment and cancer. Over the last decade, various animal studies showed that chondroitinase could be a good drug candidate. Research focusing on developing a suitable carrier system for delivering chondroitinase needs to be carried out so that pharmacological activity observed in vitro and preclinical studies could be translated to clinical use. Further studies on distribution of chondroitinase as well need to be focused so that chondroitinase with desired attributes could be discovered. The present review article discusses about various biological applications of chondroitinase, drug delivery systems to deliver the enzyme and distribution of chondroitinase among microbes.
Collapse
Affiliation(s)
- Narayanan Kasinathan
- a Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| | - Subrahmanyam M Volety
- a Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| | - Venkata Rao Josyula
- a Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , Karnataka , India
| |
Collapse
|
136
|
Han W, Wang W, Zhao M, Sugahara K, Li F. A novel eliminase from a marine bacterium that degrades hyaluronan and chondroitin sulfate. J Biol Chem 2014; 289:27886-98. [PMID: 25122756 DOI: 10.1074/jbc.m114.590752] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ(4,5)HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications.
Collapse
Affiliation(s)
- Wenjun Han
- From the National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China and
| | - Wenshuang Wang
- From the National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China and
| | - Mei Zhao
- From the National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China and
| | - Kazuyuki Sugahara
- Proteoglycan Signaling and Therapeutics Research Group, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo 001-0021, Japan
| | - Fuchuan Li
- From the National Glycoengineering Research Center, and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China and
| |
Collapse
|
137
|
Singh SK, Malhotra S, Akhtar MS. Characterization of hyaluronic acid specific hyaluronate lyase (HylP) from Streptococcus pyogenes. Biochimie 2014; 102:203-10. [DOI: 10.1016/j.biochi.2014.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/25/2014] [Indexed: 11/30/2022]
|
138
|
Study of extracellular matrix in vocal fold biomechanics using a two-phase model. Biomech Model Mechanobiol 2014; 14:49-57. [PMID: 24792897 DOI: 10.1007/s10237-014-0585-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
The extracellular matrix (ECM) of the vocal fold tissue consists primarily of fibrous and interstitial proteins. The purpose of this study was to investigate the effects of selective enzymatic digestion of two ECM proteins, namely elastin and versican, on the elasticity of rabbit vocal fold tissue. Quasi-static, sinusoidal, uniaxial tensile tests were performed. The data were analyzed within the framework of a model of the ECM as a two-phase composite material consisting of collagen fibrils as the reinforcing fibers and noncollagenous ECM proteins as the matrix. To validate the two-phase model, the regression parameters for the fibers' volume fraction and shear modulus in a different animal model were compared with corresponding published data. The proposed model was then used to analyze rabbit vocal fold tissues. The mean value and the standard deviation of the fiber volume fraction were found to be 8.49 ± 3.75 % for the control samples (n = 4), 0.59 ± 1.13 % after elastin removal (n = 4), and 8.22 ± 1.06 % after versican removal (n = 4). The results suggest that elastin removal may lead to a reduction in tissue stiffness, through counteracting the reinforcement of collagen fibrils.
Collapse
|
139
|
Khoshgoftar M, Wilson W, Ito K, van Donkelaar CC. Influence of the Temporal Deposition of Extracellular Matrix on the Mechanical Properties of Tissue-Engineered Cartilage. Tissue Eng Part A 2014; 20:1476-85. [DOI: 10.1089/ten.tea.2013.0345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter Wilson
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
140
|
Warren PM, Alilain WJ. The challenges of respiratory motor system recovery following cervical spinal cord injury. PROGRESS IN BRAIN RESEARCH 2014; 212:173-220. [DOI: 10.1016/b978-0-444-63488-7.00010-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
141
|
Tsilibary E, Tzinia A, Radenovic L, Stamenkovic V, Lebitko T, Mucha M, Pawlak R, Frischknecht R, Kaczmarek L. Neural ECM proteases in learning and synaptic plasticity. PROGRESS IN BRAIN RESEARCH 2014; 214:135-57. [PMID: 25410356 DOI: 10.1016/b978-0-444-63486-3.00006-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies implicate extracellular proteases in synaptic plasticity, learning, and memory. The data are especially strong for such serine proteases as thrombin, tissue plasminogen activator, neurotrypsin, and neuropsin as well as matrix metalloproteinases, MMP-9 in particular. The role of those enzymes in the aforementioned phenomena is supported by the experimental results on the expression patterns (at the gene expression and protein and enzymatic activity levels) and functional studies, including knockout mice, specific inhibitors, etc. Counterintuitively, the studies have shown that the extracellular proteolysis is not responsible mainly for an overall degradation of the extracellular matrix (ECM) and loosening perisynaptic structures, but rather allows for releasing signaling molecules from the ECM, transsynaptic proteins, and latent form of growth factors. Notably, there are also indications implying those enzymes in the major neuropsychiatric disorders, probably by contributing to synaptic aberrations underlying such diseases as schizophrenia, bipolar, autism spectrum disorders, and drug addiction.
