101
|
Zou L, Xu Y, Li Y, He Q, Chen B, Wang D. Development of a single-chain variable fragment antibody-based enzyme-linked immunosorbent assay for determination of fumonisin B₁ in corn samples. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1865-1871. [PMID: 24375282 DOI: 10.1002/jsfa.6505] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 11/13/2013] [Accepted: 11/28/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND Fumonisin B1 (FB1 ) is a cancer-promoting mycotoxin produced by Fusarium species and one of the major food-borne toxins in corn and corn products. The objective of this study was to produce a single-chain variable fragment (scFv) antibody for determination of FB1 in corn samples. RESULTS Anti-FB1 monoclonal antibodies were obtained via the hybridoma technique. Specific heavy- and light-chain variable fragments were amplified with degenerate primers and constructed into scFv antibody fragments by splice overlap extension polymerase chain reaction with linker sequences. The resulting scFv DNA fragments were cloned into the phagemid pHEN1for selection and identification of functional scFv fragment by phage display. Prokaryotic expression vector pET22b-scFv was constructed to prepare anti-FB1 scFv antibody for establishment of indirect competitive ELISA. The detection capability (CCβ) of the scFv-based ELISA was 15.00 µg kg(-1), and the limit of detection was 8.32 µg kg(-1). The recoveries and coefficients of variation were 86.74-107.34% and 9.72-14.03%, respectively. In addition, the determined results of 30 naturally contaminated corn samples by the scFv-based ELISA are in agreement with the findings of high-performance liquid chromatography (R(2) = 0.97). CONCLUSION This scFv-based ELISA could be used as an efficient screening method for routine monitoring the residues FB1 in corn samples.
Collapse
Affiliation(s)
- Long Zou
- State Key Laboratory of Food Science and Technology, Sino-Germany Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | | | | | | | | | | |
Collapse
|
102
|
TgaA, a VirB1-like component belonging to a putative type IV secretion system of Bifidobacterium bifidum MIMBb75. Appl Environ Microbiol 2014; 80:5161-9. [PMID: 24951779 DOI: 10.1128/aem.01413-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bifidobacterium bifidum MIMBb75 is a human intestinal isolate demonstrated to be interactive with the host and efficacious as a probiotic. However, the molecular biology of this microorganism is yet largely unknown. For this reason, we undertook whole-genome sequencing of B. bifidum MIMBb75 to identify potential genetic factors that would explain the metabolic and probiotic attributes of this bacterium. Comparative genomic analysis revealed a 45-kb chromosomal region that comprises 19 putative genes coding for a potential type IV secretion system (T4SS). Thus, we undertook the initial characterization of this genetic region by studying the putative virB1-like gene, named tgaA. Gene tgaA encodes a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT, cd00254.3) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP, pfam05257.4). By means of several in vitro assays, we experimentally confirmed that protein TgaA, consistent with its computationally assigned role, has peptidoglycan lytic activity, which is principally associated to the LT domain. Furthermore, immunofluorescence and immunogold labeling showed that the protein TgaA is abundantly expressed on the cell surface of B. bifidum MIMBb75. According to the literature, the T4SSs, which have not been characterized before in bifidobacteria, can have important implications for bacterial cell-to-cell communication as well as cross talk with host cells, justifying the interest for further studies aimed at the investigation of this genetic region.
Collapse
|
103
|
Menzel U, Greiff V, Khan TA, Haessler U, Hellmann I, Friedensohn S, Cook SC, Pogson M, Reddy ST. Comprehensive evaluation and optimization of amplicon library preparation methods for high-throughput antibody sequencing. PLoS One 2014; 9:e96727. [PMID: 24809667 PMCID: PMC4014543 DOI: 10.1371/journal.pone.0096727] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
High-throughput sequencing (HTS) of antibody repertoire libraries has become a powerful tool in the field of systems immunology. However, numerous sources of bias in HTS workflows may affect the obtained antibody repertoire data. A crucial step in antibody library preparation is the addition of short platform-specific nucleotide adapter sequences. As of yet, the impact of the method of adapter addition on experimental library preparation and the resulting antibody repertoire HTS datasets has not been thoroughly investigated. Therefore, we compared three standard library preparation methods by performing Illumina HTS on antibody variable heavy genes from murine antibody-secreting cells. Clonal overlap and rank statistics demonstrated that the investigated methods produced equivalent HTS datasets. PCR-based methods were experimentally superior to ligation with respect to speed, efficiency, and practicality. Finally, using a two-step PCR based method we established a protocol for antibody repertoire library generation, beginning from inputs as low as 1 ng of total RNA. In summary, this study represents a major advance towards a standardized experimental framework for antibody HTS, thus opening up the potential for systems-based, cross-experiment meta-analyses of antibody repertoires.
Collapse
Affiliation(s)
- Ulrike Menzel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Victor Greiff
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Tarik A Khan
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ulrike Haessler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ina Hellmann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Skylar C Cook
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Mark Pogson
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
104
|
Phillips DD, Garboczi DN, Singh K, Hu Z, Leppla SH, Leysath CE. The sub-nanomolar binding of DNA-RNA hybrids by the single-chain Fv fragment of antibody S9.6. J Mol Recognit 2014; 26:376-81. [PMID: 23784994 DOI: 10.1002/jmr.2284] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 11/12/2022]
Abstract
The monoclonal antibody S9.6 binds DNA-RNA hybrids with high affinity, making it useful in research and diagnostic applications, such as in microarrays and in the detection of R-loops. A single-chain variable fragment (scFv) of S9.6 was produced, and its affinities for various synthetic nucleic acid hybrids were measured by surface plasmon resonance (SPR). S9.6 exhibits dissociation constants of approximately 0.6 nM for DNA-RNA and, surprisingly, 2.7 nM for RNA-RNA hybrids that are AU-rich. The affinity of the S9.6 scFv did not appear to be strongly influenced by various buffer conditions or by ionic strength below 500 mM NaCl. The smallest epitope that was strongly bound by the S9.6 scFv contained six base pairs of DNA-RNA hybrid. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Damilola D Phillips
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | | | | | |
Collapse
|
105
|
Shahsavarian MA, Le Minoux D, Matti KM, Kaveri S, Lacroix-Desmazes S, Boquet D, Friboulet A, Avalle B, Padiolleau-Lefèvre S. Exploitation of rolling circle amplification for the construction of large phage-display antibody libraries. J Immunol Methods 2014; 407:26-34. [PMID: 24681277 DOI: 10.1016/j.jim.2014.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
Phage display antibody libraries have proven to have a significant role in the discovery of therapeutic antibodies and polypeptides with desired biological and physicochemical properties. Obtaining a large and diverse phage display antibody library, however, is always a challenging task. Various steps of this technique can still undergo optimization in order to obtain an efficient library. In the construction of a single chain fragment variable (scFv) phage display library, the cloning of the scFv fragments into a phagemid vector is of crucial importance. An efficient restriction enzyme digestion of the scFv DNA leads to its proper ligation with the phagemid followed by its successful cloning and expression. Here, we are reporting a different approach to enhance the efficiency of the restriction enzyme digestion step. We have exploited rolling circle amplification (RCA) to produce a long strand of DNA with tandem repeats of scFv sequences, which is found to be highly susceptible to restriction digestion. With this important modification, we are able to construct a large phage display antibody library of naive SJL/J mice. The size of the library is estimated as ~10(8) clones. The number of clones containing a scFv fragment is estimated at 90%. Hence, the present results could considerably aid the utilization of the phage-display technique in order to get an efficiently large antibody library.
