101
|
Lin TY, Lu CW, Huang WJ, Wang SJ. Involvement of the cGMP pathway in the osthole-facilitated glutamate release in rat hippocampal nerve endings. Synapse 2011; 66:232-9. [PMID: 22045627 DOI: 10.1002/syn.21505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/03/2011] [Indexed: 11/11/2022]
Abstract
Osthole, an active constituent isolated from Cnidium monnieri (L.) Cusson, has previously been shown to have the capacity to increase depolarization-evoked glutamate release in rat hippocampal nerve terminals. As cGMP-dependent signaling cascade has been found to modulate glutamate release at the presynaptic level, the aim of this study was to further examine the role of cGMP signaling pathway in the regulation of osthole on glutamate release in hippocampal synaptosomes. Results showed that osthole dose-dependently increased intrasynaptosomal cGMP levels. The elevation of cGMP levels by osthole was prevented by the phosphodiesterase 5 inhibitor sildenafil but was insensitive to the guanylyl cyclase inhibitor ODQ. In addition, osthole-induced facilitation of 4-aminopyridine (4-AP)-evoked glutamate release was completely prevented by the cGMP-dependent protein kinase (PKG) inhibitors, KT5823, and Rp-8-Br-PET-cGMPS. Direct activation of PKG with 8-Br-cGMP or 8-pCPT-cGMP also occluded the osthole-mediated facilitation of 4-AP-evoked glutamate release. Furthermore, sildenafil exhibited a dose-dependent facilitation of 4-AP-evoked release of glutamate and occluded the effect of osthole on the 4-AP-evoked glutamate release. Collectively, our findings suggest that osthole-mediated facilitation of glutamate release involves the activation of cGMP/PKG-dependent pathway.
Collapse
Affiliation(s)
- Tzu Yu Lin
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan 220
| | | | | | | |
Collapse
|
102
|
Terry AV, Callahan PM, Hall B, Webster SJ. Alzheimer's disease and age-related memory decline (preclinical). Pharmacol Biochem Behav 2011; 99:190-210. [PMID: 21315756 PMCID: PMC3113643 DOI: 10.1016/j.pbb.2011.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/21/2011] [Accepted: 02/01/2011] [Indexed: 01/05/2023]
Abstract
An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer's disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as "Mild Cognitive Impairment" (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD and MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy and adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory function.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology and Small Animal Behavior Core, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
103
|
Pascual M, Baliño P, Alfonso-Loeches S, Aragón CMG, Guerri C. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 2011; 25 Suppl 1:S80-91. [PMID: 21352907 DOI: 10.1016/j.bbi.2011.02.012] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in the innate immune response, and emerging evidence indicates their role in brain injury and neurodegeneration. Our recent results have demonstrated that ethanol is capable of activating glial TLR4 receptors and that the elimination of these receptors in mice protects against ethanol-induced glial activation, induction of inflammatory mediators and apoptosis. This study was designed to assess whether ethanol-induced inflammatory damage causes behavioral and cognitive consequences, and if behavioral alterations are dependent of TLR4 functions. Here we show in mice drinking alcohol for 5months, followed by a 15-day withdrawal period, that activation of the astroglial and microglial cells in frontal cortex and striatum is maintained and that these events are associated with cognitive and anxiety-related behavioral impairments in wild-type (WT) mice, as demonstrated by testing the animals with object memory recognition, conditioned taste aversion and dark and light box anxiety tasks. Mice lacking TLR4 receptors are protected against ethanol-induced inflammatory damage, and behavioral associated effects. We further assess the possibility of the epigenetic modifications participating in short- or long-term behavioral effects associated with neuroinflammatory damage. We show that chronic alcohol treatment decreases H4 histone acetylation and histone acetyltransferases activity in frontal cortex, striatum and hippocampus of WT mice. Alterations in chromatin structure were not observed in TLR4(-/-) mice. These results provide the first evidence of the role that TLR4 functions play in the behavioral consequences of alcohol-induced inflammatory damage and suggest that the epigenetic modifications mediated by TLR4 could contribute to short- or long-term alcohol-induced behavioral or cognitive dysfunctions.
Collapse
Affiliation(s)
- María Pascual
- Department of Cell Pathology, Príncipe Felipe Research Center, Avda. Autopista del Saler 16, 46012 Valencia, Spain
| | | | | | | | | |
Collapse
|
104
|
Moriguchi S, Yamamoto Y, Ikuno T, Fukunaga K. Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice. J Neurochem 2011; 117:879-91. [PMID: 21434925 DOI: 10.1111/j.1471-4159.2011.07256.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK.
Collapse
Affiliation(s)
- Shigeki Moriguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Sendai, Japan
| | | | | | | |
Collapse
|
105
|
Shim YS, Pae CU, Kim SW, Kim HW, Kim JC, Koh JS. Effects of repeated dosing with Udenafil (Zydena) on cognition, somatization and erection in patients with erectile dysfunction: a pilot study. Int J Impot Res 2011; 23:109-14. [PMID: 21544084 DOI: 10.1038/ijir.2011.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The PDE5 inhibitors have recently been found to have cognitive-enhancing effects in animal models. To investigate the efficacy of repeated dosing with a PDE5 inhibitor on cognitive function and somatization in patients with erectile dysfunction, 27 patients with erectile dysfunction received udenafil (100 mg) at 3-day intervals for 2 months. The international index of erectile function-5 (IIEF-5), a cognitive battery (the Korean version of mini-mental state examination (K-MMSE), the frontal assessment battery (K-FAB), the Seoul verbal learning test) and a physical health questionnaire-15 (PHQ-15) were performed at baseline and at 2 months, following the administration of udenafil. The patients were divided on the basis of their IIEF-5 score into responders (change>7) and non-responders. The mean IIEF-5 score was significantly increased after treatment (7.92 ± 3.83 to 16.33 ± 4.75, P<0.001). The scores of K-MMSE (27.03 ± 1.58 to 28.07 ± 1.57, P=0.001), K-FAB (13.65 ± 1.96 to 15.41 ± 1.85, P<0.001) and PHQ-15 (18.92 ± 4.96 to 17.63 ± 4.75, P=0.003) were significantly improved after treatment. In addition, the responders (n=16) had more improved cognitive function (r=0.603, P=0.001) and somatization (r=-0.402, P=0.038) than non-responders (n=11). Repeated dosing with a PDE5 inhibitor seems to improve cognitive function and somatization, as well as erectile function in patients with erectile dysfunction.
Collapse
Affiliation(s)
- Y S Shim
- Department of Neurology, The Catholic University of Korea, Bucheon St. Mary's Hospital, Bucheon, Korea
| | | | | | | | | | | |
Collapse
|
106
|
Boccia MM, Blake MG, Krawczyk MC, Baratti CM. Sildenafil, a selective phosphodiesterase type 5 inhibitor, enhances memory reconsolidation of an inhibitory avoidance task in mice. Behav Brain Res 2011; 220:319-24. [PMID: 21333692 DOI: 10.1016/j.bbr.2011.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 12/25/2022]
Abstract
Intracellular levels of the second messengers cAMP and cGMP are maintained through a balance between production, carried out by adenyl cyclase (AC) and guanylyl cyclase (GC), and degradation, carried out by phosphodiesterases (PDEs). Recently, PDEs have gained increased attention as potential new targets for cognition enhancement, with particular reference to phosphodiesterase type 5 (PDE5A). It is accepted that once consolidation is completed memory becomes permanent, but it has also been suggested that reactivation (memory retrieval) of the original memory makes it sensitive to the same treatments that affect memory consolidation when given after training. This new period of sensitivity coined the term reconsolidation. Sildenafil (1, 3, and 10mg/kg, ip), a cGMP-PDE5 inhibitor, facilitated retention performance of a one-trial step-through inhibitory avoidance task, when administered to CF-1 male mice immediately after retrieval. The effects of sildenafil (1mg/kg, ip) were time-dependent, long-lasting and inversely correlated with memory age. The administration of sildenafil (1mg/kg, ip) 30 min prior to the 2nd retention test did not affect retention of mice given post-retrieval injections of either vehicle or sildenafil (1mg/kg, ip). Finally, an enhancement of retention was also observed in CF-1 female mice receiving sildenafil (1mg/kg, ip) immediately, but not 180 min after retrieval. In the present paper we reported for the first time that systemic administration of sildenafil after memory reactivation enhances retention performance of the original learning. Our results indirectly point out cGMP, a component of the NO/cGMP/PKG pathway, as a necessary factor for memory reconsolidation.
Collapse
Affiliation(s)
- M M Boccia
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
107
|
Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. Handb Exp Pharmacol 2011:447-85. [PMID: 21695652 DOI: 10.1007/978-3-642-17969-3_19] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes that are involved in the regulation of the intracellular second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) by controlling their rates of hydrolysis. There are 11 different PDE families and each family typically has multiple isoforms and splice variants. The PDEs differ in their structures, distribution, modes of regulation, and sensitivity to inhibitors. Since PDEs have been shown to play distinct roles in processes of emotion and related learning and memory processes, selective PDE inhibitors, by preventing the breakdown of cAMP and/or cGMP, modulate mood and related cognitive activity. This review discusses the current state and future development in the burgeoning field of PDEs in the central nervous system. It is becoming increasingly clear that PDE inhibitors have therapeutic potential for the treatment of neuropsychiatric disorders involving disturbances of mood, emotion, and cognition.
