101
|
Abstract
Tuberculosis continues to persist despite widespread use of BCG, the only licensed vaccine to prevent TB. BCG's limited efficacy coupled with the emergence of drug-resistant strains of Mycobacterium tuberculosis emphasizes the need for a more effective vaccine for combatting this disease. However, the development of a TB vaccine is hindered by the lack of immune correlates, suboptimal animal models, and limited funding. An adolescent/adult vaccine would have the greatest public health impact, but effective delivery of such a vaccine will require a better understanding of global TB epidemiology, improved infrastructure, and engagement of public health leaders and global manufacturers. Here we discuss the current state of tuberculosis vaccine research and development, including our understanding of the underlying immunology as well as the challenges and opportunities that may hinder or facilitate the development of a new and efficacious vaccine.
Collapse
|
102
|
Saidu Y, De Angelis D, Aiolli S, Stefano G, Georges AM. Product Registration in Developing Countries: A Proposal for an Integrated Regional Licensing System Among Countries in Regional Economic Blocs. Ther Innov Regul Sci 2013; 47:327-335. [PMID: 30231430 DOI: 10.1177/2168479013478952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The product pipeline for diseases that disproportionately affect the developing world has considerably expanded over the last decade. Indeed, there are about 134 products for these diseases in the pipeline, including vaccines, drugs, diagnostics, microbicides, and vector control tools, and dozens of these products are currently being evaluated in human trials in developing countries where the disease of interest exists. While these efforts are underway, the need to identify regulatory pathways for licensing these new products is becoming obvious to many manufacturers. In many developing countries, where the need of these products is greatest, the national regulatory authorities often lack the resources and regulatory capacity to review the registration dossiers to approve the use of new products. Given this challenge, new regulatory models are urgently needed to offset product registration. In this paper, we propose how regional regulatory frameworks established by regional harmonization initiatives can be used to set up an integrated regional licensing system, a system that will provide for a single product dossier application and a single review, leading to a single approval that will grant access to all the markets in the region. The proposed model aims at complementing the ongoing regional regulatory harmonization efforts by pooling the activities of different national expertise groups so as to make the best use of the available skills at a reduced cost. By sharing the various regulatory tasks in an integrated manner, the total process will be accelerated and will facilitate product registration in the region.
Collapse
Affiliation(s)
- Yauba Saidu
- 1 Vaccinology Unit, Medical Research Council, Fajara, Gambia
| | | | | | - Gonnelli Stefano
- 3 Faculty of Medicine and Surgery, University of Siena, Siena, Italy
| | | |
Collapse
|
103
|
Feng G, Jiang Q, Xia M, Lu Y, Qiu W, Zhao D, Lu L, Peng G, Wang Y. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PLoS One 2013; 8:e61135. [PMID: 23637790 PMCID: PMC3634041 DOI: 10.1371/journal.pone.0061135] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb) is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e) and fms-like tyrosine kinase 3 ligand (FL) genes (termed Esat-6/3e-FL), and was enveloped with chitosan (CS) nanoparticles (nano-chitosan). The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL) was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice.
Collapse
Affiliation(s)
- Ganzhu Feng
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Qingtao Jiang
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Mei Xia
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Yanlai Lu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Wen Qiu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Dan Zhao
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Liwei Lu
- Department of Pathology, Hong Kong University, Hong Kong, China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Yingwei Wang
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
104
|
Factors associated with the rapid implementation process of the fixed-dose combination RHZE tuberculosis regimen in Brazil: an ecological study. BMC Public Health 2013; 13:321. [PMID: 23570579 PMCID: PMC3637113 DOI: 10.1186/1471-2458-13-321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Brazilian National Tuberculosis Control Program (NTCP) recommended the fixed-dose four-drug combination (FDC-RHZE) regimen to treat new tuberculosis cases in December 2009, expecting to increase adherence and avoid resistance. We evaluated factors associated with the speed of the new regimen implementation process in this continent-sized country. METHODS We conducted an ecological study based on the Brazilian Case Notification Database (SINAN) having the Brazilian municipalities as the analytical unit. Municipalities with at least one case reported from December 2009 to March 2011 were considered eligible. The association of rapid (≤ 3 months) implementation of the new regimen with demographic, epidemiological and operational health service characteristics, such as compliance with NTCP recommendations (supervised treatment, bacteriological confirmation of the diagnosis and monthly bacteriological monitoring), was analyzed. We used the adjusted odds ratios (OR) and their 95% confidence interval (CI) to assess the association of independent variables with the outcome in a multiple logistic regression model. RESULTS Rapid implementation of the new regimen in municipalities was associated with small populations (OR=25.5, 95% CI= 19.1-34.1), low population density (OR=2.3, 95% CI= 1.9-2.9), low tuberculosis incidence rates (OR=8.8, 95% CI= 6.7-11.4) and good compliance with other NTCP recommendations. CONCLUSIONS We showed that SINAN secondary data analysis is feasible and useful to learn lessons from. Municipalities with high tuberculosis burden and large populations need special attention for implementing new recommendations. This is particularly important considering the Global Alliance pipeline for new tuberculosis treatment regimens.
Collapse
|
105
|
Kaufmann SH. Tuberculosis vaccines: Time to think about the next generation. Semin Immunol 2013; 25:172-81. [DOI: 10.1016/j.smim.2013.04.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/11/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
|
106
|
Dipterinyl calcium pentahydrate inhibits intracellular mycobacterial growth in human monocytes via the C-C chemokine MIP-1β and nitric oxide. Infect Immun 2013; 81:1974-83. [PMID: 23509148 DOI: 10.1128/iai.01393-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis remains one of the top three leading causes of morbidity and mortality worldwide, complicated by the emergence of drug-resistant Mycobacterium tuberculosis strains and high rates of HIV coinfection. It is important to develop new antimycobacterial drugs and immunomodulatory therapeutics and compounds that enhance antituberculous immunity. Dipterinyl calcium pentahydrate (DCP), a calcium-complexed pterin compound, has previously been shown to inhibit human breast cancer cells and hepatitis B virus (HBV). DCP inhibitory effects were attributed to induction of apoptosis and/or increased production of interleukin 12 (IL-12) and granulocyte-macrophage colony-stimulating factor (GM-CSF). In this study, we tested the ability of DCP to mediate inhibition of intracellular mycobacteria within human monocytes. DCP treatment of infected monocytes resulted in a significant reduction in viability of intracellular but not extracellular Mycobacterium bovis BCG. The antimicrobial activity of DCP was comparable to that of pyrazinamide (PZA), one of the first-line antituberculosis drugs currently used. DCP potentiated monocyte antimycobacterial activity by induction of the cysteine-cysteine (C-C) chemokine macrophage inflammatory protein 1β (MIP-1β) and inducible nitric oxide synthase 2. Addition of human anti-MIP-1β neutralizing antibody or a specific inhibitor of the l-arginase-nitric oxide pathway (N(G)-monomethyl l-arginine [l-NMMA] monoacetate) reversed the inhibitory effects of DCP on intracellular mycobacterial growth. These findings indicate that DCP induced mycobacterial killing via MIP-1β- and nitric oxide-dependent effects. Hence, DCP acts as an immunoregulatory compound enhancing the antimycobacterial activity of human monocytes.
Collapse
|
107
|
Calero R, Mirabal M, Bouza J, Guzmán MV, Carrillo H, López Y, Norazmi MN, Sarmiento ME, Acosta A. In Silico identification of M. TB proteins with diagnostic potential. BMC Immunol 2013; 14 Suppl 1:S9. [PMID: 23458073 PMCID: PMC3582449 DOI: 10.1186/1471-2172-14-s1-s9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
TB, caused by Mycobacterium tuberculosis (MTB), is one of the major global infectious diseases. For the pandemic control, early diagnosis with sensitive and specific methods is fundamental. With the advent of bioinformatics’ tools, the identification of several proteins involved in the pathogenesis of TB (TB) has been possible. In the present work, the MTB genome was explored to look for molecules with possible antigenic properties for their evaluation as part of new generation diagnostic kits based on the release of cytokines. Seven proteins from the MTB proteome and some of their combinations suited the computational test and the results suggested their potential use for the diagnosis of infection in the following population groups: Cuba, Mexico, Malaysia and sub-Saharan Africa. Our predictions were performed using public bioinformatics tools plus three computer programs, developed by our group, to facilitate information retrieval and processing.