Collapse
Affiliation(s)
- Melody A Shahsavarian
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France
| | - Damien Le Minoux
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France
| | - Kalyankumar M Matti
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France
| | - Srini Kaveri
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris6, UMR S 872, Paris F-75006, France; Université Paris Descartes, UMR 872, Paris F-75006, France; INSERM, UMR 872, Paris F-75006, France; International Associated Laboratory IMPACT, Institut National de la Santé et de la Recherche Médicale-France and Indian Council of Medical Research-India, National Institute of Immunohaemotology, Mumbai, India
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris6, UMR S 872, Paris F-75006, France; Université Paris Descartes, UMR 872, Paris F-75006, France; INSERM, UMR 872, Paris F-75006, France; International Associated Laboratory IMPACT, Institut National de la Santé et de la Recherche Médicale-France and Indian Council of Medical Research-India, National Institute of Immunohaemotology, Mumbai, India
| | - Didier Boquet
- Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS), iBiTecS, SPI, Commissariat à l'Energie Atomique, 91191 Gif sur Yvette, France
| | - Alain Friboulet
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France
| | - Bérangère Avalle
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France
| | - Séverine Padiolleau-Lefèvre
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France.
| |
Collapse
|
106
|
Deantonio C, Cotella D, Macor P, Santoro C, Sblattero D. Phage display technology for human monoclonal antibodies. Methods Mol Biol 2014; 1060:277-295. [PMID: 24037846 DOI: 10.1007/978-1-62703-586-6_14] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
During the last 15 years in vitro technologies opened powerful routes to combine the generation of large libraries together with fast selection procedures to identify lead candidates. One of the commonest methods is based on the use filamentous phages. Antibodies (Abs) can be displayed successfully on the surface of phage by fusing the coding sequence of the antibody variable (V) regions to the phage minor coat protein pIII. By creating large libraries, antibodies with affinities comparable to those obtained using traditional hybridomas technology can be selected by a series of cycles of selection on antigen. As in this system antibody genes are cloned simultaneously with selection they can be easily further engineered for example by increasing their affinity (to levels unobtainable in the immune system), modulating their specificity or their effector function (by recloning into a full-length immunoglobulin scaffold). This chapter describes the basic protocols for antibody library construction, handling, and selection.
Collapse
Affiliation(s)
- Cecilia Deantonio
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases (IRCAD), University of Eastern Piedmont, Novara, Italy
| | | | | | | | | |
Collapse
|
107
|
Development and application of recombinant antibody-based immunoassays to tetraconazole residue analysis in fruit juices. Food Chem 2014; 143:205-13. [DOI: 10.1016/j.foodchem.2013.07.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 01/11/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022]
|
108
|
Shimura K, Kasai KI. Affinity probe capillary electrophoresis of insulin using a fluorescence-labeled recombinant Fab as an affinity probe. Electrophoresis 2013; 35:840-5. [DOI: 10.1002/elps.201300464] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/21/2013] [Accepted: 11/26/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Kiyohito Shimura
- Laboratory of Chemistry; School of Medicine, Fukushima Medical University; Fukushima Fukushima Japan
| | - Ken-Ichi Kasai
- Department of Biological Chemistry; Faculty of Pharmaceutical Sciences, Teikyo University; Sagamihara Kanagawa Japan
| |
Collapse
|
109
|
IgG variable region and VH CDR3 diversity in unimmunized mice analyzed by massively parallel sequencing. Mol Immunol 2013; 57:274-83. [PMID: 24211535 DOI: 10.1016/j.molimm.2013.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/11/2013] [Accepted: 09/28/2013] [Indexed: 11/24/2022]
Abstract
Most antigen-specific mouse antibodies have been derived by hybridoma technology, predominantly through use of the Balb/c strain. Much of the Balb/c germline repertoire of variable genes (V regions) is known. However, there is little information about the background expressed repertoire of IgG antibodies in mice, which reflects the baseline against which antigen-specific antibodies are generated through immunization. To assess this baseline repertoire, RNA was isolated from splenic B-cells enriched for expression of IgG from three mice. The RNA was individually amplified with three distinct PCR primer sets for comprehensive recovery of the heavy and light chain variable regions. Each PCR product was independently subjected to deep sequencing using 454 pyro-sequencing technology and analysed for redundancy, open reading frame, germline representation, and CDR3 sequence of the heavy chain variable region (VH CDR3) within and across the primer sets and mice. A highly skewed abundance of heavy and light chain variable gene usage was observed for all three primers in all three mice. While showing considerable overlap, there were differences among these profiles indicative of primer bias and animal-to-animal variation. VH CDR3 sequences were likewise highly skewed indicating that the heavy chain genes profiles substantially reflected individual antibodies. This observation was confirmed through analysis of randomly selected complete heavy chain variable sequences. However, there was very little redundancy in VH CDR3 sequences across the different mice. We conclude that the background IgG repertoire in young, unimmunized mice is highly skewed within individual mice and is diverse among them, a pattern similar to that observed in highly immunized mice.
Collapse
|
110
|
Abstract
Immunometric assays are inherently vulnerable to interference from heterophilic antibodies, endogenous antibodies that bind assay antibodies. The consequences of such interference can be devastating. In this review, we discuss strategies that reduce the damage caused by heterophilic antibodies. Clinicians should only order blood tests that are indicated for the patient and clinical setting at hand, and have the confidence to question laboratory results discordant with the clinical picture. Laboratorians should familiarize themselves with the vulnerability of the assays they offer, and be able to perform and interpret adequate confirmatory measures correctly. When designing immunoassays, the immunoassay industry should invest the necessary resources in specific protective measures against heterophilic antibody interference. Examples include using antibody fragments and the addition of effective blockers to assay reagents. The increasing use of modified monoclonal mouse antibodies both in therapy and diagnostics could present a particular challenge in the future.
Collapse
Affiliation(s)
- Nils Bolstad
- Department of Medical Biochemistry, Oslo University Hospital, The Norwegian Radium Hospital, N-0424 Oslo, Norway.
| | | | | |
Collapse
|
111
|
Construction of an scFv library by enzymatic assembly of VL and VH genes. J Immunol Methods 2013; 396:15-22. [DOI: 10.1016/j.jim.2013.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022]
|
112
|
Gupta A, Shrivastava N, Grover P, Singh A, Mathur K, Verma V, Kaur C, Chaudhary VK. A novel helper phage enabling construction of genome-scale ORF-enriched phage display libraries. PLoS One 2013; 8:e75212. [PMID: 24086469 PMCID: PMC3785514 DOI: 10.1371/journal.pone.0075212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Phagemid-based expression of cloned genes fused to the gIIIP coding sequence and rescue using helper phages, such as VCSM13, has been used extensively for constructing large antibody phage display libraries. However, for randomly primed cDNA and gene fragment libraries, this system encounters reading frame problems wherein only one of 18 phages display the translated foreign peptide/protein fused to phagemid-encoded gIIIP. The elimination of phages carrying out-of-frame inserts is vital in order to improve the quality of phage display libraries. In this study, we designed a novel helper phage, AGM13, which carries trypsin-sensitive sites within the linker regions of gIIIP. This renders the phage highly sensitive to trypsin digestion, which abolishes its infectivity. For open reading frame (ORF) selection, the phagemid-borne phages are rescued using AGM13, so that clones with in-frame inserts express fusion proteins with phagemid-encoded trypsin-resistant gIIIP, which becomes incorporated into the phages along with a few copies of AGM13-encoded trypsin-sensitive gIIIP. In contrast, clones with out-of-frame inserts produce phages carrying only AGM13-encoded trypsin-sensitive gIIIP. Trypsin treatment of the phage population renders the phages with out-of-frame inserts non-infectious, whereas phages carrying in-frame inserts remain fully infectious and can hence be enriched by infection. This strategy was applied efficiently at a genome scale to generate an ORF-enriched whole genome fragment library from Mycobacterium tuberculosis, in which nearly 100% of the clones carried in-frame inserts after selection. The ORF-enriched libraries were successfully used for identification of linear and conformational epitopes for monoclonal antibodies specific to mycobacterial proteins.