Collapse
|
108
|
Sabayan B, Zamiri N, Farshchizarabi S, Sabayan B. Phosphodiesterase-5 inhibitors: novel weapons against Alzheimer's disease? Int J Neurosci 2010; 120:746-51. [PMID: 20942592 DOI: 10.3109/00207454.2010.520381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although Alzheimer's disease (AD) poses a major health problem in both developing and developed countries, no definite treatment is available for its cure; hence efforts are being focused on introducing disease-modifying agents for slowing down its course. Recent studies on the effects of sildenafil on different organs have shown that PDE-5 inhibitors may offer new horizons in therapeutic treatment of pulmonary hypertension, multiple sclerosis, neuropathic pain, and age-related memory impairment. In this paper we introduce PDE-5 inhibitors as novel disease-modifying agents against AD and review the different impacts of PDE-5 inhibition on various pathogenic mechanisms leading to AD, including neuronal apoptosis, neurovascular dysfunction, neurotransmitter modulation, and impairment of neurogenesis.
Collapse
Affiliation(s)
- Behnam Sabayan
- Department of Geriatrics and Gerontology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | |
Collapse
|
109
|
Nanfaro F, Cabrera R, Bazzocchini V, Laconi M, Yunes R. Pregnenolone sulfate infused in lateral septum of male rats impairs novel object recognition memory. Pharmacol Rep 2010; 62:265-72. [PMID: 20508281 DOI: 10.1016/s1734-1140(10)70265-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 10/01/2009] [Indexed: 11/15/2022]
Abstract
In the present paper we show for the first time that pregnenolone sulfate (Preg-S) impairs rats' memory for novel object recognition when injected in lateral septum (1.2 microM). The effect of Preg-S is clearly related to the moment the reagent is administered: if administered shortly after the training phase, or prior to the test phase of the experiment, there is no amnesic effect. It is only amnesic when administered 30 min before training. Accordingly, Preg-S does not appear to affect the storage of new memories or their retrieval but rather the acquisition itself. Based on the described afferences and efferences of lateral septum, we suggest a possible stimulatory effect of Preg-S regarding glutamate receptors and/or an inhibitory effect of GABA receptors located in local interneurons or recurrent axon collaterals, both of which have been reported to exist in the aforementioned nucleus.
Collapse
Affiliation(s)
- Federico Nanfaro
- Area de Farmacologia, Facultad de Ciencias Medicas, Universidad Nacional de Cuyo (IMBECU-FCM, CONICET), Argentina
| | | | | | | | | |
Collapse
|
110
|
Antidepressant-like properties of phosphodiesterase type 5 inhibitors and cholinergic dependency in a genetic rat model of depression. Behav Pharmacol 2010; 21:540-7. [DOI: 10.1097/fbp.0b013e32833befe5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
111
|
Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 2010; 62:525-63. [PMID: 20716671 PMCID: PMC2964902 DOI: 10.1124/pr.110.002907] [Citation(s) in RCA: 736] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To date, studies suggest that biological signaling by nitric oxide (NO) is primarily mediated by cGMP, which is synthesized by NO-activated guanylyl cyclases and broken down by cyclic nucleotide phosphodiesterases (PDEs). Effects of cGMP occur through three main groups of cellular targets: cGMP-dependent protein kinases (PKGs), cGMP-gated cation channels, and PDEs. cGMP binding activates PKG, which phosphorylates serines and threonines on many cellular proteins, frequently resulting in changes in activity or function, subcellular localization, or regulatory features. The proteins that are so modified by PKG commonly regulate calcium homeostasis, calcium sensitivity of cellular proteins, platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-signaling pathway, and other processes. Current therapies that have successfully targeted the NO-signaling pathway include nitrovasodilators (nitroglycerin), PDE5 inhibitors [sildenafil (Viagra and Revatio), vardenafil (Levitra), and tadalafil (Cialis and Adcirca)] for treatment of a number of vascular diseases including angina pectoris, erectile dysfunction, and pulmonary hypertension; the PDE3 inhibitors [cilostazol (Pletal) and milrinone (Primacor)] are used for treatment of intermittent claudication and acute heart failure, respectively. Potential for use of these medications in the treatment of other maladies continues to emerge.
Collapse
Affiliation(s)
- Sharron H Francis
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232-0615, USA.
| | | | | | | |
Collapse
|
112
|
Devonshire IM, Dommett EJ, Grandy TH, Halliday AC, Greenfield SA. Environmental enrichment differentially modifies specific components of sensory-evoked activity in rat barrel cortex as revealed by simultaneous electrophysiological recordings and optical imaging in vivo. Neuroscience 2010; 170:662-9. [PMID: 20654700 DOI: 10.1016/j.neuroscience.2010.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Environmental enrichment of laboratory animals leads to multi-faceted changes to physiology, health and disease prognosis. An important and under-appreciated factor in enhancing cognition through environmental manipulation may be improved basic sensory function. Previous studies have highlighted changes in cortical sensory map plasticity but have used techniques such as electrophysiology, which suffer from poor spatial resolution, or optical imaging of intrinsic signals, which suffers from low temporal resolution. The current study attempts to overcome these limitations by combining voltage-sensitive dye imaging with somatosensory-evoked potential (SEP) recordings: the specific aim was to investigate sensory function in barrel cortex using multi-frequency whisker stimulation under urethane anaesthesia. Three groups of rats were used that each experienced a different level of behavioural or environmental enrichment. We found that enrichment increased all SEP response components subsequent to the initial thalamocortical input, but only when evoked by single stimuli; the thalamocortical component remained unchanged across all animal groups. The optical signal exhibited no changes in amplitude or latency between groups, resembling the thalamocortical component of the SEP response. Permanent and extensive changes to housing conditions conferred no further enhancement to sensory function above that produced by the milder enrichment of regular handling and behavioural testing, a finding with implications for improvements in animal welfare through practical changes to animal husbandry.
Collapse
Affiliation(s)
- I M Devonshire
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | | | | | | | | |
Collapse
|
113
|
Mathiasen JR, DiCamillo A. Novel Object Recognition in the Rat: A Facile Assay for Cognitive Function. ACTA ACUST UNITED AC 2010; Chapter 5:Unit 5.59. [PMID: 22294372 DOI: 10.1002/0471141755.ph0559s49] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Amy DiCamillo
- Discovery Research, Cephalon West Chester Pennsylvania
| |
Collapse
|
114
|
Jans LAW, Korte-Bouws GAH, Korte SM, Blokland A. The effects of acute tryptophan depletion on affective behaviour and cognition in Brown Norway and Sprague Dawley rats. J Psychopharmacol 2010; 24:605-14. [PMID: 19074537 DOI: 10.1177/0269881108099424] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies in rats and humans have shown that the essential amino acid tryptophan (TRP) is depleted after consumption of a gelatin-based protein-carbohydrate mixture, which is lacking L-tryptophan (TRP-). In rats, TRP depletion caused impaired object recognition but only had a modest effect on affective behaviour. Because these studies were preformed with Wistar rats, the aim of the present experiment was to evaluate strain differences in behavioural responses to acute TRP depletion between Brown Norway (BN) and Sprague Dawley (SD) rats. The rats were repeatedly treated with TRP- or a balanced control (TRP+) and were tested in tests of anxiety- and depression-related behaviour (open-field test, home cage emergence test, social interaction test, forced swim test) and memory. SD rats, but not BNs, showed more anxiety- and depression-related behaviour and impaired object recognition after TRP- treatment. There was a dissociation between plasma TRP levels, central 5-HT concentrations and 5-HIAA/5-HT turnover. Both strains showed about 60% decrease in plasma TRP/SigmaLNAA levels, whereas hippocampal 5-HT levels were lower after TRP- in BN but not SD rats. Conversely, 5-HIAA/5-HT turnover was lower after TRP- in SD but not BN rats, suggesting a dissociation between 5-HT storage and release in SDs. The present study suggests that acute tryptophan depletion effects are strain dependent on the behavioural and the neurochemical level.