Collapse
|
108
|
The candidate tuberculosis vaccine Mtb72F/AS02 in PPD positive adults: A randomized controlled phase I/II study. Tuberculosis (Edinb) 2013; 93:179-88. [DOI: 10.1016/j.tube.2012.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 12/24/2022]
|
109
|
Abstract
Transmission of Mycobacterium tuberculosis (Mtb) continues uninterrupted. Pre-exposure vaccination remains a central focus of tuberculosis research but 25 years of follow up is needed to determine whether a novel childhood vaccination regime protects from adult disease, or like BCG assists Mtb dissemination by preventing childhood illness but not infective adult pulmonary tuberculosis. Therefore, different strategies to interrupt the life cycle of Mtb need to be explored. This personal perspective discusses alternative approaches that may be delivered in a shorter time frame.
Collapse
|
110
|
Dannenberg AM, Dey B. Perspectives for Developing New Tuberculosis Vaccines Derived from the Pathogenesis of Tuberculosis: I. Basic Principles, II. Preclinical Testing, and III. Clinical Testing. Vaccines (Basel) 2013; 1:58-76. [PMID: 26343850 PMCID: PMC4552198 DOI: 10.3390/vaccines1010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 12/13/2012] [Accepted: 01/15/2013] [Indexed: 12/02/2022] Open
Abstract
Part I. Basic Principles. TB vaccines cannot prevent establishment of the infection. They can only prevent an early pulmonary tubercle from developing into clinical disease. A more effective new vaccine should optimize both cell-mediated immunity (CMI) and delayed-type hypersensitivity (DTH) better than any existing vaccine. The rabbit is the only laboratory animal in which all aspects of the human disease can be reproduced: namely, the prevention of most primary tubercles, the arrestment of most primary tubercles, the formation of the tubercle’s solid caseous center, the liquefaction of this center, the formation of cavities and the bronchial spread of the disease. In liquefied caseum, virulent tubercle bacilli can multiply extracellularly, especially in the liquefied caseum next to the inner wall of a cavity where oxygen is plentiful. The bacilli in liquefied caseum cannot be reached by the increased number of activated macrophages produced by TB vaccines. Therefore, new TB vaccines will have little or no effect on the extracellular bacillary growth within liquefied caseum. TB vaccines can only increase the host’s ability to stop the development of new TB lesions that arise from the bronchial spread of tubercle bacilli from the cavity to other parts of the lung. Therefore, effective TB vaccines do not prevent the reactivation of latent TB. Such vaccines only control (or reduce) the number of metastatic lesions that result after the primary TB lesion was reactivated by the liquefaction process. (Note: the large number of tubercle bacilli growing extracellularly in liquefied caseum gives rise to mutations that enable antimicrobial resistance—which is a major reason why TB still exists today). Part II. Preclinical Testing. The counting of grossly visible tubercles in the lungs of rabbits after the inhalation of virulent human-type tubercle bacilli is the most pertinent preclinical method to assess the efficacy of new TB vaccines (because an effective vaccine will stop the growth of developing tubercles before while they are still microscopic in size). Unfortunately, rabbits are rarely used in preclinical vaccine trials, despite their relative ease of handling and human-like response to this infection. Mice do not generate an effective DTH response, and guinea pigs do not generate an effective CMI response. Only the rabbits and most humans can establish the proper amount of DTH and CMI that is necessary to contain this infection. Therefore, rabbits should be included in all pre-clinical testing of new TB vaccines. New drugs (and/or immunological procedures) to reduce liquefaction and cavity formation are urgently needed. A simple intradermal way to select such drugs or procedures is described herein. Part III. Clinical Testing. Vaccine trials would be much more precise if the variations in human populations (listed herein) were taken into consideration. BCG and successful new TB vaccines should always increase host resistance to TB in naive subjects. This is a basic immunological principle. The efficacies of new and old TB vaccines are often not recognized, because these variations were not identified in the populations evaluated.
Collapse
Affiliation(s)
- Arthur M Dannenberg
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| | - Bappaditya Dey
- Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
111
|
Ray S, Talukdar A, Kundu S, Khanra D, Sonthalia N. Diagnosis and management of miliary tuberculosis: current state and future perspectives. Ther Clin Risk Manag 2013; 9:9-26. [PMID: 23326198 PMCID: PMC3544391 DOI: 10.2147/tcrm.s29179] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis (TB) remains one of the most important causes of death from an infectious disease, and it poses formidable challenges to global health at the public health, scientific, and political level. Miliary TB is a potentially fatal form of TB that results from massive lymphohematogenous dissemination of Mycobacterium tuberculosis bacilli. The epidemiology of miliary TB has been altered by the emergence of the human immunodeficiency virus (HIV) infection and widespread use of immunosuppressive drugs. Diagnosis of miliary TB is a challenge that can perplex even the most experienced clinicians. There are nonspecific clinical symptoms, and the chest radiographs do not always reveal classical miliary changes. Atypical presentations like cryptic miliary TB and acute respiratory distress syndrome often lead to delayed diagnosis. High-resolution computed tomography (HRCT) is relatively more sensitive and shows randomly distributed miliary nodules. In extrapulmonary locations, ultrasonography, CT, and magnetic resonance imaging are useful in discerning the extent of organ involvement by lesions of miliary TB. Recently, positron-emission tomographic CT has been investigated as a promising tool for evaluation of suspected TB. Fundus examination for choroid tubercles, histopathological examination of tissue biopsy specimens, and rapid culture methods for isolation of M. tuberculosis in sputum, body fluids, and other body tissues aid in confirming the diagnosis. Several novel diagnostic tests have recently become available for detecting active TB disease, screening for latent M. tuberculosis infection, and identifying drug-resistant strains of M. tuberculosis. However, progress toward a robust point-of-care test has been limited, and novel biomarker discovery remains challenging. A high index of clinical suspicion and early diagnosis and timely institution of antituberculosis treatment can be lifesaving. Response to first-line antituberculosis drugs is good, but drug-induced hepatotoxicity and drug-drug interactions in HIV/TB coinfected patients create significant problems during treatment. Data available from randomized controlled trials are insufficient to define the optimum regimen and duration of treatment in patients with drug-sensitive as well as drug-resistant miliary TB, including those with HIV/AIDS, and the role of adjunctive corticosteroid treatment has not been properly studied. Research is going on worldwide in an attempt to provide a more effective vaccine than bacille Calmette-Guérin. This review highlights the epidemiology and clinical manifestation of miliary TB, challenges, recent advances, needs, and opportunities related to TB diagnostics and treatment.
Collapse
Affiliation(s)
- Sayantan Ray
- Department of Medicine, Medical College and Hospital, Kolkata, West Bengal, India
| | - Arunansu Talukdar
- Department of Medicine, Medical College and Hospital, Kolkata, West Bengal, India
| | - Supratip Kundu
- Department of Medicine, Medical College and Hospital, Kolkata, West Bengal, India
| | - Dibbendhu Khanra
- Department of Medicine, Medical College and Hospital, Kolkata, West Bengal, India
| | - Nikhil Sonthalia
- Department of Medicine, Medical College and Hospital, Kolkata, West Bengal, India
| |
Collapse
|
112
|
The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling. PLoS One 2013; 8:e53531. [PMID: 23308247 PMCID: PMC3538599 DOI: 10.1371/journal.pone.0053531] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/03/2012] [Indexed: 12/21/2022] Open
Abstract
Successful vaccination against intracellular pathogens requires the generation of cellular immune responses. Trehalose-6,6-dibehenate (TDB), the synthetic analog of the mycobacterial cord factor trehalose-6,6-dimycolate (TDM), is a potent adjuvant inducing strong Th1 and Th17 immune responses. We previously identified the C-type lectin Mincle as receptor for these glycolipids that triggers the FcRγ-Syk-Card9 pathway for APC activation and adjuvanticity. Interestingly, in vivo data revealed that the adjuvant effect was not solely Mincle-dependent but also required MyD88. Therefore, we dissected which MyD88-dependent pathways are essential for successful immunization with a tuberculosis subunit vaccine. We show here that antigen-specific Th1/Th17 immune responses required IL-1 receptor-mediated signals independent of IL-18 and IL-33-signaling. ASC-deficient mice had impaired IL-17 but intact IFNγ responses, indicating partial independence of TDB adjuvanticity from inflammasome activation. Our data suggest that the glycolipid adjuvant TDB triggers Mincle-dependent IL-1 production to induce MyD88-dependent Th1/Th17 responses in vivo.
