101
|
Eilbracht J, Reichenzeller M, Hergt M, Schnölzer M, Heid H, Stöhr M, Franke WW, Schmidt-Zachmann MS. NO66, a highly conserved dual location protein in the nucleolus and in a special type of synchronously replicating chromatin. Mol Biol Cell 2004; 15:1816-32. [PMID: 14742713 PMCID: PMC379278 DOI: 10.1091/mbc.e03-08-0623] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has recently become clear that the nucleolus, the most prominent nuclear subcompartment, harbors diverse functions beyond its classic role in ribosome biogenesis. To gain insight into nucleolar functions, we have purified amplified nucleoli from Xenopus laevis oocytes using a novel approach involving fluorescence-activated cell sorting techniques. The resulting protein fraction was analyzed by mass spectrometry and used for the generation of monoclonal antibodies directed against nucleolar components. Here, we report the identification and molecular characterization of a novel, ubiquitous protein, which in most cell types appears to be a constitutive nucleolar component. Immunolocalization studies have revealed that this protein, termed NO66, is highly conserved during evolution and shows in most cells analyzed a dual localization pattern, i.e., a strong enrichment in the granular part of nucleoli and in distinct nucleoplasmic entities. Colocalizations with proteins Ki-67, HP1alpha, and PCNA, respectively, have further shown that the staining pattern of NO66 overlaps with certain clusters of late replicating chromatin. Biochemical experiments have revealed that protein NO66 cofractionates with large preribosomal particles but is absent from cytoplasmic ribosomes. We propose that in addition to its role in ribosome biogenesis protein NO66 has functions in the replication or remodeling of certain heterochromatic regions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Nucleolus/metabolism
- Cell Nucleus/metabolism
- Cell Separation
- Cells, Cultured
- Centrifugation, Density Gradient
- Chromatin/chemistry
- Chromatin/metabolism
- Chromatography, Gel
- Chromobox Protein Homolog 5
- Chromosomal Proteins, Non-Histone/biosynthesis
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/physiology
- Conserved Sequence
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Dioxygenases
- Flow Cytometry
- HeLa Cells
- Heterochromatin/chemistry
- Histone Demethylases
- Humans
- Ki-67 Antigen/biosynthesis
- Microscopy, Electron
- Microscopy, Fluorescence
- Molecular Sequence Data
- Peptides/chemistry
- Precipitin Tests
- Proliferating Cell Nuclear Antigen/biosynthesis
- Protein Biosynthesis
- RNA/metabolism
- Ribosomes/metabolism
- Sequence Homology, Amino Acid
- Sucrose/pharmacology
- Time Factors
- Transcription, Genetic
- Xenopus Proteins/biosynthesis
- Xenopus Proteins/physiology
- Xenopus laevis/metabolism
Collapse
Affiliation(s)
- Jens Eilbracht
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Leung AKL, Andersen JS, Mann M, Lamond AI. Bioinformatic analysis of the nucleolus. Biochem J 2004; 376:553-69. [PMID: 14531731 PMCID: PMC1223824 DOI: 10.1042/bj20031169] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 10/08/2003] [Indexed: 02/02/2023]
Abstract
The nucleolus is a plurifunctional, nuclear organelle, which is responsible for ribosome biogenesis and many other functions in eukaryotes, including RNA processing, viral replication and tumour suppression. Our knowledge of the human nucleolar proteome has been expanded dramatically by the two recent MS studies on isolated nucleoli from HeLa cells [Andersen, Lyon, Fox, Leung, Lam, Steen, Mann and Lamond (2002) Curr. Biol. 12, 1-11; Scherl, Coute, Deon, Calle, Kindbeiter, Sanchez, Greco, Hochstrasser and Diaz (2002) Mol. Biol. Cell 13, 4100-4109]. Nearly 400 proteins were identified within the nucleolar proteome so far in humans. Approx. 12% of the identified proteins were previously shown to be nucleolar in human cells and, as expected, nearly all of the known housekeeping proteins required for ribosome biogenesis were identified in these analyses. Surprisingly, approx. 30% represented either novel or uncharacterized proteins. This review focuses on how to apply the derived knowledge of this newly recognized nucleolar proteome, such as their amino acid/peptide composition and their homologies across species, to explore the function and dynamics of the nucleolus, and suggests ways to identify, in silico, possible functions of the novel/uncharacterized proteins and potential interaction networks within the human nucleolus, or between the nucleolus and other nuclear organelles, by drawing resources from the public domain.
Collapse
Affiliation(s)
- Anthony K L Leung
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Scotland, UK.
| | | | | | | |
Collapse
|
103
|
Hall MP, Huang S, Black DL. Differentiation-induced colocalization of the KH-type splicing regulatory protein with polypyrimidine tract binding protein and the c-src pre-mRNA. Mol Biol Cell 2003; 15:774-86. [PMID: 14657238 PMCID: PMC329392 DOI: 10.1091/mbc.e03-09-0692] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have examined the subcellular localization of the KH-type splicing regulatory protein (KSRP). KSRP is a multidomain RNA-binding protein implicated in a variety of cellular processes, including splicing in the nucleus and mRNA localization in the cytoplasm. We find that KSRP is primarily nuclear with a localization pattern that most closely resembles that of polypyrimidine tract binding protein (PTB). Colocalization experiments of KSRP with PTB in a mouse neuroblastoma cell line determined that both proteins are present in the perinucleolar compartment (PNC), as well as in other nuclear enrichments. In contrast, HeLa cells do not show prominent KSRP staining in the PNC, even though PTB labeling identified the PNC in these cells. Because both PTB and KSRP interact with the c-src transcript to affect N1 exon splicing, we examined the localization of the c-src pre-mRNA by fluorescence in situ hybridization. The src transcript is present in specific foci within the nucleus that are presumably sites of src transcription but are not generally perinucleolar. In normally cultured neuroblastoma cells, these src RNA foci contain PTB, but little KSRP. However, upon induced neuronal differentiation of these cells, KSRP occurs in the same foci with src RNA. PTB localization remains unaffected. This differentiation-induced localization of KSRP with src RNA correlates with an increase in src exon N1 inclusion. These results indicate that PTB and KSRP do indeed interact with the c-src transcript in vivo, and that these associations change with the differentiated state of the cell.
Collapse
Affiliation(s)
- Megan P. Hall
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095
| | - Sui Huang
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Douglas L. Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095
- Corresponding author. E-mail address:
| |
Collapse
|
104
|
Hare PD, Moller SG, Huang LF, Chua NH. LAF3, a novel factor required for normal phytochrome A signaling. PLANT PHYSIOLOGY 2003; 133:1592-604. [PMID: 14645728 PMCID: PMC300716 DOI: 10.1104/pp.103.028480] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 07/02/2003] [Accepted: 08/28/2003] [Indexed: 05/18/2023]
Abstract
Phytochrome A (phyA) is the photolabile plant light receptor that mediates broad spectrum very low-fluence responses and high irradiance responses to continuous far-red light (FRc). An Arabidopsis mutant laf3-1 (long after far-red 3) was recovered from a screen for transposon-tagged mutants that exhibit reduced inhibition of hypocotyl elongation in FRc. The laf phenotype correlated well with a strongly attenuated disappearance of XTR7 transcript in FRc. The effects of laf3-1 on phyA-controlled CAB, CHS, and PET H expression were more subtle, and the mutation had no clear effects on PET E and ASN1 transcript levels in FRc. The use of two alternative transcription initiation sites in the LAF3 gene generates two isoforms that differ only at their N termini. Transcripts encoding both isoforms were induced during germination and were present at slightly higher levels in de-etiolated seedlings than in those grown in darkness. No significant differential regulation of the two isoforms was observed upon exposure to either FRc or continuous red light. Transcripts encoding the shorter isoform (LAF3ISF2) always appear to be more abundant than those encoding the longer isoform (LAF3ISF1). However, both isoforms were capable of full complementation of the laf3-1 hypocotyl phenotype in FRc. When fused to a yellow fluorescent protein, both isoforms localize to the perinuclear region, suggesting that LAF3 encodes a product that might regulate nucleo-cytoplasmic trafficking of an intermediate(s) involved in phyA signal transduction.
