101
|
Roth TC, Krochmal AR. Of molecules, memories and migration: M1 acetylcholine receptors facilitate spatial memory formation and recall during migratory navigation. Proc Biol Sci 2018; 285:rspb.2018.1904. [PMID: 30429306 PMCID: PMC6253372 DOI: 10.1098/rspb.2018.1904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/24/2018] [Indexed: 02/03/2023] Open
Abstract
Many animals use complex cognitive processes, including the formation and recall of memories, for successful navigation. However, the developmental and neurological processes underlying these cognitive aspects of navigation are poorly understood. To address the importance of the formation and recollection of memories during navigation, we pharmacologically manipulated turtles (Chrysemys picta) that navigate long distances using precise, complex paths learned during a juvenile critical period. We treated freely navigating turtles both within and outside of their critical learning period with a specific M1 acetylcholine receptor antagonist, a drug known to disrupt spatial cognition. Experienced adult turtles lost all navigational ability under the influence of the drug, while naive juveniles navigated successfully. We retested these same juveniles the following year (after they had passed their critical period). The juveniles that initially navigated successfully under the influence of the antagonist (but were unable to form spatial memories) were unable to do so subsequently. However, the control animals (who had the opportunity to form memories previously) exhibited typical navigational precision. These results suggest that the formation of spatial memories for navigation occur during a critical period, and successful navigation after the critical period is dependent upon the recall of such memories.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Psychology, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17603, USA
| | - Aaron R Krochmal
- Department of Biology, Washington College, 300 Washington Avenue, Chestertown, MD 21620, USA
| |
Collapse
|
102
|
Voss U, D'Agostino A, Kolibius L, Klimke A, Scarone S, Hobson JA. Insight and Dissociation in Lucid Dreaming and Psychosis. Front Psychol 2018; 9:2164. [PMID: 30483185 PMCID: PMC6241172 DOI: 10.3389/fpsyg.2018.02164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/22/2018] [Indexed: 11/13/2022] Open
Abstract
Dreams and psychosis share several important features regarding symptoms and underlying neurobiology, which is helpful in constructing a testable model of, for example, schizophrenia and delirium. The purpose of the present communication is to discuss two major concepts in dreaming and psychosis that have received much attention in the recent literature: insight and dissociation. Both phenomena are considered functions of higher order consciousness because they involve metacognition in the form of reflective thought and attempted control of negative emotional impact. Insight in dreams is a core criterion for lucid dreams. Lucid dreams are usually accompanied by attempts to control the dream plot and dissociative elements akin to depersonalization and derealization. These concepts are also relevant in psychotic illness. Whereas insightfulness can be considered innocuous in lucid dreaming and even advantageous in psychosis, the concept of dissociation is still unresolved. The present review compares correlates and functions of insight and dissociation in lucid dreaming and psychosis. This is helpful in understanding the two concepts with regard to psychological function as well as neurophysiology.
Collapse
Affiliation(s)
- Ursula Voss
- Psychology, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt, Germany.,VITOS Hochtaunus Klinik, Psychiatrisches Krankenhaus, Friedrichsdorf, Germany
| | - Armando D'Agostino
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Luca Kolibius
- Psychology, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt, Germany.,VITOS Hochtaunus Klinik, Psychiatrisches Krankenhaus, Friedrichsdorf, Germany
| | - Ansgar Klimke
- Psychology, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt, Germany.,Department of Psychiatry, Psychiatry Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Silvio Scarone
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - J Allan Hobson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
103
|
A Randomized Trial of Oral and Transdermal Rivastigmine for Postural Instability in Parkinson Disease Dementia. Clin Neuropharmacol 2018. [PMID: 29537978 DOI: 10.1097/wnf.0000000000000275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The objective of this study was to compare the efficacy and safety of oral and transdermal rivastigmine for postural instability in patients with Parkinson disease dementia (PDD) who were candidates for a cholinesterase inhibitor. The primary outcome was the change in mean velocity of the center of pressure (CoP) after 6 months. Secondary outcomes included structural parameters of dynamic posturography, clinical rating scales, and adverse events requiring dose reduction. METHODS Patients with PDD were randomized in a 1:1 ratio to oral or transdermal rivastigmine with target doses of 6 mg twice daily and 9.5 mg/10 cm daily, respectively. Outcomes were assessed at baseline and 6 months. Results were compared within and between groups. RESULTS Nineteen patients completed the study (n = 8 oral, n = 11 transdermal). Mean daily doses of 9.4 (±1.5 mg) and 16.4 (±3.6 mg) were achieved in the oral and transdermal groups, respectively. The transdermal group demonstrated a significant 15.8% decrease in mean velocity of CoP (patch: P < 0.05; oral: 10.0% decrease, P = 0.16) in the most difficult scenario (eyes closed with sway-referenced support). There was no difference between groups (P = 0.27). For structural parameters, significant improvements were seen in the mean duration of peaks (patch) and interpeak distance (oral) in the most difficult condition. No changes were observed in clinical rating scales. Six patients experienced nonserious adverse events requiring dose reduction (n = 5 oral; n = 1 transdermal). CONCLUSIONS Rivastigmine may improve certain elements of postural control, notably the mean velocity of CoP. Benefits appear to be more obvious under more taxing sensory conditions.
Collapse
|
104
|
Nanomaterials-Based Electrochemical Sensors for In Vitro and In Vivo Analyses of Neurotransmitters. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091504] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurotransmitters are molecules that transfer chemical signals between neurons to convey messages for any action conducted by the nervous system. All neurotransmitters are medically important; the detection and analysis of these molecules play vital roles in the diagnosis and treatment of diseases. Among analytical strategies, electrochemical techniques have been identified as simple, inexpensive, and less time-consuming processes. Electrochemical analysis is based on the redox behaviors of neurotransmitters, as well as their metabolites. A variety of electrochemical techniques are available for the detection of biomolecules. However, the development of a sensing platform with high sensitivity and selectivity is challenging, and it has been found to be a bottleneck step in the analysis of neurotransmitters. Nanomaterials-based sensor platforms are fascinating for researchers because of their ability to perform the electrochemical analysis of neurotransmitters due to their improved detection efficacy, and they have been widely reported on for their sensitive detection of epinephrine, dopamine, serotonin, glutamate, acetylcholine, nitric oxide, and purines. The advancement of electroanalytical technologies and the innovation of functional nanomaterials have been assisting greatly in in vivo and in vitro analyses of neurotransmitters, especially for point-of-care clinical applications. In this review, firstly, we focus on the most commonly employed electrochemical analysis techniques, in conjunction with their working principles and abilities for the detection of neurotransmitters. Subsequently, we concentrate on the fabrication and development of nanomaterials-based electrochemical sensors and their advantages over other detection techniques. Finally, we address the challenges and the future outlook in the development of electrochemical sensors for the efficient detection of neurotransmitters.
Collapse
|
105
|
Khan MB, Palaka BK, Sapam TD, Subbarao N, Ampasala DR. Screening and analysis of acetyl-cholinesterase (AChE) inhibitors in the context of Alzheimer's disease. Bioinformation 2018; 14:414-428. [PMID: 30310249 PMCID: PMC6166398 DOI: 10.6026/97320630014414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/19/2018] [Accepted: 08/19/2018] [Indexed: 12/03/2022] Open
Abstract
Acetyl-cholinesterase enzyme (AChE) is a known target for identifying potential inhibitors against Alzheimer diseases (AD). Therefore, it is of interest to screen AChE with the CNS-BBB database. An AChE enzyme is a member of hydrolase family is activated by acetylcholine (ACh), so, targeting the AChE enzyme with the potential inhibitor may block the binding of the ACh. In this study we carried out virtual screening of drug-like molecules from Chemical Diversity Database particularly CNS-BBB compounds, to identify potential inhibitors using Glide docking program. Top ranking ten compounds, which have lower Glide Score when compared to known drugs (Tacrine and Galantamine) for AChE. For top three molecules MD simulation was carried out and calculated binding free energy. We report the best binding compounds with AChE compared to known drugs (Taine and Galantamine) for AD. We further document the salient features of their molecular interaction with the known target. Three molecules (1-benzyl-3-(2- hydroxyethyl)-N-[2-(3-pyridyl)ethyl]-3-pyrrolidinecarboxamide, N-{3[benzyl(methyl)amino]propyl}-1,5-dimethyl-4-oxo-4,5-dihydro- 1H-pyrrolo[3,2-c]quinoline-2-carboxamide, and 6-chloro-N-[2-(diethylamino)-2-phenylethyl]-4-oxo-4H-chromene-2-carboxamide) have -196.36, -204.27, -214.40 kJ/mol, binding free energy values respectively which are much lower than values calculated for the reference ligands Tacrine and Galantamine having -119.65 and -142.18 kJ/mol respectively. Thus these molecules can be very novel potential inhibitors against AChE involved in Alzheimer's disease.