Collapse
|
113
|
|
114
|
Waeckerle-Men Y, Bruffaerts N, Liang Y, Jurion F, Sander P, Kündig TM, Huygen K, Johansen P. Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis. Vaccine 2012; 31:1057-64. [PMID: 23273509 DOI: 10.1016/j.vaccine.2012.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/07/2012] [Accepted: 12/12/2012] [Indexed: 02/01/2023]
Abstract
Vaccination with Mycobacterium bovis BCG provides limited protection against pulmonary tuberculosis and a risk of dissemination in immune-compromised vaccinees. For the development of new TB vaccines that stimulate strong T-cell responses a variety of strategies is being followed, especially recombinant BCG and attenuated M. tuberculosis. The objective of the current study was to test potential benefits of vaccination through direct lymph-node targeting of wildtype BCG; the recommended route of vaccination with BCG is intradermal. C57BL/6 mice were immunised with BCG by intradermal, subcutaneous or intralymphatic injections. Cellular immune responses and protection against M. tuberculosis were determined. Intralymphatic vaccination was 100-1000 times more effective in stimulating BCG-specific immune responses than intradermal or subcutaneous immunisation. Intralymphatic administration stimulated high frequencies of mycobacterium-specific lymphocytes with strong proliferating capacity and production of TNF-α, IL-2, IL-17 and, especially, IFN-γ secretion by. CD4 and CD8 T cells. Most importantly, intralymphatic vaccination with 2×10(3)CFU BCG induced sustained protection against M. tuberculosis in intratracheally challenged C57BL/6 mice, whereas subcutaneous vaccination with 2×10(5)CFU BCG conferred only a transient protection. Hence, direct administration of M. bovis BCG to lymph nodes demonstrates that efficient targeting to lymph nodes may help to overcome the efficacy problems of vaccination with BCG.
Collapse
Affiliation(s)
- Ying Waeckerle-Men
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Kita Y, Hashimoto S, Nakajima T, Nakatani H, Nishimatsu S, Nishida Y, Kanamaru N, Kaneda Y, Takamori Y, McMurray D, Tan EV, Cang ML, Saunderson P, Dela Cruz EC, Okada M. Novel therapeutic vaccines [(HSP65 + IL-12)DNA-, granulysin- and Ksp37-vaccine] against tuberculosis and synergistic effects in the combination with chemotherapy. Hum Vaccin Immunother 2012; 9:526-33. [PMID: 23249609 DOI: 10.4161/hv.23230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Multi-drug resistant tuberculosis (MDR-TB) and extremely drug resistant (XDR) TB are big problems in the world. We have developed novel TB therapeutic vaccines, HVJ-Envelope/HSP65 + IL-12 DNA vaccine (HSP65-vaccine), granulysin vaccine and killer specific secretory protein of 37kDa (Ksp37) vaccine. METHODS AND RESULTS HSP65 vaccine showed strong therapeutic effect against both MDR-TB and XDR-TB in mice. Intradermal immunization of HSP65-vaccine showed stronger therapeutic effect against TB than intramuscular or subcutaneous immunization. Furthermore, the synergistic therapeutic effect was observed when the vaccine was administrated in combination with Isoniazid (INH), which is a first line drug for chemotherapy. The combination of types of vaccines (HSP65- and granulysin- vaccines) also showed synergistic therapeutic effect. In the monkey model, granulysin-vaccine prolonged the survival period after the infection of TB and long-term survival was observed in vaccine-treated group. We examined the potential of two kinds of novel DNA vaccines (Ksp37-vaccine and granulysin-vaccine). Both vaccines augmented in vivo differentiation of CTL against TB. We measured the amount of Ksp37 protein in human serum and revealed that the level of Ksp37 protein of patients with tuberculosis was lower than that of healthy volunteers. Therefore, we established Ksp37 transgenic mice as well as granulysin transgenic mice to elucidate the function of those proteins. Both transgenic mice were resistant to TB infection. CONCLUSION These data indicate the potential of combinational therapy; the combination of two DNA vaccines or combination of DNA vaccine with antibiotic drug. Thus, it will provide a novel strategy for the treatment of MDR-TB.
Collapse
Affiliation(s)
- Yoko Kita
- Clinical Research Center; National Hospital Organization Kinki-chuo Chest Medical Center; Kitaku, Sakai Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Okada M, Kita Y, Nakajima T, Hashimoto S, Nakatani H, Nishimatsu S, Nishida Y, Kanamaru N, Kaneda Y, Takamori Y, McMurray D, Tan EV, Cang ML, Saunderson P, Dela Cruz EC. The study of novel DNA vaccines against tuberculosis: induction of pathogen-specific CTL in the mouse and monkey models of tuberculosis. Hum Vaccin Immunother 2012; 9:515-25. [PMID: 23249543 DOI: 10.4161/hv.23229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RESULTS HSP65 + IL-12 DNA vaccine showed higher protective efficacy compared with BCG in both mouse and monkey models of TB. It induced the TB-specific CTL in the mouse model of TB, while little level of activity was observed after the injection of BCG. It also showed strong therapeutic efficacy against MDR-TB. In the monkey model, the vaccine augmented the production of IFN-γ and IL-2 from PBL and the therapeutic effect was correlated with the level of IL-2. We next evaluated the potential of DNA vaccine encoding a granulysin, which is an important defensive molecule expressed by human T cells. We found that granulysin-encoding vaccine induced the differentiation of the CTL in vitro and in vivo. It also showed therapeutic efficacy against TB in the monkey as well as the mouse model. The DNA vaccine encoding a Ksp37 also induced the TB-specific CTL in vitro and in vivo in the mouse model. It augmented the production of IL-2, IFN-γ and IL-6 from T cells and spleen cells. A synergistic effect on the activation of the TB-specific CTL was observed by the combination of Ksp37 DNA vaccine with granulysin DNA vaccine. PURPOSE AND METHODS Emergence of the multi-drug resistant (MDR) Mycobacterium tuberculosis (TB) is a big problem in the world. We have developed novel TB vaccines [DNA vaccines encoding HSP65 + IL-12, granulysin or killer-specific secretory protein of 37kDa (Ksp37)] using Hemagglutinating virus of Japan -envelope (HVJ-E). It is suggested that the activity of the TB-specific CTL is one of the most important factor for the resistance to TB and immunity for TB in chronic human TB disease. Therefore, we examined the level of activation of the TB-specific CTL after the administration of these vaccines. CONCLUSION These data indicate that our novel vaccines (HSP65 + IL-12 DNA, granulysin and Ksp37) have a capability to activate the TB-specific CTL and will be very strong protective and therapeutic vaccines against TB.