Collapse
Affiliation(s)
- Peter D Hare
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York 10021, USA
| | | | | | | |
Collapse
|
105
|
O'Toole PJ, Inoue T, Emerson L, Morrison IEG, Mackie AR, Cherry RJ, Norton JD. Id proteins negatively regulate basic helix-loop-helix transcription factor function by disrupting subnuclear compartmentalization. J Biol Chem 2003; 278:45770-6. [PMID: 12952978 DOI: 10.1074/jbc.m306056200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Id helix-loop-helix (HLH) proteins act as global regulators of metazoan cell fate, cell growth, and differentiation. They heterodimerize with and inhibit the DNA-binding function of members of the basic helix-loop-helix (bHLH) family of transcription factors. Using real time fluorescence microscopy techniques in single living cells, we show here that nuclear pools of chromatin-associated bHLH transcription factor are freely exchangeable and in constant flux. The existence of a dynamic equilibrium between DNA-bound and free bHLH protein is also directly demonstrable in vitro. By contrast, Id protein is not associated with any subcellular, macromolecular structures and displays a more highly mobile, diffuse nuclear-cytoplasmic distribution. When co-expressed with antagonist Id protein, the chromatin-associated sublocalization of bHLH protein is abolished, and there is an accompanying 100-fold increase in its nuclear mobility to a level expected for freely diffusible Id-bHLH heterodimer. These results suggest that nuclear Id protein acts by sequestering pools of transiently diffusing bHLH protein to prevent reassociation with chromatin domains. Such a mechanism would explain how Id proteins are able to overcome the large DNA-binding free energy of bHLH proteins that is necessary to accomplish their inhibitory effect.
Collapse
Affiliation(s)
- Peter J O'Toole
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
106
|
Julien C, Coulombe P, Meloche S. Nuclear export of ERK3 by a CRM1-dependent mechanism regulates its inhibitory action on cell cycle progression. J Biol Chem 2003; 278:42615-24. [PMID: 12915405 DOI: 10.1074/jbc.m302724200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase family of serine/threonine kinases. Little is known on the regulation of ERK3 function. Here, we report that ERK3 is constitutively localized in the cytoplasmic and nuclear compartments. In contrast to other mitogen-activated protein kinases, the cellular distribution of ERK3 remains unchanged in response to common mitogenic or stress stimuli and is independent of the enzymatic activity or phosphorylation of the kinase. The cytoplasmic localization of ERK3 is directed by a CRM1-dependent nuclear export mechanism. Treatment of cells with leptomycin B causes the nuclear accumulation of ERK3 in a high percentage of cells. Moreover, ectopic expression of CRM1 promotes the cytoplasmic relocalization of ERK3, whereas overexpression of snurportin 1, which binds CRM1 with high affinity, inhibits the nuclear export of ERK3. We also show that CRM1 binds to ERK3 in vitro. Importantly, we show that enforced localization of ERK3 in the nucleus or cytoplasm markedly attenuates the ability of the kinase to induce cell cycle arrest in fibroblasts. Our results suggest that nucleocytoplasmic shuttling of ERK3 is required for its negative regulatory effect on cell cycle progression.
Collapse
Affiliation(s)
- Catherine Julien
- Institut de Recherches Cliniques de Montréal, Université de Montréal, 110 Pine Avenue West, Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|
107
|
Castillo EA, Vivancos AP, Jones N, Ayte J, Hidalgo E. Schizosaccharomyces pombe cells lacking the Ran-binding protein Hba1 show a multidrug resistance phenotype due to constitutive nuclear accumulation of Pap1. J Biol Chem 2003; 278:40565-72. [PMID: 12896976 DOI: 10.1074/jbc.m305859200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Schizosaccharomyces pombe, the transcription factor Pap1, and the mitogen-activated protein kinase Sty1 are excluded from the nucleus in a Crm1-dependent manner under non-stressed conditions. Upon oxidant treatment, both Sty1 and Pap1 concentrate into the nucleus, due to an enhanced import or an impaired export. Hba1, a protein that when overexpressed confers brefeldin A resistance, contains a Ran binding domain. The purpose of this project was to understand at the molecular level the role of Hba1 in the S. pombe oxidative stress response. Fluorescent and confocal microscopy studies demonstrate that Hba1 is located at the nucleoplasm and not at the nuclear envelope. We also demonstrate that either multiple copies or deletion of the hba1 gene induces nuclear accumulation of Pap1 and Sty1. We propose that Hba1 assists Crm1 to export some nuclear export signal-containing proteins. Pap1 nuclear accumulation is sufficient for constitutive activation of its specific antioxidant response. On the contrary, constitutive nuclear localization of Sty1 in the Deltahba1 strain does not trigger the Sty1-specific, Atf1-dependent antioxidant response in the absence of stress. We conclude that the increased multidrug resistance of strains lacking or overexpressing Hba1 is due to the accumulation of Pap1 in the nucleus under non-stressed conditions.
Collapse
Affiliation(s)
- Esther A Castillo
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/Dr Aiguader 80, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
108
|
van Driel R, Fransz PF, Verschure PJ. The eukaryotic genome: a system regulated at different hierarchical levels. J Cell Sci 2003; 116:4067-75. [PMID: 12972500 DOI: 10.1242/jcs.00779] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eukaryotic gene expression can be viewed within a conceptual framework in which regulatory mechanisms are integrated at three hierarchical levels. The first is the sequence level, i.e. the linear organization of transcription units and regulatory sequences. Here, developmentally co-regulated genes seem to be organized in clusters in the genome, which constitute individual functional units. The second is the chromatin level, which allows switching between different functional states. Switching between a state that suppresses transcription and one that is permissive for gene activity probably occurs at the level of the gene cluster, involving changes in chromatin structure that are controlled by the interplay between histone modification, DNA methylation, and a variety of repressive and activating mechanisms. This regulatory level is combined with control mechanisms that switch individual genes in the cluster on and off, depending on the properties of the promoter. The third level is the nuclear level, which includes the dynamic 3D spatial organization of the genome inside the cell nucleus. The nucleus is structurally and functionally compartmentalized and epigenetic regulation of gene expression may involve repositioning of loci in the nucleus through changes in large-scale chromatin structure.