Collapse
Affiliation(s)
- Amita Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
- * E-mail: (AG); (VKC)
| | - Nimisha Shrivastava
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Payal Grover
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Ajay Singh
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Kapil Mathur
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Vaishali Verma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Charanpreet Kaur
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Vijay K. Chaudhary
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
- * E-mail: (AG); (VKC)
| |
Collapse
|
113
|
NF-κB inhibitor targeted to activated endothelium demonstrates a critical role of endothelial NF-κB in immune-mediated diseases. Proc Natl Acad Sci U S A 2013; 110:16556-61. [PMID: 24062461 DOI: 10.1073/pnas.1218219110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Activation of the nuclear transcription factor κB (NF-κB) regulates the expression of inflammatory genes crucially involved in the pathogenesis of inflammatory diseases. NF-κB governs the expression of adhesion molecules that play a pivotal role in leukocyte-endothelium interactions. We uncovered the crucial role of NF-κB activation within endothelial cells in models of immune-mediated diseases using a "sneaking ligand construct" (SLC) selectively inhibiting NF-κB in the activated endothelium. The recombinant SLC1 consists of three modules: (i) an E-selectin targeting domain, (ii) a Pseudomonas exotoxin A translocation domain, and (iii) a NF-κB Essential Modifier-binding effector domain interfering with NF-κB activation. The E-selectin-specific SLC1 inhibited NF-κB by interfering with endothelial IκB kinase 2 activity in vitro and in vivo. In murine experimental peritonitis, the application of SLC1 drastically reduced the extravasation of inflammatory cells. Furthermore, SLC1 treatment significantly ameliorated the disease course in murine models of rheumatoid arthritis. Our data establish that endothelial NF-κB activation is critically involved in the pathogenesis of arthritis and can be selectively inhibited in a cell type- and activation stage-dependent manner by the SLC approach. Moreover, our strategy is applicable to delineating other pathogenic signaling pathways in a cell type-specific manner and enables selective targeting of distinct cell populations to improve effectiveness and risk-benefit ratios of therapeutic interventions.
Collapse
|
114
|
Single-chain fragment variable passive immunotherapies for neurodegenerative diseases. Int J Mol Sci 2013; 14:19109-27. [PMID: 24048248 PMCID: PMC3794823 DOI: 10.3390/ijms140919109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 01/26/2023] Open
Abstract
Accumulation of misfolded proteins has been implicated in a variety of neurodegenerative diseases including prion diseases, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). In the past decade, single-chain fragment variable (scFv) -based immunotherapies have been developed to target abnormal proteins or various forms of protein aggregates including Aβ, SNCA, Htt, and PrP proteins. The scFvs are produced by fusing the variable regions of the antibody heavy and light chains, creating a much smaller protein with unaltered specificity. Because of its small size and relative ease of production, scFvs are promising diagnostic and therapeutic reagents for protein misfolded diseases. Studies have demonstrated the efficacy and safety of scFvs in preventing amyloid protein aggregation in preclinical models. Herein, we discuss recent developments of these immunotherapeutics. We review efforts of our group and others using scFv in neurodegenerative disease models. We illustrate the advantages of scFvs, including engineering to enhance misfolded conformer specificity and subcellular targeting to optimize therapeutic action.
Collapse
|
115
|
Huovinen T, Syrjanpaa M, Sanmark H, Brockmann EC, Azhayev A, Wang Q, Vehniainen M, Lamminmaki U. Two ScFv antibody libraries derived from identical VL-VH framework with different binding site designs display distinct binding profiles. Protein Eng Des Sel 2013; 26:683-93. [DOI: 10.1093/protein/gzt037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
116
|
Gurr W, Shaw M, Herzog RI, Li Y, Sherwin R. Vaccination with single chain antigen receptors for islet-derived peptides presented on I-A(g7) delays diabetes in NOD mice by inducing anergy in self-reactiveT-cells. PLoS One 2013; 8:e69464. [PMID: 23894487 PMCID: PMC3722102 DOI: 10.1371/journal.pone.0069464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
To develop a vaccination approach for prevention of type 1 diabetes (T1D) that selectively attenuates self-reactive T-cells targeting specific autoantigens, we selected phage-displayed single chain antigen receptor libraries for clones binding to a complex of the NOD classII MHC I-A(g7) and epitopes derived from the islet autoantigen RegII. Libraries were generated from B-cell receptor repertoires of classII-mismatched mice immunized with RegII-pulsed NOD antigen presenting cells or from T-cell receptor repertoires in pancreatic lymph nodes of NOD mice. Both approaches yielded clones recognizing a RegII-derived epitope in the context of I-A(g7), which activated autoreactive CD4(+) T-cells. A receptor with different specificity was obtained by converting the BDC2.5 TCR into single chain form. B- but not T-cells from donors vaccinated with the clones transferred protection from diabetes to NOD-SCID recipients if the specificity of the diabetes inducer cell and the single chain receptor were matched. B-cells and antibodies from donors vaccinated with the BDC2.5 single chain receptor induced a state of profound anergy in T-cells of BDC2.5 TCR transgenic NOD recipients while B-cells from donors vaccinated with a single chain receptor specific for I-A(g7) RegII peptide complexes induced only partial non-responsiveness. Vaccination of normal NOD mice with receptors recognizing I-A(g7) RegII peptide complexes or with the BDC2.5 single chain receptor delayed onset of T1D. Thus anti-idiotypic vaccination can be successfully applied to T1D with vaccines either generated from self-reactive T-cell clones or derived from antigen receptor libraries.
Collapse
Affiliation(s)
- Werner Gurr
- Department of Internal Medicine, Yale University, School of Medicine, New Haven, Connecticut, United States of America.
| | | | | | | | | |
Collapse
|
117
|
Bansal P, Khan T, Bussmeyer U, Challa DK, Swiercz R, Velmurugan R, Ober RJ, Ward ES. The Encephalitogenic, Human Myelin Oligodendrocyte Glycoprotein–Induced Antibody Repertoire Is Directed toward Multiple Epitopes in C57BL/6-Immunized Mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:1091-101. [DOI: 10.4049/jimmunol.1300019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
118
|
Comparative Study of Monoclonal and Recombinant Antibody-Based Immunoassays for Fungicide Analysis in Fruit Juices. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9655-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
119
|
Cotham VC, Wine Y, Brodbelt JS. Selective 351 nm photodissociation of cysteine-containing peptides for discrimination of antigen-binding regions of IgG fragments in bottom-up liquid chromatography-tandem mass spectrometry workflows. Anal Chem 2013; 85:5577-85. [PMID: 23641966 DOI: 10.1021/ac400851x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite tremendous inroads in the development of more sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategies for mass spectrometry-based proteomics, there remains a significant need for enhancing the selectivity of MS/MS-based workflows for streamlined analysis of complex biological mixtures. Here, a novel LC-MS/MS platform based on 351 nm ultraviolet photodissociation (UVPD) is presented for the selective analysis of cysteine-peptide subsets in complex protein digests. Cysteine-selective UVPD is mediated through the site-specific conjugation of reduced cysteine residues with a 351 nm active chromogenic Alexa Fluor 350 (AF350) maleimide tag. Only peptides containing the AF350 chromophore undergo photodissociation into extensive arrays of b- and y-type fragment ions, thus providing a facile means for differentiating cysteine-peptide targets from convoluting peptide backgrounds. With the use of this approach in addition to strategic proteolysis, the selective analysis of diagnostic heavy-chain complementarity determining regions (CDRs) of single-chain antibody (scAb) fragments is demonstrated.