Collapse
Affiliation(s)
- Mohd. Babu Khan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry-605014, India
| | - Bhagath Kumar Palaka
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry-605014, India
| | - Tuleshwori Devi Sapam
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry-605014, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Dinakara Rao Ampasala
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry-605014, India
| |
Collapse
|
106
|
Siebert C, Bertó CG, Ferreira FS, Moreira DDS, Santos TM, Wyse AT. Vitamin D partially reverses the increase in p‐NF‐κB/p65 immunocontent and interleukin‐6 levels, but not in acetylcholinesterase activity in hippocampus of adult female ovariectomized rats. Int J Dev Neurosci 2018; 71:122-129. [DOI: 10.1016/j.ijdevneu.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/19/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Cassiana Siebert
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Carolina Gessinger Bertó
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Fernanda Silva Ferreira
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Daniella de S. Moreira
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Tiago Marcon Santos
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Angela T.S. Wyse
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| |
Collapse
|
107
|
Mohamed HE, Abo-ELmatty DM, Mesbah NM, Saleh SM, Ali AMA, Sakr AT. Raspberry ketone preserved cholinergic activity and antioxidant defense in obesity induced Alzheimer disease in rats. Biomed Pharmacother 2018; 107:1166-1174. [PMID: 30257330 DOI: 10.1016/j.biopha.2018.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022] Open
Abstract
Obesity is a proven risk factor for neurodegenerative disease like Alzheimer's disease (AD). Accumulating evidences suggested that nutritional interventions provide potential for prevention and treatment of AD. The present study aimed to investigate the effect of dietary treatment of obese rats with natural Raspberry ketone (RK) and their relationship with neurodegeneration. Obesity was first induced in 40 male Wistar rats (140-160 g) by feeding high fat diet (HFD) for 16 weeks. Obese rats were then assigned into 4 groups (n = 10 each). (O-AD) is obese induced AD group maintained on HFD for another 6 weeks. OCR is obese group received calorie restricted diet for 6 weeks. OCRRK is obese group received calorie restricted diet and RK (44 mg/kg body weight, daily, orally) for 6 weeks and OCRD is obese group received calorie restricted diet and orlistate (10 mg/kg body weight, daily orally) for 6 weeks. Another 10 normal rats received normal diet were used as normal control group (NC). Body weight, visceral white adipose tissue weight (WAT), lipid profile, oxidative stress markers, adiponectin, cholinergic activity and amyloid extracellular plaques were examined. In addition to histological changes in brain tissues were evaluated.Raspberry ketone (RK) via its antioxidant properties attenuated oxidative damage and dyslipidemia in O-AD group. It inhibited acetylcholinesterase enzyme (AchE) and hence increased acetylcholine level (Ach) in brain tissues of O-AD rats. It is also impeded the upregulation of beta-secretase-1 (BACE-1) and the accumulation of amyloid beta (Aβ) plaques which crucially involved in AD. The combination of CR diet with RK was more effective than CR diet with orlistate (antiobese drug) in abrogating the neurodegenerative changes induced by obesity. Results from this study suggested that concomitant supplementation of RK with calorie restricted regimen effectively modulate the neurodegenerative changes induced by obesity and delay the progression of AD.
Collapse
Affiliation(s)
- Hoda E Mohamed
- Zagazig University, Department of Biochemistry, Faculty of Pharmacy, Egypt
| | - Dina M Abo-ELmatty
- Suez Canal University, Department of Biochemistry, Faculty of Pharmacy, Egypt
| | - Noha M Mesbah
- Suez Canal University, Department of Biochemistry, Faculty of Pharmacy, Egypt
| | - Samy M Saleh
- Suez Canal University, Department of Biochemistry, Faculty of Pharmacy, Egypt
| | - Abdel-Moniem A Ali
- Zagazig University, Department of Pathology, Faculty of Veterinary Medicine, Egypt
| | - Amr T Sakr
- Ministry of Health, Zagazig, Sharkia, Egypt.
| |
Collapse
|
108
|
Kose E, Hirai T, Seki T. Anticholinergic drugs use and risk of hip fracture in geriatric patients. Geriatr Gerontol Int 2018; 18:1340-1344. [DOI: 10.1111/ggi.13486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 06/15/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Eiji Kose
- Department of Pharmacotherapy, School of Pharmacy; Nihon University; Chiba Japan
| | - Toshiyuki Hirai
- Department of Pharmacy; Hitachinaka General Hospital; Ibaraki Japan
| | - Toshiichi Seki
- Department of Pharmacy; Hitachinaka General Hospital; Ibaraki Japan
| |
Collapse
|
109
|
Rosen MG. How bizarre? A pluralist approach to dream content. Conscious Cogn 2018; 62:148-162. [DOI: 10.1016/j.concog.2018.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/09/2018] [Accepted: 03/22/2018] [Indexed: 11/29/2022]
|
110
|
Differential Role of Prefrontal and Parietal Cortices in Controlling Level of Consciousness. Curr Biol 2018; 28:2145-2152.e5. [PMID: 29937348 DOI: 10.1016/j.cub.2018.05.025] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/29/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022]
Abstract
Consciousness is determined both by level (e.g., being awake versus being anesthetized) and content (i.e., the qualitative aspects of experience). Subcortical areas are known to play a causal role in regulating the level of consciousness [1-9], but the role of the cortex is less well understood. Clinical and correlative data have been used both to support and refute a role for prefrontal and posterior cortices in the level of consciousness [10-22]. The prefrontal cortex has extensive reciprocal connections to wake-promoting centers in the brainstem and diencephalon [23, 24], and hence is in a unique position to modulate level of consciousness. Furthermore, a recent study suggested that the prefrontal cortex might be important in regulating level of consciousness [25] but causal evidence, and a comparison with more posterior cortical sites, is lacking. Therefore, to test the hypothesis that prefrontal cortex plays a role in regulating level of consciousness, we attempted to reverse sevoflurane anesthesia by cholinergic or noradrenergic stimulation of the prefrontal prelimbic cortex and two areas of parietal cortex in rat. General anesthesia was defined by loss of the righting reflex, a widely used surrogate measure in rodents. We demonstrate that cholinergic stimulation of prefrontal cortex, but not parietal cortex, restored wake-like behavior, despite continuous exposure to clinically relevant concentrations of sevoflurane anesthesia. Noradrenergic stimulation of the prefrontal and parietal areas resulted in electroencephalographic activation but failed to produce any signs of wake-like behavior. We conclude that cholinergic mechanisms in prefrontal cortex can regulate the level of consciousness.
