101
|
Mansilla-Soto J, Rivière I, Sadelain M. Genetic strategies for the treatment of sickle cell anaemia. Br J Haematol 2011; 154:715-27. [DOI: 10.1111/j.1365-2141.2011.08773.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
102
|
Kontturi LS, Yliperttula M, Toivanen P, Määttä A, Määttä AM, Urtti A. A laboratory-scale device for the straightforward production of uniform, small sized cell microcapsules with long-term cell viability. J Control Release 2011; 152:376-81. [DOI: 10.1016/j.jconrel.2011.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/01/2011] [Accepted: 03/06/2011] [Indexed: 01/01/2023]
|
103
|
Civenni G, Walter A, Kobert N, Mihic-Probst D, Zipser M, Belloni B, Seifert B, Moch H, Dummer R, van den Broek M, Sommer L. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res 2011; 71:3098-109. [PMID: 21393506 DOI: 10.1158/0008-5472.can-10-3997] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human melanoma is composed of distinct cell types reminiscent of neural crest derivatives and contains multipotent cells that express the neural crest stem cell markers CD271(p75(NTR)) and Sox10. When isolated from solid tumors by using a method that leaves intact cell surface epitopes, CD271-positive, but not CD271-negative, cells formed tumors on transplantation into nude or nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. These tumors fully mirrored the heterogeneity of the parental melanoma and could be passaged more than 5 times. In contrast, in more immunocompromised NOD/SCID/IL2rγ(null) mice, or in natural killer cell-depleted nude or NOD/SCID mice, both CD271-positive and CD271-negative tumor cell fractions established tumors. However, tumors resulting from either fraction did not phenocopy the parental tumors, and tumors derived from the CD271-negative cell fraction could not be passaged multiple times. Together, our findings identify CD271-positive cells as melanoma stem cells. Our observation that a relatively high frequency of CD271/Sox10-positive cells correlates with higher metastatic potential and worse prognosis further supports that CD271-positive cells within human melanoma represent genuine cancer stem cells.
Collapse
Affiliation(s)
- Gianluca Civenni
- Institute of Anatomy and Biostatistics Unit ISPM, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Lesch HP, Laitinen A, Peixoto C, Vicente T, Makkonen KE, Laitinen L, Pikkarainen JT, Samaranayake H, Alves PM, Carrondo MJT, Ylä-Herttuala S, Airenne KJ. Production and purification of lentiviral vectors generated in 293T suspension cells with baculoviral vectors. Gene Ther 2011; 18:531-8. [DOI: 10.1038/gt.2010.162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
105
|
Franco M, Muratori C, Corso S, Tenaglia E, Bertotti A, Capparuccia L, Trusolino L, Comoglio PM, Tamagnone L. The tetraspanin CD151 is required for Met-dependent signaling and tumor cell growth. J Biol Chem 2010; 285:38756-64. [PMID: 20937830 PMCID: PMC2998140 DOI: 10.1074/jbc.m110.145417] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 10/07/2010] [Indexed: 01/10/2023] Open
Abstract
CD151, a transmembrane protein of the tetraspanin family, is implicated in the regulation of cell-substrate adhesion and cell migration through physical and functional interactions with integrin receptors. In contrast, little is known about the potential role of CD151 in controlling cell proliferation and survival. We have previously shown that β4 integrin, a major CD151 partner, not only acts as an adhesive receptor for laminins but also as an intracellular signaling platform promoting cell proliferation and invasive growth upon interaction with Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF). Here we show that RNAi-mediated silencing of CD151 expression in cancer cells impairs HGF-driven proliferation, anchorage-independent growth, protection from anoikis, and tumor progression in xenograft models in vivo. Mechanistically, we found that CD151 is crucially implicated in the formation of signaling complexes between Met and β4 integrin, a known amplifier of HGF-induced tumor cell growth and survival. CD151 depletion hampered HGF-induced phosphorylation of β4 integrin and the ensuing Grb2-Gab1 association, a signaling pathway leading to MAPK stimulation and cell growth. Accordingly, CD151 knockdown reduced HGF-triggered activation of MAPK but not AKT signaling cascade. These results indicate that CD151 controls Met-dependent neoplastic growth by enhancing receptor signaling through β4 integrin-mediated pathways, independent of cell-substrate adhesion.
Collapse
Affiliation(s)
- Mélanie Franco
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Claudia Muratori
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Simona Corso
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Enrico Tenaglia
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Andrea Bertotti
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Lorena Capparuccia
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Livio Trusolino
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Paolo M. Comoglio
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Luca Tamagnone
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| |
Collapse
|
106
|
Bennett MS, Joseph A, Ng HL, Goldstein H, Yang OO. Fine-tuning of T-cell receptor avidity to increase HIV epitope variant recognition by cytotoxic T lymphocytes. AIDS 2010; 24:2619-28. [PMID: 20881472 DOI: 10.1097/qad.0b013e32833f7b22] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE T-cell receptor (TCR) gene therapy is an approach being considered for HIV-1, but epitope mutation is a significant barrier. We assessed whether HIV-specific TCR can be modified to have broader coverage of epitope variants by recombining polymorphisms between public clonotype TCR sequences. DESIGN Public clonotype TCRs recognizing the same epitope often differ by polymorphisms in their third complementarity determining regions (CDR3). We assessed whether novel combinations of such polymorphisms could improve TCR recognition of epitope variation. METHODS A TCR recognizing the HLA A*0201-restricted epitope SLYNTVATL (Gag 77-85, SL9) was engineered to have combinations of four polymorphisms in the CDR3 regions compared to another SL9-specific TCR. These novel TCRs were screened for functional avidities against SL9 epitope variants and abilities to mediate cytotoxic T-lymphocyte suppression of HIV-1 containing the same epitope variants. RESULTS The TCRs varied modestly in functional avidities for SL9 variants, due to alterations in affinity. This translated to differences in antiviral activities against HIV-1 when functional avidity changes crossed the previously defined threshold required for efficient recognition of HIV-1-infected cells. Higher avidity TCR mutants had generally broader recognition of SL9 variants. CONCLUSION These results indicate that rationally targeted increases in functional avidities can be utilized to maximize the antiviral breadth of transgenic TCRs. In contrast to previously reported random mutagenesis to markedly increase functional avidities, tuning through recombining naturally occurring polymorphisms may offer a more physiologic approach that minimizes the risk of deleterious TCR reactivities.
Collapse
|
107
|
Picanço-Castro V, Russo-Carbolante E, Reis LCJ, Fraga AM, de Magalhães DAR, Orellana MD, Panepucci RA, Pereira LV, Covas DT. Pluripotent reprogramming of fibroblasts by lentiviral mediated insertion of SOX2, C-MYC, and TCL-1A. Stem Cells Dev 2010; 20:169-80. [PMID: 20504151 DOI: 10.1089/scd.2009.0424] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reprogramming of somatic cells to pluripotency promises to boost cellular therapy. Most instances of direct reprogramming have been achieved by forced expression of defined exogenous factors using multiple viral vectors. The most used 4 transcription factors, octamer-binding transcription factor 4 (OCT4), (sex determining region Y)-box 2 (SOX2), Kruppel-like factor 4 (KLF4), and v-myc myelocytomatosis viral oncogene homolog (C-MYC), can induce pluripotency in mouse and human fibroblasts. Here, we report that forced expression of a new combination of transcription factors (T-cell leukemia/lymphoma protein 1A [TCL-1A], C-MYC, and SOX2) is sufficient to promote the reprogramming of human fibroblasts into pluripotent cells. These 3-factor pluripotent cells are similar to human embryonic stem cells in morphology, in the ability to differentiate into cells of the 3 embryonic layers, and at the level of global gene expression. Induced pluripotent human cells generated by a combination of other factors will be of great help for the understanding of reprogramming pathways. This, in turn, will allow us to better control cell-fate and apply this knowledge to cell therapy.
Collapse
|
108
|
Schenkwein D, Turkki V, Kärkkäinen HR, Airenne K, Ylä-Herttuala S. Production of HIV-1 integrase fusion protein-carrying lentiviral vectors for gene therapy and protein transduction. Hum Gene Ther 2010; 21:589-602. [PMID: 20039782 DOI: 10.1089/hum.2009.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lentiviral vectors have broad target cell tropism and efficient machinery to integrate transgenes into the host genome. Modification of these vectors by incorporating heterologous proteins into virions has relied mostly on the fusion of proteins into the HIV-1 accessory protein Vpr. Vpr expression can be harmful for cells and its gene has been deleted from third-generation vector production plasmids. We therefore developed a direct integrase fusion protein strategy as an alternative way to package heterologous proteins into vectors. The method was tested by creating two different integrase fusion proteins, IN-p53 and IN-mCherry, cloned into the 3' end of pol in the packaging plasmid. Lentiviral vectors were produced by conventional methods, using the modified packaging plasmids. Vector-incorporated fusion proteins were correctly processed from Gag-Pol, retained the ability to catalyze transgene integration, and showed fusion protein-specific activity by being fluorescent or inducing apoptosis. Functional third-generation lentiviral vectors containing IN-fusion proteins can thus be produced by standard production protocols independent of Vpr expression. Our results suggest that this packaging method is useful for lentiviral vector-mediated protein transduction, such as intranuclear meganuclease, transposon, or zinc finger protein delivery, intracellular imaging of vector particles, and generation of modified lentiviral vectors that contain both toxic and nontoxic IN-fusion proteins.