Collapse
Affiliation(s)
- Roel van Driel
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 318,1098SM Amsterdam, The Netherlands.
| | | | | |
Collapse
|
109
|
Enninga J, Levay A, Fontoura BMA. Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. Mol Cell Biol 2003; 23:7271-84. [PMID: 14517296 PMCID: PMC230331 DOI: 10.1128/mcb.23.20.7271-7284.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 07/10/2003] [Indexed: 11/20/2022] Open
Abstract
Sec13 is a constituent of the endoplasmic reticulum and the nuclear pore complex (NPC). At the endoplasmic reticulum, Sec13 is involved in the biogenesis of COPII-coated vesicles, whereas at the NPC its function is unknown. We show here, by yeast two-hybrid screenings and biochemical assays, that a region at the amino terminus of the human nuclear pore complex protein Nup96 interacts with the WD (Trp-Asp) repeat region of human Sec13. By using immunofluorescence and confocal and immunoelectron microscopy, we found that in interphase, Sec13 and Nup96 are localized at both sides of the NPC in addition to other intracellular sites. In mitosis, Sec13 was found dispersed throughout the cell, whereas a pool of Nup96 colocalized with the spindle apparatus. Photobleaching experiments showed that Sec13 shuttles between intranuclear sites and the cytoplasm, and a fraction of Sec13 is stably associated with NPCs. Cotransfection of Sec13 and the Sec13 binding site of Nup96 decreased the mobile pool of Sec13, demonstrating the interaction of Sec13 and Nup96 in vivo. Targeting studies showed that Sec13 is actively transported into the nucleus and contains a nuclear localization signal. These results indicate that Sec13 stably interacts with Nup96 at the NPC during interphase and that the shuttling of Sec13 between the nucleus and the cytoplasm may couple and regulate functions between these two compartments.
Collapse
Affiliation(s)
- Jost Enninga
- Department of Molecular and Cellular Pharmacology and Sylvester Cancer Center, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
110
|
Affiliation(s)
- Angus I Lamond
- Wellcome Trust Biocentre, MSI/WTB Complex, University of Dundee, UK
| | | |
Collapse
|
111
|
Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W. The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 2003; 35:190-4. [PMID: 14517543 DOI: 10.1038/ng1244] [Citation(s) in RCA: 435] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 09/02/2003] [Indexed: 12/21/2022]
Abstract
Efficient transcription of genes requires a high local concentration of the relevant trans-acting factors. Nuclear compartmentalization can provide an effective means to locally increase the concentration of rapidly moving trans-acting factors; this may be achieved by spatial clustering of chromatin-associated binding sites for such factors. Here we analyze the structure of an erythroid-specific spatial cluster of cis-regulatory elements and active beta-globin genes, the active chromatin hub (ACH; ref. 6), at different stages of development and in erythroid progenitors. We show, in mice and humans, that a core ACH is developmentally conserved and consists of the hypersensitive sites (HS1-HS6) of the locus control region (LCR), the upstream 5' HS-60/-62 and downstream 3' HS1. Globin genes switch their interaction with this cluster during development, correlating with the switch in their transcriptional activity. In mouse erythroid progenitors that are committed to but do not yet express beta-globin, only the interactions between 5' HS-60/-62, 3' HS1 and hypersensitive sites at the 5' side of the LCR are stably present. After induction of differentiation, these sites cluster with the rest of the LCR and the gene that is activated. We conclude that during erythroid differentiation, cis-regulatory DNA elements create a developmentally conserved nuclear compartment dedicated to RNA polymerase II transcription of beta-globin genes.
Collapse
Affiliation(s)
- Robert-Jan Palstra
- Department of Cell Biology and Genetics, ErasmusMC, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
112
|
Piwien Pilipuk G, Galigniana MD, Schwartz J. Subnuclear localization of C/EBP beta is regulated by growth hormone and dependent on MAPK. J Biol Chem 2003; 278:35668-77. [PMID: 12821655 DOI: 10.1074/jbc.m305182200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Localization of transcription regulatory proteins in the nucleus is dynamically regulated, and may alter nucleoplasmic concentrations and/or assembly of multimolecular transcription regulatory complexes, which ultimately regulate gene expression. Since growth hormone (GH) regulates multiple transcription factors including C/EBP beta, the effect of GH on the subcellular localization of C/EBP beta was examined in 3T3-F442A preadipocytes. Indirect immunofluorescence shows that C/EBP beta is diffusely distributed in nuclei of quiescent cells. Within 5 min of GH treatment, the diffuse pattern dramatically becomes punctate. The relocalization of C/EBP beta coincides with DAPI staining of heterochromatin. Further, C/EBP beta and heterochromatin protein (HP)-1 alpha colocalize in the nucleus, consistent with localization of C/EBP beta to pericentromeric heterochromatin. In contrast, C/EBP delta exhibits a diffuse distribution in the nucleus that is not modified by GH treatment. C/EBP beta is rapidly and transiently phosphorylated on a conserved MAPK consensus site in response to GH (Piwien-Pilipuk, G., MacDougald, O. A., and Schwartz, J. (2002) J. Biol. Chem. 277, 44557-44565). Indirect immunofluorescence using antibodies specific for C/EBP beta phosphorylated on the conserved MAPK site shows that GH also rapidly induces a punctate pattern of staining for the phosphorylated C/EBP beta. In addition, phosphorylated C/EBP beta colocalizes to pericentromeric heterochromatin. The satellite DNA present in heterochromatin contains multiple C/EBP binding sites. DNA binding analysis shows that C/EBP beta, C/EBP delta, and C/EBP alpha (p42 and p30 forms) can bind to satellite DNA as homo- or heterocomplexes in vitro. Importantly, GH rapidly and transiently increases binding of endogenous C/EBP beta from 3T3-F442A cells to satellite DNA. Further, the GH-promoted nuclear relocalization of C/EBP beta to pericentromeric heterochromatin was prevented by the MEK inhibitor U0126. This observation suggests that GH-dependent MAPK activation plays a role in the regulation of nuclear relocalization of C/EBP beta. Nuclear redistribution introduces a new level of transcriptional regulation in GH action, since GH-mediated phosphorylation and nuclear redistribution of C/EBP beta may be coordinated to achieve spatial-temporal control of gene expression.
Collapse
Affiliation(s)
- Graciela Piwien Pilipuk
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
113
|
Valgardsdottir R, Prydz H. Transport signals and transcription-dependent nuclear localization of the putative DEAD-box helicase MDDX28. J Biol Chem 2003; 278:21146-54. [PMID: 12663657 DOI: 10.1074/jbc.m300888200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human protein MDDX28 is a putative RNA helicase and a nucleocytoplasmic shuttling protein also localized to the mitochondria. Its localization is novel among RNA helicases. We have studied its intracellular targeting signals and show that the first 20 amino acids of MDDX28 are necessary and sufficient for both mitochondrial import and nuclear export of the protein. Mutation of the five leucines in the sequence to alanines abolished the mitochondrial targeting signal as well as greatly reducing the nuclear export signal, indicating that these signal sequences are highly overlapping. Two short stretches of basic amino acids separated by 44 residues were both necessary and sufficient for full nuclear localization. However, they were not absolutely essential, because the protein was present in 7% of the nuclei when both signals were mutated. This indicates that MDDX28 contains another unidentified weak nuclear localization signal(s). Three basic domains in the N-terminal half of the protein and its RNA binding ability were essential for nucleolar localization as well as transcription-inhibition-dependent localization to nuclear subcompartments. Two of these basic domains were the same as those constituting the nuclear localization signal, suggesting that they are responsible for bringing the protein into the nucleus to the sites of RNA binding. Our results indicate that MDDX28 nucleo-cytoplasmic shuttling is dependent on the availability of nascent RNA.