Collapse
|
111
|
Kose E, Hirai T, Seki T. Assessment of aspiration pneumonia using the Anticholinergic Risk Scale. Geriatr Gerontol Int 2018; 18:1230-1235. [DOI: 10.1111/ggi.13454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Eiji Kose
- Department of Pharmacotherapy, School of Pharmacy; Nihon University; Chiba Japan
| | - Toshiyuki Hirai
- Department of Pharmacy; Hitachinaka General Hospital; Ibaraki Japan
| | - Toshiichi Seki
- Department of Pharmacy; Hitachinaka General Hospital; Ibaraki Japan
| |
Collapse
|
112
|
CHAT gene polymorphism rs3810950 is associated with the risk of Alzheimer's disease in the Czech population. J Biomed Sci 2018; 25:41. [PMID: 29759072 PMCID: PMC5950140 DOI: 10.1186/s12929-018-0444-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/07/2018] [Indexed: 12/24/2022] Open
Abstract
Background Cholinergic hypothesis of Alzheimer’s disease (AD) is based on the findings that a reduced and/or perturbed cholinergic activity in the central nervous system correlates with cognitive decline in patients with Alzheimer’s disease. The hypothesis resulted in the development of centrally-acting agents potentiating cholinergic neurotransmission; these drugs, however, only slowed down the cognitive decline and could not prevent it. Consequently, the perturbation of the central cholinergic signalling has been accepted as a part of the Alzheimer’s aetiology but not necessarily the primary cause of the disease. In the present study we have focused on the rs3810950 polymorphism of ChAT (choline acetyltransferase) gene that has not been studied in Czech population before. Methods We carried out an association study to test for a relationship between the rs3810950 polymorphism and Alzheimer’s disease in a group of 1186 persons; 759 patients with Alzheimer’s disease and 427 control subjects. Furthermore, we performed molecular modelling of the terminal domain (1st-126th amino acid residue) of one of the ChAT isoforms (M) to visualise in silico whether the rs3810950 polymorphism (A120T) can change any features of the tertiary structure of the protein which would have a potential to alter its function. Results The AA genotype of CHAT was associated with a 1.25 times higher risk of AD (p < 0.002) thus demonstrating that the rs3810950 polymorphism can have a modest but statistically significant effect on the risk of AD in the Czech population. Furthermore, the molecular modelling indicated that the polymorphism is likely to be associated with significant variations in the tertiary structure of the protein molecule which may impact its enzyme activity. Conclusions Our findings are consistent with the results of the meta-analytical studies of the relationship between rs3810950 polymorphism and AD and provide further material evidence for a direct (primary) involvement of cholinergic mechanisms in the etiopathogenesis of AD, particularly as a factor in cognitive decline and perturbed conscious awareness commonly observed in patients with AD.
Collapse
|
113
|
Clinical factors affecting potentially inappropriate medications at discharge in older stroke patients. Eur Geriatr Med 2018; 9:161-168. [DOI: 10.1007/s41999-018-0044-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/06/2018] [Indexed: 01/06/2023]
|
114
|
Tricyclic pyrazolo[1,5- d ][1,4]benzoxazepin-5(6H)-one scaffold derivatives: Synthesis and biological evaluation as selective BuChE inhibitors. Eur J Med Chem 2018; 147:194-204. [DOI: 10.1016/j.ejmech.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 11/24/2022]
|
115
|
Yuksel M, Biberoglu K, Onder S, Akbulut KG, Tacal O. Toluidine blue O modifies hippocampal amyloid pathology in a transgenic mouse model of Alzheimer's disease. Biochimie 2018; 146:105-112. [DOI: 10.1016/j.biochi.2017.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023]
|
116
|
Camargo LC, Campos GAA, Galante P, Biolchi AM, Gonçalves JC, Lopes KS, Mortari MR. Peptides isolated from animal venom as a platform for new therapeutics for the treatment of Alzheimer's disease. Neuropeptides 2018; 67:79-86. [PMID: 29198480 DOI: 10.1016/j.npep.2017.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/09/2017] [Accepted: 11/23/2017] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that deeply affects patients, their family and society. Although scientists have made intense efforts in seeking the cure for AD, no drug available today is able to stop AD progression. In this context, compounds isolated from animal venom are potentially successful drugs for neuroprotection, since they selectively bind to nervous system targets. In this review, we presented different studies using peptides isolated from animal venom for the treatment of AD. This is a growing field that will be very helpful in understanding and even curing neurodegenerative diseases, especially AD.
Collapse
Affiliation(s)
- L C Camargo
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - G A A Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - P Galante
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - A M Biolchi
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - J C Gonçalves
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - K S Lopes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - M R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
117
|
GelRed/[G3T]5/Tb3+ hybrid: A novel label-free ratiometric fluorescent probe for H2O2 and oxidase-based visual biosensing. Biosens Bioelectron 2018; 100:526-532. [DOI: 10.1016/j.bios.2017.09.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/26/2017] [Accepted: 09/26/2017] [Indexed: 11/18/2022]
|
118
|
|
119
|
The cortical cholinergic system contributes to the top-down control of distraction: Evidence from patients with Parkinson's disease. Neuroimage 2017; 190:107-117. [PMID: 29277400 DOI: 10.1016/j.neuroimage.2017.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/27/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Past animal and human studies robustly report that the cholinergic system plays an essential role in both top-down and bottom-up attentional control, as well as other aspects of cognition (see Ballinger et al., 2016 for a recent review). However, current understanding of how two major cholinergic pathways in the human brain (the basal forebrain-cortical pathway, and the brainstem pedunculopontine-thalamic pathway) contribute to specific cognitive functions remains somewhat limited. To address this issue, we examine how individual variation in the integrity of striatal-dopaminergic, thalamic-cholinergic, and cortical-cholinergic pathways (measured using Positron Emission Tomography in patients with Parkinson's disease) was associated with individual variation in the initial goal-directed focus of attention, the ability to sustain attentional performance over time, and the ability to avoid distraction from a highly-salient, but irrelevant, environmental stimulus. Compared to healthy controls, PD patients performed similarly in the precision of attention-dependent judgments of duration, and in sustaining attention over time. However, PD patients' performance was strikingly more impaired by the distractor. More critically, regression analyses indicated that only cortical-cholinergic integrity, not thalamic-cholinergic or striatal-dopaminergic integrity, made a specific contribution to the ability to resist distraction after controlling for the other variables. These results demonstrate that the basal forebrain cortical cholinergic system serves a specific role in executing top-down control to resist external distraction.
Collapse
|
120
|
Mazumder MK, Phukan BC, Bhattacharjee A, Borah A. Disturbed purine nucleotide metabolism in chronic kidney disease is a risk factor for cognitive impairment. Med Hypotheses 2017; 111:36-39. [PMID: 29406992 DOI: 10.1016/j.mehy.2017.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/25/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is an increasing global health burden. Disturbance in purine metabolism pathway and a higher level of serum uric acid, called hyperuricemia, is a risk factor of CKD, and it has been linked to increased prevalence and progression of the disease. In a recent study, it has been demonstrated that purine nucleotides and uric acid alter the activity of acetylcholinesterase (AChE). Thus, we hypothesize that adenine, hypoxanthine, xanthine, 2,8-dihydroxyadenine and uric acid may potentially interfere with the activity of AChE. The hypothesis has been tested using computational tools. Uric acid has been found to be the most potent inhibitor of AChE, with a binding affinity higher than the known inhibitors of the enzyme. Further, since depleted AChE activity is associated with dementia and cognitive impairment, the present study suggest that disturbed purine nucleotide metabolism in CKD is a risk factor for cognitive impairment.
Collapse
Affiliation(s)
- Muhammed Khairujjaman Mazumder
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, P.O. Dorgakona, Cachar, Silchar 788011, Assam, India
| | - Banashree Chetia Phukan
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, P.O. Dorgakona, Cachar, Silchar 788011, Assam, India
| | - Aradhana Bhattacharjee
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, P.O. Dorgakona, Cachar, Silchar 788011, Assam, India
| | - Anupom Borah
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, P.O. Dorgakona, Cachar, Silchar 788011, Assam, India.
| |
Collapse
|
121
|
Abstract
Alzheimer's disease (AD) is the most frequent age-related dementia. It prevalently causes cognitive decline, although it is frequently associated with secondary behavioral disturbances. AD neurodegeneration characteristically produces a remarkable destruction of the sleep-wake cycle, with diurnal napping, nighttime arousals, sleep fragmentation, and REM sleep impairment. It was recently hypothesized that the orexinergic system was involved in AD pathology. Accordingly, recent papers showed the association between orexinergic neurotransmission dysfunction, sleep impairment, and cognitive decline in AD. Orexin is a hypothalamic neurotransmitter which physiologically produces wakefulness and reduces REM sleep and may alter the sleep-wake cycle in AD patients. Furthermore, the orexinergic system seems to interact with CSF AD biomarkers, such as beta-amyloid and tau proteins. Beta-amyloid accumulation is the main hallmark of AD pathology, while tau proteins mark brain neuronal injury due to AD pathology. Investigations so far suggest that orexinergic signaling overexpression alters the sleep-wake cycle and secondarily induces beta-amyloid accumulation and tau-mediated neurodegeneration. Therefore, considering that orexinergic system dysregulation impairs sleep-wake rhythms and may influence AD pathology, it is hypothesized that orexin receptor antagonists are likely potential preventive/therapeutic options in AD patients.