Collapse
Affiliation(s)
- L A W Jans
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
115
|
Reierson GW, Mastronardi CA, Licinio J, Wong ML. Repeated antidepressant therapy increases cyclic GMP signaling in rat hippocampus. Neurosci Lett 2009; 466:149-53. [PMID: 19788915 PMCID: PMC2804064 DOI: 10.1016/j.neulet.2009.09.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/16/2009] [Accepted: 09/24/2009] [Indexed: 12/31/2022]
Abstract
Cyclic adenosine monophosphpate (cAMP) signaling is thought to be involved in the pathophysiology of major depressive disorder and antidepressant action; however, relatively little is known about the possible role of cyclic guanosine monophosphate (cGMP) signaling. Accumulating evidence suggests that crosstalk occurs between cAMP and cGMP pathways. There is a need to clarify the trajectory of cAMP and cGMP concentrations, their synthesis by cyclases, and degradation by phosphodiesterases (PDEs) to understand the role of cyclic mononucleotide signaling in the effect of chronic antidepressant therapy. We used quantitative real-time PCR and enzyme immunoassay to systematically investigate the expression of intracellular signaling cascade elements in the hippocampus of rats chronically treated with the antidepressants fluoxetine and amitriptyline. We found increased cGMP levels, which were consistent with our findings of decreased PDE gene expression. Immunoassay results showed unchanged cAMP levels. We conclude that increased cGMP signaling might underlie the efficacy of chronic antidepressant treatment.
Collapse
Affiliation(s)
- Gillian W. Reierson
- Center on Pharmacogenomics, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1580 NW 10 Avenue, Miami, FL 33136, USA
| | - Claudio A. Mastronardi
- Center on Pharmacogenomics, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1580 NW 10 Avenue, Miami, FL 33136, USA
| | - Julio Licinio
- Center on Pharmacogenomics, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1580 NW 10 Avenue, Miami, FL 33136, USA
| | - Ma-Li Wong
- Center on Pharmacogenomics, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1580 NW 10 Avenue, Miami, FL 33136, USA
| |
Collapse
|
116
|
Olivier JDA, Jans LAW, Blokland A, Broers NJ, Homberg JR, Ellenbroek BA, Cools AR. Serotonin transporter deficiency in rats contributes to impaired object memory. GENES BRAIN AND BEHAVIOR 2009; 8:829-34. [DOI: 10.1111/j.1601-183x.2009.00530.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
117
|
Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-beta load in an Alzheimer's disease mouse model. J Neurosci 2009; 29:8075-86. [PMID: 19553447 DOI: 10.1523/jneurosci.0864-09.2009] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Memory loss, synaptic dysfunction, and accumulation of amyloid beta-peptides (A beta) are major hallmarks of Alzheimer's disease (AD). Downregulation of the nitric oxide/cGMP/cGMP-dependent protein kinase/c-AMP responsive element-binding protein (CREB) cascade has been linked to the synaptic deficits after A beta elevation. Here, we report that the phosphodiesterase 5 inhibitor (PDE5) sildenafil (Viagra), a molecule that enhances phosphorylation of CREB, a molecule involved in memory, through elevation of cGMP levels, is beneficial against the AD phenotype in a mouse model of amyloid deposition. We demonstrate that the inhibitor produces an immediate and long-lasting amelioration of synaptic function, CREB phosphorylation, and memory. This effect is also associated with a long-lasting reduction of A beta levels. Given that side effects of PDE5 inhibitors are widely known and do not preclude their administration to a senile population, these drugs have potential for the treatment of AD and other diseases associated with elevated A beta levels.
Collapse
|
118
|
Rutten K, Van Donkelaar EL, Ferrington L, Blokland A, Bollen E, Steinbusch HW, Kelly PA, Prickaerts JH. Phosphodiesterase inhibitors enhance object memory independent of cerebral blood flow and glucose utilization in rats. Neuropsychopharmacology 2009; 34:1914-25. [PMID: 19262466 DOI: 10.1038/npp.2009.24] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphodiesterase (PDE) inhibitors prevent the breakdown of the second messengers, cyclic AMP (cAMP) and cyclic GMP (cGMP), and are currently studied as possible targets for cognitive enhancement. Earlier studies indicated beneficial effects of PDE inhibitors in object recognition. In this study we tested the effects of three PDE inhibitors on spatial memory as assessed in a place and object recognition task. Furthermore, as both cAMP and cGMP are known vasodilators, the effects of PDE inhibition on cognitive functions could be explained by enhancement of cerebrovascular function. We examined this possibility by measuring the effects of PDE5 and PDE4 inhibitor treatment on local cerebral blood flow and glucose utilization in rats using [14C]-iodoantipyrine and [14C]-2-deoxyglucose quantitative autoradiography, respectively. In the spatial location task, PDE5 inhibition (cGMP) with vardenafil enhanced only early phase consolidation, PDE4 inhibition (cAMP) with rolipram enhanced only late phase consolidation, and PDE2 inhibition (cAMP and cGMP) with Bay 60-7550 enhanced both consolidation processes. Furthermore, PDE5 inhibition had no cerebrovascular effects in hippocampal or rhinal areas. PDE4 inhibition increased rhinal, but not hippocampal blood flow, whereas it decreased glucose utilization in both areas. In general, PDE5 inhibition decreased the ratio between blood flow and glucose utilization, indicative of general oligaemia; whereas PDE4 inhibition increased this ratio, indicative of general hyperemia. Both oligaemic and hyperemic conditions are detrimental for brain function and do not explain memory enhancement. These results underscore the specific effects of cAMP and cGMP on memory consolidation (object and spatial memory) and provide evidence that the underlying mechanisms of PDE inhibition on cognition are independent of cerebrovascular effects.
Collapse
Affiliation(s)
- Kris Rutten
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Moriguchi S, Han F, Shioda N, Yamamoto Y, Nakajima T, Nakagawasai O, Tadano T, Yeh JZ, Narahashi T, Fukunaga K. Nefiracetam activation of CaM kinase II and protein kinase C mediated by NMDA and metabotropic glutamate receptors in olfactory bulbectomized mice. J Neurochem 2009; 110:170-81. [DOI: 10.1111/j.1471-4159.2009.06122.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
120
|
Aversa A, Pili M, Francomano D, Bruzziches R, Spera E, La Pera G, Spera G. Effects of vardenafil administration on intravaginal ejaculatory latency time in men with lifelong premature ejaculation. Int J Impot Res 2009; 21:221-7. [PMID: 19474796 DOI: 10.1038/ijir.2009.21] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 11/08/2022]
Abstract
Premature ejaculation (PE) is thought to be the most common male sexual dysfunction; however, the prevalence of lifelong (LL)-PE is relatively low. The aim of this study was to investigate the effects of on-demand vardenafil (10 mg) to modify the intravaginal ejaculatory latency time (IELT) in men with LL-PE without erectile dysfunction. Forty-two men (18-35 years) were enrolled in a 16-week, double-blind, placebo-controlled, cross-over study. Primary end point was the modification from baseline of IELT assessed by stopwatch technique; secondary end points were post-ejaculatory refractory time (PERT) and variations of scores at the Index of Premature Ejaculation questionnaire. The changes in geometric mean IELT were superior after taking vardenafil (0.6+/-0.3 vs 4.5+/-1.1 min, P<0.01), compared with placebo (0.7+/-0.3 vs 0.9+/-1.0 min, ns). PERT dropped significantly after vardenafil (16.7+/-2.0 vs 4.3+/-0.9 min, P<0.001), compared with placebo (15.3+/-2.2 vs 15.8+/-2.3 min). Patients who took vardenafil (vs placebo) reported significantly (P<0.01) increased ejaculatory control (6+/-2 vs 16+/-2), improved overall sexual satisfaction (7+/-2 vs 15+/-1) and distress (4+/-1 vs 8+/-1) scores, respectively. Multiple regression analysis (r(2)=0.86) for IELT by the number of attempts at sexual intercourse showed significant differences between the slopes of lines for placebo and vardenafil (P<0.0001). The most common adverse events for vardenafil (vs placebo) were headache (10 vs 3%), flushing (12 vs 0%) and dyspepsia (10 vs 0%), which tended to disappear over the time. In conclusion, in our study, vardenafil increased IELT and reduced PERT in men with LL-PE. Besides, improvements in confidence, perception of ejaculatory control and overall sexual satisfaction were reported.
Collapse
Affiliation(s)
- A Aversa
- Chair of Internal Medicine, DFM, Sapienza University of Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
121
|
Marte A, Pepicelli O, Cavallero A, Raiteri M, Fedele E. In vivo effects of phosphodiesterase inhibition on basal cyclic guanosine monophosphate levels in the prefrontal cortex, hippocampus and cerebellum of freely moving rats. J Neurosci Res 2009; 86:3338-47. [PMID: 18655195 DOI: 10.1002/jnr.21788] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have characterized the various phosphodiesterases (PDE) that degrade cyclic GMP in the prefrontal cortex, hippocampus, and cerebellum using the microdialysis technique to measure in vivo extracellular cyclic GMP in awake rats. The following PDE blockers were used (100 and 1,000 microM): 8-methoxymethyl-IBMX (8-MM-IBMX), erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), milrinone, rolipram, and zaprinast. For solubility reasons, sildenafil was tested only at 100 microM. All drugs were administered locally in the brain regions through the dialysis probe. At 100 microM, 8-MM-IBMX enhanced the cyclic nucleotide extracellular levels in the prefrontal cortex and hippocampus but not in the cerebellum; EHNA and milrinone were active only in the hippocampus; rolipram was devoid of any effect; zaprinast and sildenafil were effective in all three brain areas. At 1 mM, 8-MM-IBMX, milrinone, and zaprinast increased extracellular cyclic GMP in all the brain regions examined, EHNA became active also in the prefrontal cortex and rolipram showed a significant effect only in the cerebellum. This is the first in vivo functional study showing that, in cortex, PDE1, -2, and -5/9 degrade cGMP, with PDE9 probably playing a major role; in hippocampus, PDE5/9 and PDE1 are mainly involved and seem almost equally active, but PDE2 and -3 also contribute; in cerebellum, PDE5/9 are the main cGMP hydrolyzing enzymes, but also PDE1 and -4 significantly operate.