Collapse
Affiliation(s)
- Masaji Okada
- Clinical Research Center; National Hospital Organization Kinki-chuo Chest Medical Center; Kitaku, Sakai Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Kaufmann SHE, Gengenbacher M. Recombinant live vaccine candidates against tuberculosis. Curr Opin Biotechnol 2012; 23:900-7. [DOI: 10.1016/j.copbio.2012.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/05/2012] [Accepted: 03/12/2012] [Indexed: 11/28/2022]
|
118
|
Chen F, Zhai MX, Zhu YH, Qi YM, Zhai WJ, Gao YF. In vitro and in vivo identification of a novel cytotoxic T lymphocyte epitope from Rv3425 of Mycobacterium tuberculosis. Microbiol Immunol 2012; 56:548-53. [PMID: 22537173 PMCID: PMC7168511 DOI: 10.1111/j.1348-0421.2012.00470.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The identification of novel cytotoxic T lymphocyte (CTL) epitopes is important to analysis of the involvement of CD8+ T cells in Mycobacterium tuberculosis infection as well as to the development of peptide vaccines. In this study, a novel CTL epitope from region of difference 11 encoded antigen Rv3425 was identified. Epitopes were predicted by the reversal immunology approach. Rv3425‐p118 (LIASNVAGV) was identified as having relatively strong binding affinity and stability towards the HLA‐A*0201 molecule. Peripheral blood mononuclear cells pulsed by this peptide were able to release interferon‐γ in healthy donors (HLA‐A*02+ purified protein derivative+). In cytotoxicity assays in vitro and in vivo, Rv3425‐p118 induced CTLs to specifically lyse the target cells. Therefore, this epitope could provide a subunit component for designing vaccines against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Fei Chen
- Department of Bioengineering, Zhengzhou University, Zhengzhou 450001, China
| | | | | | | | | | | |
Collapse
|
119
|
Abstract
Primary prevention strategies, such as vaccinations at the age extremes, in neonates and elderly individuals, demonstrate a challenge to health professionals and public health specialists. The aspects of the differentiation and maturation of the adaptive immune system, the functional implications of immunological immaturity or immunosenescence and its impact on vaccine immunogenicity and efficacy will be highlighted in this review. Several approaches have been undertaken to promote Th1 responses in neonates and to enhance immune functions in elderly, such as conjugation to carrier proteins, addition of adjuvants, concomitant vaccination with other vaccines, change in antigen concentrations or dose intervals or use of different administration routes. Also, early protection by maternal vaccination seems to be beneficial in neonates. However, it also appears necessary to think of other end points than antibody concentrations to assess vaccine efficacy in neonates or elderly, as also the cellular immune response may be impaired by the mechanisms of immaturity, underlying health conditions, immunosuppressive treatments or immunosenescence. Thus, lifespan vaccine programs should be implemented to all individuals on a population level not only to improve herd protection and to maintain protective antibody levels and immune memory, but also to cover all age groups, to protect unvaccinated elderly persons and to provide indirect protection for neonates and small infants.
Collapse
Affiliation(s)
- Martina Prelog
- Department of Pediatrics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
120
|
Targeting multidrug-resistant tuberculosis (MDR-TB) by therapeutic vaccines. Med Microbiol Immunol 2012; 202:95-104. [DOI: 10.1007/s00430-012-0278-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
|
121
|
Franco NH, Correia-Neves M, Olsson IAS. Animal welfare in studies on murine tuberculosis: assessing progress over a 12-year period and the need for further improvement. PLoS One 2012; 7:e47723. [PMID: 23110093 PMCID: PMC3482232 DOI: 10.1371/journal.pone.0047723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022] Open
Abstract
There is growing concern over the welfare of animals used in research, in particular when these animals develop pathology. The present study aims to identify the main sources of animal distress and to assess the possible implementation of refinement measures in experimental infection research, using mouse models of tuberculosis (TB) as a case study. This choice is based on the historical relevance of mouse studies in understanding the disease and the present and long-standing impact of TB on a global scale. Literature published between 1997 and 2009 was analysed, focusing on the welfare impact on the animals used and the implementation of refinement measures to reduce this impact. In this 12-year period, we observed a rise in reports of ethical approval of experiments. The proportion of studies classified into the most severe category did however not change significantly over the studied period. Information on important research parameters, such as method for euthanasia or sex of the animals, were absent in a substantial number of papers. Overall, this study shows that progress has been made in the application of humane endpoints in TB research, but that a considerable potential for improvement remains.
Collapse
Affiliation(s)
- Nuno Henrique Franco
- IBMC - Institute for Molecular and Cell Biology, Laboratory Animal Science Group, University of Porto, Portugal.
| | | | | |
Collapse
|
122
|
Gowthaman U, Rai PK, Khan N, Jackson DC, Agrewala JN. Lipidated promiscuous peptides vaccine for tuberculosis-endemic regions. Trends Mol Med 2012; 18:607-14. [PMID: 22939171 DOI: 10.1016/j.molmed.2012.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 10/27/2022]
Abstract
Despite nine decades of Bacillus Calmette--Guérin (BCG) vaccination, tuberculosis continues to be a major global health challenge. Clinical trials worldwide have proved the inadequacy of the BCG vaccine in preventing the manifestation of pulmonary tuberculosis in adults. Ironically, the efficacy of BCG is poorest in tuberculosis endemic areas. Factors such as nontuberculous or environmental mycobacteria and helminth infestation have been suggested to limit the efficacy of BCG. Hence, in high TB-burden countries, radically novel strategies of vaccination are urgently required. Here we showcase the properties of lipidated promiscuous peptide vaccines that target and activate cells of the innate and adaptive immune systems by employing a Toll-like receptor-2 agonist, S-[2,3-bis(palmitoyloxy)propyl]cysteine (Pam2Cys). Such a strategy elicits robust protection and enduring memory responses by type 1 T helper cells (Th1). Consequently, lipidated peptides may yield a better vaccine than BCG.
Collapse
Affiliation(s)
- Uthaman Gowthaman
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | | | | | | | | |
Collapse
|
123
|
Basu Roy R, Sotgiu G, Altet-Gómez N, Tsolia M, Ruga E, Velizarova S, Kampmann B. Identifying predictors of interferon-γ release assay results in pediatric latent tuberculosis: a protective role of bacillus Calmette-Guerin?: a pTB-NET collaborative study. Am J Respir Crit Care Med 2012; 186:378-84. [PMID: 22700862 PMCID: PMC3443812 DOI: 10.1164/rccm.201201-0026oc] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/16/2012] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Interferon-γ (IFN-γ) release assays are widely used to diagnose latent infection with Mycobacterium tuberculosis in adults, but their performance in children remains incompletely evaluated to date. OBJECTIVES To investigate factors influencing results of IFN-γ release assays in children using a large European data set. METHODS The Pediatric Tuberculosis Network European Trials group pooled and analyzed data from five sites across Europe comprising 1,128 children who were all investigated for latent tuberculosis infection by tuberculin skin test and at least one IFN-γ release assay. Multivariate analyses examined age, bacillus Calmette-Guérin (BCG) vaccination status, and sex as predictor variables of results. Subgroup analyses included children who were household contacts. MEASUREMENTS AND MAIN RESULTS A total of 1,093 children had a QuantiFERON-TB Gold In-Tube assay and 382 had a T-SPOT.TB IFN-γ release assay. Age was positively correlated with a positive blood result (QuantiFERON-TB Gold In-Tube: odds ratio [OR], 1.08 per year increasing age [P < 0.0001]; T-SPOT.TB: OR, 1.14 per year increasing age [P < 0.001]). A positive QuantiFERON-TB Gold In-Tube result was shown by 5.5% of children with a tuberculin skin test result less than 5 mm, by 14.8% if less than 10 mm, and by 20.2% if less than 15 mm. Prior BCG vaccination was associated with a negative IFN-γ release assay result (QuantiFERON-TB Gold In-Tube: OR, 0.41 [P < 0.001]; T-SPOT.TB: OR, 0.41 [P < 0.001]). Young age was a predictor of indeterminate IFN-γ release assay results, but indeterminate rates were low (3.6% in children < 5 yr, 1% in children > 5 yr). CONCLUSIONS Our data show that BCG vaccination may be effective in protecting children against Mycobacterium tuberculosis infection. To restrict use of IFN-γ release assays to children with positive skin tests risks underestimating latent infection.
Collapse
Affiliation(s)
- Robindra Basu Roy
- B.M.B.Ch., Ed.M., Department of Paediatric Allergy and Infectious Diseases, Imperial College London, Norfolk Place, London W2 1NY, UK.
| | | | | | | | | | | | | |
Collapse
|
124
|
Coler RN, Bertholet S, Pine SO, Orr MT, Reese V, Windish HP, Davis C, Kahn M, Baldwin SL, Reed SG. Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment. J Infect Dis 2012; 207:1242-52. [PMID: 22891286 DOI: 10.1093/infdis/jis425] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent advances in rational adjuvant design and antigen selection have enabled a new generation of vaccines with potential to treat and prevent infectious disease. The aim of this study was to assess whether therapeutic immunization could impact the course of Mycobacterium tuberculosis infection with use of a candidate tuberculosis vaccine antigen, ID93, formulated in a synthetic nanoemulsion adjuvant, GLA-SE, administered in combination with existing first-line chemotherapeutics rifampicin and isoniazid. METHODS We used a mouse model of fatal tuberculosis and the established cynomolgus monkey model to design an immuno-chemotherapeutic strategy to increase long-term survival and reduce bacterial burden, compared with standard antibiotic chemotherapy alone. RESULTS This combined approach induced robust and durable pluripotent antigen-specific T helper-1-type immune responses, decreased bacterial burden, reduced the duration of conventional chemotherapy required for survival, and decreased M. tuberculosis-induced lung pathology, compared with chemotherapy alone. CONCLUSIONS These results demonstrate the ability of therapeutic immunization to significantly enhance the efficacy of chemotherapy against tuberculosis and other infectious diseases, with implications for treatment duration, patient compliance, and more optimal resource allocation.