Collapse
Affiliation(s)
- Diana Schenkwein
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland
| | | | | | | | | |
Collapse
|
109
|
Casazza A, Finisguerra V, Capparuccia L, Camperi A, Swiercz JM, Rizzolio S, Rolny C, Christensen C, Bertotti A, Sarotto I, Risio M, Trusolino L, Weitz J, Schneider M, Mazzone M, Mazzone M, Comoglio PM, Tamagnone L. Sema3E-Plexin D1 signaling drives human cancer cell invasiveness and metastatic spreading in mice. J Clin Invest 2010; 120:2684-98. [PMID: 20664171 DOI: 10.1172/jci42118] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 05/19/2010] [Indexed: 12/14/2022] Open
Abstract
Semaphorin 3E (Sema3E) is a secreted molecule implicated in axonal path finding and inhibition of developmental and postischemic angiogenesis. Sema3E is also highly expressed in metastatic cancer cells, but its mechanistic role in tumor progression was not understood. Here we show that expression of Sema3E and its receptor Plexin D1 correlates with the metastatic progression of human tumors. Consistent with the clinical data, knocking down endogenous expression of either Sema3E or Plexin D1 in human metastatic carcinoma cells hampered their metastatic potential when injected into mice, while tumor growth was not markedly affected. Conversely, overexpression of exogenous Sema3E in cancer cells increased their invasiveness, transendothelial migration, and metastatic spreading, although it inhibited tumor vessel formation, resulting in reduced tumor growth in mice. The proinvasive and metastatic activity of Sema3E in tumor cells was dependent on transactivation of the Plexin D1-associated ErbB2/Neu oncogenic kinase. In sum, Sema3E-Plexin D1 signaling in cancer cells is crucially implicated in their metastatic behavior and may therefore be a promising target for strategies aimed at blocking tumor metastasis.
Collapse
Affiliation(s)
- Andrea Casazza
- Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J Virol 2010; 84:6645-53. [PMID: 20410262 DOI: 10.1128/jvi.02339-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Due to the inherent immune evasion properties of the HIV envelope, broadly neutralizing HIV-specific antibodies capable of suppressing HIV infection are rarely produced by infected individuals. We examined the feasibility of utilizing genetic engineering to circumvent the restricted capacity of individuals to endogenously produce broadly neutralizing HIV-specific antibodies. We constructed a single lentiviral vector that encoded the heavy and light chains of 2G12, a broadly neutralizing anti-HIV human antibody, and that efficiently transduced and directed primary human B cells to secrete 2G12. To evaluate the capacity of this approach to provide protection from in vivo HIV infection, we used the humanized NOD/SCID/gamma(c)(null) mouse model, which becomes populated with human B cells, T cells, and macrophages after transplantation with human hematopoietic stem cells (hu-HSC) and develops in vivo infection after inoculation with HIV. The plasma of the irradiated NOD/SCID/gamma(c)(null) mice transplanted with hu-HSC transduced with the 2G12-encoding lentivirus contained 2G12 antibody, likely secreted by progeny human lymphoid and/or myeloid cells. After intraperitoneal inoculation with high-titer HIV-1(JR-CSF), mice engrafted with 2G12-transduced hu-HSC displayed marked inhibition of in vivo HIV infection as manifested by a profound 70-fold reduction in plasma HIV RNA levels and an almost 200-fold reduction in HIV-infected human cell numbers in mouse spleens, compared to control hu-HSC-transplanted NOD/SCID/gamma(c)(null) mice inoculated with equivalent high-titer HIV-1(JR-CSF). These results support the potential efficacy of this new gene therapy approach of using lentiviral vectors encoding a mixture of broadly neutralizing HIV antibodies for the treatment of HIV infection, particularly infection with multiple-drug-resistant isolates.
Collapse
|
111
|
Kusano K, Enomoto M, Hirai T, Tsoulfas P, Sotome S, Shinomiya K, Okawa A. Transplanted neural progenitor cells expressing mutant NT3 promote myelination and partial hindlimb recovery in the chronic phase after spinal cord injury. Biochem Biophys Res Commun 2010; 393:812-7. [DOI: 10.1016/j.bbrc.2010.02.088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 02/14/2010] [Indexed: 12/26/2022]
|
112
|
SNAP-25 is a target of protein kinase C phosphorylation critical to NMDA receptor trafficking. J Neurosci 2010; 30:242-54. [PMID: 20053906 DOI: 10.1523/jneurosci.4933-08.2010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein kinase C (PKC) enhances NMDA receptor (NMDAR)-mediated currents and promotes NMDAR delivery to the cell surface via SNARE-dependent exocytosis. Although the mechanisms of PKC potentiation are established, the molecular target of PKC is unclear. Here we show that synaptosomal-associated protein of 25 kDa (SNAP-25), a SNARE protein, is functionally relevant to PKC-dependent NMDAR insertion, and identify serine residue-187 as the molecular target of PKC phosphorylation. Constitutively active PKC delivered via the patch pipette potentiated NMDA (but not AMPA) whole-cell currents in hippocampal neurons. Expression of RNAi targeting SNAP-25 or mutant SNAP-25(S187A) and/or acute disruption of the SNARE complex by treatment with BoNT A, BoNT B or SNAP-25 C-terminal blocking peptide abolished NMDAR potentiation. A SNAP-25 peptide and function-blocking antibody suppressed PKC potentiation of NMDA EPSCs at mossy fiber-CA3 synapses. These findings identify SNAP-25 as the target of PKC phosphorylation critical to PKC-dependent incorporation of synaptic NMDARs and document a postsynaptic action of this major SNARE protein relevant to synaptic plasticity.
Collapse
|
113
|
|
114
|
Spigoni G, Gedressi C, Mallamaci A. Regulation of Emx2 expression by antisense transcripts in murine cortico-cerebral precursors. PLoS One 2010; 5:e8658. [PMID: 20066053 PMCID: PMC2799550 DOI: 10.1371/journal.pone.0008658] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/14/2009] [Indexed: 12/21/2022] Open
Abstract
Background Emx2 encodes for a transcription factor expressed in the embryonic intermediate mesoderm and central nervous system (CNS). It is implicated in several aspects of cerebral cortex development, including morphogenetic field specification, arealization, precursor proliferation and lamination. Four Emx2-associated antisense transcripts have been found in the urogenital system; one of them, Emx2OS, has been also detected in the adult brain. Until now, however, nothing is known about expression and function of Emx2OS in the developing CNS. Methodology/Principal Findings By quantitative RT-PCR and in situ hybridization, we reconstructed the Emx2OS expression profile in the embryonic CNS, paying special attention to the developing cerebral cortex. Emx2OS was observed in a number of CNS structures expressing also Emx2. Within the cortex, Emx2OS was detectable in periventricular precursors, expressing the sense transcript, and peaked in newly born post-mitotic neurons not expressing such transcript. By integrating lentiviral gene delivery, RNAi, TetON technology, morpholino-mediated gene knock-down, drug-induced perturbation of gene expression, and quantitative RT-PCR, we addressed possible roles of Ex2 antisense RNA in Emx2 regulation, in primary CNS precursor cultures. We found that, in both cortical precursors and their neuronal progenies, Emx2 antisense RNA contributes to post-transcriptional down-regulation of its sense partner, possibly by a Dicer-promoted mechanism. The same RNA, when delivered to rhombo-spinal precursors, stimulates ectopic expression of Emx2, whereas Emx2 knock-out dramatically impairs Emx2OS transcription. This suggests that, within the developing CNS, a reciprocal Emx2/Emx2OS regulatory loop may normally sustain transcription at the Emx2 locus. Conclusions/Significance This study shows that antisense transcripts may contribute to developmental regulation of a key transcription factor gene implicated in CNS patterning, possibly by complex and multilevel mechanisms. The activation of Emx2 by a short antisense transcript may be a prototype of a method for overexpressing single specific genes, without introducing additional copies of them into the genome.