Collapse
Affiliation(s)
- Rut Valgardsdottir
- Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, N0349 Oslo, Norway
| | | |
Collapse
|
114
|
Loidl J. Chromosomes of the budding yeast Saccharomyces cerevisiae. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:141-96. [PMID: 12503849 DOI: 10.1016/s0074-7696(02)22014-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitotic chromosomes of the baker's yeast, Saccharomyces cerevisiae, cannot be visualized by standard cytological methods. Only the study of meiotic bivalents and the synaptonemal complex and the visualization of chromosome-sized DNA molecules on pulsed-field gels have provided some insight into chromosome structure and behavior. More recently, advanced techniques such as in situ hybridization, the illumination of chromosomal loci by GFP-tagged DNA-binding proteins, and immunostaining of chromosomal proteins have promoted our knowledge about yeast chromosomes. These novel cytological approaches in combination with the yeast's advanced biochemistry and genetics have produced a great wealth of information on the interplay between molecular and cytological processes and have strengthened the role of yeast as a leading cell biological model organism. Recent cytological studies have revealed much about the chromosomal organization in interphase nuclei and have contributed significantly to our current understanding of chromosome condensation, sister chromatid cohesion, and centromere orientation in mitosis. Moreover, important details about the biochemistry and ultrastructure of meiotic pairing and recombination have been revealed by combined cytological and molecular approaches. This article covers several aspects of yeast chromosome structure, including their organization within interphase nuclei and their behavior during mitosis and meiosis.
Collapse
Affiliation(s)
- Josef Loidl
- Institute of Botany, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
115
|
Tazawa H, Osman W, Shoji Y, Treuter E, Gustafsson JA, Zilliacus J. Regulation of subnuclear localization is associated with a mechanism for nuclear receptor corepression by RIP140. Mol Cell Biol 2003; 23:4187-98. [PMID: 12773562 PMCID: PMC156128 DOI: 10.1128/mcb.23.12.4187-4198.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2002] [Revised: 10/23/2002] [Accepted: 03/31/2003] [Indexed: 11/20/2022] Open
Abstract
Regulation of gene transcription by nuclear receptors involves association with numerous coregulators. Receptor-interacting protein 140 (RIP140) is a corepressor that negatively regulates the ligand-induced activity of several nuclear receptors, including the glucocorticoid receptor (GR). In the present study, we have characterized the role of the intranuclear localization of RIP140 in its corepressor activity. In the absence of ligand-activated GR, RIP140 is localized in small nuclear foci targeted by a 40-amino-acid-long sequence. Although the focus-targeting domain overlaps with a binding sequence for the corepressor CtBP (C-terminal binding protein), interaction with CtBP is not involved in the localization. RIP140 foci do not correspond to PML bodies but partly colocalize with domains harboring the corepressor SMRT. Upon ligand binding, GR and RIP140 are redistributed to large nuclear domains distinct from the RIP140 foci. The redistribution requires regions of RIP140 with corepressor activity, as well as the DNA-binding domain of GR. Furthermore, we show that full RIP140 corepressor activity is contributed both by C-terminal receptor-binding LXXLL motifs and interaction with the CtBP corepressor. In conclusion, our results suggest that the corepressor function of RIP140 is multifaceted and involves binding to nuclear receptors, as well as additional functions mediated by the formation and intranuclear relocalization of a repressive protein complex.
Collapse
Affiliation(s)
- Hiroshi Tazawa
- Departments of Medical Nutrition. Biosciences, Karolinska Institutet, Novum, S-141 86 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
116
|
Colón-Ramos DA, Salisbury JL, Sanders MA, Shenoy SM, Singer RH, García-Blanco MA. Asymmetric distribution of nuclear pore complexes and the cytoplasmic localization of beta2-tubulin mRNA in Chlamydomonas reinhardtii. Dev Cell 2003; 4:941-52. [PMID: 12791277 DOI: 10.1016/s1534-5807(03)00163-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although it is generally accepted that nuclear architecture is an important determinant of nuclear activity, it is not clear whether cytoplasmic events, such as transcript localization and cell polarity, are affected by this architecture. Characterization of the nuclear architecture of the single-cell alga Chlamydomonas reinhardtii revealed a polarized nucleus, with nuclear pore complexes preferentially concentrated at the posterior side of the nucleus. Nuclear asymmetry was greatly exaggerated during the upregulation of genes encoding flagellar proteins, when nuclear pore complexes (NPCs) were observed to hyperpolarize to the posterior side of the nucleus while heterochromatin polarized to the anterior side. Interestingly, prior to deflagellation, the beta2-tubulin gene was preferentially located in the posterior region of the nucleus, and following deflagellation, beta2-tubulin transcripts accumulated posteriorly in polysome-rich cytoplasmic regions adjacent to the highest concentration of NPCs, suggesting a connection between nuclear architecture and cytoplasmic transcript localization.
Collapse
Affiliation(s)
- Daniel A Colón-Ramos
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
117
|
Taylor TJ, McNamee EE, Day C, Knipe DM. Herpes simplex virus replication compartments can form by coalescence of smaller compartments. Virology 2003; 309:232-47. [PMID: 12758171 DOI: 10.1016/s0042-6822(03)00107-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herpes simplex virus (HSV) uses intranuclear compartmentalization to concentrate the viral and cellular factors required for the progression of the viral life cycle. Processes as varied as viral DNA replication, late gene expression, and capsid assembly take place within discrete structures within the nucleus called replication compartments. Replication compartments are hypothesized to mature from a few distinct structures, called prereplicative sites, that form adjacent to cellular nuclear matrix-associated ND10 sites. During productive infection, the HSV single-stranded DNA-binding protein ICP8 localizes to replication compartments. To further the understanding of replication compartment maturation, we have constructed and characterized a recombinant HSV-1 strain that expresses an ICP8 molecule with green fluorescent protein (GFP) fused to its C terminus. In transfected Vero cells that were infected with HSV, the ICP8-GFP protein localized to prereplicative sites in the presence of the viral DNA synthesis inhibitor phosphonoacetic acid (PAA) or to replication compartments in the absence of PAA. A recombinant HSV-1 strain expressing the ICP8-GFP virus replicated in Vero cells, but the yield was increased by 150-fold in an ICP8-complementing cell line. Using the ICP8-GFP protein as a marker for replication compartments, we show here that these structures start as punctate structures early in infection and grow into large, globular structures that eventually fill the nucleus. Large replication compartments were formed by small structures that either moved through the nucleus to merge with adjacent compartments or remained relatively stationary within the nucleus and grew by accretion and fused with neighboring structures.