Collapse
Affiliation(s)
- Claudio Liguori
- Sleep Medicine Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
122
|
Damaged fiber tracts of the nucleus basalis of Meynert in Parkinson's disease patients with visual hallucinations. Sci Rep 2017; 7:10112. [PMID: 28860465 PMCID: PMC5579278 DOI: 10.1038/s41598-017-10146-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/04/2017] [Indexed: 01/29/2023] Open
Abstract
Damage to fiber tracts connecting the nucleus basalis of Meynert (NBM) to the cerebral cortex may underlie the development of visual hallucinations (VH) in Parkinson’s disease (PD), possibly due to a loss of cholinergic innervation. This was investigated by comparing structural connectivity of the NBM using diffusion tensor imaging in 15 PD patients with VH (PD + VH), 40 PD patients without VH (PD − VH), and 15 age- and gender-matched controls. Fractional anisotropy (FA) and mean diffusivity (MD) of pathways connecting the NBM to the whole cerebral cortex and of regional NBM fiber tracts were compared between groups. In PD + VH patients, compared to controls, higher MD values were observed in the pathways connecting the NBM to the cerebral cortex, while FA values were normal. Regional analysis demonstrated a higher MD of parietal (p = 0.011) and occipital tracts (p = 0.027) in PD + VH, compared to PD − VH patients. We suggest that loss of structural connectivity between the NBM and posterior brain regions may contribute to the etiology of VH in PD. Future studies are needed to determine whether these findings could represent a sensitive marker for the hypothesized cholinergic deficit in PD + VH patients.
Collapse
|
123
|
Llorente-Ovejero A, Manuel I, Giralt MT, Rodríguez-Puertas R. Increase in cortical endocannabinoid signaling in a rat model of basal forebrain cholinergic dysfunction. Neuroscience 2017; 362:206-218. [PMID: 28827178 DOI: 10.1016/j.neuroscience.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 12/24/2022]
Abstract
The basal forebrain cholinergic pathways progressively degenerate during the progression of Alzheimer's disease, leading to an irreversible impairment of memory and thinking skills. The stereotaxic lesion with 192IgG-saporin in the rat brain has been used to eliminate basal forebrain cholinergic neurons and is aimed at emulating the cognitive damage described in this disease in order to explore its effects on behavior and on neurotransmission. Learning and memory processes that are controlled by cholinergic neurotransmission are also modulated by the endocannabinoid (eCB) system. The objective of the present study is to evaluate the eCB signaling in relation to the memory impairment induced in adult rats following a specific cholinergic lesion of the basal forebrain. Therefore, CB1 receptor-mediated signaling was analyzed using receptor and functional autoradiography, and cellular distribution by immunofluorescence. The passive avoidance test and histochemical data revealed a relationship between impaired behavioral responses and a loss of approximately 75% of cholinergic neurons in the nucleus basalis magnocellularis (NBM), accompanied by cortical cholinergic denervation. The decrease in CB1 receptor density observed in the hippocampus, together with hyperactivity of eCB signaling in the NBM and cortex, suggest an interaction between the eCB and cholinergic systems. Moreover, following basal forebrain cholinergic denervation, the presynaptic GABAergic immunoreactivity was reduced in cortical areas. In conclusion, CB1 receptors present in presynaptic GABAergic terminals in the hippocampus are down regulated, but not those in cortical glutamatergic synapses.
Collapse
Affiliation(s)
- Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing. University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing. University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Maria Teresa Giralt
- Department of Pharmacology, Faculty of Medicine and Nursing. University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing. University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
124
|
Cortical afferent inhibition abnormalities reveal cholinergic dysfunction in Parkinson’s disease: a reappraisal. J Neural Transm (Vienna) 2017; 124:1417-1429. [DOI: 10.1007/s00702-017-1775-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
|
125
|
Fu Y, Si Z, Li P, Li M, Zhao H, Jiang L, Xing Y, Hong W, Ruan L, Wang JS. Acute psychoactive and toxic effects of D. metel on mice explained by 1H NMR based metabolomics approach. Metab Brain Dis 2017; 32:1295-1309. [PMID: 28584907 DOI: 10.1007/s11011-017-0038-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Abstract
Datura metel L. (D. metel) is one well-known folk medical herb with wide application and also the most abused plants all over the world, mainly for spiritual or religious purpose, over-dosing of which often produces poisonous effects. In this study, mice were orally administered with the extract of D. metel once a day at doses for 10 mg/kg and 40 mg/kg for consecutive 4 days, 1H NMR based metabolomics approach aided with histopathological inspection and biochemical assays were used for the first time to study the psychoactive and toxic effects of D. metel. Histopathological inspection revealed obvious hypertrophy of hepatocytes, karyolysis and karyorrhexis in livers as well as distinct nerve cell edema, chromatolysis and lower nuclear density in brains. The increased tissue level of methane dicarboxylic aldehyde (MDA) and superoxide dismutase (SOD), decreased tissue level of glutathione (GSH) along with increased serum level of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) suggested brain and liver injury induced by D. metel. Orthogonal signal correction-partial least squares-discriminant analysis (OSC-PLS-DA) of NMR profiles supplemented with correlation network analysis revealed significant altered metabolites and related pathway that contributed to oxidative stress, energy metabolism disturbances, neurotransmitter imbalance and amino acid metabolism disorders.