Collapse
Affiliation(s)
- Giulia Spigoni
- International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
| | - Chiara Gedressi
- International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
| | - Antonello Mallamaci
- International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
- * E-mail:
| |
Collapse
|
115
|
Monitoring microRNA activity and validating microRNA targets by reporter-based approaches. Methods Mol Biol 2010; 667:215-33. [PMID: 20827537 DOI: 10.1007/978-1-60761-811-9_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An essential requirement for discovering microRNAs that may be relevant to an immune cell's function is to identify the microRNAs that are active in the cell and the genes they target. As several chapters in this volume describe, there are a number of technologies available for profiling microRNA expression, including oligonucleotide array-based approaches, real-time PCR, and, now, deep-sequencing. A complementary approach to expression profiling is the use of a microRNA reporter vector for assaying microRNA activity. In their simplest form, these vectors are comprised of a reporter gene tethered to tandem repeats of a sequence that is complementary to a specific microRNA. This technology enables the activity of a microRNA to be detected, and at single-cell resolution, and provides a means to help identify microRNAs that may have a role in cell function. This is particularly relevant for studying microRNAs in the highly heterogeneous cellular network of the immune system. Reporter vectors have also proved useful for validating microRNA target sites and 3' untranslated regions (UTR) that are under microRNA control. This chapter describes how to construct, produce, and use a reporter vector for assaying microRNA activity, and for validating a microRNA target.
Collapse
|
116
|
Abstract
Lentiviral transgenesis is a promising alternative to direct microinjection of DNA into pronuclei, which is by and large restricted to certain mouse strains. Lentiviruses are complex retroviruses that integrate their genome into the host chromosome. Vectors derived from lentiviruses can efficiently transfer transgenes in oocytes and early embryos, which is the basis for the use of these vectors in transgenesis. Lentivirus transgenesis has been used in many different species, including mouse, rat, pig, bovine, monkeys, and even birds. Here we present a protocol for generating transgenic animals by lentiviral transduction of early embryos as well as for analyzing viral integrants in transgenic animals.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center (BMZ), University of Bonn, Germany
| | | | | |
Collapse
|
117
|
Abstract
Accumulating evidence indicates that p44(ERK1) and p42(ERK2) mitogen-activated protein kinases (MAPKs) have distinct quantitative roles in cell signaling. In our recently proposed model of regulation of ERK1 and ERK2, p42 plays a major role in delivering signals from the cell membrane to the nucleus, while p44 acts as a partial agonist of ERK2 toward effectors and downstream activators, thus providing a fine tuning system of the global signaling output. Here, we describe systems to modulate MAPK signaling in vitro and in vivo via lentiviral vector (LV)-mediated gene transfer, using three systems: RNAi with small hairpin RNAs, microRNA-mediated gene knockdown, and expression of signaling-interfering mutants of MEK1. We show, by using proliferation assays in mouse embryo fibroblasts (MEF) and NIH 3T3 cells, that gene knockdown of ERK1 promotes cell proliferation in a manner indistinguishable from a constitutively active MEK1 construct, while ERK2 RNAi causes a significant growth arrest, similar to that observed with the ectopic expression of a dominant negative MEK1 mutant.
Collapse
|
118
|
Mähönen AJ, Makkonen KE, Laakkonen JP, Ihalainen TO, Kukkonen SP, Kaikkonen MU, Vihinen-Ranta M, Ylä-Herttuala S, Airenne KJ. Culture medium induced vimentin reorganization associates with enhanced baculovirus-mediated gene delivery. J Biotechnol 2009; 145:111-9. [PMID: 19903502 DOI: 10.1016/j.jbiotec.2009.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/16/2009] [Accepted: 11/03/2009] [Indexed: 01/04/2023]
Abstract
Baculoviruses can express transgenes under mammalian promoters in a wide range of vertebrate cells. However, the success of transgene expression is dependent on both the appropriate cell type and culture conditions. We studied the mechanism behind the substantial effect of the cell culture medium on efficiency of the baculovirus transduction in different cell lines. We tested six cell culture mediums; the highest transduction efficiency was detected in the presence of RPMI 1640 medium. Vimentin, a major component of type III intermediate filaments, was reorganized in the optimized medium, which associated with enhanced nuclear entry of baculoviruses. Accordingly, the phosphorylation pattern of vimentin was changed in the studied cell lines. These results suggest that vimentin has an important role in baculovirus entry into vertebrate cells. Enhanced gene delivery in the optimized medium was observed also with adenoviruses and lentiviruses. The results highlight the general importance of the culture medium in the assembly of the cytoskeleton network and in viral gene delivery.
Collapse
Affiliation(s)
- Anssi J Mähönen
- A.I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Kuopio Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Maiorano NA, Mallamaci A. Promotion of embryonic cortico-cerebral neuronogenesis by miR-124. Neural Dev 2009; 4:40. [PMID: 19883498 PMCID: PMC2777883 DOI: 10.1186/1749-8104-4-40] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 11/02/2009] [Indexed: 02/07/2023] Open
Abstract
Background Glutamatergic neurons of the murine cerebral cortex are generated within periventricular proliferative layers of the embryonic pallium, directly from apical precursors or indirectly via their basal progenies. Cortical neuronogenesis is the result of different morphogenetic subroutines, including precursor proliferation and death, changes in histogenetic potencies, and post-mitotic neuronal differentiation. Control of these processes is extremely complex, involving numerous polypeptide-encoding genes. Moreover, many so-called 'non-coding genes' are also expressed in the developing cortex. Currently, their implication in corticogenesis is the subject of intensive functional studies. A subset of them encodes microRNAs (miRNAs), a class of small RNAs with complex biogenesis that regulate gene expression at multiple levels and modulate histogenetic progression and are implicated in refinement of positional information. Among the cortical miRNAs, miR-124 has been consistently shown to promote neuronogenesis progression in a variety of experimental contexts. Some aspects of its activity, however, are still controversial, and some have to be clarified. An in depth in vivo characterization of its function in the embryonic mammalian cortex is still missing. Results By integrating locked nucleic acid (LNA)-oligo in situ hybridization, electroporation of stage-specific reporters and immunofluorescence, we reconstructed the cortico-cerebral miR-124 expression pattern during direct neuronogenesis from apical precursors and indirect neuronogenesis via basal progenitors. The miR-124 expression profile in the developing embryonic cortex includes an abrupt upregulation in apical precursors undergoing direct neuronogenesis as well as a two-step upregulation in basal progenitors during indirect neuronogenesis. Differential post-transcriptional processing seems to contribute to this pattern. Moreover, we investigated the role of miR-124 in embryonic corticogenesis by gain-of-function approaches, both in vitro, by lentivirus-based gene transfer, and in vivo, by in utero electroporation. Following overexpression of miR-124, both direct neuronogenesis and progression of neural precursors from the apical to the basal compartment were stimulated. Conclusion We show that miR-124 expression is progressively up-regulated in the mouse embryonic neocortex during the apical to basal transition of neural precursor cells and upon their exit from cell cycle, and that miR-124 is involved in the fine regulation of these processes.
Collapse
|
120
|
Lesch HP, Pikkarainen JT, Kaikkonen MU, Taavitsainen M, Samaranayake H, Lehtolainen-Dalkilic P, Vuorio T, Määttä AM, Wirth T, Airenne KJ, Ylä-Herttuala S. Avidin fusion protein-expressing lentiviral vector for targeted drug delivery. Hum Gene Ther 2009; 20:871-82. [PMID: 19419273 DOI: 10.1089/hum.2009.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the main objectives of cancer therapy is to enhance the effectiveness of the drug by concentrating it at the target site and to minimize the undesired side effects to nontarget cells. We have previously constructed a fusion protein, Lodavin, consisting of avidin and the endocytotic part of the low-density lipoprotein receptor, and demonstrated its applicability to transient drug targeting in vivo. In this study we produced a lentiviral vector expressing this fusion protein and evaluated its safety and efficacy. The results showed that lentivirus-mediated gene transfer led to long-term avidin fusion protein expression on glioma cells and that the receptor was able to bind biotinylated compounds. Repeated administration was proven feasible and the optimal time frame(s) for administration of biotinylated therapeutic and/or imaging compounds was elucidated. Intravenous or intracranial injection of the virus into BDIX rats led to the production of antibodies against transgene (avidin), but repeated administration of the vector was unable to boost this effect. Neutralizing antibodies against the lentivirus were also detected. Furthermore, we showed that the anti-avidin antibodies did not significantly affect the ligand-binding capacity of the avidin fusion protein. The therapeutic efficacy of avidin fusion protein in tumor treatment was tested in vitro with biotinylated and nonbiotinylated nanoparticles loaded with paclitaxel. In vivo applicability of lentivirus was studied in the BDIX rat glioma model, in which high receptor expression was detected in the tumor area. The lentivirus-mediated delivery of the avidin fusion protein thus represents a potential approach for the repeated targeting of cytotoxic compounds to cancer cells.