Collapse
Affiliation(s)
- Travis J Taylor
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
118
|
Marcello A, Ferrari A, Pellegrini V, Pegoraro G, Lusic M, Beltram F, Giacca M. Recruitment of human cyclin T1 to nuclear bodies through direct interaction with the PML protein. EMBO J 2003; 22:2156-66. [PMID: 12727882 PMCID: PMC156077 DOI: 10.1093/emboj/cdg205] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human cyclin T1, the cyclin partner of Cdk9 kinase in the positive transcription elongation factor b (P-TEFb), is an essential cellular cofactor that is recruited by the human immunodeficiency virus type 1 (HIV-1) Tat transactivator to promote transcriptional elongation from the HIV-1 long terminal repeat (LTR). Here we exploit fluorescence resonance energy transfer (FRET) to demonstrate that cyclin T1 physically interacts in vivo with the promyelocytic leukaemia (PML) protein within specific subnuclear compartments that are coincident with PML nuclear bodies. Deletion mutants at the C-terminal region of cyclin T1 are negative for FRET with PML and fail to localize to nuclear bodies. Cyclin T1 and PML are also found associated outside of nuclear bodies, and both proteins are present at the chromatinized HIV-1 LTR promoter upon Tat transactivation. Taken together these results suggest that PML proteins regulate Tat- mediated transcriptional activation by modulating the availability of cyclin T1 and other essential cofactors to the transcription machinery.
Collapse
Affiliation(s)
- Alessandro Marcello
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
The design of drugs for treatment of virus infections and the exploitation of viruses as drugs for treatment of diseases could be made more successful by understanding the molecular mechanisms of virus-specific events. The process of assembly, and more specifically packaging of the genome into a capsid, is an obligatory step leading to future infections. To enhance our understanding of the molecular mechanism of packaging, it is necessary to characterize the viral components necessary for the event. In the case of adenovirus, sequences between nucleotides 200 and 400 at the left end of the genome are essential for packaging. This region contains a series of redundant bipartite sequences, termed A repeats, that function in packaging. Synthetic packaging sequences made of multimers of a single A repeat substitute for the authentic adenovirus packaging domain. A repeats are binding sites for the CCAAT displacement protein and the viral protein IVa2. Several lines of evidence implicate these proteins in the packaging process. It was not known, however, whether other cis-acting elements play a role in the packaging process as well. We utilized an in vivo approach to address the role of the inverted terminal repeats and the covalently linked terminal proteins in packaging of the adenovirus genome. Our results show that these elements are not necessary for efficient packaging of the viral genome. A significant implication of these results applicable to gene therapy vector design is that the linkage of the adenovirus packaging domain to heterologous DNA sequences should suffice for targeting to the viral capsid.
Collapse
Affiliation(s)
- Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, New York 11794-5222, USA
| | | |
Collapse
|
120
|
Abstract
DNA mismatch repair maintains genomic stability by detecting and correcting mispaired DNA sequences and by signaling cell death when DNA repair fails. The mechanism by which mismatch repair coordinates DNA damage and repair with cell survival or death is not understood, but it suggests the need for regulation. Since the functions of mismatch repair are initiated in the nucleus, we asked whether nuclear transport of MLH1 and PMS2 is limiting for the nuclear localization of MutLalpha (the MLH1-PMS2 dimer). We found that MLH1 and PMS2 have functional nuclear localization signals (NLS) and nuclear export sequences, yet nuclear import depended on their C-terminal dimerization to form MutLalpha. Our studies are consistent with the idea that dimerization of MLH1 and PMS2 regulates nuclear import by unmasking the NLS. Limited nuclear localization of MutLalpha may thus represent a novel mechanism by which cells fine-tune mismatch repair functions. This mechanism may have implications in the pathogenesis of hereditary non-polyposis colon cancer.
Collapse
Affiliation(s)
- Xiaosheng Wu
- Transplantation Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
121
|
Abstract
The nucleus of the eukaryotic cell must carry out many functions simultaneously. These tasks include ensuring that the cell is continuously supplied with an appropriate, changing set of proteins on its way through cell divisions and differentiation. During these processes, the integrity of the genetic material must be maintained against a constant onslaught of damaging physiological and environmental factors. Fulfilling these complex tasks requires the dynamic integration and synchronization of different nuclear functions. Protein modification by ubiquitin is proving to be a crucial tool for nuclear functioning, and is emerging as a decisive mechanism that enables the concerted regulation of nuclear pathways.
Collapse
Affiliation(s)
- Ingolf Bach
- Zentrum für Molekulare Neurobiologie (ZMNH), Universität Hamburg, Germany.
| | | |
Collapse
|
122
|
Polak PE, Simone F, Kaberlein JJ, Luo RT, Thirman MJ. ELL and EAF1 are Cajal body components that are disrupted in MLL-ELL leukemia. Mol Biol Cell 2003; 14:1517-28. [PMID: 12686606 PMCID: PMC153119 DOI: 10.1091/mbc.e02-07-0394] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The (11;19)(q23;p13.1) translocation in acute leukemia results in the formation of a chimeric MLL-ELL fusion protein. ELL is an RNA Polymerase II (Pol II) transcriptional elongation factor that interacts with the recently identified EAF1 protein. Here, we show that ELL and EAF1 are components of Cajal bodies (CBs). Although ELL and EAF1 colocalize with p80 coilin, the signature protein of CBs, ELL and EAF1 do not exhibit a direct physical interaction with p80 coilin. Treatment of cells with actinomycin D, DRB, or alpha-amanitin, specific inhibitors of Pol II, disperses ELL and EAF1 from CBs, indicating that localization of ELL and EAF1 in CBs is dependent on active transcription by Pol II. The concentration of ELL and EAF1 in CBs links the transcriptional elongation activity of ELL to the RNA processing functions previously identified in CBs. Strikingly, CBs are disrupted in MLL-ELL leukemia. EAF1 and p80 coilin are delocalized from CBs in murine MLL-ELL leukemia cells and in HeLa cells transiently transfected with MLL-ELL. Nuclear and cytoplasmic fractionation revealed diminished expression of p80 coilin and EAF1 in the nuclei of MLL-ELL leukemia cells [corrected]. These studies are the first demonstration of a direct role of CB components in leukemogenesis.
Collapse
MESH Headings
- Autoantigens
- Cell Line
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 19/genetics
- Coiled Bodies/metabolism
- DNA-Binding Proteins/metabolism
- HeLa Cells
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Myeloid-Lymphoid Leukemia Protein
- Neoplasm Proteins
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Peptide Elongation Factors
- Phosphoproteins/metabolism
- RNA/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleoproteins, Small Nuclear/metabolism
- Transcription Factors/metabolism
- Transcriptional Elongation Factors
- Transfection
- Translocation, Genetic
- snRNP Core Proteins
Collapse
Affiliation(s)
- Paul E Polak
- University of Chicago Section of Hematology/Oncology, Chicago, Illinois 60637-1470, USA
| | | | | | | | | |
Collapse
|
123
|
Kuramoto N, Baba K, Gion K, Sugiyama C, Taniura H, Yoneda Y. Xenobiotic response element binding enriched in both nuclear and microsomal fractions of rat cerebellum. J Neurochem 2003; 85:264-73. [PMID: 12641748 DOI: 10.1046/j.1471-4159.2003.01679.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xenobiotic response element (XRE) is a core nucleotide sequence at the upstream of inducible target genes for the transcription factor aryl hydrocarbon receptor (AhR) that is responsible for signal transduction of exogenous environmental pollutants in eukaryotic cells. Immunoblotting analysis revealed the constitutive expression of AhR-related proteins in rat liver and brain, while specific binding of a radiolabelled probe containing XRE was detected in nuclear preparations of both liver and brain on gel retardation electrophoresis. Among discrete rat brain structures examined, cerebellum exhibited the highest XRE binding with less potent binding in hypothalamus, midbrain, medulla-oblongata, hippocampus, cerebral cortex and striatum. In contrast to liver and hippocampus, cerebellum also contained unusually higher XRE binding in microsomal fractions than that in either nuclear or mitochondrial fractions. Limited proteolysis by V8 protease did not markedly affect XRE binding in cerebellar nuclear extracts, with concomitant diminution of that in hepatic and hippocampal nuclear extracts. In primary cultured cerebellar neurons, indigo was effective in significantly increasing XRE binding only when determined immediately after sustained exposure for 120 min in the presence of high potassium chloride. These results suggest the abundance of as-yet unidentified proteins with high affinity for XRE and responsiveness to indigo in both nuclear and microsomal fractions of rat cerebellum.