Collapse
Affiliation(s)
- Victoria C Cotham
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | | | | |
Collapse
|
120
|
Yang J, Zhu H, Tan Z, He F, Sun X, Hong Y, Hu H, Bian J, Lin Y, Lei P, Shen G. Comparison of two functional kappa light-chain transcripts amplified from a hybridoma. Biotechnol Appl Biochem 2013; 60:289-97. [PMID: 23631518 DOI: 10.1002/bab.1080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/14/2012] [Indexed: 01/25/2023]
Abstract
Three heavy-chain and three kappa (κ)-chain transcripts were amplified from hybridoma cells secreting a monoclonal antibody (mAb) against transferrin receptor. Sequence analysis via IMGT/V-QUEST yielded the functional/aberrant prediction. Two functional κ-chain transcripts, Vκ2 and Vκ3, and one functional VH1 were revealed. Comprehensive bioinformatics analyses including sequence alignment, phylogenetic tree, somatic hypermutation prediction, and three-dimensional-molecular structure modeling were used to predict the origin of the two κ-chain transcripts. The results of bioinformatics analysis suggest that Vκ3 is derived from the myeloma partner of the hybridoma; Vκ2 is derived from B-cell. Functional transcripts VH1 and Vκ2 and Vκ3 were then used to construct two chimeric antibodies chi-C2 (Vκ2-VH1) and chi-C3 (Vκ3-VH1), respectively. Antigen-binding experiments showed that only chi-C2 remained the same affinity as its parental mAb. Possible explanations for the coexistence of two functional κ-chain transcripts and the different affinity of the two chimeric antibodies are discussed.
Collapse
Affiliation(s)
- Juan Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Sherwood LJ, Hayhurst A. Ebolavirus nucleoprotein C-termini potently attract single domain antibodies enabling monoclonal affinity reagent sandwich assay (MARSA) formulation. PLoS One 2013; 8:e61232. [PMID: 23577211 PMCID: PMC3618483 DOI: 10.1371/journal.pone.0061232] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/06/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Antigen detection assays can play an important part in environmental surveillance and diagnostics for emerging threats. We are interested in accelerating assay formulation; targeting the agents themselves to bypass requirements for a priori genome information or surrogates. Previously, using in vitro affinity reagent selection on Marburg virus we rapidly established monoclonal affinity reagent sandwich assay (MARSA) where one recombinant antibody clone was both captor and tracer for polyvalent nucleoprotein (NP). Hypothesizing that the closely related Ebolavirus genus may share the same Achilles' heel, we redirected the scheme to see whether similar assays could be delivered and began to explore their mechanism. METHODS AND FINDINGS In parallel we selected panels of llama single domain antibodies (sdAb) from a semi-synthetic library against Zaire, Sudan, Ivory Coast, and Reston Ebola viruses. Each could perform as both captor and tracer in the same antigen sandwich capture assay thereby forming MARSAs. All sdAb were specific for NP and those tested required the C-terminal domain for recognition. Several clones were cross-reactive, indicating epitope conservation across the Ebolavirus genus. Analysis of two immune shark sdAb revealed they also targeted the C-terminal domain, and could be similarly employed, yet were less sensitive than a comparable llama sdAb despite stemming from immune selections. CONCLUSIONS The C-terminal domain of Ebolavirus NP is a strong attractant for antibodies and enables sensitive sandwich immunoassays to be rapidly generated using a single antibody clone. The polyvalent nature of nucleocapsid borne NP and display of the C-terminal region likely serves as a bountiful affinity sink during selections, and a highly avid target for subsequent immunoassay capture. Combined with the high degree of amino acid conservation through 37 years and across wide geographies, this domain makes an ideal handle for monoclonal affinity reagent driven antigen sandwich assays for the Ebolavirus genus.
Collapse
Affiliation(s)
- Laura J. Sherwood
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Andrew Hayhurst
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
122
|
Shimura K, Hoshino M, Kamiya K, Enomoto M, Hisada S, Matsumoto H, Novotny M, Kasai KI. Estimation of the Deamidation Rates of Major Deamidation Sites in a Fab Fragment of Mouse IgG1-κ by Capillary Isoelectric Focusing of Mutated Fab Fragments. Anal Chem 2013; 85:1705-10. [DOI: 10.1021/ac3033992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kiyohito Shimura
- Laboratory of Chemistry,
School of Medicine, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Makoto Hoshino
- Department of Biological
Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa 252-5195, Japan
| | - Keiichiro Kamiya
- Department of Biological
Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa 252-5195, Japan
| | - Manabu Enomoto
- Department of Biological
Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa 252-5195, Japan
| | - Sunao Hisada
- Systems Division, Hamamatsu Photonics K.K., Hamamatsu,
Shizuoka 431-3196, Japan
| | - Hiroyuki Matsumoto
- Central Research
Laboratory, Hamamatsu Photonics K.K., Hamakita, Shizuoka 434-8601, Japan
| | - Mark Novotny
- J. Craig Venter Institute, 10355 Science Center Drive, La Jolla, California
92121, United States
| | - Ken-ichi Kasai
- Department of Biological
Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa 252-5195, Japan
| |
Collapse
|
123
|
Vuojola J, Syrjänpää M, Lamminmäki U, Soukka T. Genetically Encoded Protease Substrate Based on Lanthanide-Binding Peptide for Time-Gated Fluorescence Detection. Anal Chem 2013; 85:1367-73. [DOI: 10.1021/ac302030q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johanna Vuojola
- Department of Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Markku Syrjänpää
- Department of Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Urpo Lamminmäki
- Department of Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Tero Soukka
- Department of Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| |
Collapse
|
124
|
High level prokaryotic expression of anti-Müllerian inhibiting substance type II receptor diabody, a new recombinant antibody for in vivo ovarian cancer imaging. J Immunol Methods 2013; 387:11-20. [DOI: 10.1016/j.jim.2012.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 12/30/2022]
|
125
|
Speck J, Räuber C, Kükenshöner T, Niemöller C, Mueller KJ, Schleberger P, Dondapati P, Hecky J, Arndt KM, Müller KM. TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation. Protein Eng Des Sel 2012; 26:225-42. [PMID: 23223941 DOI: 10.1093/protein/gzs098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Janina Speck
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Kumar R, Andrabi R, Tiwari A, Prakash SS, Wig N, Dutta D, Sankhyan A, Khan L, Sinha S, Luthra K. A novel strategy for efficient production of anti-V3 human scFvs against HIV-1 clade C. BMC Biotechnol 2012; 12:87. [PMID: 23153214 PMCID: PMC3536577 DOI: 10.1186/1472-6750-12-87] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/17/2012] [Indexed: 11/10/2022] Open
Abstract
Background Production of human monoclonal antibodies that exhibit broadly neutralizing activity is needed for preventing HIV-1 infection, however only a few such antibodies have been generated till date. Isolation of antibodies by the hybridoma technology is a cumbersome process with fewer yields. Further, the loss of unstable or slowly growing clones which may have unique binding specificities often occurs during cloning and propagation and the strongly positive clones are often lost. This has been avoided by the process described in this paper, wherein, by combining the strategy of EBV transformation and recombinant DNA technology, we constructed human single chain variable fragments (scFvs) against the third variable region (V3) of the clade C HIV-1 envelope. Results An antigen specific phage library of 7000 clones was constructed from the enriched V3- positive antibody secreting EBV transformed cells. By ligation of the digested scFv DNA into phagemid vector and bio panning against the HIV-1 consensus C and B V3 peptides followed by random selection of 40 clones, we identified 15 clones that showed V3 reactivity in phage ELISA. DNA fingerprinting analysis and sequencing showed that 13 out of the 15 clones were distinct. Expression of the positive clones was tested by SDS-PAGE and Western blot. All the 13 anti-V3 scFvs showed cross-reactivity against both the clade C and B V3 peptides and did not show any reactivity against other unrelated peptides in ELISA. Preliminary neutralization assays indicated varying degrees of neutralization of clade C and B viruses. EBV transformation, followed by antigen selection of lines to identify specific binders, enabled the selection of phage from un-cloned lines for scFv generation, thus avoiding the problems of hybridoma technology. Moreover, as the clones were pretested for antigen binding, a comparatively small library sufficed for the selection of a considerable number of unique antigen binding phage. After selection, the phage clones were propagated in a clonal manner. Conclusions This strategy can be efficiently used and is cost effective for the generation of diverse recombinant antibodies. This is the first study to generate anti-V3 scFvs against HIV-1 Clade C.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Sherwood LJ, Hayhurst A. Hapten mediated display and pairing of recombinant antibodies accelerates assay assembly for biothreat countermeasures. Sci Rep 2012; 2:807. [PMID: 23150778 PMCID: PMC3495282 DOI: 10.1038/srep00807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/17/2012] [Indexed: 11/14/2022] Open
Abstract
A bottle-neck in recombinant antibody sandwich immunoassay development is pairing, demanding protein purification and modification to distinguish captor from tracer. We developed a simple pairing scheme using microliter amounts of E. coli osmotic shockates bearing site-specific biotinylated antibodies and demonstrated proof of principle with a single domain antibody (sdAb) that is both captor and tracer for polyvalent Marburgvirus nucleoprotein. The system could also host pairs of different sdAb specific for the 7 botulinum neurotoxin (BoNT) serotypes, enabling recognition of the cognate serotype. Inducible supE co-expression enabled sdAb populations to be propagated as either phage for more panning from repertoires or expressed as soluble sdAb for screening within a single host strain. When combined with streptavidin-g3p fusions, a novel transdisplay system was formulated to retrofit a semi-synthetic sdAb library which was mined for an anti-Ebolavirus sdAb which was immediately immunoassay ready, thereby speeding up the recombinant antibody discovery and utilization processes.