Collapse
Affiliation(s)
- Hanna P Lesch
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, FIN-70210 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Tsai C, Caillet C, Hu H, Zhou F, Ding H, Zhang G, Zhou B, Wang S, Lu S, Buchy P, Deubel V, Vogel FR, Zhou P. Measurement of neutralizing antibody responses against H5N1 clades in immunized mice and ferrets using pseudotypes expressing influenza hemagglutinin and neuraminidase. Vaccine 2009; 27:6777-90. [PMID: 19732860 PMCID: PMC7115403 DOI: 10.1016/j.vaccine.2009.08.056] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/09/2009] [Accepted: 08/14/2009] [Indexed: 11/12/2022]
Abstract
Neutralizing antibody is associated with the prevention and clearance of influenza virus infection. Microneutralization (MN) and hemagglutination inhibition (HI) assays are currently used to evaluate neutralizing antibody responses against human and avian influenza viruses, including H5N1. The MN assay is somewhat labor intensive, while HI is a surrogate for neutralization. Moreover, use of replication competent viruses in these assays requires biosafety level 3 (BSL-3) containment. Therefore, a neutralization assay that does not require BSL-3 facilities would be advantageous. Toward this goal, we generated a panel of pseudotypes expressing influenza hemagglutinin (HA) and neuraminidase (NA) and developed a pseudotype-based neutralization (PN) assay. Here we demonstrate that HA/NA pseudotypes mimic release and entry of influenza virus and that the PN assay exhibits good specificity and reveals quantitative difference in neutralizing antibody titers against different H5N1 clades and subclades. Using immune ferret sera, we demonstrated excellent correlation between the PN, MN, and HI assays. Thus, we conclude that the PN assay is a sensitive and quantifiable method to measure neutralizing antibodies against diverse clades and subclades of H5N1 influenza virus.
Collapse
Affiliation(s)
- Cheguo Tsai
- The Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Kim JW, Lee SH, Park YS, Jeong SH, Kim N, Lee DH. [Inhibition of in vitro hepatitis B virus replication by lentivirus-mediated short-hairpin RNA against HBx]. THE KOREAN JOURNAL OF HEPATOLOGY 2009; 15:15-24. [PMID: 19346782 DOI: 10.3350/kjhep.2009.15.1.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS/AIMS Hepatitis B virus (HBV) replicates via RNA intermediates, which could serve as targets for RNA interference (RNAi). Vector-mediated short-hairpin RNA (shRNA) can induce sustained RNAi in comparison to small interfering RNA. Lentiviral vector is known to induce prolonged RNAi with high transduction efficiency. In this study, we sought to test the in vitro efficacy of shRNA delivered by a lentiviral vector in suppressing the replication of HBV. METHODS Two shRNA sequences against the hepatitis B viral protein HBx (sh1580 and sh1685) were cloned downstream of the U6 promoter in an HIV-based plasmid to generate third-generation lentiviral vectors. HepAD38 cells were transduced with anti-HBx lentiviral vectors, and HBV replication was induced for 5 days. HBV DNA was isolated and quantified using real-time PCR. RESULTS Lentiviral vectors encoding the shRNA against HBV transduced HepAD38 cells with high efficacy. The total intracellular HBV DNA content was significantly reduced by both sh1580 and sh1685 (2.9% and 12.0%, respectively; P<0.05). HBV covalently closed circular DNA (cccDNA) was also suppressed significantly (19.7% and 25.5%, respectively; P<0.05). CONCLUSIONS Lentivirus-mediated delivery of shRNA against HBx can effectively suppress the replication of HBV and reduce HBV cccDNA in cell culture systems.
Collapse
Affiliation(s)
- Jin-Wook Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Seoul National University Bungdang Hospital, Seongnam, Korea.
| | | | | | | | | | | |
Collapse
|
123
|
Liu Y, Peng Y, Mi M, Guevara-Patino J, Munn DH, Fu N, He Y. Lentivector immunization stimulates potent CD8 T cell responses against melanoma self-antigen tyrosinase-related protein 1 and generates antitumor immunity in mice. THE JOURNAL OF IMMUNOLOGY 2009; 182:5960-9. [PMID: 19414747 DOI: 10.4049/jimmunol.0900008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant lentivector immunization has been demonstrated to induce potent CD8 T cell responses in vivo. In this study, we investigated whether lentivector delivering a self/tumor Ag, tyrosinase related protein 1 (TRP1), could stimulate effective antitumor T cell responses. We found that immunization with lentivector expressing mutated TRP1 Ag elicited potent CD8 T cell responses against multiple TRP1 epitopes. Importantly, the activated CD8 T cells effectively recognize wild-type TRP1 epitopes. At peak times, as many as 10% of CD8 T cells were effector cells against TRP1 Ag. These cells killed wild-type TRP1 peptide-pulsed target cells in vivo and produced IFN-gamma after ex vivo stimulation. The CD8 T cell responses were long-lasting (3-4 wk). Immunized mice were protected from B16 tumor cell challenge. In a therapeutic setting, lentivector immunization induced potent CD8 T cell responses in tumor bearing mice. The number of infiltrating T cells and the ratio of CD8/CD4 were dramatically increased in the tumors of immunized mice. The tumor-infiltrating CD8 T cells were functional and produced IFN-gamma. The potent CD8 T cell responses stimulated by lentivector immunization eliminated small 3-day s.c. B16 tumors and strongly inhibited the growth of more established 5-day tumors. These studies demonstrate that genetic immunization with lentivector expressing mutated self/tumor Ag can generate potent CD8 T cell immune responses and antitumor immunity that prevent and inhibit B16 tumor growth, suggesting that lentivector immunization has the potential for tumor immunotherapy and immune prevention.
Collapse
Affiliation(s)
- Yanjun Liu
- Immunology/Immunotherapy Program, Medical College of Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
(Strept)avidin-displaying lentiviruses as versatile tools for targeting and dual imaging of gene delivery. Gene Ther 2009; 16:894-904. [PMID: 19440224 DOI: 10.1038/gt.2009.47] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lentiviruses have shown great promise for human gene therapy. However, no optimal strategies are yet available for noninvasive imaging of virus biodistribution and subsequent transduction in vivo. We have developed a dual-imaging strategy based on avidin-biotin system allowing easy exchange of the surface ligand on HIV-derived lentivirus envelope. This was achieved by displaying avidin or streptavidin fused to the transmembrane anchor of vesicular stomatitis virus G protein on gp64-pseudotyped envelopes. Avidin and streptavidin were efficiently incorporated on virus particles, which consequently showed binding to biotin in ELISA. These vectors, conjugated to biotinylated radionuclides and engineered to express a ferritin transgene, enabled for the first-time dual imaging of virus biodistribution and transduction pattern by single-photon emission computed tomography and magnetic resonance imaging after stereotactic injection into rat brain. In addition, vector retargeting to cancer cells overexpressing CD46, epidermal growth factor and transferrin receptors using biotinylated ligands and antibodies was demonstrated in vitro. In conclusion, we have generated novel lentivirus vectors for noninvasive imaging and targeting of lentivirus-mediated gene delivery. This study suggests that these novel vectors could be applicable for the treatment of central nervous system disorders and cancer.
Collapse
|
125
|
Karnabi E, Qu Y, Mancarella S, Yue Y, Wadgaonkar R, Boutjdir M. Silencing of Cav1.2 gene in neonatal cardiomyocytes by lentiviral delivered shRNA. Biochem Biophys Res Commun 2009; 384:409-14. [PMID: 19422800 DOI: 10.1016/j.bbrc.2009.04.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 04/10/2009] [Indexed: 11/19/2022]
Abstract
Cav1.2 (alpha1C) and Cav1.3 (alpha1D) L-type Ca channels are co-expressed in the heart. To date, there are no pharmacological or biophysical tools to separate alpha1D from alpha1C Ca currents (I(Ca-L)) in cardiomyocytes. Here, we established a physiological model to study alpha1D I(Ca-L) in native myocytes using RNA interference. Transfection of rat neonatal cardiomyocytes (RNC) with alpha1C specific siRNA resulted in low silencing efficiency (50-60%) at the mRNA and protein levels. The use of lentivirus shRNA resulted in 100% transfection efficiency and 92% silencing of the alpha1C gene by real-time PCR and Western blot. Electrophysiological experiments showed that the total I(Ca-L) was similarly reduced by 80% in lentivirus transfected cells. Both biochemical and functional data demonstrated high transfection and silencing efficiency in the cardiomyocytes using lentiviral shRNA. This novel approach allows for the assessments of the roles of alpha1C and alpha1D Ca channels in native myocytes and could be used to examine their roles in physiological and pathological settings.