Collapse
Affiliation(s)
- Yonghong Fu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Zhihong Si
- Cancer Hospital, Chinese Academy of Sciences, 350 Shu Shan Hu Road, Hefei, 230031, People's Republic of China
| | - Pumin Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Minghui Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - He Zhao
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Lei Jiang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Yuexiao Xing
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Wei Hong
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Lingyu Ruan
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
126
|
Das S, Laskar MA, Sarker SD, Choudhury MD, Choudhury PR, Mitra A, Jamil S, Lathiff SMA, Abdullah SA, Basar N, Nahar L, Talukdar AD. Prediction of Anti-Alzheimer's Activity of Flavonoids Targeting Acetylcholinesterase in silico. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:324-331. [PMID: 28168765 DOI: 10.1002/pca.2679] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Prenylated and pyrano-flavonoids of the genus Artocarpus J. R. Forster & G. Forster are well known for their acetylcholinesterase (AChE) inhibitory, anti-cholinergic, anti-inflammatory, anti-microbial, anti-oxidant, anti-proliferative and tyrosinase inhibitory activities. Some of these compounds have also been shown to be effective against Alzheimer's disease. OBJECTIVE The aim of the in silico study was to establish protocols to predict the most effective flavonoid from prenylated and pyrano-flavonoid classes for AChE inhibition linking to the potential treatment of Alzheimer's disease. METHODOLOGY Three flavonoids isolated from Artocarpus anisophyllus Miq. were selected for the study. With these compounds, Lipinski filter, ADME/Tox screening, molecular docking and quantitative structure-activity relationship (QSAR) were performed in silico. In vitro activity was evaluated by bioactivity staining based on the Ellman's method. RESULTS In the Lipinski filter and ADME/Tox screening, all test compounds produced positive results, but in the target fishing, only one flavonoid could successfully target AChE. Molecular docking was performed on this flavonoid, and this compound gained the score as -13.5762. From the QSAR analysis the IC50 was found to be 1659.59 nM. Again, 100 derivatives were generated from the parent compound and docking was performed. The derivative compound 20 was the best scorer, i.e. -31.6392 and IC50 was predicted as 6.025 nM. CONCLUSION Results indicated that flavonoids could be efficient inhibitors of AChE and thus, could be useful in the management of Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Subrata Das
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Monjur A Laskar
- Bioinformatics Centre, Assam University, Silchar, 788011, Assam, India
| | - Satyajit D Sarker
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Manabendra D Choudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
- Bioinformatics Centre, Assam University, Silchar, 788011, Assam, India
| | - Prakash Roy Choudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Abhijit Mitra
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Shajarahtunnur Jamil
- Chemistry Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Siti Mariam A Lathiff
- Chemistry Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Siti Awanis Abdullah
- Chemistry Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Norazah Basar
- Chemistry Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Lutfun Nahar
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Anupam D Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
- Bioinformatics Centre, Assam University, Silchar, 788011, Assam, India
| |
Collapse
|
127
|
Calhoun A, Ko J, Grossberg GT. Emerging chemical therapies targeting 5-hydroxytryptamine in the treatment of Alzheimer's disease. Expert Opin Emerg Drugs 2017; 22:101-105. [PMID: 28253832 DOI: 10.1080/14728214.2017.1293651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a major neuropsychiatric disorder affecting more than 5 million Americans over age 65. By the year 2050, AD is expected to affect over 30 million. Characterized by neuronal cell death accompanied by the accumulation of neurofibrillary tangles and neuritic plaques, AD results in devastating clinical symptomatology with a lasting psychosocial and financial impact. Studies have shown that the current treatments for AD, cholinesterase inhibitors (ChEI's) and NMDA receptor antagonists, have limited efficacy. The 5-HT-6 receptor antagonists Idalopirdine and Intepirdine have shown the most progress in current clinical trials and warrant consideration as emerging treatments for AD. Areas covered: This review discusses 5-HT6 antagonists currently in clinical trials as potential treatments for AD symptomatology and how 5-HT6 physiology may play a positive role in alleviating AD symptom pathophysiology. A literature search using PubMed was conducted using the terms Idalopirdine, Intepirdine, 5-HT-6 antagonist, and AD as keywords. Clinicaltrials.gov and Alzforum were also used to obtain information on clinical trials. Expert opinion: If current Phase-3 trials are positive, 5-HT6 antagonists such as Idalopirdine and Intepirdine may be considered as supplementary treatments to ChEI's and NMDA receptor antagonists for the symptomatic treatment of AD.
Collapse
Affiliation(s)
- Amanda Calhoun
- a Department of Psychiatry & Behavioral Neuroscience , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Je Ko
- a Department of Psychiatry & Behavioral Neuroscience , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - George T Grossberg
- a Department of Psychiatry & Behavioral Neuroscience , Saint Louis University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
128
|
Horak M, Holubova K, Nepovimova E, Krusek J, Kaniakova M, Korabecny J, Vyklicky L, Kuca K, Stuchlik A, Ricny J, Vales K, Soukup O. The pharmacology of tacrine at N-methyl-d-aspartate receptors. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:54-62. [PMID: 28089695 DOI: 10.1016/j.pnpbp.2017.01.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/15/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
The mechanism of tacrine as a precognitive drug has been considered to be complex and not fully understood. It has been reported to involve a wide spectrum of targets involving cholinergic, gabaergic, nitrinergic and glutamatergic pathways. Here, we review the effect of tacrine and its derivatives on the NMDA receptors (NMDAR) with a focus on the mechanism of action and biological consequences related to the Alzheimer's disease treatment. Our findings indicate that effect of tacrine on glutamatergic neurons is both direct and indirect. Direct NMDAR antagonistic effect is often reported by in vitro studies; however, it is achieved by high tacrine concentrations which are not likely to occur under clinical conditions. The impact on memory and behavioral testing can be ascribed to indirect effects of tacrine caused by influencing the NMDAR-mediated currents via M1 receptor activation, which leads to inhibition of Ca2+-activated potassium channels. Such inhibition prevents membrane repolarization leading to prolonged NMDAR activation and subsequently to long term potentiation. Considering these findings, we can conclude that tacrine-derivatives with dual cholinesterase and NMDARs modulating activity may represent a promising approach in the drug development for diseases associated with cognitive dysfunction, such as the Alzheimer disease.
Collapse
Affiliation(s)
- Martin Horak
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech Republic
| | - Kristina Holubova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Eugenie Nepovimova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Krusek
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martina Kaniakova
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ales Stuchlik
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech Republic
| | - Jan Ricny
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
129
|
Li Q, Yang H, Chen Y, Sun H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease. Eur J Med Chem 2017; 132:294-309. [PMID: 28371641 DOI: 10.1016/j.ejmech.2017.03.062] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/13/2017] [Accepted: 03/25/2017] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders with notable factor of dysfunction in cholinergic system. Low ACh level can be observed in the pathogenesis of AD. Several AChE inhibitors have already been used for clinical treatments. However, other than normal conditions, ACh is mostly hydrolyzed by BuChE in progressed AD. Account for an increased level of BuChE and decreased level of AChE in the late stage of AD, development of selective BuChE inhibitor is of vital importance. Up till now, compounds with various scaffolds have been discovered to selectively inhibit BuChE. Different effective anti-BuChE molecules are concluded in this review.
Collapse
Affiliation(s)
- Qi Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongyu Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
130
|
Lindner M, Bell T, Iqbal S, Mullins PG, Christakou A. In vivo functional neurochemistry of human cortical cholinergic function during visuospatial attention. PLoS One 2017; 12:e0171338. [PMID: 28192451 PMCID: PMC5305251 DOI: 10.1371/journal.pone.0171338] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/19/2017] [Indexed: 11/24/2022] Open
Abstract
Cortical acetylcholine is involved in key cognitive processes such as visuospatial attention. Dysfunction in the cholinergic system has been described in a number of neuropsychiatric disorders. Levels of brain acetylcholine can be pharmacologically manipulated, but it is not possible to directly measure it in vivo in humans. However, key parts of its biochemical cascade in neural tissue, such as choline, can be measured using magnetic resonance spectroscopy (MRS). There is evidence that levels of choline may be an indirect but proportional measure of acetylcholine availability in brain tissue. In this study, we measured relative choline levels in the parietal cortex using functional (event-related) MRS (fMRS) during performance of a visuospatial attention task, with a modelling approach verified using simulated data. We describe a task-driven interaction effect on choline concentration, specifically driven by contralateral attention shifts. Our results suggest that choline MRS has the potential to serve as a proxy of brain acetylcholine function in humans.
Collapse
Affiliation(s)
- Michael Lindner
- Centre for Integrative Neuroscience and Neurodynamics, and School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Tiffany Bell
- Centre for Integrative Neuroscience and Neurodynamics, and School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Somya Iqbal
- Centre for Integrative Neuroscience and Neurodynamics, and School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | | | - Anastasia Christakou
- Centre for Integrative Neuroscience and Neurodynamics, and School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
- * E-mail:
| |
Collapse
|
131
|
Kuppusamy A, Arumugam M, George S. Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer’s disease. Int J Biol Macromol 2017; 95:199-203. [DOI: 10.1016/j.ijbiomac.2016.11.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
|
132
|
Serotonin 5-HT 6 Receptor Antagonists in Alzheimer's Disease: Therapeutic Rationale and Current Development Status. CNS Drugs 2017; 31:19-32. [PMID: 27914038 DOI: 10.1007/s40263-016-0399-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly people. Because of the lack of effective treatments for this illness, research focused on identifying compounds that restore cognition and functional impairments in patients with AD is a very active field. Since its discovery in 1993, the serotonin 5-HT6 receptor has received increasing attention, and a growing number of studies supported 5-HT6 receptor antagonism as a target for improving cognitive dysfunction in AD. This article reviews the rationale behind investigations into the targeting of 5-HT6 receptors as a symptomatic treatment for cognitive and/or behavioral symptoms of AD. In addition to describing the available clinical evidence, this article also describes the purported biochemical and neurochemical mechanisms of action by which 5-HT6 receptor antagonists could influence cognition, and the preclinical data supporting this therapeutic approach to AD. A large number of publications describing the development of ligands for this receptor have come to light and preclinical data indicate the procognitive efficacy of 5-HT6 receptor antagonists. Subsequently, the number of patents protecting 5-HT6 chemical entities has continuously grown. Some of these compounds have successfully undergone phase I clinical studies and have been further evaluated in clinical phase II trials with variable success. Phase II studies have also revealed the potential of combining 5-HT6 receptor antagonism and cholinesterase inhibition. Two of these antagonists, idalopirdine and RVT-101, have been further developed into ongoing phase III clinical trials. Overall, 5-HT6 receptor antagonists can reasonably be regarded as potential drug candidates for the treatment of AD.