Collapse
Affiliation(s)
- Rhea N Coler
- Infectious Disease Research Institute, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Chen X, Xiu F, Horvath CN, Damjanovic D, Thanthrige-Don N, Jeyanathan M, Xing Z. Regulation of TB vaccine-induced airway luminal T cells by respiratory exposure to endotoxin. PLoS One 2012; 7:e41666. [PMID: 22844510 PMCID: PMC3402539 DOI: 10.1371/journal.pone.0041666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB) vaccine-induced airway luminal T cells (ALT) have recently been shown to be critical to host defense against pulmonary TB. However, the mechanisms that maintain memory ALT remain poorly understood. In particular, whether respiratory mucosal exposure to environmental agents such as endotoxin may regulate the size of vaccine-induced ALT population is still unclear. Using a murine model of respiratory genetic TB vaccination and respiratory LPS exposure, we have addressed this issue in the current study. We have found that single or repeated LPS exposure increases the number of antigen-specific ALT which are capable of robust secondary responses to pulmonary mycobacterial challenge. To investigate the potential mechanisms by which LPS exposure modulates the ALT population, we have examined the role of ALT proliferation and peripheral T cell recruitment. We have found that LPS exposure-increased ALT is not dependent on increased ALT proliferation as respiratory LPS exposure does not significantly increase the rate of proliferation of ALT. But rather, we find it to be dependent upon the recruitment of peripheral T cells into the airway lumen as blockade of peripheral T cell supplies markedly reduces the initially increased ALT. Thus, our data suggest that environmental exposure to airborne agents such as endotoxin has a profound modulatory effect on TB vaccine-elicited T cells within the respiratory tract. Our study provides a new, M.tb antigen-independent mechanism by which the respiratory mucosal anti-TB memory T cells may be maintained.
Collapse
Affiliation(s)
- Xuerong Chen
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Fangming Xiu
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Carly N. Horvath
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Daniela Damjanovic
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Niroshan Thanthrige-Don
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
126
|
Comparison of the predicted population coverage of tuberculosis vaccine candidates Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f via a bioinformatics approach. PLoS One 2012; 7:e40882. [PMID: 22815851 PMCID: PMC3398899 DOI: 10.1371/journal.pone.0040882] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 06/15/2012] [Indexed: 11/24/2022] Open
Abstract
The Bacille-Calmette Guérin (BCG) vaccine does not provide consistent protection against adult pulmonary tuberculosis (TB) worldwide. As novel TB vaccine candidates advance in studies and clinical trials, it will be critically important to evaluate their global coverage by assessing the impact of host and pathogen variability on vaccine efficacy. In this study, we focus on the impact that host genetic variability may have on the protective effect of TB vaccine candidates Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f. We use open-source epitope binding prediction programs to evaluate the binding of vaccine epitopes to Class I HLA (A, B, and C) and Class II HLA (DRB1) alleles. Our findings suggest that Mtb72f may be less consistently protective than either Ag85B-ESAT-6 or Ag85B-TB10.4 in populations with a high TB burden, while Ag85B-TB10.4 may provide the most consistent protection. The findings of this study highlight the utility of bioinformatics as a tool for evaluating vaccine candidates before the costly stages of clinical trials and informing the development of new vaccines with the broadest possible population coverage.
Collapse
|
127
|
Horvath CN, Shaler CR, Jeyanathan M, Zganiacz A, Xing Z. Mechanisms of delayed anti-tuberculosis protection in the lung of parenteral BCG-vaccinated hosts: a critical role of airway luminal T cells. Mucosal Immunol 2012; 5:420-31. [PMID: 22453678 DOI: 10.1038/mi.2012.19] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The immune mechanisms underlying unsatisfactory pulmonary mucosal protection by parenteral Bacillus Calmette-Guérin (BCG) immunization remain poorly understood. We found that parenteral BCG immunization failed to elicit airway luminal T cells (ALT) whereas it induced significant T cells in the lung interstitium. After Mycobacterium tuberculosis (M.tb) challenge, ALT remained missing for 10 days. The lack of ALT correlated with lack of lung protection for 14 days post-M.tb challenge. To further investigate the role of ALT, ALT were elicited in BCG-immunized animals by intranasal inoculation of M.tb culture-filtrate (CF) proteins. Installment of ALT by CF restored protection in the early phases of M.tb infection, which was linked to rapid increases in ALT, but not in lung interstitial T cells. Also, adoptive transfer of T cells to the airway lumen of BCG-immunized animals also accelerated protection. This study thus provides novel evidence that unsatisfactory lung protection by parenteral BCG immunization is due to delayed ALT recruitment after pulmonary M.tb exposure.
Collapse
Affiliation(s)
- C N Horvath
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
128
|
Lienhardt C, Fruth U, Greco M. The blueprint for vaccine research & development: walking the path for better TB vaccines. Tuberculosis (Edinb) 2012; 92 Suppl 1:S33-5. [PMID: 22441158 DOI: 10.1016/s1472-9792(12)70011-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Much progress has been made in TB vaccine research over the past ten years, and a series of new live genetically altered mycobacterial vaccines, viral-vectored vaccines and sub-unit vaccines composed of recombinant antigens are presently in clinical development phases. A series of challenges remain, however, to be addressed in order to develop new and better candidate TB vaccines, especially an expansion of our knowledge of what constitutes protective immunity in TB, the identification of the most suitable vaccination strategies, the capacity and infrastructure to conduct large-scale trials in endemic countries, the investment in vaccine manufacturing capacity, and the development of effective regulatory pathways that shorten review timelines. In this brief paper, we review how the Vaccine Blueprint places itself in the continuation and expansion of two groundbreaking initiatives taking place over the last two years, that is, an invigorated Global Plan to Stop TB 2011-2015 that gives a clear emphasis on Research and Development, and the International Roadmap for TB Research, that identifies key priorities for research on TB vaccines, spanning from the most fundamental research aspects to the more field-based epidemiological aspects.
Collapse
|
129
|
Raviglione M, Marais B, Floyd K, Lönnroth K, Getahun H, Migliori GB, Harries AD, Nunn P, Lienhardt C, Graham S, Chakaya J, Weyer K, Cole S, Kaufmann SHE, Zumla A. Scaling up interventions to achieve global tuberculosis control: progress and new developments. Lancet 2012; 379:1902-13. [PMID: 22608339 DOI: 10.1016/s0140-6736(12)60727-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis is still one of the most important causes of death worldwide. The 2010 Lancet tuberculosis series provided a comprehensive overview of global control efforts and challenges. In this update we review recent progress. With improved control efforts, the world and most regions are on track to achieve the Millennium Development Goal of decreasing tuberculosis incidence by 2015, and the Stop TB Partnership target of halving 1990 mortality rates by 2015; the exception is Africa. Despite these advances, full scale-up of tuberculosis and HIV collaborative activities remains challenging and emerging drug-resistant tuberculosis is a major threat. Recognition of the effect that non-communicable diseases--such as smoking-related lung disease, diet-related diabetes mellitus, and alcohol and drug misuse--have on individual vulnerability, as well as the contribution of poor living conditions to community vulnerability, shows the need for multidisciplinary approaches. Several new diagnostic tests are being introduced in endemic countries and for the first time in 40 years a coordinated portfolio of promising new tuberculosis drugs exists. However, none of these advances offer easy solutions. Achievement of international tuberculosis control targets and maintenance of these gains needs optimum national health policies and services, with ongoing investment into new approaches and strategies. Despite growing funding in recent years, a serious shortfall persists. International and national financial uncertainty places gains at serious risk. Perseverance and renewed commitment are needed to achieve global control of tuberculosis, and ultimately, its elimination.