Collapse
Affiliation(s)
- Eddy Karnabi
- VA New York Harbor Healthcare System, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
126
|
EphrinB reverse signaling contributes to endothelial and mural cell assembly into vascular structures. Blood 2009; 114:1707-16. [PMID: 19411631 DOI: 10.1182/blood-2008-12-192294] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EphrinB transmembrane ligands and their cognate EphB receptor tyrosine kinases regulate vascular development through bidirectional cell-to-cell signaling, but little is known about the role of EphrinB during postnatal vascular remodeling. We report that EphrinB is a critical mediator of postnatal pericyte-to-endothelial cell assembly into vascular structures. This function is dependent upon extracellular matrix-supported cell-to-cell contact, engagement of EphrinB by EphB receptors expressed on another cell, and Src-dependent phosphorylation of the intracytoplasmic domain of EphrinB. Phosphorylated EphrinB marks angiogenic blood vessels in the developing and hypoxic retina, the wounded skin, and tumor tissue, and is detected at contact points between endothelial cells and pericytes. Furthermore, inhibition ofEphrinB activity prevents proper assembly of pericytes and endothelial cells into vascular structures. These results reveal a role for EphrinB signaling in orchestrating pericyte/endothelial cell assembly, and suggest that therapeutic targeting of EphrinB may prove useful for disrupting angiogenesis when it contributes to disease.
Collapse
|
127
|
Miyawaki T, Ofengeim D, Noh KM, Latuszek-Barrantes A, Hemmings BA, Follenzi A, Zukin RS. The endogenous inhibitor of Akt, CTMP, is critical to ischemia-induced neuronal death. Nat Neurosci 2009; 12:618-26. [PMID: 19349976 PMCID: PMC2724841 DOI: 10.1038/nn.2299] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/17/2009] [Indexed: 01/09/2023]
Abstract
Dysregulation of Akt signaling is important in a broad range of diseases that includes cancer, diabetes and heart disease. The role of Akt signaling in brain disorders is less clear. We found that global ischemia in intact rats triggered expression and activation of the Akt inhibitor CTMP (carboxyl-terminal modulator protein) in vulnerable hippocampal neurons and that CTMP bound and extinguished Akt activity and was essential to ischemia-induced neuronal death. Although ischemia induced a marked phosphorylation and nuclear translocation of Akt, phosphorylated Akt was not active in post-ischemic neurons, as assessed by kinase assays and phosphorylation of the downstream targets GSK-3beta and FOXO3A. RNA interference-mediated depletion of CTMP in a clinically relevant model of stroke restored Akt activity and rescued hippocampal neurons. Our results indicate that CTMP is important in the neurodegeneration that is associated with stroke and identify CTMP as a therapeutic target for the amelioration of hippocampal injury and cognitive deficits.
Collapse
Affiliation(s)
- Takahiro Miyawaki
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
A lentivirally delivered photoactivatable GFP to assess continuity in the endoplasmic reticulum of neurones and glia. Pflugers Arch 2009; 458:809-18. [DOI: 10.1007/s00424-009-0663-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 02/24/2009] [Accepted: 03/03/2009] [Indexed: 01/19/2023]
|
129
|
Kutner RH, Zhang XY, Reiser J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 2009; 4:495-505. [DOI: 10.1038/nprot.2009.22] [Citation(s) in RCA: 463] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
130
|
Ma X, Duan Y, Jung CJ, Wu J, VandeVoort CA, Zern MA. The differentiation of hepatocyte-like cells from monkey embryonic stem cells. CLONING AND STEM CELLS 2009; 10:485-93. [PMID: 18795869 DOI: 10.1089/clo.2007.0012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Embryonic stem cells (ESC) hold great potential for the treatment of liver diseases. Here, we report the differentiation of rhesus macaque ESC along a hepatocyte lineage. The undifferentiated monkey ESC line, ORMES-6, was cultured in an optimal culture condition in an effort to differentiate them into hepatocyte-like cells in vitro. The functional efficacy of the differentiated hepatic cells was evaluated using RT-PCR for the expression of hepatocyte specific genes, and Western blot analysis and immunocytochemistry for hepatic proteins such as alpha-fetoprotein (AFP), albumin and alpha1-antitrypsin (alpha1-AT). Functional assays were performed using the periodic acid schiff (PAS) reaction and ELISA. The final yield of ESC-derived hepatocyte-like cells was measured by flow cytometry for cells that were transduced with a liver-specific lentivirus vector containing the alpha1-AT promoter driving the expression of green fluorescence protein (GFP). The treatment of monkey ESC with an optimal culture condition yielded hepatocyte-like cells that expressed albumin, alpha1-AT, AFP, hepatocyte nuclear factor 3beta, glucose-6-phophatase, and cytochrome P450 genes and proteins as determined by RT-PCR and Western blot analysis. Immunofluorescent staining showed the cells positive for albumin, AFP, and alpha1-AT. PAS staining demonstrated that the differentiated cells showed hepatocyte functional activity. Albumin could be detected in the medium after 20 days of differentiation. Flow cytometry data showed that 6.5 +/- 1.0% of the total differentiated cells were positive for GFP. These results suggest that by using a specific, empirically determined, culture condition, we were able to direct monkey ESC toward a hepatocyte lineage.
Collapse
Affiliation(s)
- Xiaocui Ma
- Department of Internal Medicine, Transplant Research Program, University of California, Davis Medical Center, Sacramento, California 95817, USA
| | | | | | | | | | | |
Collapse
|
131
|
Wang X, Mani P, Sarkar DP, Roy-Chowdhury N, Roy-Chowdhury J. Ex vivo gene transfer into hepatocytes. Methods Mol Biol 2009; 481:117-140. [PMID: 19096805 DOI: 10.1007/978-1-59745-201-4_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ex vivo gene transfer into hepatocytes could serve several purposes in the context of gene therapy or cell transplantation: (1) isolated hepatocytes can be transduced in culture with therapeutic genes and then transplanted into the recipient; (2) marker genes can be introduced for subsequent identification of transplanted cells and their progeny; (3) gene transfer can be used for conditional immortalization of hepatocytes for expansion in culture; (4) immunomodulatory genes can be transferred into hepatocytes to prevent allograft rejection. Gene transfer into cultured hepatocytes can be achieved using DNA that is not incorporated into recombinant viruses. In such systems, transgene integration into the host cell genome can be enhanced using transposon systems, such as "sleeping beauty." In addition to using the conventional reagents, such as cationic liposomes, DNA transfer into hepatocytes can be achieved by Nucleofection or special hepatocyte-targeted carriers such as proteoliposomes containing galactose-terminated glycoproteins (e.g. the F protein of the Sendai virus). Alternatively, genes can be transferred using recombinant viruses, such as adenoviral vectors that are episomal or retroviral vectors (including lentiviruses) that permit integration of the transgene into the host genome. Gene transfer using lentiviral vectors has been achieved in both attached and suspended hepatocytes. Transduction efficiency of lentiviral vectors can be enhanced using magnetic nanoparticles (Magnetofection).
Collapse
Affiliation(s)
- Xia Wang
- Department of Medicine and Molecular Genetics, and the Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, USA
| | | | | | | | | |
Collapse
|
132
|
Lentivectors encoding immunosuppressive proteins genetically engineer pancreatic beta-cells to correct diabetes in allogeneic mice. Gene Ther 2008; 16:340-8. [PMID: 19112449 DOI: 10.1038/gt.2008.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effectiveness of genetic engineering with lentivectors to protect transplanted cells from allogeneic rejection was examined using, as a model, type 1 diabetes treatment with beta-cell transplantation, whose widespread use has been limited by the requirement for sustained immunosuppressive treatment to prevent graft rejection. We examined whether lentivectors expressing select immunosuppressive proteins encoded by the adenoviral genome early region 3 (AdE3) would protect transplanted beta-cells from an alloimmune attack. The insulin-producing beta-cell line beta TC-tet (C3HeB/FeJ-derived) was transduced with lentiviruses encoding the AdE3 proteins gp19K and RID alpha/beta. The efficiency of lentiviral transduction of beta TC-tet cells exceeded 85%. Lentivector expression of gp19K decreased surface class I major histocompatibility complex expression by over 90%, whereas RID alpha/beta expression inhibited cytokine-induced Fas upregulation by over 75%. beta TC-tet cells transduced with gp19K and RID alpha/beta lentivectors, but not with a control lentivector, provided prolonged correction of hyperglycemia after transplantation into diabetic BALB/c severe combined immunodeficient mice reconstituted with allogeneic immune effector cells or into diabetic allogeneic BALB/c mice. Thus, genetic engineering of beta-cells using gp19K- and RID alpha/beta-expressing lentiviral vectors may provide an alternative that has the potential to eliminate or reduce treatment with the potent immunosuppressive agents necessary at present for prolonged engraftment with transplanted islets.