Collapse
Affiliation(s)
- Effie Tsilibary
- Institute of Biosciences and Applications, NCSR "Demokritos", Athens, Greece
| | - Athina Tzinia
- Institute of Biosciences and Applications, NCSR "Demokritos", Athens, Greece
| | - Lidija Radenovic
- Center for Laser Microscopy, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vera Stamenkovic
- Center for Laser Microscopy, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tomasz Lebitko
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| | | | | | - Renato Frischknecht
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Leszek Kaczmarek
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland.
| |
Collapse
|
142
|
Ramachandra R, Namburi RB, Ortega-Martinez O, Shi X, Zaia J, Dupont ST, Thorndyke MC, Lindahl U, Spillmann D. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling. Glycobiology 2013; 24:195-207. [PMID: 24253764 DOI: 10.1093/glycob/cwt100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.
Collapse
Affiliation(s)
- Rashmi Ramachandra
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Kawaguchi Y, Sugiura N, Kimata K, Kimura M, Kakuta Y. The crystal structure of novel chondroitin lyase ODV-E66, a baculovirus envelope protein. FEBS Lett 2013; 587:S0014-5793(13)00778-3. [PMID: 24512853 DOI: 10.1016/j.febslet.2013.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/01/2013] [Accepted: 10/15/2013] [Indexed: 11/28/2022]
Abstract
Chondroitin lyases have been known as pathogenic bacterial enzymes that degrade chondroitin. Recently, baculovirus envelope protein ODV-E66 was identified as the first reported viral chondroitin lyase. ODV-E66 has low sequence identity with bacterial lyases at <12%, and unique characteristics reflecting the life cycle of baculovirus. To understand ODV-E66's structural basis, the crystal structure was determined and it was found that the structural fold resembled that of polysaccharide lyase 8 proteins and that the catalytic residues were also conserved. This structure enabled discussion of the unique substrate specificity and the stability of ODV-E66 as well as the host specificity of baculovirus.
Collapse
Affiliation(s)
- Yoshirou Kawaguchi
- Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Koji Kimata
- Research Complex for the Medicine Frontiers, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Makoto Kimura
- Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan; Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Yoshimitu Kakuta
- Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan; Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| |
Collapse
|
144
|
Wilusz RE, Guilak F. High resistance of the mechanical properties of the chondrocyte pericellular matrix to proteoglycan digestion by chondroitinase, aggrecanase, or hyaluronidase. J Mech Behav Biomed Mater 2013; 38:183-97. [PMID: 24156881 DOI: 10.1016/j.jmbbm.2013.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/09/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022]
Abstract
In articular cartilage, the extracellular matrix (ECM) and chondrocyte-associated pericellular matrix (PCM) are characterized by a high concentration of proteoglycans (PGs) and their associated glycosaminoglycans (GAGs). These molecules serve important biochemical, structural, and biomechanical roles in the tissue and differences in their regional distributions suggest that different GAG/PG species contribute to the specific biomechanical properties of the ECM and PCM. The objective of this study was to investigate region-specific contributions of aggrecan, chondroitin and dermatan sulfate, and hyaluronan to the micromechanical properties of articular cartilage PCM and ECM in situ. Cryosections of porcine cartilage underwent digestion with ADAMTS-4, chondroitinase ABC, bacterial hyaluronidase or human leukocyte elastase. Guided by immunofluorescence for type VI collagen, AFM stiffness mapping was used to evaluate the elastic properties of matched PCM and ECM regions in paired control and digested cartilage sections. These methods were used to test the hypotheses that specific enzymatic digestion of GAGs or PGs would reduce both PCM and ECM elastic moduli. Elastase, which digests a number of PGs, some types of collagen, and non-collagenous proteins, was used as a positive control. ECM elastic moduli were significantly reduced by all enzyme treatments. However, PCM micromechanical properties were unaffected by enzymatic digestion of aggrecan, chondroitin/dermatan sulfate, and hyaluronan but were significantly reduced by 24% following elastase digestion. Our results provide new evidence for high resistance of PCM micromechanical properties to PG digestion and suggest a potential role for elastase in the degradation of the ECM and PCM.