Collapse
|
130
|
|
131
|
Abstract
In this review we discuss recent progress in the development, testing, and clinical evaluation of new vaccines against tuberculosis (TB). Over the last 20 years, tremendous progress has been made in TB vaccine research and development: from a pipeline virtually empty of new TB candidate vaccines in the early 1990s, to an era in which a dozen novel TB vaccine candidates have been and are being evaluated in human clinical trials. In addition, innovative approaches are being pursued to further improve existing vaccines, as well as discover new ones. Thus, there is good reason for optimism in the field of TB vaccines that it will be possible to develop better vaccines than BCG, which is still the only vaccine available against TB.
Collapse
Affiliation(s)
- Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
132
|
Nonprotein structures from mycobacteria: emerging actors for tuberculosis control. Clin Dev Immunol 2012; 2012:917860. [PMID: 22611423 PMCID: PMC3352260 DOI: 10.1155/2012/917860] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 01/07/2023]
Abstract
Immune response to Mycobacterium tuberculosis, the causal agent of tuberculosis, is critical for protection. For many decades, consistent to classical biochemistry, most studies regarding immunity to the tubercle bacilli focused mainly on protein structures. But the atypical, highly impermeable and waxy coat of mycobacteria captured the interest of structural biologists very early, allowing the description of amazing molecules, such as previously unknown carbohydrates or fatty acids of astonishing lengths. From their discovery, cell wall components were identified as important structural pillars, but also as molecular motifs able to alter the human immune response. Recently, as new developments have emerged, classical conceptions of mycobacterial immune modulators have been giving place to unexpected discoveries that, at the turn of the last century, completely changed our perception of immunity vis-à-vis fat compounds. In this paper, current knowledge about chemical and ultrastructural features of mycobacterial cell-wall is overviewed, with an emphasis on the relationships between cell-wall nonpeptide molecules and immune response. Remarks regarding the potential of these molecules for the development of new tools against tuberculosis are finally discussed.
Collapse
|
133
|
Kaufmann SHE. Tuberculosis vaccine development: strength lies in tenacity. Trends Immunol 2012; 33:373-9. [PMID: 22560865 DOI: 10.1016/j.it.2012.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 02/07/2023]
Abstract
The past decade has witnessed a tremendous increase in the development of novel vaccines against tuberculosis (TB). In mice, each of these vaccine candidates stimulates an immune response that reduces the bacillary load, reflecting control but not sterilization of infection. Yet, the immune mechanisms underlying vaccine efficacy are only partially understood. In parallel to clinical assessment of current candidates, the next generation of vaccine candidates still needs to be developed. This requires basic research on how to induce the most efficacious immune response. Equally important is the dissection of immune responses in patients, latently infected healthy individuals, and participants of clinical vaccine trials. Amalgamation of this information will foster the way towards more efficacious vaccination strategies that not only prevent disease, but prevent or abolish infection.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
134
|
Kao FF, Mahmuda S, Pinto R, Triccas JA, West NP, Britton WJ. The secreted lipoprotein, MPT83, of Mycobacterium tuberculosis is recognized during human tuberculosis and stimulates protective immunity in mice. PLoS One 2012; 7:e34991. [PMID: 22567094 PMCID: PMC3342273 DOI: 10.1371/journal.pone.0034991] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/08/2012] [Indexed: 12/21/2022] Open
Abstract
The long-term control of tuberculosis (TB) will require the development of more effective anti-TB vaccines, as the only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG), has limited protective efficacy against infectious pulmonary TB. Subunit vaccines have an improved safety profile over live, attenuated vaccines, such as BCG, and may be used in immuno-compromised individuals. MPT83 (Rv2873) is a secreted mycobacterial lipoprotein expressed on the surface of Mycobacterium tuberculosis. In this study, we examined whether recombinant MPT83 is recognized during human and murine M. tuberculosis infection. We assessed the immunogenicity and protective efficacy of MPT83 as a protein vaccine, with monophosphyl lipid A (MPLA) in dimethyl-dioctadecyl ammonium bromide (DDA) as adjuvant, or as a DNA vaccine in C57BL/6 mice and mapped the T cell epitopes with peptide scanning. We demonstrated that rMPT83 was recognised by strong proliferative and Interferon (IFN)-γ-secreting T cell responses in peripheral blood mononuclear cells (PBMC) from patients with active TB, but not from healthy, tuberculin skin test-negative control subjects. MPT83 also stimulated strong IFN-γ T cell responses during experimental murine M. tuberculosis infection. Immunization with either rMPT83 in MPLA/DDA or DNA-MPT83 stimulated antigen-specific T cell responses, and we identified MPT83127–135 (PTNAAFDKL) as the dominant H-2b-restricted CD8+ T cell epitope within MPT83. Further, immunization of C57BL/6 mice with rMPT83/MPLA/DDA or DNA-MPT83 stimulated significant levels of protection in the lungs and spleens against aerosol challenge with M. tuberculosis. Interestingly, immunization with rMPT83 in MPLA/DDA primed for stronger IFN-γ T cell responses to the whole protein following challenge, while DNA-MPT83 primed for stronger CD8+ T cell responses to MPT83127–135. Therefore MPT83 is a protective T cell antigen commonly recognized during human M. tuberculosis infection and should be considered for inclusion in future TB subunit vaccines.
Collapse
Affiliation(s)
- Fan F Kao
- Mycobacterial Research Program, Centenary Institute, Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
135
|
Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 2012; 36:514-32. [PMID: 22320122 PMCID: PMC3319523 DOI: 10.1111/j.1574-6976.2012.00331.x] [Citation(s) in RCA: 476] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/22/2011] [Accepted: 01/31/2012] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis (TB) remains a major health threat, killing nearly 2 million individuals around this globe, annually. The only vaccine, developed almost a century ago, provides limited protection only during childhood. After decades without the introduction of new antibiotics, several candidates are currently undergoing clinical investigation. Curing TB requires prolonged combination of chemotherapy with several drugs. Moreover, monitoring the success of therapy is questionable owing to the lack of reliable biomarkers. To substantially improve the situation, a detailed understanding of the cross-talk between human host and the pathogen Mycobacterium tuberculosis (Mtb) is vital. Principally, the enormous success of Mtb is based on three capacities: first, reprogramming of macrophages after primary infection/phagocytosis to prevent its own destruction; second, initiating the formation of well-organized granulomas, comprising different immune cells to create a confined environment for the host-pathogen standoff; third, the capability to shut down its own central metabolism, terminate replication, and thereby transit into a stage of dormancy rendering itself extremely resistant to host defense and drug treatment. Here, we review the molecular mechanisms underlying these processes, draw conclusions in a working model of mycobacterial dormancy, and highlight gaps in our understanding to be addressed in future research.
Collapse
Affiliation(s)
- Martin Gengenbacher
- Max Planck Institute for Infection Biology, Department of Immunology Charitéplatz 1, 10117 Berlin, Germany
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
136
|
Benson ME, Horton W, Gluth J, Pfau PR, Einarsson S, Lucey MR, Soni A, Reichelderfer M, Gopal DV. Fiscal analysis of establishment of a double-balloon enteroscopy program and reimbursement. Clin Gastroenterol Hepatol 2012; 10:371-6.e1-2. [PMID: 22226892 DOI: 10.1016/j.cgh.2011.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/25/2011] [Accepted: 12/20/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS As double-balloon enteroscopy (DBE) programs continue to be established, further research is needed to assess their financial impact. We evaluated actual financial outcomes and compared them with estimated return on investment (ROI) projections for DBE. METHODS We retrospectively compared the predicted and actual financial results for outpatients referred for DBE at an academic tertiary referral center. RESULTS The ROI analysis was based on a 5-year time frame. The analysis projected a net present value of $64,623 and an internal rate of return of 24.6%. The projected first-year volume was 52 outpatient cases; however, the actual experience was 20 outpatient cases. The predicted percent margin for these outpatient cases was 16.6%; the actual margin was 24.4%. After 37 months, 52 outpatient cases were completed, and the actual percent margin was 4.6%. Payer type had a significant influence on the financial outcomes when projected activity and actual activity were compared. CONCLUSIONS Institutions interested in establishing a DBE program should be aware of the financial implications of program establishment, which can be evaluated in a return on investment analysis. Payer mix significantly influences DBE reimbursement and collection rates.