Collapse
|
133
|
Okada M, Matsuda H. Chronic lentiviral expression of inwardly rectifying K+ channels (Kir2.1) reduces neuronal activity and downregulates voltage-gated potassium currents in hippocampus. Neuroscience 2008; 156:289-97. [PMID: 18713648 DOI: 10.1016/j.neuroscience.2008.07.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/19/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
|
134
|
Meregalli M, Farini A, Torrente Y. Combining stem cells and exon skipping strategy to treat muscular dystrophy. Expert Opin Biol Ther 2008; 8:1051-61. [DOI: 10.1517/14712598.8.8.1051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
135
|
He Y, Munn D, Falo LD. Recombinant lentivector as a genetic immunization vehicle for antitumor immunity. Expert Rev Vaccines 2008; 6:913-24. [PMID: 18377355 DOI: 10.1586/14760584.6.6.913] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Encouraged by remarkable successes in preventing infectious diseases and by the well-established potential of the immune system for controlling tumor growth, active therapeutic immunization approaches hold great promise for treating malignant tumors. In recent years, engineered recombinant viral vectors have been carefully examined as genetic-immunization vehicles and have been demonstrated to induce potent T-cell-mediated immune responses that can control tumor growth. Very recent efforts suggest that lentivectors possess important advantages over other candidate recombinant viral vectors for genetic immunization. Here, we review the development of recombinant lentivectors and the characteristics of T-cell immune responses elicited by lentivector immunization, including the mechanism of T-cell priming with a focus on the role of skin dendritic cells and potential applications for tumor immunotherapy.
Collapse
Affiliation(s)
- Yukai He
- Medical College of Georgia, Immunology/Immunotherapy Program, MCG Cancer Center, CN-4150, 1120 15th Street, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
136
|
Picanço-Castro V, Fontes AM, Russo-Carbolante EMDS, Covas DT. Lentiviral-mediated gene transfer – a patent review. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.5.525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
137
|
|
138
|
Genoud N, Ott D, Braun N, Prinz M, Schwarz P, Suter U, Trono D, Aguzzi A. Antiprion prophylaxis by gene transfer of a soluble prion antagonist. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1287-96. [PMID: 18372425 DOI: 10.2353/ajpath.2008.070836] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prion diseases are untreatable neurodegenerative disorders characterized by accumulation of PrP(Sc), an aggregated isoform of the normal prion protein PrP(C). Here, we delivered the soluble prion antagonist PrP-Fc(2) to the brains of mice by lentiviral gene transfer. Although naïve mice developed scrapie at 175 +/- 5 days postintracerebral prion inoculation (dpi), gene transfer before inoculation delayed disease onset by 72 +/- 4 days. At 170 days postintracerebral prion inoculation, PrP(Sc) accumulation and prion infectivity in PrPFc-treated brains were reduced by 3.6 and 4.2 logs, respectively. When PrP-Fc(2) was delivered 30 days after prion inoculation, survival of the treated animals was extended by 25 days. We then used tissue-specific recombination to express PrP-Fc(2) in the entire central nervous system, in only astrocytes, or in only oligodendrocytes. Oligodendrocyte-restricted PrP-Fc(2) expression impaired PrP(Sc) deposition and delayed disease even though oligodendrocytes are completely resistant to prion infection, suggesting that PrP-Fc(2) affords protection via noncell autonomous mechanisms. These results suggest that somatic gene transfer of prion antagonists may be effective for postexposure prophylaxis of prion diseases.
Collapse
Affiliation(s)
- Nicolas Genoud
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol 2008; 82:3078-89. [PMID: 18184707 DOI: 10.1128/jvi.01812-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1)-specific CD8 cytotoxic T-lymphocyte (CTL) response plays a critical role in controlling HIV-1 replication. Augmenting this response should enhance control of HIV-1 replication and stabilize or improve the clinical course of the disease. Although cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection in immunocompromised patients can be treated by adoptive transfer of ex vivo-expanded CMV- or EBV-specific CTLs, adoptive transfer of ex vivo-expanded, autologous HIV-1-specific CTLs had minimal effects on HIV-1 replication, likely a consequence of the inherently compromised qualitative function of HIV-1-specific CTLs derived from HIV-1-infected individuals. We hypothesized that this limitation could be circumvented by using as an alternative source of HIV-1-specific CTLs, autologous peripheral CD8(+) T lymphocytes whose antigen specificity is redirected by transduction with lentiviral vectors encoding HIV-1-specific T-cell receptor (TCR) alpha and beta chains, an approach used successfully in cancer therapy. To efficiently convert peripheral CD8 lymphocytes into HIV-1-specific CTLs that potently suppress in vivo HIV-1 replication, we constructed lentiviral vectors encoding the HIV-1-specific TCR alpha and TCR beta chains cloned from a CTL clone specific for an HIV Gag epitope, SL9, as a single transcript linked with a self-cleaving peptide. We demonstrated that transduction with this lentiviral vector efficiently converted primary human CD8 lymphocytes into HIV-1-specific CTLs with potent in vitro and in vivo HIV-1-specific activity. Using lentiviral vectors encoding an HIV-1-specific TCR to transform peripheral CD8 lymphocytes into HIV-1-specific CTLs with defined specificities represents a new immunotherapeutic approach to augment the HIV-1-specific immunity of infected patients.
Collapse
|
140
|
Venugopal SK, Wu J, Catana AM, Eisenbud L, He SQ, Duan YY, Follenzi A, Zern MA. Lentivirus-mediated superoxide dismutase1 gene delivery protects against oxidative stress-induced liver injury in mice. Liver Int 2007; 27:1311-22. [PMID: 18036097 DOI: 10.1111/j.1478-3231.2007.01612.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The exposure of liver to hepatotoxins, and their subsequent metabolism, results in increased reactive oxygen species (ROS), one of the major culprits in causing both acute liver cell injury and chronic liver diseases. The aim of this present study is to investigate the protective effects of lentiviral vector-mediated copper-zinc superoxide dismutase (LV-SOD1) gene transfer against ROS-induced cytotoxicity in Hep G2 cells and liver injury in mice. METHODS In vitro SOD1 efficacy was tested against two ROS-generating systems: hypoxanthine/xanthine oxidase (HX/XO) and hydroxyethyl radicals (HER), whereas in vivo SOD1 efficacy was evaluated in carbon tetrachloride (CCl4)-induced liver injury in C57BL/6 mice. RESULTS LV-SOD1 transduction in Hep G2 cells resulted in a significant increase in SOD activity in cell lysates, and it significantly decreased the toxicity induced by HX/XO and HER. High SOD1 expression in the liver was achieved via portal vein injection of LV-SOD1 in mice and these high levels were observed for 30 days, the length of the experiment to date. SOD1 overexpression significantly decreased the toxicity and restored liver function in the CCl4-treated mice. CONCLUSIONS These findings demonstrate for the first time that LV transduction led to the long-term expression of fully functional transgene expression in both in vitro and in vivo systems.
Collapse
Affiliation(s)
- Senthil Kumar Venugopal
- Department of Internal Medicine, Transplant Research Program, UC Davis Medical Center, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007; 25:1298-306. [PMID: 17965707 DOI: 10.1038/nbt1353] [Citation(s) in RCA: 642] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 10/09/2007] [Indexed: 11/08/2022]
Abstract
Achieving the full potential of zinc-finger nucleases (ZFNs) for genome engineering in human cells requires their efficient delivery to the relevant cell types. Here we exploited the infectivity of integrase-defective lentiviral vectors (IDLV) to express ZFNs and provide the template DNA for gene correction in different cell types. IDLV-mediated delivery supported high rates (13-39%) of editing at the IL-2 receptor common gamma-chain gene (IL2RG) across different cell types. IDLVs also mediated site-specific gene addition by a process that required ZFN cleavage and homologous template DNA, thus establishing a platform that can target the insertion of transgenes into a predetermined genomic site. Using IDLV delivery and ZFNs targeting distinct loci, we observed high levels of gene addition (up to 50%) in a panel of human cell lines, as well as human embryonic stem cells (5%), allowing rapid, selection-free isolation of clonogenic cells with the desired genetic modification.