Collapse
Affiliation(s)
- Nobuyuki Kuramoto
- Laboratory of Molecular Pharmacology, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|
124
|
Abstract
BACKGROUND The NF-kappaB/Rel pathway functions in the establishment of dorsal-ventral polarity and in the innate humoral and cellular immune response in Drosophila. An important aspect of all NF-kappaB/Rel pathways is the translocation of the Rel proteins from the cytoplasm to the nucleus, where they function as transcription factors. RESULTS We have identified a new protein, Tamo, which binds to Drosophila Rel protein Dorsal, but not to Dorsal lacking the nuclear localization sequence. Tamo does not bind to the other Drosophila Rel proteins, Dif and Relish. The Tamo-Dorsal complex forms in the cytoplasm and Tamo also interacts with a cytoplasmically orientated nucleoporin. In addition Tamo binds the Ras family small GTPase, Ran. Tamo functions during oogenesis and, based on phenotypic analysis, controls the levels of nuclear Dorsal in early embryos. It further regulates the accumulation of Dorsal in the nucleus after immune challenge. CONCLUSIONS Tamo has an essential function during oogenesis. Tamo interacts with Dorsal and proteins that are part of the nuclear import machinery. We propose that tamo modulates the levels of import of Dorsal and other proteins.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Waksman Institute, Department of Molecular Biology and Biochemistry, NJ Cancer Center, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | |
Collapse
|
125
|
Kuthan H. A mathematical model of single target site location by Brownian movement in subcellular compartments. J Theor Biol 2003; 221:79-87. [PMID: 12634045 DOI: 10.1006/jtbi.2003.3172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The location of distinct sites is mandatory for many cellular processes. In the subcompartments of the cell nucleus, only very small numbers of diffusing macromolecules and specific target sites of some types may be present. In this case, we are faced with the Brownian movement of individual macromolecules and their "random search" for single/few specific target sites, rather than bulk-averaged diffusion and multiple sites. In this article, I consider the location of a distant central target site, e.g. a globular protein, by individual macromolecules executing unbiased (i.e. drift-free) random walks in a spherical compartment. For this walk-and-capture model, the closed-form analytic solution of the first passage time probability density function (p.d.f.) has been obtained as well as the first and second moment. In the limit of a large ratio of the radii of the spherical diffusion space and central target, well-known relations for the variance and the first two moments for the exponential p.d.f. were found to hold with high accuracy. These calculations reinforce earlier numerical results and Monte Carlo simulations. A major implication derivable from the model is that non-directed random movement is an effective means for locating single sites in submicron-sized compartments, even when the diffusion coefficients are comparatively small and the diffusing species are present in one copy only. These theoretical conclusions are underscored numerically for effective diffusion constants ranging from 0.5 to 10.0 microm(2) s(-1), which have been reported for a couple of nuclear proteins in their physiological environment. Spherical compartments of submicron size are, for example, the Cajal bodies (size: 0.1-1.0 microm), which are present in 1-5 copies in the cell nucleus. Within a small Cajal body of radius 0.1 microm a single diffusing protein molecule (with D=0.5 microm(2) s(-1)) would encounter a medium-sized protein of radius 2.5 nm within 1 s with a probability near certainty (p=0.98).
Collapse
|
126
|
Fukuzawa M, Abe T, Williams JG. The Dictyostelium prestalk cell inducer DIF regulates nuclear accumulation of a STAT protein by controlling its rate of export from the nucleus. Development 2003; 130:797-804. [PMID: 12506009 DOI: 10.1242/dev.00303] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dd-STATc becomes tyrosine phosphorylated, dimerises and accumulates in the nuclei of Dictyostelium cells exposed to DIF, the chlorinated hexaphenone that directs prestalk cell differentiation. By performing cytoplasmic photobleaching of living cells, we show that DIF inhibits the nuclear export of Dd-STATc. Within Dd-STATc there is a 50 amino acid region containing several consensus CRM1 (exportin 1)-dependent nuclear export signals (NESs). Deletion of this region causes Dd-STATc to accumulate in the nucleus constitutively and, when coupled to GFP, the same region directs nuclear export. We show that the N-terminal-proximal 46 amino acids are necessary for nuclear accumulation of Dd-STATc and sufficient to direct constitutive nuclear accumulation when fused to GFP. Combining the photobleaching and molecular analyses, we suggest that DIF-induced dimerisation of Dd-STATc functionally masks the NES-containing region and that this leads to nett nuclear accumulation, directed by the N-terminal-proximal import signals. These results show that the regulated nuclear accumulation of a STAT protein can be controlled at the level of nuclear export and they also provide a better understanding of the mechanism whereby DIF directs cell type divergence.
Collapse
Affiliation(s)
- Masashi Fukuzawa
- School of Life Sciences, University of Dundee, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
127
|
Engel N, Bartolomei MS. Mechanisms of Insulator Function in Gene Regulation and Genomic Imprinting. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 232:89-127. [PMID: 14711117 DOI: 10.1016/s0074-7696(03)32003-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Correct temporal and spatial patterns of gene expression are required to establish unique cell types. Several levels of genome organization are involved in achieving this intricate regulatory feat. Insulators are elements that modulate interactions between other cis-acting sequences and separate chromatin domains with distinct condensation states. Thus, they are proposed to play an important role in the partitioning of the genome into discrete realms of expression. This review focuses on the roles that insulators have in vivo and reviews models of insulator mechanisms in the light of current understanding of gene regulation.
Collapse
Affiliation(s)
- Nora Engel
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
128
|
Ahmad K, Henikoff S. Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16477-84. [PMID: 12177448 PMCID: PMC139911 DOI: 10.1073/pnas.172403699] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Histone variants have been known for 30 years, but their functions and the mechanism of their deposition are still largely unknown. Drosophila has three versions of histone H3. H3 packages the bulk genome, H3.3 marks active chromatin and may be essential for gene regulation, and Cid is the characteristic structural component of centromeric chromatin. We have characterized the properties of these histones by using a Drosophila cell-line system that allows precise analysis of both DNA replication and histone deposition. The deposition of H3 is restricted to replicating DNA. In striking contrast, H3.3 and Cid deposit throughout the cell cycle. Deposition of H3.3 occurs without any corresponding DNA replication. To confirm that the deposition of Cid is also replication-independent (RI), we examined centromere replication in cultured cells and neuroblasts. We found that centromeres replicate out of phase with heterochromatin and display replication patterns that may limit H3 deposition. This confirms that both variants undergo RI deposition, but at different locations in the nucleus. How variant histones accomplish RI deposition is unknown, and raises basic questions about the stability of nucleosomes, the machinery that accomplishes nucleosome assembly, and the functional organization of the nucleus. The different in vivo properties of H3, H3.3, and Cid set the stage for identifying the mechanisms by which they are differentially targeted. Here we suggest that local effects of "open" chromatin and broader effects of nuclear organization help to guide the two different H3 variants to their target sites.