Collapse
Affiliation(s)
- Mark E Benson
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
McMurray DN. Do new TB vaccines have a place in the Expanded Program on Immunization? Expert Rev Vaccines 2012; 10:1675-7. [PMID: 22085170 DOI: 10.1586/erv.11.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several new TB vaccines are currently undergoing clinical trials. Among the most promising is a vaccine based upon the modified vaccinia virus Ankara-expressing mycobacterial antigen 85A (MVA85A). Given the widespread use of the current TB vaccine, BCG, many of the new TB vaccines are being tested for their ability to boost BCG-induced immunity. The introduction of a new TB vaccine into routine use would be facilitated by its coadministration with other vaccines as a part of the WHO's Expanded Program on Immunization (EPI). In the article under review the authors tested the immunogenicity of MVA85A given alone or in combination with EPI vaccines to infants in The Gambia. Antigen 85A-specific production of IFN-γ by peripheral blood cells was reduced significantly in infants coimmunized with EPI vaccines compared with infants who received the MVA85A vaccine alone. This study highlights a potentially important issue, which should be addressed prior to the introduction of new TB vaccines and, perhaps, other vaccines that require the induction of a so-called Type 1 T-cell-mediated immune response.
Collapse
Affiliation(s)
- David N McMurray
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843 1114, USA.
| |
Collapse
|
138
|
Mourer M, Massimba Dibama H, Constant P, Daffé M, Regnouf-de-Vains JB. Anti-mycobacterial activities of some cationic and anionic calix[4]arene derivatives. Bioorg Med Chem 2012; 20:2035-41. [DOI: 10.1016/j.bmc.2012.01.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 11/29/2022]
|
139
|
Bovine tuberculosis vaccine research: historical perspectives and recent advances. Vaccine 2012; 30:2611-22. [PMID: 22342705 DOI: 10.1016/j.vaccine.2012.02.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/01/2012] [Accepted: 02/05/2012] [Indexed: 11/19/2022]
Abstract
The emergence of wildlife reservoirs of Mycobacterium bovis infection in cattle as well as increased inter-regional trade with associated spread of M. bovis has led to renewed interest in the use of vaccines for the control of bovine tuberculosis (TB). Field efficacy trials performed in the early 20th century demonstrated the partial effectiveness of bacilli Calmette-Guerin (BCG) for the control of bovine TB. Recent experimental trials with cattle have demonstrated that: (1) subunit vaccines may boost immunity elicited by BCG in cattle, (2) T cell central memory immune responses evoked by protective vaccines correlate with protection upon subsequent M. bovis challenge, (3) BCG is particularly protective when administered to neonates, and (4) differentiation of infected from vaccinated animals (DIVA) is feasible in cattle using in vitro or in vivo methods. In regards to wildlife reservoirs, the efficacy of BCG delivered orally has been demonstrated for brushtail possums (in field trials) as well as Eurasian badgers, wild boar, and white-tailed deer (each in experimental challenge studies). Vaccine delivery to wildlife reservoirs will primarily be oral, although a parenteral route is being deployed for badgers in England. Vaccine efficacy trials, both experimental challenge and field studies, with cattle and their wildlife reservoirs represent a primary example of the one health approach, with outcomes relevant for both veterinary and medical applications.
Collapse
|
140
|
Alanine racemase mutants of Mycobacterium tuberculosis require d-alanine for growth and are defective for survival in macrophages and mice. Microbiology (Reading) 2012; 158:319-327. [DOI: 10.1099/mic.0.054064-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
141
|
Bassett JD, Swift SL, Bramson JL. Optimizing vaccine-induced CD8(+) T-cell immunity: focus on recombinant adenovirus vectors. Expert Rev Vaccines 2012; 10:1307-19. [PMID: 21919620 DOI: 10.1586/erv.11.88] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recombinant adenoviruses have emerged as promising viral vectors for CD8(+) T-cell vaccines. Our studies have indicated that unlike most acute infections, the CD8(+) T-cell memory population elicited by recombinant human adenovirus serotype 5 (rHuAd5) displays a dominant effector memory phenotype. Persistent, low-level transgene expression from the rHuAd5 vector sustains the CD8(+) T-cell memory population and a nonhematopoietic cell compartment appears to be involved in long-term presentation of adenoviral antigens. Although we are beginning to learn more about the factors that control the maintenance and functionality of memory CD8(+) T cells, we do not yet fully understand what comprises a protective CD8(+) T-cell response. Results from upcoming Phase II clinical trials will be important for determining whether rHuAd5 T-cell vaccines are effective in humans and should help identify correlates of CD8(+) T-cell protection.
Collapse
Affiliation(s)
- Jennifer D Bassett
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, Room MDCL-5071, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | | | | |
Collapse
|
142
|
Ritz N, Dutta B, Donath S, Casalaz D, Connell TG, Tebruegge M, Robins-Browne R, Hanekom WA, Britton WJ, Curtis N. The Influence of Bacille Calmette-Guérin Vaccine Strain on the Immune Response against Tuberculosis. Am J Respir Crit Care Med 2012; 185:213-22. [DOI: 10.1164/rccm.201104-0714oc] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
143
|
Employing Live Microbes for Vaccine Delivery. DEVELOPMENT OF NOVEL VACCINES 2012. [PMCID: PMC7123214 DOI: 10.1007/978-3-7091-0709-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
144
|
Hanif SNM, Al-Attiyah R, Mustafa AS. Cellular immune responses in mice induced by M. tuberculosis PE35-DNA vaccine construct. Scand J Immunol 2011; 74:554-60. [PMID: 21812801 DOI: 10.1111/j.1365-3083.2011.02604.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PE35 (Rv3872) gene of Mycobacterium tuberculosis is present in the region of difference (RD) one that is deleted in all vaccine strains of Mycobacterium bovis bacillus Calmette Guerin. The aim of this study was to clone PE35 DNA into a DNA vaccine plasmid with CMV promoter and interleukin-2 secretory signal and evaluate the recombinant plasmid for induction of antigen-specific cellular responses in mice. DNA corresponding to PE35 was PCR amplified from the genomic DNA of M. tuberculosis H(37) Rv, cloned into pGEMT-Easy vector and sub-cloned into the DNA vaccine vector pUMVC6. BALB/c mice were immunized with recombinant pUMVC6/PE35 and spleen cells were tested for T-helper (Th)1-type (antigen-induced proliferation and secretion of IFN-γ) and Th2-type (IL-5), and anti-inflammatory (IL-10) cytokine responses to pure recombinant PE35 protein and its synthetic peptides. Mice immunized with the recombinant plasmid DNA (pUMVC6/PE35) showed positive Th1-type cellular responses to pure PE35, but not to an irrelevant antigen, i.e. PPE68 (Rv3873). However, the vaccine construct did not induce antigen-specific Th2-type (IL-5) or anti-inflammatory (IL-10) reactivity to PE35. Testing with synthetic peptides showed that Th1-type cells recognizing various epitopes of PE35 were induced in mice immunized with pUMVC6/PE35 DNA. These results suggest that pUMVC6/PE35 may be useful as a safer vaccine candidate against TB.
Collapse
Affiliation(s)
- S N M Hanif
- Faculty of Medicine, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| | | | | |
Collapse
|
145
|
Gopal R, Lin Y, Obermajer N, Slight S, Nuthalapati N, Ahmed M, Kalinski P, Khader SA. IL-23-dependent IL-17 drives Th1-cell responses following Mycobacterium bovis BCG vaccination. Eur J Immunol 2011; 42:364-73. [PMID: 22101830 DOI: 10.1002/eji.201141569] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 09/25/2011] [Accepted: 11/03/2011] [Indexed: 01/01/2023]
Abstract
The generation of effective type 1 T helper (Th1)-cell responses is required for immunity against intracellular bacteria. However, some intracellular bacteria require interleukin (IL)-17 to drive Th1-cell immunity and subsequent protective host immunity. Here, in a model of Mycobacterium bovis Bacille Calmette-Guerin (BCG) vaccination in mice, we demonstrate that the dependence on IL-17 to drive Th1-cell responses is a host mechanism to overcome bacteria-induced IL-10 inhibitory effects. We show that BCG-induced prostaglandin-E2 (PGE2) promotes the production of IL-10 which limits Th1-cell responses, while simultaneously inducing IL-23 and Th17-cell differentiation. The ability of IL-17 to downregulate IL-10 and induce IL-12 production allows the generation of subsequent Th1-cell responses. Accordingly, BCG-induced Th17-cell responses precede the generation of Th1-cell responses in vivo, whereas the absence of the IL-23 pathway decreases BCG vaccine-induced Th17 and Th1-cell immunity and subsequent vaccine-induced protection upon M. tuberculosis challenge. Importantly, in the absence of IL-10, BCG-induced Th1-cell responses occur in an IL-17-independent manner. These novel data demonstrate a role for the IL-23/IL-17 pathway in driving Th1-cell responses, specifically to overcome IL-10-mediated inhibition and, furthermore, show that in the absence of IL-10, the generation of BCG-induced Th1-cell immunity is IL-17 independent.