Collapse
|
142
|
Picanço V, Heinz S, Bott D, Behrmann M, Covas DT, Seifried E, Tonn T. Recombinant expression of coagulation factor VIII in hepatic and non-hepatic cell lines stably transduced with third generation lentiviral vectors comprising the minimal factor VIII promoter. Cytotherapy 2007; 9:785-94. [PMID: 17917890 DOI: 10.1080/14653240701656053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Lentiviral vectors have the capacity to transduce stably non-dividing, differentiated and undifferentiated cells of various tissues, including liver. To obtain high-level expression of transgenes, vectors often rely on viral promoters. However, recent data suggest that the supraphysiologic expression from ubiquitous viral promoters may not be beneficial and harbor the risk of oncogene activation. Therefore this study explored the lentiviral-mediated expression of human coagulation factor VIII (FVIII) driven by the physiologic FVIII gene promoter (FVIII-p), the liver-specific human alpha-1-antitrypsin gene promoter (hAAT-p), the ubiquitous but non-viral EF1alpha promoter (EF1alpha-p) and the viral CMV promoter. METHODS Hepatic and non-hepatic cell lines were stably transduced with lentiviral vectors encoding FVIIIdelB and EGFP. To compare the different promoters, lentiviral vectors were cloned to drive FVIII expression from FVIII-p, EF1alpha-p, hAAT-p and CMV-p. RESULTS As expected, the strong viral CMV-p and the ubiquitous EF1alpha-p resulted in the highest FVIII expression in all cell lines tested (CMV-p 1.85 IU/mL/10(6) cells for 293T, 3.15 for HepG2, 5.03 for SK-Hep, 0.91 for Hepa1-6; EF1-alpha promoter 0.30 IU/mL/10(6) cells for 293T, 0.04 for HepG2, 2.75 for SK-Hep, 0.46 for Hepa1-6). While the hAAT-p resulted in low FVIII levels (0.10 IU/mL/10(6)cells in HepG2 and 0.04 in Hepa1-6), the FVIII promoter gave reasonable expression levels in hepatic cells (0.47 IU/mL/10(6)cells in Hepa1-6 and 0.44 in SK-Hep). DISCUSSION These results indicate the potential usefulness of the FVIII-p for hemophilia A gene therapy.
Collapse
Affiliation(s)
- V Picanço
- Institute for Transfusion Medicine and Immunohematology, Red Cross Blood Donor Service Baden-Wuerttemberg-Hesse, Johann Wolfgang Goethe University Clinics, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
143
|
Picanço-Castro V, Fontes AM, Heinz S, Tonn T, Covas DT. The chimeric cytokine Hyper-IL-6 enhances the efficiency of lentiviral gene transfer in hepatocytes both in vitro and in vivo. Biotechnol Lett 2007; 30:215-20. [PMID: 17899390 DOI: 10.1007/s10529-007-9528-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/30/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
Lentiviral vectors have been used for gene transfer into the liver but their ability to efficiently transduce quiescent hepatocytes remains controversial. Lentivirus-mediated gene transfer is more efficient in cycling cells. We determine the effect of H-IL6 in the lentiviral transduction. The lentiviral vector was used to transduce HepG2 cells and mice liver cells, previously treated with H-IL6. The highest transduction level was observed in HepG2 cells treated with 30 ng/mL H-IL6 and in the mice that received 4 microg H-IL6. Our results suggest that H-IL6 is an inducer of lentiviral gene transfer into the liver cells without any toxicity.
Collapse
Affiliation(s)
- Virgínia Picanço-Castro
- Hemocentro de Ribeirão Preto, Centro de Terapia Celular - FMRP/USP, Monte Alegre, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
144
|
Duan Y, Catana A, Meng Y, Yamamoto N, He S, Gupta S, Gambhir SS, Zern MA. Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 2007; 25:3058-68. [PMID: 17885076 DOI: 10.1634/stemcells.2007-0291] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human embryonic stem cells (hESC) may provide a cell source for functional hepatocytes. The aim of this study is to establish a viable human hepatocyte-like cell line from hESC that can be used for cell-based therapies. The differentiated hESC were enriched by transducing with a lentivirus vector containing the green fluorescent protein (GFP) gene driven by the alpha1-antitrypsin promoter; the GFP gene is expressed in committed hepatocyte progenitors and hepatocytes. GFP+ hESC were purified by laser microdissection and pressure catapulting. In addition, differentiated hESC that were transduced with a lentivirus triple-fusion vector were transplanted into NOD-SCID mice, and the luciferase-induced bioluminescence in the livers was evaluated by a charge-coupled device camera. GFP+ hESC expressed a large series of liver-specific genes, and expression levels of these genes were significantly improved by purifying GFP+ hESC; our results demonstrated that purified differentiated hESC express nearly physiological levels of liver-specific genes and have liver-specific functions that are comparable to those of primary human hepatocytes. The differentiated hESC survived and engrafted in mouse livers, and human liver-specific mRNA and protein species were detected in the transplanted mouse liver and serum at 3 weeks after transplantation. This is the first time that human albumin generated by hESC-derived hepatocytes was detected in the serum of an animal model. This also represents the first successful transplantation of differentiated hESC in an animal liver and the first bioluminescence imaging of hESC in the liver. This study is an initial step in establishing a viable hepatocyte-like cell line from hESC. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Yuyou Duan
- Transplant Research Institute, University of California Davis Medical Center, 4635 2nd Avenue, Suite 1001, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Venugopal SK, Chen J, Zhang Y, Clemens D, Follenzi A, Zern MA. Role of MAPK phosphatase-1 in sustained activation of JNK during ethanol-induced apoptosis in hepatocyte-like VL-17A cells. J Biol Chem 2007; 282:31900-8. [PMID: 17848570 DOI: 10.1074/jbc.m703729200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ethanol metabolism plays a central role in activating the mitogen-activated protein kinase (MAPK) cascade leading to inflammation and apoptosis. Sustained activation of c-Jun N-terminal kinase (JNK), one of the MAPKs, has been shown to induce apoptosis in hepatocytes. MAPK phosphatase-1 (MKP-1) has been shown to dephosphorylate MAPKs in several cells. The aim of the study is to evaluate the role of MKP-1 in sustained JNK activation as a mechanism to explain ethanol-induced hepatocyte apoptosis. VL-17A cells (HepG2 cells overexpressing alcohol dehydrogenase and cytochrome P450-2E1) were exposed to ethanol for different time periods. Western blots were performed for MKP-1, phospho-JNK, phosphotyrosine, and protein kinase Cdelta (PKCdelta). Electrophoretic mobility shift assays for AP-1 were performed. Apoptosis was measured by caspase-3 activity assay, TUNEL, and 4',6-diamidino-2-phenylindole staining. Reactive oxygen species were neutralized by overexpressing both superoxide dismutase-3 and catalase genes using lentiviral vectors in VL-17A cells. Ethanol incubation markedly decreased the MKP-1 protein levels to 15% of control levels and was associated with sustained phosphorylation of p46 JNK and p54 JNK, as well as increased apoptosis. VL-17A cells overexpressing superoxide dismutase-3 and catalase, treatment with a tyrosine kinase inhibitor, or incubation of the cells with PKCdelta small interference RNAs significantly inhibited the ethanol-induced MKP-1 degradation and apoptosis. Ethanol-induced oxidative stress enhanced the tyrosine phosphorylation of PKCdelta, which in turn caused the proteasomal degradation of MKP-1, leading to sustained JNK activation and increased apoptosis in VL-17A cells.
Collapse
Affiliation(s)
- Senthil K Venugopal
- Department of Internal Medicine, Transplant Research Program, UC Davis Medical Center, Sacramento, California 95817, USA
| | | | | | | | | | | |
Collapse
|
146
|
Slepak TI, Tang M, Slepak VZ, Lai K. Involvement of endoplasmic reticulum stress in a novel Classic Galactosemia model. Mol Genet Metab 2007; 92:78-87. [PMID: 17643331 PMCID: PMC2141683 DOI: 10.1016/j.ymgme.2007.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 11/19/2022]
Abstract
Inherited deficiency of galactose-1-phosphate uridyltransferase (GALT) activity in humans leads to a potentially lethal disorder called Classic Galactosemia. It is well known that patients often accumulate high levels of galactose metabolites such as galactose-1-phosphate (gal-1-p) in their tissues. However, specific targets of gal-1-p and other accumulated metabolites remain uncertain. In this study, we developed a new model system to study this toxicity using primary fibroblasts derived from galactosemic patients. GALT activity was reconstituted in these primary cells through lentivirus-mediated gene transfer. Gene expression profiling showed that GALT-deficient cells, but not normal cells, responded to galactose challenge by activating a set of genes characteristic of endoplasmic reticulum (ER) stress. Western blot analysis showed that the master regulator of ER stress, BiP, was up-regulated at least threefold in these cells upon galactose challenge. We also found that treatment of these cells with galactose, but not glucose or hexose-free media reduced Ca2+ mobilization in response to activation of Gq-coupled receptors. To explore whether the muted Ca2+ mobilization is related to reduced inositol turnover, we discovered that gal-1-p competitively inhibited human inositol monophosphatase (hIMPase1). We hypothesize that galactose intoxication under GALT-deficiency resulted from accumulation of toxic galactose metabolite products, which led to the accumulation of unfolded proteins, altered calcium homeostasis, and subsequently ER stress.