Collapse
Affiliation(s)
- Laura J. Sherwood
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Andrew Hayhurst
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
128
|
Austin SK, Dowd KA, Shrestha B, Nelson CA, Edeling MA, Johnson S, Pierson TC, Diamond MS, Fremont DH. Structural basis of differential neutralization of DENV-1 genotypes by an antibody that recognizes a cryptic epitope. PLoS Pathog 2012; 8:e1002930. [PMID: 23055922 PMCID: PMC3464233 DOI: 10.1371/journal.ppat.1002930] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/13/2012] [Indexed: 01/07/2023] Open
Abstract
We previously developed a panel of neutralizing monoclonal antibodies against Dengue virus (DENV)-1, of which few exhibited inhibitory activity against all DENV-1 genotypes. This finding is consistent with reports observing variable neutralization of different DENV strains and genotypes using serum from individuals that experienced natural infection or immunization. Herein, we describe the crystal structures of DENV1-E111 bound to a novel CC' loop epitope on domain III (DIII) of the E protein from two different DENV-1 genotypes. Docking of our structure onto the available cryo-electron microscopy models of DENV virions revealed that the DENV1-E111 epitope was inaccessible, suggesting that this antibody recognizes an uncharacterized virus conformation. While the affinity of binding between DENV1-E111 and DIII varied by genotype, we observed limited correlation with inhibitory activity. Instead, our results support the conclusion that potent neutralization depends on genotype-dependent exposure of the CC' loop epitope. These findings establish new structural complexity of the DENV virion, which may be relevant for the choice of DENV strain for induction or analysis of neutralizing antibodies in the context of vaccine development.
Collapse
Affiliation(s)
- S. Kyle Austin
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bimmi Shrestha
- Department of Medicine (Infectious Diseases), Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Christopher A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Melissa A. Edeling
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Syd Johnson
- MacroGenics, Rockville, Maryland, United States of America
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Medicine (Infectious Diseases), Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail: (MSD); (DHF)
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail: (MSD); (DHF)
| |
Collapse
|
129
|
Miklos AE, Kluwe C, Der BS, Pai S, Sircar A, Hughes RA, Berrondo M, Xu J, Codrea V, Buckley PE, Calm AM, Welsh HS, Warner CR, Zacharko MA, Carney JP, Gray JJ, Georgiou G, Kuhlman B, Ellington AD. Structure-based design of supercharged, highly thermoresistant antibodies. ACTA ACUST UNITED AC 2012; 19:449-55. [PMID: 22520751 DOI: 10.1016/j.chembiol.2012.01.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/02/2012] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
Mutation of surface residues to charged amino acids increases resistance to aggregation and can enable reversible unfolding. We have developed a protocol using the Rosetta computational design package that "supercharges" proteins while considering the energetic implications of each mutation. Using a homology model, a single-chain variable fragment antibody was designed that has a markedly enhanced resistance to thermal inactivation and displays an unanticipated ≈30-fold improvement in affinity. Such supercharged antibodies should prove useful for assays in resource-limited settings and for developing reagents with improved shelf lives.
Collapse
Affiliation(s)
- Aleksandr E Miklos
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Mohseni Nodehi S, Repp R, Kellner C, Bräutigam J, Staudinger M, Schub N, Peipp M, Gramatzki M, Humpe A. Enhanced ADCC activity of affinity maturated and Fc-engineered mini-antibodies directed against the AML stem cell antigen CD96. PLoS One 2012; 7:e42426. [PMID: 22879978 PMCID: PMC3411760 DOI: 10.1371/journal.pone.0042426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 07/09/2012] [Indexed: 12/23/2022] Open
Abstract
CD96, a cell surface antigen recently described to be preferentially expressed on acute myeloid leukemia (AML) leukemic stem cells (LSC) may represent an interesting target structure for the development of antibody-based therapeutic approaches. The v-regions from the CD96-specific hybridoma TH-111 were isolated and used to generate a CD96-specific single chain fragment of the variable regions (scFv). An affinity maturated variant resulting in 4-fold enhanced CD96-binding was generated by random mutagenesis and stringent selection using phage display. The affinity maturated scFv CD96-S32F was used to generate bivalent mini-antibodies by genetically fusing an IgG1 wild type Fc region or a variant with enhanced CD16a binding. Antibody dependent cell-mediated cytotoxicity (ADCC) experiments revealed that Fc engineering was essential to trigger significant effector cell-mediated lysis when the wild type scFv was used. The mini-antibody variant generated by fusing the affinity-maturated scFv with the optimized Fc variant demonstrated the highest ADCC activity (2.3-fold enhancement in efficacy). In conclusion, our data provide proof of concept that CD96 could serve as a target structure for effector cell-mediated lysis and demonstrate that both enhancing affinity for CD96 and for CD16a resulted in mini-antibodies with the highest cytolytic potential.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibody Affinity/immunology
- Antibody Specificity/immunology
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Dose-Response Relationship, Immunologic
- Humans
- Hybridomas
- Immunoglobulin G/immunology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Models, Molecular
- Molecular Sequence Data
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Mutation/genetics
- Neoplastic Stem Cells/immunology
- Protein Binding
- Protein Engineering
- Protein Structure, Tertiary
- Receptors, Fc/immunology
- Sequence Alignment
- Single-Chain Antibodies/immunology
Collapse
Affiliation(s)
- Sahar Mohseni Nodehi
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Roland Repp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Joachim Bräutigam
- Department of Structural Biology, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Matthias Staudinger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Natalie Schub
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Andreas Humpe
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
- * E-mail:
| |
Collapse
|
131
|
Belogurov A, Smirnov I, Ponomarenko N, Gabibov A. Antibody-antigen pair probed by combinatorial approach and rational design: bringing together structural insights, directed evolution, and novel functionality. FEBS Lett 2012; 586:2966-73. [PMID: 22841717 DOI: 10.1016/j.febslet.2012.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
The unique hypervariability of the immunoglobulin (Ig) superfamily provides a means to create both binding and catalytic antibodies with almost any desired specificity and activity. The diversity of antigens and concept of adaptive response suggest that it is possible to find an antigen pair to any raised Ig. In the current review we discuss combinatorial approaches, which makes it possible to obtain an antibody with predefined properties, followed by 3D structure-based rational design to enhance or dramatically change its characteristics. A similar strategy, but applied to the second partner of the antibody-antigen pair, may result in selection of complementary substrates to the chosen Ig. Finally, 2D screening may be performed solving the "Chicken and Egg" problem when neither antibody nor antigen is known.