Collapse
Affiliation(s)
- Rebecca E Wilusz
- Department of Orthopaedic Surgery, Duke University Medical Center, USA; Department of Biomedical Engineering, Duke University, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, USA; Department of Biomedical Engineering, Duke University, USA.
| |
Collapse
|
145
|
Sugiura N, Ikeda M, Shioiri T, Yoshimura M, Kobayashi M, Watanabe H. Chondroitinase from baculovirus Bombyx mori nucleopolyhedrovirus and chondroitin sulfate from silkworm Bombyx mori. Glycobiology 2013; 23:1520-30. [DOI: 10.1093/glycob/cwt082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
146
|
Soleman S, Filippov MA, Dityatev A, Fawcett JW. Targeting the neural extracellular matrix in neurological disorders. Neuroscience 2013; 253:194-213. [PMID: 24012743 DOI: 10.1016/j.neuroscience.2013.08.050] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/06/2013] [Accepted: 08/26/2013] [Indexed: 01/15/2023]
Abstract
The extracellular matrix (ECM) is known to regulate important processes in neuronal cell development, activity and growth. It is associated with the structural stabilization of neuronal processes and synaptic contacts during the maturation of the central nervous system. The remodeling of the ECM during both development and after central nervous system injury has been shown to affect neuronal guidance, synaptic plasticity and their regenerative responses. Particular interest has focused on the inhibitory role of chondroitin sulfate proteoglycans (CSPGs) and their formation into dense lattice-like structures, termed perineuronal nets (PNNs), which enwrap sub-populations of neurons and restrict plasticity. Recent studies in mammalian systems have implicated CSPGs and PNNs in regulating and restricting structural plasticity. The enzymatic degradation of CSPGs or destabilization of PNNs has been shown to enhance neuronal activity and plasticity after central nervous system injury. This review focuses on the role of the ECM, CSPGs and PNNs; and how developmental and pharmacological manipulation of these structures have enhanced neuronal plasticity and aided functional recovery in regeneration, stroke, and amblyopia. In addition to CSPGs, this review also points to the functions and potential therapeutic value of these and several other key ECM molecules in epileptogenesis and dementia.
Collapse
Affiliation(s)
- S Soleman
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
147
|
Dick G, Tan CL, Alves JN, Ehlert EME, Miller GM, Hsieh-Wilson LC, Sugahara K, Oosterhof A, van Kuppevelt TH, Verhaagen J, Fawcett JW, Kwok JCF. Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains. J Biol Chem 2013; 288:27384-27395. [PMID: 23940048 DOI: 10.1074/jbc.m111.310029] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chondroitin sulfate (CS) and the CS-rich extracellular matrix structures called perineuronal nets (PNNs) restrict plasticity and regeneration in the CNS. Plasticity is enhanced by chondroitinase ABC treatment that removes CS from its core protein in the chondroitin sulfate proteoglycans or by preventing the formation of PNNs, suggesting that chondroitin sulfate proteoglycans in the PNNs control plasticity. Recently, we have shown that semaphorin3A (Sema3A), a repulsive axon guidance molecule, localizes to the PNNs and is removed by chondroitinase ABC treatment (Vo, T., Carulli, D., Ehlert, E. M., Kwok, J. C., Dick, G., Mecollari, V., Moloney, E. B., Neufeld, G., de Winter, F., Fawcett, J. W., and Verhaagen, J. (2013) Mol. Cell. Neurosci. 56C, 186-200). Sema3A is therefore a candidate for a PNN effector in controlling plasticity. Here, we characterize the interaction of Sema3A with CS of the PNNs. Recombinant Sema3A interacts with CS type E (CS-E), and this interaction is involved in the binding of Sema3A to rat brain-derived PNN glycosaminoglycans, as demonstrated by the use of CS-E blocking antibody GD3G7. In addition, we investigate the release of endogenous Sema3A from rat brain by biochemical and enzymatic extractions. Our results confirm the interaction of Sema3A with CS-E containing glycosaminoglycans in the dense extracellular matrix of rat brain. We also demonstrate that the combination of Sema3A and PNN GAGs is a potent inhibitor of axon growth, and this inhibition is reduced by the CS-E blocking antibody. In conclusion, Sema3A binding to CS-E in the PNNs may be a mechanism whereby PNNs restrict growth and plasticity and may represent a possible point of intervention to facilitate neuronal plasticity.