Collapse
Affiliation(s)
- Tatiana I Slepak
- The Dr. John T. Macdonald Foundation Center for Medical Genetics, Department of Pediatrics, The Leonard M. Miller School of Medicine, University of Miami, P.O. Box 016820 (D-820), Miami, FL 33101, USA
| | | | | | | |
Collapse
|
147
|
Golden KL, Pearse DD, Blits B, Garg MS, Oudega M, Wood PM, Bunge MB. Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp Neurol 2007; 207:203-17. [PMID: 17719577 PMCID: PMC3513343 DOI: 10.1016/j.expneurol.2007.06.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/16/2007] [Indexed: 01/09/2023]
Abstract
We sought to directly compare growth and myelination of local and supraspinal axons by implanting into the injured spinal cord Schwann cells (SCs) transduced ex vivo with adenoviral (AdV) or lentiviral (LV) vectors encoding a bifunctional neurotrophin molecule (D15A). D15A mimics actions of both neurotrophin-3 and brain-derived neurotrophic factor. Transduced SCs were injected into the injury center 1 week after a moderate thoracic (T8) adult rat spinal cord contusion. D15A expression and bioactivity in vitro; D15A levels in vivo; and graft volume, SC number, implant axon number and cortico-, reticulo-, raphe-, coerulo-spinal and sensory axon growth were determined for both types of vectors employed to transduce SCs. ELISAs revealed that D15A-secreting SC implants contained significantly higher levels of neurotrophin than non-transduced SC and AdV/GFP and LV/GFP SC controls early after implantation. At 6 weeks post-implantation, D15A-secreting SC grafts exhibited 5-fold increases in graft volume, SC number and myelinated axon counts and a 3-fold increase in myelinated to unmyelinated (ensheathed) axon ratios. The total number of axons within grafts of LV/GFP/D15A SCs was estimated to be over 70,000. Also 5-HT, DbetaH, and CGRP axon length was increased up to 5-fold within D15A grafts. In sum, despite qualitative differences using the two vectors, increased neurotrophin secretion by the implanted D15A SCs led to the presence of a significantly increased number of axons in the contusion site. These results demonstrate the therapeutic potential for utilizing neurotrophin-transduced SCs to repair the injured spinal cord.
Collapse
Affiliation(s)
- Kevin L. Golden
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | | | | | - Martin Oudega
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Patrick M. Wood
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis and the Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Dept. of Cell Biology and Anatomy, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
- Corresponding author: , Tel. (305) 243-4596, Fax (305) 243-3923, Lois Pope LIFE Center, P.O Box 016960, Mail locator R-48, Miami, FL 33101
| |
Collapse
|
148
|
Kim JW, Zhang YH, Zern MA, Rossi JJ, Wu J. Short hairpin RNA causes the methylation of transforming growth factor-beta receptor II promoter and silencing of the target gene in rat hepatic stellate cells. Biochem Biophys Res Commun 2007; 359:292-7. [PMID: 17533113 PMCID: PMC2474738 DOI: 10.1016/j.bbrc.2007.05.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 05/15/2007] [Indexed: 12/29/2022]
Abstract
Small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in plant and animal cells. RNA dependent DNA methylation (RdDM) accounts for TGS in plants, but it is unclear whether siRNA induces RdDM in mammalian cells. To determine whether stable expression of short hairpin siRNA (shRNA) induces DNA methylation in mammalian cells, we transduced rat hepatic stellate SBC10 cells with lentiviral vectors which encode an U6 promoter-driven shRNA expression cassette homologous to the transforming growth factor-beta receptor (TGFbetaRII) promoter region. Sequencing analysis of bisulfite-modified genomic DNA showed the methylation of cytosine residues both in CpG dinucleotides and non-CpG sites around the target region of the TGFbetaRII promoter in SBC10 cells transduced with the promoter-targeting lentiviral vector. In these cells, real-time RT-PCR showed a decrease in TGFbetaRII mRNA levels which were reversed by treatment with 5-aza-2-deoxycytidine. Our results demonstrate that recombinant lentivirus-mediated shRNA delivery resulted in the methylation of the homologous promoter area in mammalian cells, and this approach may be used as a tool for transcriptional gene silencing by epigenetic modification of mammalian cell promoters.
Collapse
Affiliation(s)
- Jin-Wook Kim
- Department of Internal Medicine, Transplant Research Program, University of California, Davis Medical Center, Sacramento, CA 95817
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yan-Hong Zhang
- Department of Internal Medicine, Transplant Research Program, University of California, Davis Medical Center, Sacramento, CA 95817
| | - Mark A Zern
- Department of Internal Medicine, Transplant Research Program, University of California, Davis Medical Center, Sacramento, CA 95817
| | - John J. Rossi
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte 91010, CA
| | - Jian Wu
- Department of Internal Medicine, Transplant Research Program, University of California, Davis Medical Center, Sacramento, CA 95817
- To whom all correspondence should be addressed: University of California, Davis Medical Center, Transplant Research Institute, 4635 2nd Ave., Suite 1001, Sacramento, CA 95817, USA, Tel. +1-916-734-8044, Fax: +1-916-734-8097, E-mail:
| |
Collapse
|
149
|
Bordoni V, Alonzi T, Zanetta L, Khouri D, Conti A, Corazzari M, Bertolini F, Antoniotti P, Pisani G, Tognoli F, Dejana E, Tripodi M. Hepatocyte-conditioned medium sustains endothelial differentiation of human hematopoietic-endothelial progenitors. Hepatology 2007; 45:1218-28. [PMID: 17464995 DOI: 10.1002/hep.21568] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Liver neo-angiogenesis plays a fundamental role in physiological and pathological processes such as regeneration, cirrhosis, autoimmune hepatitis, and alcoholic liver disease. How liver parenchymal cells influence angiogenesis is largely unknown. We studied the influence of soluble factors released by hepatocytes on hematopoietic and endothelial cell differentiation. Human CD34+ cells cultured for several weeks in a hepatocyte-conditioned medium gradually decrease the expression of CD34 and CD133 markers (i.e. after 4 weeks from 85% and 69%, respectively, to 6% and 3%, respectively), whereas expression of CD144 and CD14 cell markers increased (from 2% and 8%, respectively, to 54% and 55%, respectively). The cells' capacity to form hematopoietic colonies in methylcellulose declined with time, whereas they acquired endothelial morphology, expressed endothelial markers, and incorporated into newly forming vascular structures both in vitro and in vivo. Cultured single CD34+ cells formed colonies expressing both hematopoietic (CD45+) and endothelial (CD144+) markers, suggesting they constitute a bona fide hemangioblast population. CONCLUSION This system allowed subsequent stages of differentiation of hematopoietic cells to endothelial cells to be defined, underlining the strict interrelationship between endothelial and hematopoietic cells in a hepatocyte environment.
Collapse
Affiliation(s)
- Veronica Bordoni
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Sadelain M. Recent advances in globin gene transfer for the treatment of beta-thalassemia and sickle cell anemia. Curr Opin Hematol 2006; 13:142-8. [PMID: 16567956 DOI: 10.1097/01.moh.0000219658.57915.d4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The beta-thalassemias and sickle cell anemia are severe congenital anemias for which there is presently no curative therapy other than allogeneic hematopoietic stem cell transplantation. This therapeutic option, however, is not available to most patients due to the lack of an HLA-matched bone marrow donor. The transfer of a regulated globin gene in autologous hematopoietic stem cells is therefore a highly attractive alternative treatment. This strategy, simple in principle, raises major challenges in terms of controlling transgene expression, which ideally should be erythroid specific, differentiation and stage restricted, elevated, position independent, and sustained over time. RECENT FINDINGS Using lentiviral vectors, May et al. demonstrated that an optimized combination of proximal and distal transcriptional control elements permits lineage-specific and elevated beta-globin expression in vivo, resulting in therapeutic hemoglobin production and correction of anemia in beta-thalassemic mice. Several groups have extended these findings to various models of beta-thalassemia and sickle cell disease. While the addition of the wild-type beta-globin gene is naturally suited for treating beta-thalassemia, several alternatives have been proposed for the treatment of sickle cell disease, using either gamma or mutant beta-globin gene addition, trans-splicing or RNA interference. SUMMARY These recent advances bode well for the clinical investigation of stem cell-based gene therapy in the severe hemoglobinopathies.
Collapse
Affiliation(s)
- Michel Sadelain
- Memorial Sloan-Kettering Cancer Center, New York 10021, USA.
| |
Collapse
|