Collapse
Affiliation(s)
- Alexey Belogurov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | | | | |
Collapse
|
132
|
Løset GÅ, Sandlie I. Next generation phage display by use of pVII and pIX as display scaffolds. Methods 2012; 58:40-6. [PMID: 22819858 DOI: 10.1016/j.ymeth.2012.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022] Open
Abstract
Phage display technology has evolved to become an extremely versatile and powerful platform for protein engineering. The robustness of the phage particle, its ease of handling and its ability to tolerate a range of different capsid fusions are key features that explain the dominance of phage display in combinatorial engineering. Implementation of new technology is likely to ensure the continuation of its success, but has also revealed important short comings inherent to current phage display systems. This is in particular related to the biology of the two most popular display capsids, namely pIII and pVIII. Recent findings using two alternative capsids, pVII and pIX, located to the phage tip opposite that of pIII, suggest how they may be exploited to alleviate or circumvent many of these short comings. This review addresses important aspects of the current phage display standard and then discusses the use of pVII and pIX. These may both complement current systems and be used as alternative scaffolds for display and selection to further improve phage display as the ultimate combinatorial engineering platform.
Collapse
Affiliation(s)
- Geir Åge Løset
- Centre for Immune Regulation, University of Oslo, N-316 Oslo, Norway.
| | | |
Collapse
|
133
|
Clementi N, Mancini N, Solforosi L, Castelli M, Clementi M, Burioni R. Phage display-based strategies for cloning and optimization of monoclonal antibodies directed against human pathogens. Int J Mol Sci 2012; 13:8273-8292. [PMID: 22942702 PMCID: PMC3430233 DOI: 10.3390/ijms13078273] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 11/16/2022] Open
Abstract
In the last two decades, several phage display-selected monoclonal antibodies (mAbs) have been described in the literature and a few of them have managed to reach the clinics. Among these, the anti-respiratory syncytial virus (RSV) Palivizumab, a phage-display optimized mAb, is the only marketed mAb directed against microbial pathogens. Palivizumab is a clear example of the importance of choosing the most appropriate strategy when selecting or optimizing an anti-infectious mAb. From this perspective, the extreme versatility of phage-display technology makes it a useful tool when setting up different strategies for the selection of mAbs directed against human pathogens, especially when their possible clinical use is considered. In this paper, we review the principal phage display strategies used to select anti-infectious mAbs, with particular attention focused on those used against hypervariable pathogens, such as HCV and influenza viruses.
Collapse
Affiliation(s)
- Nicola Clementi
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-2-2643-5082; Fax: +39-2-2643-4288
| | | | | | | | | | | |
Collapse
|
134
|
Development of a single-chain variable fragment-alkaline phosphatase fusion protein and a sensitive direct competitive chemiluminescent enzyme immunoassay for detection of ractopamine in pork. Anal Chim Acta 2012; 736:85-91. [DOI: 10.1016/j.aca.2012.05.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/08/2012] [Accepted: 05/17/2012] [Indexed: 11/24/2022]
|
135
|
Entzminger KC, Chang C, Myhre RO, McCallum KC, Maynard JA. The Skp chaperone helps fold soluble proteins in vitro by inhibiting aggregation. Biochemistry 2012; 51:4822-34. [PMID: 22650963 DOI: 10.1021/bi300412y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The periplasmic seventeen kilodalton protein (Skp) chaperone has been characterized primarily for its role in outer membrane protein (OMP) biogenesis, during which the jellyfish-like trimeric protein encapsulates partially folded OMPs, protecting them from the aqueous environment until delivery to the BAM outer membrane protein insertion complex. However, Skp is increasingly recognized as a chaperone that also assists in folding soluble proteins in the bacterial periplasm. In this capacity, Skp coexpression increases the active yields of many recombinant proteins and bacterial virulence factors. Using a panel of single-chain antibodies and a single-chain T-cell receptor (collectively termed scFvs) possessing varying stabilities and biophysical characteristics, we performed in vivo expression and in vitro folding and aggregation assays in the presence or absence of Skp. For Skp-sensitive scFvs, the presence of Skp during in vitro refolding assays reduced aggregation but did not alter the observed folding rates, resulting in a higher overall yield of active protein. Of the proteins analyzed, Skp sensitivity in all assays correlated with the presence of folding intermediates, as observed with urea denaturation studies. These results are consistent with Skp acting as a holdase, sequestering partially folded intermediates and thereby preventing aggregation. Because not all soluble proteins are sensitive to Skp coexpression, we hypothesize that the presence of a long-lived protein folding intermediate renders a protein sensitive to Skp. Improved understanding of the bacterial periplasmic protein folding machinery may assist in high-level recombinant protein expression and may help identify novel approaches to block bacterial virulence.
Collapse
Affiliation(s)
- Kevin C Entzminger
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
136
|
Speck J, Hecky J, Tam HK, Arndt KM, Einsle O, Müller KM. Exploring the molecular linkage of protein stability traits for enzyme optimization by iterative truncation and evolution. Biochemistry 2012; 51:4850-67. [PMID: 22545913 DOI: 10.1021/bi2018738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stability of proteins is paramount for their therapeutic and industrial use and, thus, is a major task for protein engineering. Several types of chemical and physical stabilities are desired, and discussion revolves around whether each stability trait needs to be addressed separately and how specific and compatible stabilizing mutations act. We demonstrate a stepwise perturbation-compensation strategy, which identifies mutations rescuing the activity of a truncated TEM β-lactamase. Analyses relating structural stress with the external stresses of heat, denaturants, and proteases reveal our second-site suppressors as general stability centers that also improve the full-length enzyme. A library of lactamase variants truncated by 15 N-terminal and three C-terminal residues (Bla-NΔ15CΔ3) was subjected to activity selection and DNA shuffling. The resulting clone with the best in vivo performance harbored eight mutations, surpassed the full-length wild-type protein by 5.3 °C in T(m), displayed significantly higher catalytic activity at elevated temperatures, and showed delayed guanidine-induced denaturation. The crystal structure of this mutant was determined and provided insights into its stability determinants. Stepwise reconstitution of the N- and C-termini increased its thermal, denaturant, and proteolytic resistance successively, leading to a full-length enzyme with a T(m) increased by 15.3 °C and a half-denaturation concentration shifted from 0.53 to 1.75 M guanidinium relative to that of the wild type. These improvements demonstrate that iterative truncation-optimization cycles can exploit stability-trait linkages in proteins and are exceptionally suited for the creation of progressively stabilized variants and/or downsized proteins without the need for detailed structural or mechanistic information.
Collapse
Affiliation(s)
- Janina Speck
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
137
|
Xu ZL, Dong JX, Wang H, Li ZF, Beier RC, Jiang YM, Lei HT, Shen YD, Yang JY, Sun YM. Production and characterization of a single-chain variable fragment linked alkaline phosphatase fusion protein for detection of O,O-diethyl organophosphorus pesticides in a one-step enzyme-linked immunosorbent assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5076-83. [PMID: 22533788 DOI: 10.1021/jf300570q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A single-chain variable fragment (scFv) linked alkaline phosphatase (AP) fusion protein for detection of O,O-diethyl organophosphorus pesticides (O,O-diethyl OPs) was produced and characterized. The scFv gene was prepared by cloning V(L) and V(H) genes from hybridoma cells secreting monoclonal antibody with broad specificity for O,O-diethyl OPs. The amplified V(L) and V(H) regions were assembled using a linker (Gly(4)Ser)(3) by means of splicing overlap extension polymerase chain reaction to obtain the scFv gene, which was cloned into the expression vector pLIP6/GN containing an AP gene to produce the scFv-AP fusion protein in Escherichia coli strain BL21. The protein was purified by antigen-conjugated immunoaffinity chromatography and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and competitive direct enzyme-linked immunosorbent assay (cdELISA). The fusion protein is bifunctional, retaining both antigen binding specificity and AP enzymatic activity. Analysis of spiked and blind river water and Chinese cabbage samples demonstrated that the fusion protein based cdELISA(FP) exhibited good sensitivity and reproducibility.