Collapse
Affiliation(s)
- Kami Ahmad
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A1-162, Seattle, WA 98109, USA
| | | |
Collapse
|
129
|
Fernandez R, Pena E, Navascues J, Casafont I, Lafarga M, Berciano MT. cAMP-dependent reorganization of the Cajal bodies and splicing machinery in cultured Schwann cells. Glia 2002; 40:378-88. [PMID: 12420317 DOI: 10.1002/glia.10157] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is well established that forskolin-induced elevation of cAMP results in activation of DNA synthesis in Schwann cell cultures. This promitotic response is partially mediated by the Cdk2, which is required for the transition from the G1 to the S phase of the cell cycle. In the present study, we analyze the effects of cAMP elevation in cultured Schwann cells on the transcriptional activity and on the organization of two nuclear compartments involved in pre-mRNA processing: Cajal bodies (CBs) and splicing factor compartments. Our immunofluorescence and quantitative studies show that forskolin treatment induces a 5.6-fold increase in the proportion of S phase Schwann cells, detected by a short pulse (20 min) of BrdU incorporation. This increase in DNA synthesis correlates with an activation of global transcription, as is indicated by the higher nuclear incorporation of BrU in nascent RNA. Forskolin treatment significantly increases the percentage of Schwann cells containing typical CBs, which concentrate spliceosomal snRNPs and the survival motor neuron (SMN) protein. This increase in the number of CBs closely correlates with the activation of transcription. Moreover, the occurrence of CBs is significantly higher in BrdU (+) cells than in BrdU (-) cells, indicating that entry in the S phase promotes the formation of CBs. During the S phase, Schwann cell nuclei display higher Cdk2 nuclear staining and concentrate this kinase in CBs. Forskolin also induces a redistribution of the pre-mRNA splicing factors in Schwann cells. Primary cultures of Schwann cells provide an excellent physiological model to demonstrate that the assembly of CBs is a transcription- and replication-dependent cellular event. Moreover, the S phase accumulation of Cdk2 observed in Schwann cells supports a functional link between CBs and DNA replication, which is mediated by the possible participation of CBs in the regulatory control of histone gene expression.
Collapse
Affiliation(s)
- Rosario Fernandez
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | | | | | | | | | | |
Collapse
|
130
|
Nielsen JA, Hudson LD, Armstrong RC. Nuclear organization in differentiating oligodendrocytes. J Cell Sci 2002; 115:4071-9. [PMID: 12356912 DOI: 10.1242/jcs.00103] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many studies have suggested that the 3D organization of chromatin and proteins within the nucleus contributes to the regulation of gene expression. We tested multiple aspects of this nuclear organization model within a primary cell culture system. Oligodendrocyte lineage cells were examined to facilitate analysis of nuclear organization relative to a highly expressed tissue-specific gene, proteolipid protein (PLP), which exhibits transcriptional upregulation during differentiation from the immature progenitor stage to the mature oligodendrocyte stage. Oligodendrocyte lineage cells were isolated from brains of neonatal male rodents, and differentiation from oligodendrocyte progenitors to mature oligodendrocytes was controlled with culture conditions. Genomic in situ hybridization was used to detect the single copy of the X-linked PLP gene within each interphase nucleus. The PLP gene was not randomly distributed within the nucleus, but was consistently associated with the nuclear periphery in both progenitors and differentiated oligodendrocytes. PLP and a second simultaneously upregulated gene, the myelin basic protein (MBP) gene, were spatially separated in both progenitors and differentiated oligodendrocytes. Increased transcriptional activity of the PLP gene in differentiated oligodendrocytes corresponded with local accumulation of SC35 splicing factors. Differentiation did not alter the frequency of association of the PLP gene with domains of myelin transcription factor 1 (Myt1), which binds the PLP promoter. In addition to our specific findings related to the PLP gene, these data obtained from primary oligodendrocyte lineage cells support a nuclear organization model in which (1). nuclear proteins and genes can exhibit specific patterns of distribution within nuclei, and (2). activation of tissue-specific genes is associated with changes in local protein distribution rather than spatial clustering of coordinately regulated genes. This nuclear organization may be critical for complex nucleic-acid-protein interactions controlling normal cell development, and may be an important factor in aberrant regulation of cell differentiation and gene expression in transformed cells.
Collapse
Affiliation(s)
- Joseph A Nielsen
- Program in Molecular and Cell Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
131
|
SELDI-TOF-MS Analysis of Transcriptional Activation Protein Binding to Response Elements Regulating Carcinogenesis Enzymes. Int J Mol Sci 2002. [DOI: 10.3390/i3101027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
132
|
Goodman A, Tseng Y, Wirtz D. Effect of length, topology, and concentration on the microviscosity and microheterogeneity of DNA solutions. J Mol Biol 2002; 323:199-215. [PMID: 12381315 DOI: 10.1016/s0022-2836(02)00893-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The viscoelastic behavior of chromosomal DNA, which is heterogeneously distributed within the nucleus, may influence the diffusion of nuclear organelles and proteins. To identify some of the parameters that affect DNA viscoelasticity, we use the high-throughput method of multiple-particle nanotracking to measure the microviscosity and degree of heterogeneity of solutions of chromosomal DNA, linear DNA, and circular double-stranded DNA over a wide range of concentrations and lengths. The thermally excited displacements of multiple fluorescent microspheres imbedded in DNA solutions are monitored with 5nm spatial resolution and 30Hz temporal resolution, from which mean-squared displacement (MSD) and viscosity distributions are generated. For all probed DNA solutions but the most concentrated solution of the longest molecules, the ensemble-averaged MSD increases linearly with time at all probed time scales, a signature of viscous transport. The associated mean viscosity of the DNA solutions increases slowly with concentration for circular DNA and more rapidly for linear DNA, but more slowly than predicted by theory. The heterogeneity of the DNA solutions is assessed by computing the relative contributions of the 10%, 25%, and 50% highest values of MSD and viscosity to the ensemble-averaged MSD and viscosity. For both linear DNA and circular DNA, these contributions are much larger than observed in homogeneous liquids such as glycerol. The microheterogeneity of the linear DNA solutions increases with concentration more significantly for linear DNA than circular DNA. These in vitro results suggest that the topology, local concentration, and length of DNA influence the microrheology and microheterogeneity of the DNA within the nucleus.