Collapse
Affiliation(s)
- Radha Gopal
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Multidrug-resistant tuberculosis has emerged worldwide, with an increasing incidence due to failure of implementation of apparently effective first-line antituberculous therapy as well as primary infection with drug-resistant strains. Failure of current therapy is attributed to a long duration of treatment leading to nonadherence and irregular therapy, lack of patient education about the disease, poverty, irregular supply by care providers, drug–drug interactions in patients coinfected with human immunodeficiency virus (HIV), inadequate regulations causing market overlap and irresponsible drug usage in the private sector, and lack of research, with no addition of new drugs in the last four decades. Present standards of care for the treatment of drugsusceptible tuberculosis, multidrug-resistant tuberculosis, tuberculosis-HIV coinfection, and latent tuberculosis infection are all unsatisfactory. Since 2000, the World Health Organization (WHO) has focused on drug development for tuberculosis, as well as research in all relevant aspects to discover new regimens by 2015 and to eliminate tuberculosis as a public health concern by 2050. As a result, some 20 promising compounds from 14 groups of drugs have been discovered. Twelve candidates from eight classes are currently being evaluated in clinical trials. Ongoing research should prioritize identification of novel targets and newer application of existing drugs, discovery of multitargeted drugs from natural compounds, strengthening host factors by immunopotentiation with herbal immunomodulators, as well as protective vaccines before and after exposure, consideration of surgical measures when indicated, development of tools for rapid diagnosis, early identification of resistant strains, and markers for adequacy of treatment and an integrative approach to fulfill WHO goals. However, regulatory control over the drug market, as well as public-private partnership to use health program facilities to track patients and ensure completion of adequate therapy will be necessary to exploit fully the potential of the newer regimens to eliminate tuberculosis.
Collapse
Affiliation(s)
- Meghna Adhvaryu
- Department of Biotechnology, SRK Institute of Computer Education and Applied Sciences, Surat, Gujarat, India
| | | |
Collapse
|
147
|
Parlane NA, Compton BJ, Hayman CM, Painter GF, Basaraba RJ, Heiser A, Buddle BM. Phosphatidylinositol di-mannoside and derivates modulate the immune response to and efficacy of a tuberculosis protein vaccine against Mycobacterium bovis infection. Vaccine 2011; 30:580-8. [PMID: 22120192 DOI: 10.1016/j.vaccine.2011.11.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 11/07/2011] [Accepted: 11/15/2011] [Indexed: 12/31/2022]
Abstract
Mycobacterium bovis infects a wide range of hosts, including domestic livestock, wildlife, and humans. Development of an effective vaccine protecting against bovine tuberculosis would provide a cost-effective tuberculosis control strategy. The objective of this study was to investigate the ability of phosphatidylinositol di-mannoside (PIM(2)) and its derivatives to modulate cell-mediated immunity in vivo in a bovine tuberculosis mouse model in response to a relevant antigen, namely a fusion protein of mycobacterial proteins Ag85A and ESAT-6. The addition of synthetic PIM(2) to the vaccine resulted in a significant reduction in lung bacterial counts and a cytokine profile indicating a Th 1 type immune response. The addition of the other PIM(2) derivatives to the vaccine or the fusion protein alone did not result in reduced lung bacterial counts; moreover, the addition of PIM(2)ME appeared to negate the induction of an antigen-specific interferon-γ response and protection against tuberculosis. In conclusion, this study provides further evidence that PIMs can function as potent adjuvants for protein or sub-unit vaccines, but subtle structural differences among PIMs can markedly alter the type of immune response induced.
Collapse
Affiliation(s)
- Natalie A Parlane
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | | | | | | | | | | | | |
Collapse
|
148
|
Vaccines displaying mycobacterial proteins on biopolyester beads stimulate cellular immunity and induce protection against tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:37-44. [PMID: 22072720 DOI: 10.1128/cvi.05505-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New improved vaccines are needed for control of both bovine and human tuberculosis. Tuberculosis protein vaccines have advantages with regard to safety and ease of manufacture, but efficacy against tuberculosis has been difficult to achieve. Protective cellular immune responses can be preferentially induced when antigens are displayed on small particles. In this study, Escherichia coli and Lactococcus lactis were engineered to produce spherical polyhydroxybutyrate (PHB) inclusions which displayed a fusion protein of Mycobacterium tuberculosis, antigen 85A (Ag85A)-early secreted antigenic target 6-kDa protein (ESAT-6). L. lactis was chosen as a possible production host due its extensive use in the food industry and reduced risk of lipopolysaccharide contamination. Mice were vaccinated with PHB bead vaccines with or without displaying Ag85A-ESAT-6, recombinant Ag85A-ESAT-6, or M. bovis BCG. Separate groups of mice were used to measure immune responses and assess protection against an aerosol M. bovis challenge. Increased amounts of antigen-specific gamma interferon, interleukin-17A (IL-17A), IL-6, and tumor necrosis factor alpha were produced from splenocytes postvaccination, but no or minimal IL-4, IL-5, or IL-10 was produced, indicating Th1- and Th17-biased T cell responses. Decreased lung bacterial counts and less extensive foci of inflammation were observed in lungs of mice receiving BCG or PHB bead vaccines displaying Ag85A-ESAT-6 produced in either E. coli or L. lactis compared to those observed in the lungs of phosphate-buffered saline-treated control mice. No differences between those receiving wild-type PHB beads and those receiving recombinant Ag85A-ESAT-6 were observed. This versatile particulate vaccine delivery system incorporates a relatively simple production process using safe bacteria, and the results show that it is an effective delivery system for a tuberculosis protein vaccine.
Collapse
|
149
|
Miyata T, Cheigh CI, Casali N, Goodridge A, Marjanovic O, Kendall LV, Riley LW. An adjunctive therapeutic vaccine against reactivation and post-treatment relapse tuberculosis. Vaccine 2011; 30:459-65. [PMID: 22079078 DOI: 10.1016/j.vaccine.2011.10.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/17/2011] [Accepted: 10/22/2011] [Indexed: 11/16/2022]
Abstract
Preventing latently infected or inadequately treated individuals from progressing to active disease could make a major impact on tuberculosis (TB) control worldwide. The purpose of this study was to evaluate a new approach to prevent reactivation and TB relapse that combines drug treatment and vaccination. Mycobacterium tuberculosis harbors a gene called mce1R that, in vivo, negatively regulates a 13-gene cluster called the mce1 operon. In a Cornell mouse model, BALB/c mice infected with M. tuberculosis H37Rv disrupted in mce1R consistently develop latent infection and reactivation disease. We used this new mouse model to test a recombinant M. tuberculosis cell wall protein (Mce1A), encoded by a gene in the mce1 operon, for its ability to prevent post-treatment TB. At 32 weeks of follow-up, a complete sterilizing protection was observed in lungs of the vaccinated mice. Mce1A but not phosphate-buffered saline administered intraperitoneally during the period of latent infection prevented disease progression and proliferation of M. tuberculosis mce1R mutant. The only visible lung lesions in vaccinated mice included small clusters of lymphocytes, while the unvaccinated mice showed progressively enlarging granulomas comprised of foamy macrophages surrounded by lymphocytes. The combination of anti-TB drugs and a vaccine may serve as a powerful treatment modality against TB reactivation and relapse.
Collapse
Affiliation(s)
- Toshiko Miyata
- Division of Infectious Diseases and Vaccinology, 201 Hildebrand Hall, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
Christian Lienhardt and colleagues describe the development of the TB Research Movement, which aims to create a framework for concrete actions to harmonize and synergize TB research efforts globally.
Collapse
|