Collapse
Affiliation(s)
- Antonella Marte
- Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | |
Collapse
|
122
|
Abstract
Phosphodiesterases (PDEs) represent important cornerstones of cGMP signaling in various tissues. Since the discovery of PDE activity in 1962, it has become clear that the functional characteristics of PDEs and their role in cyclic nucleotide signaling are fairly complex. On the one hand, members of the PDE family responsible for the hydrolysis of cGMP affect cellular responses by shaping cGMP signals derived from the activation of soluble cytosolic and/or membrane bound particulate guanylyl cyclases. Conversely, PDEs may function as downstream effectors in the cGMP signaling cascade. To make things even more sophisticated, cGMP modulates the activity of several PDEs either directly, by binding to a regulatory domain, or indirectly, through phosphorylation, and the result can be either inhibition or stimulation of the enzyme, depending on the subtype. Furthermore, cross-talk between cGMP and cAMP signaling is achieved by cGMP-dependent modulation of PDEs hydrolyzing cAMP and vice versa. Mammals possess at least 21 PDE genes and often express a set of PDEs in a tissue- and differentiation-dependent manner. Given these premises, it is still a challenging task to elucidate the physiological function(s) of individual PDE genes. The present chapter focuses on the role of PDEs as regulators of neuronal functions. Useful information regarding this topic has been gained by studying (1) the expression pattern of PDEs in the CNS, (2) the association of PDEs with specific macromolecular signaling complexes and (3) the phenotypes associated with mutations or ablation of PDE genes in man, mice and fruit flies, respectively. PDEs degrading cGMP and/or being regulated by cGMP have been implicated in cognition and learning, Parkinson's disease, attention deficit hyperactivity disorder, psychosis and depression. Correspondingly, modulators of PDEs have become attractive tools for treatment of these disorders of CNS function.
Collapse
Affiliation(s)
- Thomas Kleppisch
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Biedersteiner Strasse 29, München, 80802, Germany.
| |
Collapse
|
123
|
Affiliation(s)
- Sharron H Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Light Hall Room 702, Nashville, TN 37232-0615, USA.
| | | | | |
Collapse
|
124
|
Abstract
The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays a crucial role in the control of cardiovascular and gastrointestinal homeostastis, but its effects on neuronal functions are less established. This review summarizes recent biochemical and functional data on the role of the cGMP signalling pathway in the mammalian brain, with a focus on the regulation of synaptic plasticity, learning, and other complex behaviours. Expression profiling, along with pharmacological and genetic manipulations, indicates important functions of nitric oxide (NO)-sensitive soluble guanylyl cyclases (sGCs), cGMP-dependent protein kinases (cGKs), and cGMP-regulated phosphodiesterases (PDEs) as generators, effectors, and modulators of cGMP signals in the brain, respectively. In addition, neuronal cGMP signalling can be transmitted through cyclic nucleotide-gated (CNG) or hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels. The canonical NO/sGC/cGMP/cGK pathway modulates long-term changes of synaptic activity in the hippocampus, amygdala, cerebellum, and other brain regions, and contributes to distinct forms of learning and memory, such as fear conditioning, motor adaptation, and object recognition. Behavioural studies indicate that cGMP signalling is also involved in anxiety, addiction, and the pathogenesis of depression and schizophrenia. At the molecular level, different cGK isoforms appear to mediate effects of cGMP on presynaptic transmitter release and postsynaptic functions. The cGKs have been suggested to modulate cytoskeletal organization, vesicle and AMPA receptor trafficking, and gene expression via phosphorylation of various substrates including VASP, RhoA, RGS2, hSERT, GluR1, G-substrate, and DARPP-32. These and other components of the cGMP signalling cascade may be attractive new targets for the treatment of cognitive impairment, drug abuse, and psychiatric disorders.
Collapse
|
125
|
Goff DC, Cather C, Freudenreich O, Henderson DC, Evins AE, Culhane MA, Walsh JP. A placebo-controlled study of sildenafil effects on cognition in schizophrenia. Psychopharmacology (Berl) 2009; 202:411-7. [PMID: 18716761 PMCID: PMC2704618 DOI: 10.1007/s00213-008-1278-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 07/28/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND Phosphodiesterase 5 (PDE5) inhibitors increase cyclic guanosine monophosphate (cGMP) concentrations in the intracellular pathway activated by N-methyl-D-aspartic acid receptors which is believed to mediate long-term potentiation and memory consolidation. The PDE5 inhibitor sildenafil has been shown to enhance memory in animal models. In addition, neuronal nitric oxide synthase, another component of the NMDA/nitric oxide/cGMP intracellular pathway, has been reported to be dysregulated in schizophrenia patients. MATERIALS AND METHODS Seventeen adult schizophrenia outpatients treated with a stable dose of antipsychotic received a single oral dose of placebo, sildenafil 50 mg, and sildenafil 100 mg in random order with a 48-h interval between administrations. Psychiatric symptom ratings and a cognitive battery were performed at baseline and 1 hour following each administration of the study drug. In addition, memory consolidation was examined by testing recall 48 h later, prior to the next administration of the study drug. RESULTS Fifteen subjects completed all three treatment conditions. One subject developed irritability and required hospitalization 2 days after receiving sildenafil 100 mg. Neither dose of sildenafil significantly affected cognitive performance or symptom ratings compared to the placebo. CONCLUSION Despite evidence for cognitive-enhancing effects of sildenafil in animal models, the strategy for treating putative NMDA receptor-mediated memory deficits in schizophrenia with sildenafil 50 and 100 mg was not successful. It is possible that the doses used in this study were not optimal or that repeated dosing may be necessary to achieve therapeutic effects. Agents under development that inhibit other subtypes of PDE remain promising for schizophrenia and dementia.
Collapse
Affiliation(s)
- Donald C. Goff
- Department of Psychiatry, MGH Schizophrenia Program, Freedom Trail Clinic, Massachusetts General Hospital, Harvard Medical School, 25 Staniford St., 2nd Floor, Boston, MA 02114 USA
| | - Corinne Cather
- Department of Psychiatry, MGH Schizophrenia Program, Freedom Trail Clinic, Massachusetts General Hospital, Harvard Medical School, 25 Staniford St., 2nd Floor, Boston, MA 02114 USA
| | - Oliver Freudenreich
- Department of Psychiatry, MGH Schizophrenia Program, Freedom Trail Clinic, Massachusetts General Hospital, Harvard Medical School, 25 Staniford St., 2nd Floor, Boston, MA 02114 USA
| | - David C. Henderson
- Department of Psychiatry, MGH Schizophrenia Program, Freedom Trail Clinic, Massachusetts General Hospital, Harvard Medical School, 25 Staniford St., 2nd Floor, Boston, MA 02114 USA
| | - A. Eden Evins
- Department of Psychiatry, MGH Schizophrenia Program, Freedom Trail Clinic, Massachusetts General Hospital, Harvard Medical School, 25 Staniford St., 2nd Floor, Boston, MA 02114 USA
| | - Melissa A. Culhane
- Department of Psychiatry, MGH Schizophrenia Program, Freedom Trail Clinic, Massachusetts General Hospital, Harvard Medical School, 25 Staniford St., 2nd Floor, Boston, MA 02114 USA
| | - Jared P. Walsh
- Department of Psychiatry, MGH Schizophrenia Program, Freedom Trail Clinic, Massachusetts General Hospital, Harvard Medical School, 25 Staniford St., 2nd Floor, Boston, MA 02114 USA
| |
Collapse
|
126
|
Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berl) 2009; 202:419-43. [PMID: 18709359 PMCID: PMC2704616 DOI: 10.1007/s00213-008-1273-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/23/2008] [Indexed: 12/15/2022]
Abstract
RATIONALE One of the major complaints most people face during aging is an impairment in cognitive functioning. This has a negative impact on the quality of daily life and is even more prominent in patients suffering from neurodegenerative and psychiatric disorders including Alzheimer's disease, schizophrenia, and depression. So far, the majority of cognition enhancers are generally targeting one particular neurotransmitter system. However, recently phosphodiesterases (PDEs) have gained increased attention as a potential new target for cognition enhancement. Inhibition of PDEs increases the intracellular availability of the second messengers cGMP and/or cAMP. OBJECTIVE The aim of this review was to provide an overview of the effects of phosphodiesterase inhibitors (PDE-Is) on cognition, the possible underlying mechanisms, and the relationship to current theories about memory formation. MATERIALS AND METHODS Studies of the effects of inhibitors of different PDE families (2, 4, 5, 9, and 10) on cognition were reviewed. In addition, studies related to PDE-Is and blood flow, emotional arousal, and long-term potentiation (LTP) were described. RESULTS PDE-Is have a positive effect on several aspects of cognition, including information processing, attention, memory, and executive functioning. At present, these data are likely to be explained in terms of an LTP-related mechanism of action. CONCLUSION PDE-Is are a promising target for cognition enhancement; the most suitable candidates appear to be PDE2-Is or PDE9-Is. The future for PDE-Is as cognition enhancers lies in the development of isoform-specific PDE-Is that have limited aversive side effects.