Collapse
|
133
|
Soukup O, Winder M, Killi UK, Wsol V, Jun D, Kuca K, Tobin G. Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors- Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment. Curr Neuropharmacol 2017; 15:637-653. [PMID: 27281175 PMCID: PMC5543679 DOI: 10.2174/1570159x14666160607212615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/28/2016] [Accepted: 05/31/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. METHODS We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. RESULTS Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. CONCLUSION Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the muscarinic receptor selectivity needs to be considered. Reactivators generally have a muscarinic M2 receptor acting profile. Such a blockade may engrave the situation since it may enlarge the effect of the muscarinic M3 receptor effect. This may explain why respiratory arrest is the major cause for deaths by esterase blocking.
Collapse
Affiliation(s)
- Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Michael Winder
- Institute of Neuroscience and Physiology, Department of Pharmacology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Uday Kumar Killi
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Vladimir Wsol
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Czech Republic
| | - Gunnar Tobin
- Institute of Neuroscience and Physiology, Department of Pharmacology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| |
Collapse
|
134
|
Gao J, Midde N, Zhu J, Terry AV, McInnes C, Chapman JM. Synthesis and biological evaluation of ranitidine analogs as multiple-target-directed cognitive enhancers for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2016; 26:5573-5579. [PMID: 27769620 PMCID: PMC5185470 DOI: 10.1016/j.bmcl.2016.09.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/02/2016] [Accepted: 09/28/2016] [Indexed: 11/17/2022]
Abstract
Using molecular modeling and rationally designed structural modifications, the multi-target structure-activity relationship for a series of ranitidine analogs has been investigated. Incorporation of a variety of isosteric groups indicated that appropriate aromatic moieties provide optimal interactions with the hydrophobic and π-π interactions with the peripheral anionic site of the AChE active site. The SAR of a series of cyclic imides demonstrated that AChE inhibition is increased by additional aromatic rings, where 1,8-naphthalimide derivatives were the most potent analogs and other key determinants were revealed. In addition to improving AChE activity and chemical stability, structural modifications allowed determination of binding affinities and selectivities for M1-M4 receptors and butyrylcholinesterase (BuChE). These results as a whole indicate that the 4-nitropyridazine moiety of the JWS-USC-75IX parent ranitidine compound (JWS) can be replaced with other chemotypes while retaining effective AChE inhibition. These studies allowed investigation into multitargeted binding to key receptors and warrant further investigation into 1,8-naphthalimide ranitidine derivatives for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jie Gao
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; Department of Pharmacology and Toxicology, Augusta University, Health Sciences Campus, CB-3530, 1459 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Narasimha Midde
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Jun Zhu
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Augusta University, Health Sciences Campus, CB-3530, 1459 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| | - James M Chapman
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
135
|
Current Perspective of Stem Cell Therapy in Neurodegenerative and Metabolic Diseases. Mol Neurobiol 2016; 54:7276-7296. [PMID: 27815831 DOI: 10.1007/s12035-016-0217-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases have been an unsolved riddle for quite a while; to date, there are no proper and effective curative treatments and only palliative and symptomatic treatments are available to treat these illnesses. The absence of therapeutic treatments for neurodegenerative ailments has huge economic hit and strain on the society. Pharmacotherapies and various surgical procedures like deep brain stimulation are being given to the patient, but they are only effective for the symptoms and not for the diseases. This paper reviews the recent studies and development of stem cell therapy for neurodegenerative disorders. Stem cell-based treatment is a promising new way to deal with neurodegenerative diseases. Stem cell transplantation can advance useful recuperation by delivering trophic elements that impel survival and recovery of host neurons in animal models and patients with neurodegenerative maladies. Several mechanisms, for example, substitution of lost cells, cell combination, release of neurotrophic factor, proliferation of endogenous stem cell, and transdifferentiation, may clarify positive remedial results. With the current advancements in the stem cell therapies, a new hope for the cure has come out since they have potential to be a cure for the same. This review compiles stem cell therapy recent conceptions in neurodegenerative and neurometabolic diseases and updates in this field. Graphical Absract ᅟ.
Collapse
|
136
|
Dean B, Copolov D, Scarr E. Understanding the pathophysiology of schizophrenia: Contributions from the Melbourne Psychiatric Brain Bank. Schizophr Res 2016; 177:108-114. [PMID: 27184458 DOI: 10.1016/j.schres.2016.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 11/24/2022]
Abstract
The Melbourne Psychiatric Brain Bank came into existence 25years ago. This review focusses on lines of research that have used tissue from the Brain Bank over periods of time. Hence there is a discussion on the significance of changes in levels of serotonin 2A receptors in the cortex of patients with schizophrenia and the relevance of such changes with regards to the pathophysiology of the disorder. The extensive contribution made by studies using tissue from the Melbourne Psychiatric Brain Bank to understanding the role of muscarinic receptors in the pathophysiology and treatment of schizophrenia is summarised. Finally, findings using brain bank tissue and "omics" technologies are reviewed. In each case, findings using tissue from the Melbourne Psychiatric Brain Bank is placed in context with research carried out on human postmortem CNS in schizophrenia and with findings in other lines of research that can help explain the causes or consequences of changes in CNS molecular cytoarchitecture. This timely review of data from the Melbourne Psychiatric Brain Bank reinforces the challenges faced in trying to increase our understanding of the molecular pathophysiology of schizophrenia. Continuing to increase our understanding of the disorder is important as a precursor to identifying new drug targets that can be exploited to improve the treatment of a disorder where treatment resistance remains a significant problem (Millan et al., 2016).
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.
| | - David Copolov
- Office of the Vice-Chancellor and President, Monash University, Clayton, Victoria, Australia
| | - Elizabeth Scarr
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
137
|
Abstract
Psychosis in Parkinson's disease (PD) is one of the greatest determinants of nursing home placement and caregiver stress. Traditionally associated with medications with dopaminergic effect, it has now been linked to other medications and other stressors e.g. systemic illnesses. The development of hallucinations in a PD patient can herald the onset of dementia and usually predicts increased mortality risk. Medication reduction in PD psychosis usually reduces the symptoms; however, this comes at the cost of worsening motor function. If gradually decreasing the patient's medications does not resolve the psychosis, the treatment of choice is an atypical antipychotic. Though only clozapine has level A recommendation for this indication, other atypicals like quetiapine continue to get used for this purpose on account of the logistics involved with clozapine use. Cholinesterase inhibitors are also increasingly being used for PD psychosis on account of the association with dementia. The treatment of PD psychosis is an unmet need in PD management and search for suitable agents constitutes an active area of research in PD.