Collapse
Affiliation(s)
- Gunnar Dick
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Chin Lik Tan
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Joao Nuno Alves
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Erich M E Ehlert
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Gregory M Miller
- California Institute of Technology and Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, Pasadena, California 91125
| | - Linda C Hsieh-Wilson
- California Institute of Technology and Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, Pasadena, California 91125
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, 001-0021 Sapporo, Japan
| | - Arie Oosterhof
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Jessica C F Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom.
| |
Collapse
|
148
|
Alexander SA, Donoff RB. A Modification of the Alcian Blue Method for Staining Hyaluronic Acid Substances in Tissue Sections. J Histotechnol 2013. [DOI: 10.1179/his.1980.3.2.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
149
|
Tseng H, Kim EJ, Connell PS, Ayoub S, Shah JV, Grande-Allen KJ. The tensile and viscoelastic properties of aortic valve leaflets treated with a hyaluronidase gradient. Cardiovasc Eng Technol 2013; 4:151-160. [PMID: 38223558 PMCID: PMC10786346 DOI: 10.1007/s13239-013-0122-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Purpose When diseased, aortic valves are typically replaced with bioprosthetic heart valves (BPHVs), porcine valves or bovine pericardium that are fixed in glutaraldehyde. These replacements fail within 10-15 years due to calcification and fatigue, and their failure coincides with a loss of glycosaminoglycans (GAGs). This study investigates this relationship between GAG concentration and the tensile and viscoelastic properties of aortic valve leaflets. Methods Aortic valve leaflets were dissected from porcine hearts and digested in hyaluronidase in concentrations ranging from 0-5 U/mL for 0-24 hours, yielding a spectrum of GAG concentrations that was measured using the uronic acid assay and confirmed by Alcian Blue staining. Digested leaflets with varying GAG concentrations were then tested in tension in the circumferential and radial directions with varying strain rate, as well as in stress relaxation. Results The GAG concentration of the leaflets was successfully reduced using hyaluronidase, although water content was not affected. Elastic modulus, the maximum stress, and hysteresis significantly increased with decreasing GAG concentration. Extensibility and the radius of transition curvature did not change with GAG concentration. The stress relaxation behavior and strain-rate independent nature of the leaflet did not change with GAG concentration. Conclusions These results suggest that GAGs in the spongiosa lubricate tissue motion and reduce stresses experienced by the leaflet. This study forms the basis for predictive models of BPHV mechanics based on GAG concentration, and guides the rational design of future heart valve replacements.
Collapse
Affiliation(s)
- Hubert Tseng
- Department of Bioengineering, Rice University, Houston, TX USA
| | - Eric J. Kim
- Department of Bioengineering, Rice University, Houston, TX USA
| | - Patrick S. Connell
- Department of Bioengineering, Rice University, Houston, TX USA
- Baylor College of Medicine, Houston, TX USA
| | - Salma Ayoub
- Department of Bioengineering, Rice University, Houston, TX USA
| | - Jay V. Shah
- Department of Bioengineering, Rice University, Houston, TX USA
| | | |
Collapse
|
150
|
Tatara Y, Kakizaki I, Kuroda Y, Suto S, Ishioka H, Endo M. Epiphycan from salmon nasal cartilage is a novel type of large leucine-rich proteoglycan. Glycobiology 2013; 23:993-1003. [PMID: 23704297 DOI: 10.1093/glycob/cwt038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chum salmon (Oncorhynchus keta) nasal cartilage was examined by next-generation DNA sequencing and mass spectrometric analyses, and 14 types of proteoglycans including epiphycan (EPY) were found. A cDNA encoding EPY was cloned and sequenced. The cDNA encoded 589 amino acids comprised a glycosaminoglycan (GAG) domain containing 55 potential GAG-modified sites (Ser-Gly and/or Gly-Ser), a cysteine cluster and 6 leucine-rich repeats. EPY was purified from salmon nasal cartilage and the structure of the GAG was characterized. As a result of unsaturated disaccharide analysis, GAG was found to be composed of chondroitin 6-sulfate (58.0%), chondroitin 4-sulfate (26.5%) and non-sulfated chondroitin (15.3%). The average molecular weight of GAG was estimated to be 3.0 × 10(4). Ser-100 and Ser-103 were identified as serine residues substituted by GAG chains by chemical modification and mass spectrometric analysis. More than 50 serine residues were assumed to be substituted by GAG chains. EPY is heavily substituted by chondroitin sulfate, giving an overall molecular weight of just under 2 × 10(6). EPY from salmon nasal cartilage is a novel type of large leucine-rich proteoglycan.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | | | | | | | | | | |
Collapse
|