Collapse
|
127
|
van Donkelaar EL, Rutten K, Blokland A, Akkerman S, Steinbusch HWM, Prickaerts J. Phosphodiesterase 2 and 5 inhibition attenuates the object memory deficit induced by acute tryptophan depletion. Eur J Pharmacol 2008; 600:98-104. [PMID: 18957291 DOI: 10.1016/j.ejphar.2008.10.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/26/2008] [Accepted: 10/13/2008] [Indexed: 11/17/2022]
Abstract
The underlying mechanism of short-term memory improvement after inhibition of specific phosphodiesterases (PDEs) is still poorly understood. The present study aimed to reveal the ability of PDE5 and PDE2 inhibitors, that increase cyclic guanosine monophosphate (cGMP) and both cyclic adenosine monophosphate (cAMP) and cGMP, respectively, to reverse an object recognition deficit induced by acute tryptophan depletion. Acute tryptophan depletion is a pharmacological challenge tool to lower central serotonin (5-hydroxytryptamine; 5-HT) levels by depleting the availability of its dietary precursor tryptophan. Short-term object memory was tested in male Wistar rats by exposing them to the object recognition task. First, the effects of acute tryptophan depletion upon object recognition 2 h after administration of the nutritional mixture were established. Subsequently, acute tryptophan depletion was combined with the PDE5 inhibitor vardenafil (1, 3 and 10 mg/kg) or with the PDE2 inhibitor BAY 60-7550 (0.3, 1 and 3 mg/kg), 30 min prior to testing. Acute tryptophan depletion significantly lowered plasma tryptophan levels and impaired object recognition performance. Vardenafil (3 and 10 mg/kg) and BAY 60-7550 (3 mg/kg) were able to attenuate the acute tryptophan depletion induced object recognition impairment. Thus, both PDE5 and PDE2 inhibition improved short-term object recognition performance after an acute tryptophan depletion induced deficit. The underlying mechanisms, however, remain poorly understood and further studies are needed to determine whether the present findings can be explained by a direct effect of enhanced cAMP and cGMP levels upon 5-HT activity, or even other neurotransmitter systems, and possibly an interaction with synthesis of nitric oxide or effects upon cerebral blood flow function.
Collapse
Affiliation(s)
- Eva L van Donkelaar
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
128
|
Zimmerman NP, Brownfield MS, DeVente J, Bass P, Oaks JA. cGMP secreted from the tapeworm Hymenolepis diminuta is a signal molecule to the host intestine. J Parasitol 2008; 94:771-9. [PMID: 18576774 DOI: 10.1645/ge-1418.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/19/2007] [Indexed: 11/10/2022] Open
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP), a well-known intracellular second messenger, is released to the intestinal lumen by the tapeworm, Hymenolepis diminuta. Enzyme-linked immunosorbent assay analysis of tapeworm conditioned media shows that cGMP is released at a constant rate. Multidrug resistant (MDR) proteins are efflux transporters for cyclic nucleotides. Two MDR inhibitors, niflumic acid and zaprinast, inhibit cGMP secretion by tapeworms and change the cGMP localization within the tapeworm tegument, as assessed by immunochemistry. cGMP, normally present throughout the tapeworm tegumental cytoplasm, is absent from the outer cytoplasmic band upon treatment with inhibitors. Inhibition of cGMP secretion by colchicine indicates that cGMP secretion is cytoskeleton dependent. Binding studies of [3H]cGMP to ileal segments of intestine demonstrate 2 saturable, reversible, and high-affinity binding sites. These studies demonstrate that cGMP is secreted from the cestode via a cytoskeleton-dependent mechanism and MDR efflux transporters. In addition, cGMP reaching the intestinal lumen can bind to the mucosa via receptors for cGMP. These data, combined with earlier observations of cGMP altering intestinal motility and slowing lumenal transit, indicate that tapeworms alter the physiology of the host digestive process via the secretion and binding of extracellular cGMP to lumenal receptors in the host intestine.
Collapse
Affiliation(s)
- Noah P Zimmerman
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
129
|
Influence of chronic mild stress on the behavioural effects of acute tryptophan depletion induced by a gelatin-based mixture. Behav Pharmacol 2008; 19:706-15. [DOI: 10.1097/fbp.0b013e328315eced] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
130
|
Olivier JDA, Jans LAW, Korte-Bouws GAH, Korte SM, Deen PMT, Cools AR, Ellenbroek BA, Blokland A. Acute tryptophan depletion dose dependently impairs object memory in serotonin transporter knockout rats. Psychopharmacology (Berl) 2008; 200:243-54. [PMID: 18542930 DOI: 10.1007/s00213-008-1201-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 05/06/2008] [Indexed: 11/29/2022]
Abstract
RATIONALE Acute tryptophan depletion (ATD) transiently lowers central serotonin levels and can induce depressive mood states and cognitive defects. Previous studies have shown that ATD impairs object recognition in rats. OBJECTIVES As individual differences exist in central serotonin neurotransmission, the impact of ATD may vary accordingly. In this experiment, we investigated the hypothesis that male serotonin transporter knockout (SERT(-/-)), rats marked by a lower SERT function, are more vulnerable to the effects of ATD in an object recognition task than male wildtype (SERT(+/+)) and heterozygous (SERT(+/-)) rats. MATERIALS AND METHODS Twelve male SERT(+/+), SERT(+/-), and SERT(-/-) rats were treated with standard dose and low-dose ATD using a gelatine-based protein-carbohydrate mixture lacking tryptophan. In the control treatment, L: -tryptophan was added to the mixture. Four hours after treatment, the rats were subjected to the object recognition task. In addition, the effects of ATD on plasma amino acid concentrations were measured, and concentrations of 5-HT and 5-HIAA were measured in the frontal cortex and hippocampus of these rats. RESULTS Plasma TRP levels and central 5-HT and 5-HIAA levels were decreased in all genotypes after ATD, but effects were stronger in SERT(-/-) rats. The standard dose of ATD impaired object recognition in all genotypes. SERT(-/-) and SERT(+/-) rats were more vulnerable to low dose of ATD in the object recognition task compared to SERT(+/+) rats. CONCLUSIONS These results indicate a greater sensitivity to ATD in SERT(-/-) and SERT(+/-) rats, which may be related to stronger central depletion effects in these rats.
Collapse
Affiliation(s)
- J D A Olivier
- Department of Cognitive Neuroscience: Psychoneuropharmacology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Chu X, Zhavbert ES, Dugina JL, Kheyfets IA, Sergeeva SA, Epstein OI, Ågmo A. Sildenafil and a Compound Stimulating Endothelial NO Synthase Modify Sexual Incentive Motivation and Copulatory Behavior in Male Wistar and Fisher 344 Rats. J Sex Med 2008; 5:2085-99. [DOI: 10.1111/j.1743-6109.2008.00937.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
132
|
Blokland A, Boess F. Use of behavioural and long-term potentiation models in the development of memory-improving drugs. Expert Opin Drug Discov 2008; 3:1067-80. [DOI: 10.1517/17460441.3.9.1067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
133
|
Jans LAW, Lieben CKJ, Smits LT, Blokland A. Pharmacokinetics of acute tryptophan depletion using a gelatin-based protein in male and female Wistar rats. Amino Acids 2008; 37:349-57. [PMID: 18683016 PMCID: PMC2705715 DOI: 10.1007/s00726-008-0160-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 07/18/2008] [Indexed: 11/13/2022]
Abstract
The essential amino acid tryptophan is the precursor of the neurotransmitter serotonin. By depleting the body of tryptophan, brain tryptophan and serotonin levels are temporarily reduced. In this paper, several experiments are described in which dose and treatment effects of acute tryptophan depletion (ATD) using a gelatin-based protein–carbohydrate mixture were studied in male and female Wistar rats. Two or three doses of tryptophan depleting mixture resulted in 65–70% depletion after 2–4 h in males. ATD effects were similar in females, although females may return to baseline levels faster. Treatment effects after four consecutive days of ATD were similar to the effects of 1 day of treatment. Object recognition memory was impaired 2, 4, and 6 h after the first of two doses of ATD, suggesting that the central effects occurred rapidly and continued at least 6 h, in spite of decreasing treatment effects on plasma tryptophan levels at that time point. The method of acute tryptophan depletion described here can be used to study the relationship between serotonin and behaviour in both male and female rats.