Collapse
Affiliation(s)
- Oluwadamilola O Ojo
- Neurology Unit, Department of Medicine, College of Medicine, University of Lagos, Lagos, Nigeria.,Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Hubert H Fernandez
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA. .,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA. .,Department of Medicine, College of Medicine University of Lagos, P.M.B. 12003, Idi-araba, Lagos, Nigeria.
| |
Collapse
|
138
|
Fedotova J, Soultanov V, Nikitina T, Roschin V, Ordyan N, Hritcu L. Ropren® treatment reverses anxiety-like behavior and monoamines levels in gonadectomized rat model of Alzheimer’s disease. Biomed Pharmacother 2016; 83:1444-1455. [DOI: 10.1016/j.biopha.2016.08.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/19/2016] [Accepted: 08/28/2016] [Indexed: 12/12/2022] Open
|
139
|
Higher levels of different muscarinic receptors in the cortex and hippocampus from subjects with Alzheimer’s disease. J Neural Transm (Vienna) 2016; 124:273-284. [DOI: 10.1007/s00702-016-1625-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022]
|
140
|
Klaassens BL, Rombouts SARB, Winkler AM, van Gorsel HC, van der Grond J, van Gerven JMA. Time related effects on functional brain connectivity after serotonergic and cholinergic neuromodulation. Hum Brain Mapp 2016; 38:308-325. [PMID: 27622387 PMCID: PMC5215384 DOI: 10.1002/hbm.23362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/22/2016] [Accepted: 08/22/2016] [Indexed: 01/12/2023] Open
Abstract
Psychopharmacological research, if properly designed, may offer insight into both timing and area of effect, increasing our understanding of the brain's neurotransmitter systems. For that purpose, the acute influence of the selective serotonin reuptake inhibitor citalopram (30 mg) and the acetylcholinesterase inhibitor galantamine (8 mg) was repeatedly measured in 12 healthy young volunteers with resting state functional magnetic resonance imaging (RS‐fMRI). Eighteen RS‐fMRI scans were acquired per subject during this randomized, double blind, placebo‐controlled, crossover study. Within‐group comparisons of voxelwise functional connectivity with 10 functional networks were examined (P < 0.05, FWE‐corrected) using a non‐parametric multivariate approach with cerebrospinal fluid, white matter, heart rate, and baseline measurements as covariates. Although both compounds did not change cognitive performance on several tests, significant effects were found on connectivity with multiple resting state networks. Serotonergic stimulation primarily reduced connectivity with the sensorimotor network and structures that are related to self‐referential mechanisms, whereas galantamine affected networks and regions that are more involved in learning, memory, and visual perception and processing. These results are consistent with the serotonergic and cholinergic trajectories and their functional relevance. In addition, this study demonstrates the power of using repeated measures after drug administration, which offers the chance to explore both combined and time specific effects. Hum Brain Mapp 38:308–325, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bernadet L Klaassens
- Leiden University, Institute of Psychology, Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands.,Centre for Human Drug Research, Leiden, the Netherlands
| | - Serge A R B Rombouts
- Leiden University, Institute of Psychology, Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Anderson M Winkler
- Oxford Centre for Functional MRI of the Brain, Oxford University, Oxford, United Kingdom
| | - Helene C van Gorsel
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands.,Centre for Human Drug Research, Leiden, the Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
141
|
Li X, Wang H, Lu Z, Zheng X, Ni W, Zhu J, Fu Y, Lian F, Zhang N, Li J, Zhang H, Mao F. Development of Multifunctional Pyrimidinylthiourea Derivatives as Potential Anti-Alzheimer Agents. J Med Chem 2016; 59:8326-44. [DOI: 10.1021/acs.jmedchem.6b00636] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaokang Li
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Huan Wang
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhengyu Lu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xinyu Zheng
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Wei Ni
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jin Zhu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yan Fu
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Fulin Lian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Naixia Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jian Li
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Haiyan Zhang
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Fei Mao
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
142
|
Waters F, Blom JD, Dang-Vu TT, Cheyne AJ, Alderson-Day B, Woodruff P, Collerton D. What Is the Link Between Hallucinations, Dreams, and Hypnagogic-Hypnopompic Experiences? Schizophr Bull 2016; 42:1098-109. [PMID: 27358492 PMCID: PMC4988750 DOI: 10.1093/schbul/sbw076] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By definition, hallucinations occur only in the full waking state. Yet similarities to sleep-related experiences such as hypnagogic and hypnopompic hallucinations, dreams and parasomnias, have been noted since antiquity. These observations have prompted researchers to suggest a common aetiology for these phenomena based on the neurobiology of rapid eye movement (REM) sleep. With our recent understanding of hallucinations in different population groups and at the neurobiological, cognitive and interpersonal levels, it is now possible to draw comparisons between the 2 sets of experiences as never before. In the current article, we make detailed comparisons between sleep-related experiences and hallucinations in Parkinson's disease, schizophrenia and eye disease, at the levels of phenomenology (content, sensory modalities involved, perceptual attributes) and of brain function (brain activations, resting-state networks, neurotransmitter action). Findings show that sleep-related experiences share considerable overlap with hallucinations at the level of subjective descriptions and underlying brain mechanisms. Key differences remain however: (1) Sleep-related perceptions are immersive and largely cut off from reality, whereas hallucinations are discrete and overlaid on veridical perceptions; and (2) Sleep-related perceptions involve only a subset of neural networks implicated in hallucinations, reflecting perceptual signals processed in a functionally and cognitively closed-loop circuit. In summary, both phenomena are non-veridical perceptions that share some phenomenological and neural similarities, but insufficient evidence exists to fully support the notion that the majority of hallucinations depend on REM processes or REM intrusions into waking consciousness.
Collapse
Affiliation(s)
- Flavie Waters
- Clinical Research Centre, Graylands Hospital, North Metro Health Service Mental Health, Perth, Australia; School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, Australia;
| | | | - Thien Thanh Dang-Vu
- Center for Studies in Behavioral Neurobiology, PERFORM Center and Department of Exercise Science, Concordia University; and Centre de Recherches de l’Institut Universitaire de Gériatrie de Montréal and Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Allan J. Cheyne
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| | | | - Peter Woodruff
- University of Sheffield, UK, Hamad Medical Corporation, Doha, Qatar
| | - Daniel Collerton
- Clinical Psychology, Northumberland, Tyne and Wear NHS Foundation Trust, and Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
143
|
Horzmann KA, Freeman JL. Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity. TOXICS 2016; 4:19. [PMID: 28730152 PMCID: PMC5515482 DOI: 10.3390/toxics4030019] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning, and memory. Exposure to drugs and chemicals can alter neurotransmission, often through unknown pathways and mechanisms. The zebrafish (Danio rerio) model system is increasingly being used to study the brain and chemical neurotoxicity. In this review, the major neurotransmitter systems, including glutamate, GABA, dopamine, norepinephrine, serotonin, acetylcholine, histamine, and glutamate are surveyed and pathways of synthesis, transport, metabolism, and action are examined. Differences between human and zebrafish neurochemical pathways are highlighted. We also review techniques for evaluating neurological function, including the measurement of neurotransmitter levels, assessment of gene expression through transcriptomic analysis, and the recording of neurobehavior. Finally examples of chemical toxicity studies evaluating alterations in neurotransmitter systems in the zebrafish model are reviewed.
Collapse
Affiliation(s)
| | - Jennifer L. Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
144
|
Whole-brain patterns of (1)H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies. Transl Psychiatry 2016; 6:e877. [PMID: 27576166 PMCID: PMC5022086 DOI: 10.1038/tp.2016.140] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 02/04/2023] Open
Abstract
Magnetic resonance spectroscopy has demonstrated metabolite changes in neurodegenerative disorders such as Alzheimer's disease (AD) and dementia with Lewy bodies (DLB); however, their pattern and relationship to clinical symptoms is unclear. To determine whether the spatial patterns of brain-metabolite changes in AD and DLB are regional or diffused, and to examine whether the key metabolite levels are associated with cognitive and non-cognitive symptoms, we acquired whole-brain spatially resolved 3T magnetic resonance spectroscopic imaging (MRSI) data from subjects with AD (N=36), DLB (N=35) and similarly aged controls (N=35). Voxel-wise measurement of N-acetylaspartate to creatine (NAA/Cr), choline to Cr (Cho/Cr), myo-inositol to Cr (mI/Cr) as well as glutamate and glutamine to Cr (Glx/Cr) ratios were determined using MRSI. Compared with controls, AD and DLB groups showed a significant decrease in most brain metabolites, with NAA/Cr, Cho/Cr and mI/Cr levels being reduced in posterior cingulate, thalamus, frontotemporal areas and basal ganglia. The Glx/Cr level was more widely decreased in DLB (posterior cingulate, hippocampus, temporal regions and caudate) than in AD (only in posterior cingulate). DLB was also associated with increased levels of Cho/Cr, NAA/Cr and mI/Cr in occipital regions. Changes in metabolism in the brain were correlated with cognitive and non-cognitive symptoms in the DLB but not in the AD group. The different patterns between AD and DLB may have implications for improving diagnosis, better understanding disease-specific neurobiology and targeting therapeutics. In addition, the study raised important questions about the role of occipital neuroinflammation and glial activation as well as the glutamatergic treatment in DLB.