Collapse
Affiliation(s)
- Alan Goodman
- Department of Chemical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
133
|
Dino Rockel T, von Mikecz A. Proteasome-dependent processing of nuclear proteins is correlated with their subnuclear localization. J Struct Biol 2002; 140:189-99. [PMID: 12490167 DOI: 10.1016/s1047-8477(02)00527-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although proteasomes are abundant in the nucleoplasm little is known of proteasome-dependent proteolysis within the nucleus. Thus, we monitored the subcellular distribution of nuclear proteins in correlation with proteasomes. The proteasomal pathway clears away endogenous proteins, regulates numerous cellular processes, and delivers immunocompetent peptides to the antigen presenting machinery. Confocal laser scanning microscopy revealed that histones, splicing factor SC35, spliceosomal components, such as U1-70k or SmB/B('), and PML partially colocalize with 20S proteasomes in nucleoplasmic substructures, whereas the centromeric and nucleolar proteins topoisomerase I, fibrillarin, and UBF did not overlap with proteasomes. The specific inhibition of proteasomal processing with lactacystin induced accumulation of histone protein H2A, SC35, spliceosomal components, and PML, suggesting that these proteins are normally degraded by proteasomes. In contrast, concentrations of centromeric proteins CENP-B and -C and nucleolar proteins remained constant during inhibition of proteasomes. Quantification of fluorescence intensities corroborated that nuclear proteins which colocalize with proteasomes are degraded by proteasome-dependent proteolysis within the nucleoplasm. These data provide evidence that the proteasome proteolytic pathway is involved in processing of nuclear components, and thus may play an important role in the regulation of nuclear structure and function.
Collapse
Affiliation(s)
- Thomas Dino Rockel
- Institut für umweltmedizinische Forschung (IUF), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
134
|
Abstract
Recent discoveries demonstrating surprising cell plasticity in animals and humans call into question many long held assumptions regarding differentiative potential of adult cells. These assumptions reflect a classical paradigm of cell lineage development projected onto both prenatal development and post-natal maintenance and repair of tissues. The classical paradigm describes unidirectional, hierarchical lineages proceedings step-wise from totipotent or pluripotent stem cells through intermediate, ever more restricted progenitor cells, leading finally to 'terminally differentiated' cells. However, in light of both the recent discoveries and older clinical or experimental findings, we have suggested principles comprising a new paradigm of cell plasticity, summarized here.
Collapse
Affiliation(s)
- Neil D Theise
- Department of Pathology, New York University School of Medicine, Room 461, 560 First Avenue, New York, NY 10003, USA.
| |
Collapse
|
135
|
Vermeulen L, De Wilde G, Notebaert S, Vanden Berghe W, Haegeman G. Regulation of the transcriptional activity of the nuclear factor-kappaB p65 subunit. Biochem Pharmacol 2002; 64:963-70. [PMID: 12213593 DOI: 10.1016/s0006-2952(02)01161-9] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is well known for its role in inflammation, immune response, control of cell division and apoptosis. The function of NF-kappaB is primarily regulated by IkappaB family members, which ensure cytoplasmic localisation of the transcription factor in the resting state. Upon stimulus-induced IkappaB degradation, the NF-kappaB complexes move to the nucleus and activate NF-kappaB-dependent transcription. Over the years, a second regulatory mechanism, independent of IkappaB, has become generally accepted. Changes in NF-kappaB transcriptional activity have been assigned to phosphorylation of the p65 subunit by a large variety of kinases in response to different stimuli. Here, we give an overview of the kinases and signalling pathways mediating this process and comment on the players involved in tumour necrosis factor-induced regulation of NF-kappaB transcriptional activity. Additionally, we describe how other posttranslational modifications, such as acetylation and methylation of transcription factors or of the chromatin environment, may also affect NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Linda Vermeulen
- Department of Molecular Biology, University of Gent-VIB, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
136
|
Prisco M, Santini F, Baffa R, Liu M, Drakas R, Wu A, Baserga R. Nuclear translocation of insulin receptor substrate-1 by the simian virus 40 T antigen and the activated type 1 insulin-like growth factor receptor. J Biol Chem 2002; 277:32078-85. [PMID: 12063262 DOI: 10.1074/jbc.m204658200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
32D cells are a murine hemopoietic cell line that undergoes apoptosis upon withdrawal of interleukin-3 (IL-3) from the medium. 32D cells have low levels of the type 1 insulin-like growth factor (IGF-I) receptor and do not express insulin receptor substrate-1 (IRS-1) or IRS-2. Ectopic expression of IRS-1 delays apoptosis but cannot rescue 32D cells from IL-3 dependence. In 32D/IRS-1 cells, IRS-1 is detectable, as expected, in the cytosol/membrane compartment. The SV40 large T antigen is a nuclear protein that, by itself, also fails to protect 32D cells from apoptosis. Co-expression of IRS-1 with the SV40 T antigen in 32D cells results in nuclear translocation of IRS-1 and survival after IL-3 withdrawal. Expression of a human IGF-I receptor in 32D/IRS-1 cells also results in nuclear translocation of IRS-1 and IL-3 independence. The phosphotyrosine-binding domain, but not the pleckstrin domain, is necessary for IRS-1 nuclear translocation. Nuclear translocation of IRS-1 was confirmed in mouse embryo fibroblasts. These results suggest possible new roles for nuclear IRS-1 in IGF-I-mediated growth and anti-apoptotic signaling.
Collapse
Affiliation(s)
- Marco Prisco
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
137
|
Fu XH, Liu DP, Liang CC. Chromatin structure and transcriptional regulation of the beta-globin locus. Exp Cell Res 2002; 278:1-11. [PMID: 12126952 DOI: 10.1006/excr.2002.5555] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromatin structure plays a critical role in eukaryotic gene transcriptional regulation. The beta-globin locus provides an ideal system within which to study the interplay between chromatin structure and transcriptional regulation. The process of beta-globin locus activation is remarkably intricate and involves at least two distinct events: chromatin opening and gene activation. Great progress has been made in recent years in understanding how locus control regions confer high-level expression to linked genes. Current interest focuses on some special events, including formation of locus control region hypersensitivity sites, ATP-dependent chromatin remodeling, localized H3 hyperacetylation, and intergenic transcription, which link chromatin and beta-globin locus regulation. These events, and their possible molecular bases, are summarized together with speculations concerning their connections.
Collapse
Affiliation(s)
- Xiang Hui Fu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, P.R. China
| | | | | |
Collapse
|
138
|
Abstract
Increasingly, the attention of developmental biologists is being drawn from genes and their products towards cells, from processes mediated by linear pathways in which one protein regulates the activity of another to events that rely on multimolecular machines. Some components of these machines are partially redundant, and some have essential functions in general cellular processes. These observations invite a reassessment of the uses of genetics for analyzing the cell biology of development. In addition, the increasing ability to image live cells and their proteins reveals a complex and interesting world, forcing us to deal with new variables and objects of study. Here, we provide a glimpse of these changes and the challenges they raise.
Collapse
Affiliation(s)
- Julia A Kaltschmidt
- Howard Hughes Medical Institute, Dept of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, 701 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
139
|
Abstract
The human genome has been called "the blueprint for life." This master plan is realized through the process of gene expression. Recent progress has revealed that many of the steps in the pathway from gene sequence to active protein are connected, suggesting a unified theory of gene expression.
Collapse
Affiliation(s)
- George Orphanides
- Syngenta Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, United Kingdom
| | | |
Collapse
|
140
|
Abstract
The finding that neighboring eukaryotic genes are often expressed in similar patterns suggests the involvement of chromatin domains in the control of genes within a genomic neighborhood.
Collapse
Affiliation(s)
- Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|