Collapse
Affiliation(s)
- Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Wen K, Nölke G, Schillberg S, Wang Z, Zhang S, Wu C, Jiang H, Meng H, Shen J. Improved fluoroquinolone detection in ELISA through engineering of a broad-specific single-chain variable fragment binding simultaneously to 20 fluoroquinolones. Anal Bioanal Chem 2012; 403:2771-83. [PMID: 22549819 DOI: 10.1007/s00216-012-6062-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/06/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
Fluoroquinolones (FQs) are a group of synthetic, broad-spectrum antibacterial agents. Due to its extensive use in animal industry and aquaculture, residues of these antibiotics and the emergence of bacteria resistant to FQs have become a major public health issue. To prepare a generic antibody capable of recognizing nearly all FQs, a single-chain variable fragment (scFv) was generated from the murine hybridoma cells C49H1 producing a FQ-specific monoclonal antibody. This scFv was characterized by indirect competitive enzyme-linked immunosorbent assay (ciELISA), and it showed identical binding properties to parental monoclonal antibody: it was capable of recognizing 17 of 20 targeted FQs below maximum residue limits, except for sarafloxacin (SAR), difloxacin (DIF), and trovafloxacin (TRO) which are highly concerned members in the FQs family. In order to broaden the specificity of this scFv to SAR and its analogues (DIF and TRO), protein homology modeling and antibody-ligands docking analysis were employed to identify the potential key amino acid residues involved in hapten antibody. A mutagenesis phage display library was generated by site directed mutagenesis randomizing five aminoacid residues in the third heavy-chain complementarity determining region. After one round of panning against biotinylated norfloxacin (NOR) and four rounds of panning against biotinylated SAR, scFv variants we screened showed up to 10-fold improved IC(50) against SAR, DIF, and TRO in ciELISA while the specificity against other FQs was fully retained.
Collapse
|
139
|
Hayes CJ, Leonard P, O'Kennedy R. Overcoming antibody expression and screening limitations by smart design: applications to PSA immunoassay development. Protein Expr Purif 2012; 83:84-91. [PMID: 22433448 DOI: 10.1016/j.pep.2012.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 11/19/2022]
Abstract
Improving the functional and structural properties of target proteins can often be a challenge for researchers. This paper highlights the importance of antibody construct on screening performance, and ultimately, the clone that is selected. We report the reformatting of phage-selected single chain antibody variable region fragments (scFvs) into single chain antibody fragments (scAbs) for improved screening and binding studies. The generation of a scAb, which had a fused human kappa light chain constant domain (C(k)), was shown to significantly improve expression levels in Escherichia coli. Antibody expression levels were compared between the two antibody constructs (scFv and scAb) by ELISA and a 100-fold improvement was observed. The C(k) domain in the expressed scAb also facilitated high throughput analysis by a Biacore capture assay approach. Individual functional scAbs were ranked on the basis of their remaining binding percentage after 5 min dissociation. Selected antibodies were further characterised by kinetic analysis and a sandwich-based immunoassay developed. The scAb construct enhanced expression levels significantly, facilitating antibody screening and immunoassay development for prostate-specific antigen (PSA), a marker for prostate cancer.
Collapse
Affiliation(s)
- C J Hayes
- Applied Biochemistry Group, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | | | | |
Collapse
|
140
|
Qi H, Lu H, Qiu HJ, Petrenko V, Liu A. Phagemid Vectors for Phage Display: Properties, Characteristics and Construction. J Mol Biol 2012; 417:129-43. [PMID: 22310045 DOI: 10.1016/j.jmb.2012.01.038] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/20/2012] [Accepted: 01/24/2012] [Indexed: 11/20/2022]
Affiliation(s)
- Huan Qi
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | | | | | | | | |
Collapse
|
141
|
Moreland NJ, Susanto P, Lim E, Tay MYF, Rajamanonmani R, Hanson BJ, Vasudevan SG. Phage display approaches for the isolation of monoclonal antibodies against dengue virus envelope domain III from human and mouse derived libraries. Int J Mol Sci 2012; 13:2618-2635. [PMID: 22489114 PMCID: PMC3317677 DOI: 10.3390/ijms13032618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 02/14/2012] [Accepted: 02/20/2012] [Indexed: 11/17/2022] Open
Abstract
Domain III of the dengue virus envelope protein (EDIII, aa295-395) has an immunoglobulin fold and is the proposed receptor-binding domain of the virus. Previous studies have shown that monoclonal antibodies against EDIII can be neutralizing and have therapeutic potential. Here, cloned Fab-phage libraries of human and mouse origin were screened for DENV specific antibodies. Firstly, bacterially expressed EDIII or whole virus particles were used as bait in biopanning against a large naïve human Fab-phage library (>10 billion independent clones). Multiple panning strategies were employed, and in excess of 1000 clones were screened, but all of the antibodies identified bound the envelope in regions outside EDIII suggesting EDIII antibodies are virtually absent from the naïve human repertoire. Next, a chimeric Fab-phage library was constructed from a panel of EDIII specific mouse hybridomas by pooling the VH and VL chain sequences from the hybridomas and cloning these into the pComb3X phagemid vector with human CH and CL encoding sequences. Biopanning against EDIII identified a unique antibody (C9) that cross-reacts with EDIII from DENV1-3 and, in the IgG format, binds and neutralizes DENV2 in cell-based assays. Sequence analysis and saturation mutagenesis of complementary determining regions (CDR) in the C9 light chain suggest an antigen recognition model in which the LCDR3 is a key determinant of EDIII specificity, while modifications in LCDR1 and LCDR2 affect DENV serotype cross-reactivity. Overall, this study supports the current prevailing opinion that neutralizing anti-EDIII monoclonal antibodies can be readily generated in murine systems, but in humans the anti-DENV immune response is directed away from domain III.
Collapse
Affiliation(s)
- Nicole J. Moreland
- Duke-NUS Graduate Medical School, 8 College rd, Singapore; E-Mails: (N.J.M); (M.Y.F.T)
| | - Patricia Susanto
- Duke-NUS Graduate Medical School, 8 College rd, Singapore; E-Mails: (N.J.M); (M.Y.F.T)
| | - Elfin Lim
- Duke-NUS Graduate Medical School, 8 College rd, Singapore; E-Mails: (N.J.M); (M.Y.F.T)
| | - Moon Y. F. Tay
- Duke-NUS Graduate Medical School, 8 College rd, Singapore; E-Mails: (N.J.M); (M.Y.F.T)
| | | | - Brendon J. Hanson
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore; E-Mail:
| | - Subhash G. Vasudevan
- Duke-NUS Graduate Medical School, 8 College rd, Singapore; E-Mails: (N.J.M); (M.Y.F.T)
| |
Collapse
|
142
|
Paudel MK, Takei A, Sakoda J, Juengwatanatrakul T, Sasaki-Tabata K, Putalun W, Shoyama Y, Tanaka H, Morimoto S. Preparation of a single-chain variable fragment and a recombinant antigen-binding fragment against the anti-malarial drugs, artemisinin and artesunate, and their application in an ELISA. Anal Chem 2012; 84:2002-8. [PMID: 22260329 DOI: 10.1021/ac203131f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two different recombinant antibodies, a single-chain variable fragment (scFv) and an antigen-binding fragment (Fab), were prepared against artemisinin (AM) and artesunate (AS) and were developed for use in an enzyme-linked immunosorbent assay (ELISA). The recombinant antibodies, which were derived from a single monoclonal antibody against AM and AS (mAb 1C1) prepared by us, were expressed by Escherichia coli cells and their reactivity and specificity were characterized. As a result, to obtain sufficient signal in indirect ELISA, a much greater amount of a first antibody was needed in the use of scFv due to the differences of the secondary antibody and conformational stability. Therefore, we focused on the development of the recombinant Fab antibodies and applied it to indirect competitive ELISA. The specificity of the Fab was similar to that of mAb 1C1 in that it showed specific reactivity toward AM and AS only. The sensitivity of the icELISA (0.16 μg/mL to 40 μg/mL for AM and 8.0 ng/mL to 60 ng/mL for AS) was sufficient for analysis of antimalarial drugs, and its utility for quality control of analysis of Artemisia spp. was validated. The Fab expression and refolding systems provided a good yield of high-quality antibodies. The recombinant antibody against AM and AS provides an essential component of an economically attractive immunoassay and will be useful in other immunochemical applications for the analysis and purification of antimalarial drugs.