Collapse
Affiliation(s)
- L A W Jans
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
134
|
Senbel AM, Mostafa T. Yohimbine enhances the effect of sildenafil on erectile process in rats. Int J Impot Res 2008; 20:409-417. [PMID: 18418393 DOI: 10.1038/sj.ijir.3901630] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 09/28/2007] [Accepted: 10/25/2007] [Indexed: 02/08/2023]
Abstract
Combining the centrally acting drug yohimbine with the peripheral conditioner sildenafil might be an approach to erectile dysfunction cases in which sildenafil alone failed. This work aimed to investigate the effect of yohimbine on sildenafil-induced facilitation of erectile process. Erectile responses to electrical stimulation of the cavernous nerve in anesthetized male rats were recorded. Intracavernosal pressure/systemic arterial pressure (ICP/SAP) was calculated, 1 and 5 min after intravenous administration of sildenafil, yohimbine or a combination of both. Changes in sexual arousal and copulatory performance indices were compared before and after these injections using behavioral mating experiments. It was shown that systemic administration of sildenafil produced a significant increase in ICP/SAP than control at doses >or=10 micromol kg(-1). Yohimbine alone failed to potentiate erectile responses but yohimbine (1 micromol kg(-1)) significantly potentiated the effect of sildenafil 1-10 micromol kg(-1) and 1 mmol kg(-1), 1 and 5 min after injection. Potentiation of ICP/SAP induced by their combination was greater than the sum of the effects of the corresponding doses of either drug at the same time interval. A nonsignificant additional decrease in SAP than sildenafil-induced was observed if administered with yohimbine. Addition of sildenafil to yohimbine significantly enhanced the effect of the latter on intromission frequency, intercopulatory interval and the number of ejaculations per session. It is concluded that yohimbine may enhance and prolong the effect of sildenafil on erectile process without additional hypotension. Sildenafil may enhance the central effects of yohimbine on erection; it amplifies the effect of yohimbine on male copulatory performance but not on sexual motivation. The potential beneficial effect of the combination was found to be more pronounced on the central component than on the peripheral component of the erectile process.
Collapse
Affiliation(s)
- A M Senbel
- Pharmacology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
135
|
Abstract
As the population ages, there is a growing need for effective therapies for the treatment of neurological diseases. A limited number of therapeutics are currently available to improve cognitive function and research is limited by the need for in vivo models. Zebrafish have recently become a focus of neurobehavioral studies since larvae display neuropathological and behavioral phenotypes that are quantifiable and relate to those seen in man. Due to the small size of Zebrafish larvae, assays can be undertaken in 96 well plates and as the larvae can live in as little as 200 mul of fluid, only a few milligrams of compound are needed for screening. Thus in vivo analysis of the effects of compounds can be undertaken at much earlier stages in the drug discovery process. This review will look at the utility of the zebrafish in the study of neurological diseases and its role in improving the throughput of candidate compounds in in vivo screens.
Collapse
Affiliation(s)
- J D Best
- Summit (Cambridge) Ltd., Beach Drive Cambridge, UK
| | | |
Collapse
|
136
|
Domek-Łopacińska K, Strosznajder JB. The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res 2008; 1216:68-77. [PMID: 18499090 DOI: 10.1016/j.brainres.2008.02.108] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 01/30/2023]
Abstract
Our previous studies have shown that there is a lower cGMP concentration in the aged brain as well as an alteration in the activity of cGMP-hydrolyzing phosphodiesterases (PDEs) and nitric oxide synthase (NOS). The aim of this study was to investigate the effect of specific inhibitors of selected PDEs on object recognition memory and locomotor activity during aging, and to correlate their action with NOS activity in the following brain regions: hippocampus, striatum, and cerebral cortex. The study was carried out using 3, 12, and 24 month-old rats. Inhibitors of PDE2 and PDE5 (Bayer 60-7550 and zaprinast, respectively) were used. Evaluation of memory and locomotor activity was carried out using an object recognition task and the open field test. NOS activity was determined using a radiochemical method after behavioral analysis in the cytosolic fraction from all brain areas investigated. We have found that the inhibitor of PDE2, Bay60-7550, improves object recognition memory in all age groups investigated and increases basal constitutive NOS activity in the hippocampus and striatum. Moreover, in 3 month-old rats, additional inhibition of PDE5 by zaprinast improves object memory and elevates NOS activity in all brain regions studied. Specific inhibition of nNOS eliminates the effect of Bay60-7550 on memory function and on NOS activity in 24 month-old rats. In summary, our results indicate that inhibition of PDE2 is able to improve cognition and memory function in 3, 12, and 24 month-old rats through the enhancement of nNOS activity in the brain, whereas inhibition of PDE5 is effective only in 3 month-old animals.
Collapse
Affiliation(s)
- K Domek-Łopacińska
- Department of Cellular Signaling, Medical Research Center, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
| | | |
Collapse
|
137
|
Puzzo D, Sapienza S, Arancio O, Palmeri A. Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatr Dis Treat 2008; 4:371-87. [PMID: 18728748 PMCID: PMC2518390 DOI: 10.2147/ndt.s2447] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Phosphodiesterases (PDEs) are enzymes that break down the phosphodiesteric bond of the cyclic nucleotides, cAMP and cGMP, second messengers that regulate many biological processes. PDEs participate in the regulation of signal transduction by means of a fine regulation of cyclic nucleotides so that the response to cell stimuli is both specific and activates the correct third messengers. Several PDE inhibitors have been developed and used as therapeutic agents because they increase cyclic nucleotide levels by blocking the PDE function. In particular, sildenafil, an inhibitor of PDE5, has been mainly used in the treatment of erectile dysfunction but is now also utilized against pulmonary hypertension. This review examines the physiological role of PDE5 in synaptic plasticity and memory and the use of PDE5 inhibitors as possible therapeutic agents against disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Daniela Puzzo
- Dept of Physiological Sciences, University of Catania Catania, Italy.
| | | | | | | |
Collapse
|
138
|
Rutten K, Basile JL, Prickaerts J, Blokland A, Vivian JA. Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques. Psychopharmacology (Berl) 2008; 196:643-8. [PMID: 18034336 PMCID: PMC2244695 DOI: 10.1007/s00213-007-0999-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 10/23/2007] [Indexed: 11/29/2022]
Abstract
RATIONALE Selective phosphodiesterase (PDE) inhibitors improve the formation of hippocampus-dependent memories in several rodent models of cognition. However, studies evaluating the effects of PDE inhibition on prefrontal cortex-dependent cognition and in monkeys are rare. OBJECTIVES The present study investigates the effect of the PDE4 inhibitor rolipram and the PDE5 inhibitor sildenafil on object retrieval performance. Object retrieval is a prefrontal cortical-mediated task, which is likely to capture attention and response inhibition. MATERIALS AND METHODS The ability to retrieve a food reward from a clear box with an open side positioned in various orientations was assessed in adult male cynomolgus monkeys (Macaca fascicularis). RESULTS Rolipram (0.003-0.03 mg/kg, intramuscular [i.m.]) and sildenafil (0.3-3 mg/kg, i.m.) dose-dependently increased correct first reaches during difficult trials, reaching significance at 0.01 and 1 mg/kg, respectively. For both drugs, correct reaches were increased approximately 20%; that is, performance was improved from approximately 50 to approximately 70% correct. CONCLUSIONS Both rolipram and sildenafil improved object retrieval performance, thus demonstrating the cognition-enhancing effects of PDE inhibition on a prefrontal task of executive function in monkeys.
Collapse
Affiliation(s)
- K. Rutten
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands ,Department of Neuroscience, Roche Pharmaceuticals Palo Alto, Palo Alto, CA USA
| | - J. L. Basile
- Department of Neuroscience, Roche Pharmaceuticals Palo Alto, Palo Alto, CA USA
| | - J. Prickaerts
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands ,Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - A. Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - J. A. Vivian
- Department of Neuroscience, Roche Pharmaceuticals Palo Alto, Palo Alto, CA USA
| |
Collapse
|
139
|
Chen J, Keren-Paz G, Bar-Yosef Y, Matzkin H. The Role of Phosphodiesterase Type 5 Inhibitors in the Management of Premature Ejaculation: A Critical Analysis of Basic Science and Clinical Data. Eur Urol 2007; 52:1331-9. [PMID: 17728050 DOI: 10.1016/j.eururo.2007.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 08/03/2007] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To assess the usefulness of the phosphodiesterase type 5 inhibitors (PDE5-Is) in the treatment of premature ejaculation (PE) and to describe possible mechanisms to explain their effect. METHODS A MedLine search was performed for peer-reviewed articles on the role of PDE5-Is in managing PE. No meta-analysis method was used. RESULTS Five manuscripts that examined the efficacy of PDE5-Is in the treatment of PE were retrieved. Three studies used sildenafil as monotherapy and two used it in combination with a serotonin selective reuptake inhibitor (SSRI). Three studies demonstrated a beneficial effect of sildenafil in the treatment of PE, as measured by intravaginal ejaculatory latency time (IELT) and by different questionnaires assessing the patients' subjective feelings of ejaculatory control, sexual satisfaction, and anxiety. One study showed the superiority of sildenafil compared to other modalities. Two studies showed that combination therapy of paroxetine and sildenafil was better than paroxetine alone. One study did not demonstrate a beneficial effect of sildenafil in prolonging IELT, but showed that sildenafil improved patients' perception of ejaculatory control. Another study showed that topical anesthetics were better than sildenafil in the treatment of PE but did not use IELT or a validated questionnaire to measure the efficacy of treatment. Several possible mechanisms could explain effectiveness of the PDE5-Is for treatment of PE: centrally, through the effect on the nitric oxide/cyclic guanosine monophosphate pathway; peripherally by causing relaxation of smooth muscle in the vas deferens, seminal vesicles, prostate, and urethra and inhibition of adrenergic transmission; or locally by inducing peripheral analgesia. Another possibility might be prolongation of the duration of erection. CONCLUSIONS Encouraging evidence supports the role of PDE5-Is for treating PE. Possible therapeutic mechanisms of action of PDE5-Is are multiple and complex and include central and peripheral effects. A large population, multicenter, randomized, double-blind, placebo-controlled study is needed to elucidate the efficacy of PDE5-Is in the treatment of PE.