Collapse
|
145
|
Tweedie D, Fukui K, Li Y, Yu QS, Barak S, Tamargo IA, Rubovitch V, Holloway HW, Lehrmann E, Wood WH, Zhang Y, Becker KG, Perez E, Van Praag H, Luo Y, Hoffer BJ, Becker RE, Pick CG, Greig NH. Cognitive Impairments Induced by Concussive Mild Traumatic Brain Injury in Mouse Are Ameliorated by Treatment with Phenserine via Multiple Non-Cholinergic and Cholinergic Mechanisms. PLoS One 2016; 11:e0156493. [PMID: 27254111 PMCID: PMC4890804 DOI: 10.1371/journal.pone.0156493] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI), often caused by a concussive impact to the head, affects an estimated 1.7 million Americans annually. With no approved drugs, its pharmacological treatment represents a significant and currently unmet medical need. In our prior development of the anti-cholinesterase compound phenserine for the treatment of neurodegenerative disorders, we recognized that it also possesses non-cholinergic actions with clinical potential. Here, we demonstrate neuroprotective actions of phenserine in neuronal cultures challenged with oxidative stress and glutamate excitotoxicity, two insults of relevance to TBI. These actions translated into amelioration of spatial and visual memory impairments in a mouse model of closed head mild TBI (mTBI) two days following cessation of clinically translatable dosing with phenserine (2.5 and 5.0 mg/kg BID x 5 days initiated post mTBI) in the absence of anti-cholinesterase activity. mTBI elevated levels of thiobarbituric acid reactive substances (TBARS), a marker of oxidative stress. Phenserine counteracted this by augmenting homeostatic mechanisms to mitigate oxidative stress, including superoxide dismutase [SOD] 1 and 2, and glutathione peroxidase [GPx], the activity and protein levels of which were measured by specific assays. Microarray analysis of hippocampal gene expression established that large numbers of genes were exclusively regulated by each individual treatment with a substantial number of them co-regulated between groups. Molecular pathways associated with lipid peroxidation were found to be regulated by mTBI, and treatment of mTBI animals with phenserine effectively reversed injury-induced regulations in the ‘Blalock Alzheimer’s Disease Up’ pathway. Together these data suggest that multiple phenserine-associated actions underpin this compound’s ability to ameliorate cognitive deficits caused by mTBI, and support the further evaluation of the compound as a therapeutic for TBI.
Collapse
Affiliation(s)
- David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Koji Fukui
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
- Division of Bioscience and Engineering, Shibaura Institute of Technology, Saitama 3378570, Japan
| | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Qian-sheng Yu
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Shani Barak
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Ian A. Tamargo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Harold W. Holloway
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - William H. Wood
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Evelyn Perez
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Henriette Van Praag
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Yu Luo
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Robert E. Becker
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
- Independent Researcher, 7123 Pinebrook Road, Park City, UT 94098, United States of America
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
- * E-mail:
| |
Collapse
|
146
|
Sorghum stem extract modulates Na+/K+-ATPase, ecto-5′-nucleotidase, and acetylcholinesterase activities. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2259-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
147
|
Rapid eye movement sleep disruption and sleep fragmentation are associated with increased orexin-A cerebrospinal-fluid levels in mild cognitive impairment due to Alzheimer's disease. Neurobiol Aging 2016; 40:120-126. [DOI: 10.1016/j.neurobiolaging.2016.01.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 01/30/2023]
|
148
|
Mohamed LA, Keller JN, Kaddoumi A. Role of P-glycoprotein in mediating rivastigmine effect on amyloid-β brain load and related pathology in Alzheimer's disease mouse model. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:778-787. [PMID: 26780497 PMCID: PMC4788561 DOI: 10.1016/j.bbadis.2016.01.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/01/2023]
Abstract
Recently, we showed that rivastigmine decreased amyloid-β (Aβ) brain load in aged rats by enhancing its clearance across the blood-brain barrier (BBB) via upregulation of P-glycoprotein (P-gp) and low-density lipoprotein receptor-related protein 1 (LRP1). Here, we extend our previous work to clarify P-gp role in mediating rivastigmine effect on Aβ brain levels and neuroprotection in a mouse model of Alzheimer's disease (AD) that expresses different levels of P-gp. APPSWE mice were bred with mdr1a/b knockout mice to produce littermates that were divided into three groups; APP(+)/mdr1(+/+), APP(+)/mdr1(+/-) and APP(+)/mdr1(-/-). Animals received rivastigmine treatment (0.3mg/kg/day) or vehicle for 8weeks using Alzet osmotic mini-pumps. ELISA analysis of brain homogenates for Aβ showed rivastigmine treatment to significantly decrease Aβ brain load in APP(+)/mdr1(+/+) by 25% and in APP(+)/mdr1(+/-) mice by 21% compared to their vehicle treated littermates, but not in APP(+)/mdr1(-/-) mice. In addition, rivastigmine reduced GFAP immunostaining of astrocytes by 50% and IL-1β brain level by 43% in APP(+)/mdr1(+/+) mice, however its effect was less pronounced in P-gp knockout mice. Moreover, rivastigmine demonstrated a P-gp expression dependent neuroprotective effect that was highest in APP(+)/mdr1(+/+)>APP(+)/mdr1(+/-)>APP(+)/mdr1(-/-) as determined by expression of synaptic markers PSD-95 and SNAP-25 using Western blot analysis. Collectively, our results suggest that P-gp plays important role in mediating rivastigmine non-cholinergic beneficial effects, including Aβ brain load reduction, neuroprotective and anti-inflammatory effects in the AD mouse models.
Collapse
Affiliation(s)
- Loqman A Mohamed
- Department of Basic Pharmaceutical Science, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, LA 71201, United States
| | - Jeffrey N Keller
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, United States
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Science, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, LA 71201, United States.
| |
Collapse
|
149
|
Hopper S, Udawela M, Scarr E, Dean B. Allosteric modulation of cholinergic system: Potential approach to treating cognitive deficits of schizophrenia. World J Pharmacol 2016; 5:32-43. [DOI: 10.5497/wjp.v5.i1.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/26/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a psychiatric disorder affecting approximately 1% of the population worldwide and is characterised by the presence of positive and negative symptoms and cognitive deficits. Whilst current therapeutics ameliorate positive symptoms, they are largely ineffective in improving negative symptoms and cognitive deficits. The cholinergic neurotransmitter system heavily influences cognitive function and there is evidence that implicates disruption of the central cholinergic system in schizophrenia. Historically, targeting the cholinergic system has been impeded by poor selectivity leading to intolerable side effects warranting the need to develop more targeted therapeutic compounds. In this review we will summarise evidence supporting the roles of the cholinergic system, particularly the muscarinic M1 receptor, in the pathophysiology of schizophrenia and discuss the potential of a promising new class of candidate compounds, allosteric ligands, for addressing the difficulties involved in targeting this system. The body of evidence presented here highlights the dysfunction of the cholinergic system in schizophrenia and that targeting this system by taking advantage of allosteric ligands is having clinically meaningful effect on cognitive deficits.
Collapse
|
150
|
Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition. Biosens Bioelectron 2016; 75:359-64. [DOI: 10.1016/j.bios.2015.08.063] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
|