Collapse
Affiliation(s)
- Madan K Paudel
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Converting monoclonal antibodies into Fab fragments for transient expression in mammalian cells. Methods Mol Biol 2012; 801:137-59. [PMID: 21987252 DOI: 10.1007/978-1-61779-352-3_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
In this chapter, protocols are described for converting mouse monoclonal antibodies into recombinant Fabs for transient expression in mammalian cells. Variable region genes are cloned by reverse transcription: PCR using either sequence specific or mixed 5' primers that hybridise to the first framework sequence of the mouse light and heavy chains and 3' primers that bind to the heavy- and light-chain constant regions. The amplified sequences are inserted into mammalian cell expression vectors by In-Fusion™ cloning. This method allows vector and amplified DNA sequences to be seamlessly joined in a ligation-independent reaction. Transient co-expression of light-chain and heavy-chain genes in HEK 293T cells enables production of recombinant Fabs for functional and structural studies.
Collapse
|
144
|
Abstract
ScFv fragments are popular recombinant antibody formats but often suffer from limited stability. Phage display is a powerful tool in antibody engineering and applicable also for stability selection. ScFv variants with improved stability can be selected from large randomly mutated phage displayed libraries with a specific antigen after the unstable variants have been inactivated by heat or GdmCl. Irreversible scFv denaturation, which is a prerequisite for efficient selection, is achieved by combining denaturation with reduction of the intradomain disulfide bonds. Repeated selection cycles of increasing stringency result in enrichment of stabilized scFv fragments. Procedures for constructing a randomly mutated scFv library by error-prone PCR and phage display selection for enrichment of stable scFv antibodies from the library are described here.
Collapse
|
145
|
Hust M, Frenzel A, Meyer T, Schirrmann T, Dübel S. Construction of human naive antibody gene libraries. Methods Mol Biol 2012; 907:85-107. [PMID: 22907347 DOI: 10.1007/978-1-61779-974-7_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human antibodies are valuable tools for proteome research and diagnostics. Furthermore, antibodies are a rapidly growing class of therapeutic agents, mainly for inflammation and cancer therapy. The first therapeutic antibodies are of murine origin and were chimerized or humanized. The later-developed antibodies are fully human antibodies. Here, two technologies are competing the hybridoma technology using transgenic mice with human antibody gene loci and antibody phage display. The starting point for the selection of human antibodies against any target is the construction of an antibody phage display gene library.In this review we describe the construction of human naive and immune antibody gene libraries for antibody phage display.
Collapse
Affiliation(s)
- Michael Hust
- Institut für Biochemie und Biotechnologie, Techische Universität Braunschweig, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
146
|
Muller BH, Savatier A, L'Hostis G, Costa N, Bossus M, Michel S, Ott C, Becquart L, Ruffion A, Stura EA, Ducancel F. In Vitro Affinity Maturation of an Anti-PSA Antibody for Prostate Cancer Diagnostic Assay. J Mol Biol 2011; 414:545-62. [DOI: 10.1016/j.jmb.2011.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/30/2011] [Accepted: 10/05/2011] [Indexed: 11/28/2022]
|
147
|
Ayyar BV, Arora S, Murphy C, O'Kennedy R. Affinity chromatography as a tool for antibody purification. Methods 2011; 56:116-29. [PMID: 22033471 DOI: 10.1016/j.ymeth.2011.10.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 11/29/2022] Open
Abstract
The global antibody market has grown exponentially due to increasing applications in research, diagnostics and therapy. Antibodies are present in complex matrices (e.g. serum, milk, egg yolk, fermentation broth or plant-derived extracts). This has led to the need for development of novel platforms for purification of large quantities of antibody with defined clinical and performance requirements. However, the choice of method is strictly limited by the manufacturing cost and the quality of the end product required. Affinity chromatography is one of the most extensively used methods for antibody purification, due to its high selectivity and rapidity. Its effectiveness is largely based on the binding characteristics of the required antibody and the ligand used for antibody capture. The approaches used for antibody purification are critically examined with the aim of providing the reader with the principles and practical insights required to understand the intricacies of the procedures. Affinity support matrices and ligands for affinity chromatography are discussed, including their relevant underlying principles of use, their potential value and their performance in purifying different types of antibodies, along with a list of commercially available alternatives. Furthermore, the principal factors influencing purification procedures at various stages are highlighted. Practical considerations for development and/or optimizations of efficient antibody-purification protocols are suggested.
Collapse
Affiliation(s)
- B Vijayalakshmi Ayyar
- Biomedical Diagnostics Institute, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | | | | | | |
Collapse
|
148
|
Altshuler EP, Serebryanaya DV, Katrukha AG. Generation of recombinant antibodies and means for increasing their affinity. BIOCHEMISTRY (MOSCOW) 2011; 75:1584-605. [PMID: 21417996 DOI: 10.1134/s0006297910130067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Highly specific interaction with foreign molecules is a unique feature of antibodies. Since 1975, when Keller and Milstein proposed the method of hybridoma technology and prepared mouse monoclonal antibodies, many antibodies specific to various antigens have been obtained. Recent development of methods for preparation of recombinant DNA libraries and in silico bioinformatics approaches for protein structure analysis makes possible antibody preparation using gene engineering approaches. The development of gene engineering methods allowed creating recombinant antibodies and improving characteristics of existing antibodies; this significantly extends the applicability of antibodies. By modifying biochemical and immunochemical properties of antibodies by changing their amino acid sequences it is possible to create antibodies with properties optimal for certain tasks. For example, application of recombinant technologies resulted in antibody preparation of high affinity significantly exceeding the initial affinity of natural antibodies. In this review we summarize information about the structure, modes of preparation, and application of recombinant antibodies and their fragments and also consider the main approaches used to increase antibody affinity.
Collapse
Affiliation(s)
- E P Altshuler
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Russia
| | | | | |
Collapse
|
149
|
Kim HS, Lo SC, Wear DJ, Stojadinovic A, Weina PJ, Izadjoo MJ. Improvement of anti-Burkholderia mouse monoclonal antibody from various phage-displayed single-chain antibody libraries. J Immunol Methods 2011; 372:146-61. [DOI: 10.1016/j.jim.2011.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 10/17/2022]
|
150
|
Goodchild SA, Dooley H, Schoepp RJ, Flajnik M, Lonsdale SG. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries. Mol Immunol 2011; 48:2027-37. [DOI: 10.1016/j.molimm.2011.06.437] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/09/2011] [Accepted: 06/13/2011] [Indexed: 12/15/2022]
|