Collapse
Affiliation(s)
- Juza Chen
- Department of Urology, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
140
|
PDE inhibitors in psychiatry--future options for dementia, depression and schizophrenia? Drug Discov Today 2007; 12:870-8. [PMID: 17933689 DOI: 10.1016/j.drudis.2007.07.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/21/2007] [Accepted: 07/23/2007] [Indexed: 02/07/2023]
Abstract
Phosphodiesterases are key enzymes in cellular signalling pathways. They degrade cyclic nucleotides and their inhibition via specific inhibitors offers unique 'receptor-independent' opportunities to modify cellular function. An increasing number of in vitro and animal model studies point to innovative treatment options in neurology and psychiatry. This review critiques a selection of recent studies and developments with a focus on dementia/neuroprotection, depression and schizophrenia. Despite increased interest among the clinical neurosciences, there are still no approved PDE inhibitors for clinical use in neurology or psychiatry. Adverse effects are a major impediment for clinical approval. It is therefore necessary to search for more specific inhibitors at the level of different PDE sub-families and isoforms.
Collapse
|
141
|
Brink CB, Clapton JD, Eagar BE, Harvey BH. Appearance of antidepressant-like effect by sildenafil in rats after central muscarinic receptor blockade: evidence from behavioural and neuro-receptor studies. J Neural Transm (Vienna) 2007; 115:117-25. [PMID: 17823768 DOI: 10.1007/s00702-007-0806-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 08/22/2007] [Indexed: 12/24/2022]
Abstract
The phosphodiesterase (PDE) 5 inhibitor sildenafil has been shown to display psychotropic actions in humans and animals, and has been used for the treatment of antidepressant-associated erectile dysfunction. However, its effects on the neurobiology of depression are unknown. Nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) inhibition is anti-depressant in animals, and increasing cGMP with sildenafil is anxiogenic in rodents. Substantial cholinergic-nitrergic interaction exists in the brain, while sildenafil shows modulatory actions on cholinergic transmission. Depression is also associated with increased cholinergic drive. Here we report that sildenafil increases muscarinic acetylcholine receptor (mAChR) signaling in human neuroblastoma cells. We also show that fluoxetine (20 mg/kg/day x 7 days), as well as a combination of sildenafil (10 mg/kg/day x 7 days) plus the antimuscarinic atropine (1 mg/kg/day x 7 days) demonstrates significant, comparable antidepressant-like effects in the rat forced swim test (FST) and also reduces cortical beta-adrenergic receptor (beta-AR) density, while sildenafil or atropine alone did not. Importantly, sildenafil did not modify fluoxetine's response. Sildenafil thus demonstrates antidepressant-like effects but only after central muscarinic receptor blockade, providing evidence for cholinergic-nitrergic interactions in the neurobiology of depression.
Collapse
Affiliation(s)
- C B Brink
- Unit for Drug Research and Development, Division of Pharmacology, North-West University (PUK), Potchefstroom, South Africa.
| | | | | | | |
Collapse
|
142
|
Sandner P, Hütter J, Tinel H, Ziegelbauer K, Bischoff E. PDE5 inhibitors beyond erectile dysfunction. Int J Impot Res 2007; 19:533-43. [PMID: 17625575 DOI: 10.1038/sj.ijir.3901577] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The phosphodiesterase type-5 (PDE5) inhibitors sildenafil, vardenafil and tadalafil are widely used first-line therapy for erectile dysfunction (ED). Since the advent of sildenafil in 1998, more than 40 million men worldwide have been successfully treated with these compounds. The safety and high tolerability of PDE5 inhibitors make them an attractive tool to investigate further physiological functions of PDE5, for example the modulation of intracellular cyclic GMP (cGMP) pools. As cGMP is a key component of intracellular signaling this may provide novel therapeutic opportunities beyond ED even for indications in which chronic administration is necessary. The approval of sildenafil for the treatment of pulmonary hypertension in 2005 was a notable success in this area of research. A number of other potential new indications are currently in various phases of preclinical research and development. In recent years, extensive but very heterogeneous information has been published in this field. The aim of this review is to summarize existing preclinical and clinical knowledge and critically discuss the evidence to support potential future indications for PDE5 inhibitors.
Collapse
Affiliation(s)
- P Sandner
- Product-Related Research, Bayer HealthCare, Wuppertal, Germany
| | | | | | | | | |
Collapse
|
143
|
Sambeth A, Riedel WJ, Smits LT, Blokland A. Cholinergic drugs affect novel object recognition in rats: relation with hippocampal EEG? Eur J Pharmacol 2007; 572:151-9. [PMID: 17659275 DOI: 10.1016/j.ejphar.2007.06.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
This study examined the role of cognitively enhancing cholinergic drugs on both object memory and brain activity in rats, as well as the possible relation between the two measures. A group of twenty-four animals was used for assessing object recognition. In another group of eight rats, an electrode was implanted into the dorsal hippocampus to record an electroencephalogram (EEG) and auditory evoked potentials (AEP). In both groups, animals were treated with saline, 0.1 mg/kg scopolamine, 0.1 mg/kg methylscopolamine, 3 mg/kg donepezil, donepezil combined with scopolamine, 0.1 mg/kg nicotine, and nicotine combined with scopolamine. Scopolamine, but not methylscopolamine, impaired object recognition. Both donepezil and nicotine reversed this impairment. The N1 and N2 components of the AEP became closer to baseline after scopolamine, which was not reversed by donepezil or nicotine. Scopolamine increased the theta frequency in the EEG. When combined with donepezil, theta increased even more. Conversely, nicotine reversed the theta increment to control level. It is suggested that scopolamine caused a decrement in arousal in this study. Furthermore, the current results suggest a relation between EEG and object memory after cholinergic drug treatment. However, there was a clear dissociation between memory performance and EEG after combined treatment with drugs, which makes additional research where EEG and performance measures are co-registered imperative.
Collapse
Affiliation(s)
- Anke Sambeth
- Faculty of Psychology and Brain and Behavior Institute, Maastricht University, The Netherlands.
| | | | | | | |
Collapse
|
144
|
Jans LAW, Lieben CKJ, Blokland A. Influence of sex and estrous cycle on the effects of acute tryptophan depletion induced by a gelatin-based mixture in adult Wistar rats. Neuroscience 2007; 147:304-17. [PMID: 17531394 DOI: 10.1016/j.neuroscience.2007.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/26/2007] [Accepted: 04/12/2007] [Indexed: 10/23/2022]
Abstract
Women are more vulnerable to develop depression and anxiety disorders than men. This may be related to higher serotonergic vulnerability in women. Serotonergic vulnerability entails that differences between people in the regulation of serotonin (5-HT) determine the vulnerability of an individual to develop depression or other 5-HT-related disorders. The aim of the present experiment was to evaluate whether male and female Wistar rats differ in serotonergic vulnerability. Here, a stronger behavioral response to acute tryptophan (TRP) depletion was assumed to reflect serotonergic vulnerability. Twenty-four male and 48 female rats were repeatedly subjected to treatment with a gelatin-based protein-carbohydrate mixture, either with or without L-tryptophan. Female estrous cycle phase was determined by means of vaginal smears and the females were divided into two groups based on their estrous cycle phase: pro-estrus/estrus and met-estrus/di-estrus. Blood samples showed stronger TRP depletion in males than females. There was no effect of estrous cycle on plasma TRP concentrations. In contrast, treatment effects on some brain TRP concentrations were influenced by estrous cycle phase, females in pro-estrus/estrus showed the strongest response to TRP depletion. In the open field test and home cage emergence test, females in pro-estrus/estrus also showed the strongest behavioral response to acute TRP depletion. In general, females showed more activity than males in anxiety-related situations and this effect appeared to be enhanced by TRP depletion. In the social interaction test, passive body contact in males and females in pro-estrus/estrus was decreased after TRP depletion whereas it was increased in females in the met-estrus/di-estrus phase. Acute TRP depletion affected object recognition, but did not affect behavior in the forced swimming test and a reaction time task. It is concluded that sex and estrous cycle phase can influence the behavioral response to TRP depletion, and that females in pro-estrus/estrus show the strongest behavioral response to acute TRP depletion.
Collapse
Affiliation(s)
- L A W Jans
- Department of Neurocognition, Faculty of Psychology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
145
|
Rutten K, Prickaerts J, Hendrix M, van der Staay FJ, Sik A, Blokland A. Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol 2007; 558:107-12. [PMID: 17207788 DOI: 10.1016/j.ejphar.2006.11.041] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 11/16/2006] [Accepted: 11/21/2006] [Indexed: 11/21/2022]
Abstract
The present study investigated the time-dependent memory enhancing properties of three selective phosphodiesterase inhibitors (PDE-I) vardenafil (PDE5-I), rolipram (PDE4-I) and BAY 60-7550 (PDE2-I) in the object recognition task. In particular, the time-dependent involvement of cAMP and cGMP in memory consolidation was assessed by altering the time points of drug administration. Vardenafil (1 mg/kg, p.o.), rolipram (0.03 mg/kg, i.p.), and BAY 60-7550 (3 mg/kg, p.o.) were tested in rats with a 24 h delay between the learning and the test trial. The PDE-Is were administered at different time points, i.e. directly after, 1 h, 3 h and 6 h after the first trial. Using a 24 h interval, vardenafil only showed an effect on object memory when injected directly after trial 1, rolipram only showed an improvement when injected 3 h after trial 1 and BAY 60-7550 improved memory when injected either directly after or 3 h after trial 1. No treatment effects were found when the compounds were administered 1 h or 6 h after the first trial. Our results extend our previous data that different types of PDE-Is affect different stages of memory consolidation. Moreover, the present study provides further support that selective PDE-Is can influence memory consolidation in a time-dependent manner, assumingly by elevating central cAMP and cGMP levels.
Collapse
Affiliation(s)
- Kris Rutten
- Department of Psychiatry and Neuropsychology, Brain and Behavior Institute, EURON, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
146
|
da Silva AL, Piato AL, Ferreira JG, Martins BS, Nunes DS, Elisabetsky E. Promnesic effects of Ptychopetalum olacoides in aversive and non-aversive learning paradigms. JOURNAL OF ETHNOPHARMACOLOGY 2007; 109:449-57. [PMID: 17023132 DOI: 10.1016/j.jep.2006.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 08/01/2006] [Accepted: 08/21/2006] [Indexed: 05/12/2023]
Abstract
Homemade remedies with Ptychopetalum olacoides (PO) roots are used by Amazonian peoples for treating various age-related conditions. We previously reported that Ptychopetalum olacoides ethanol extract significantly improved step-down inhibitory avoidance long-term memory in adult and reversed memory deficits in aging mice. Adding to previous data, this study shows that a single i.p. administration of Ptychopetalum olacoides ethanol extract (POEE 50 and 100 mg/kg) improved step-down inhibitory avoidance short-term memory (STM) 3 h after training in adult (2.5 month) mice; comparable results were obtained with POEE given p.o. at 800 mg/kg. Moreover, memory improvement was also observed in aging (14 months) mice presenting memory deficit as compared to adult mice. Furthermore, POEE (100 mg/kg) improved non-aversive memory systems in adult mice in an object recognition paradigm. Consistently with its traditional use this study add to previously reported data and reinforces that POEE facilitates memory processes. Although the acetylcholinesterase inhibitory properties described for this extract may be of relevance for improving memory processes, the molecular mechanism(s) underlying the memory improvement here reported needs further scrutiny.
Collapse
Affiliation(s)
- Adriana L da Silva
- Laboratório de Etnofarmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | | | | | | | | | | |
Collapse
|
147
|
Dere E, Huston JP, De Souza Silva MA. The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 2007; 31:673-704. [PMID: 17368764 DOI: 10.1016/j.neubiorev.2007.01.005] [Citation(s) in RCA: 538] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/08/2007] [Accepted: 01/18/2007] [Indexed: 01/31/2023]
Abstract
Rats and mice are attracted by novel objects. They readily approach novel objects and explore them with their vibrissae, nose and forepaws. It is assumed that such a single explorative episode leaves a lasting and complex memory trace, which includes information about the features of the object explored, as well as where and even when the object was encountered. Indeed, it has been shown that rodents are able to discriminate a novel from a familiar object (one-trial object recognition), can detect a mismatch between the past and present location of a familiar object (one-trial object-place recognition), and can discriminate different objects in terms of their relative recency (temporal order memory), i.e., which one of two objects has been encountered earlier. Since the novelty-preference paradigm is very versatile and has some advantages compared to several other memory tasks, such as the water maze, it has become a powerful tool in current neurophamacological, neuroanatomical and neurogenetical memory research using both rats and mice. This review is intended to provide a comprehensive summary on key findings delineating the brain structures, neurotransmitters, molecular mechanisms and genes involved in encoding, consolidation, storage and retrieval of different forms of one-trial object memory in rats and mice.
Collapse
Affiliation(s)
- Ekrem Dere
- Institute of Physiological Psychology, and Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany.
| | | | | |
Collapse
|
148
|
Edwards TM, Rickard NS. New perspectives on the mechanisms through which nitric oxide may affect learning and memory processes. Neurosci Biobehav Rev 2007; 31:413-25. [PMID: 17188748 DOI: 10.1016/j.neubiorev.2006.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/01/2006] [Accepted: 11/02/2006] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) has been well established as a molecule necessary for memory consolidation. Interestingly, the majority of research has focused on only a single mechanism through which NO acts, namely the up-regulation of guanylate cyclase (GC). However, since NO and NO-derived reactive nitrogen species are capable of interacting with a broad array of enzymes, ion channels and receptors, a singular focus on GC appears short-sighted. Although NO inhibits the action of a number of molecules there are four, in addition to GC, which are up-regulated by the direct presence of NO, or NO-derived radicals, and implicated in memory processing. They are: cyclic nucleotide-gated channels; large conductance calcium-activated potassium channels; ryanodine receptor calcium release (RyR) channels; and the enzyme mono(ADP-ribosyl) transferase. This review presents evidence that not only are these four molecules worthy of investigation as GC-independent mechanisms through which NO may act, but that behavioural evidence already exists suggesting a relationship between NO and the RyR channel.
Collapse
Affiliation(s)
- T M Edwards
- School of Psychology, Psychiatry and Psychological Medicine, Monash University-Clayton, Wellington Road, Clayton, 3800 Vic., Australia.
| | | |
Collapse
|
149
|
Pascual M, Blanco AM, Cauli O, Miñarro J, Guerri C. Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci 2007; 25:541-50. [PMID: 17284196 DOI: 10.1111/j.1460-9568.2006.05298.x] [Citation(s) in RCA: 291] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Adolescent brain development seems to be important for the maturation of brain structures and behaviour. Intermittent binge ethanol drinking is common among adolescents, and this type of drinking can induce brain damage. Because we have demonstrated that chronic ethanol treatment induces inflammatory processes in the brain, we investigate whether intermittent ethanol intoxication enhances cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in adolescent rats, and whether these mediators induce brain damage and cause permanent cognitive dysfunctions. Adolescent rats were exposed to ethanol (3.0 g/kg) for two consecutive days at 48-h intervals over 14 days. Levels of COX-2, iNOS and cell death were assessed in the neocortex, hippocampus and cerebellum 24 h after the final ethanol administration. The following day or 20 days after the final injection (adult stage), animals were tested for different behavioural tests (conditional discrimination learning, rotarod, object recognition, beam-walking performance) to assess cognitive and motor functions. Our results show that intermittent ethanol intoxication upregulates COX-2 and iNOS levels, and increases cell death in the neocortex, hippocampus and cerebellum. Furthermore, animals treated with ethanol during adolescence exhibited behavioural deficits that were evident at the end of ethanol treatments and at the adult stage. Administration of indomethacin, a COX-2 inhibitor, abolishes the induction of COX-2 and iNOS expression and cell death, preventing ethanol-induced behavioural deficits. These findings indicate that binge pattern exposure to ethanol during adolescence induces brain damage by inflammatory processes and causes long-lasting neurobehavioural consequences. Accordingly, administering indomethacin protects against ethanol-induced brain damage and prevents detrimental ethanol effects on cognitive and motor processes.
Collapse
Affiliation(s)
- Maria Pascual
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler, 16. 46013-Valencia, Spain
| | | | | | | | | |
Collapse
|
150
|
Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci U S A 2006; 103:16568-73. [PMID: 17050681 PMCID: PMC1637622 DOI: 10.1073/pnas.0607822103] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Indexed: 11/18/2022] Open
Abstract
Small molecules that activate signaling pathways used by neurotrophic factors could be useful for treating CNS disorders. Here we show that the flavonoid fisetin activates ERK and induces cAMP response element-binding protein (CREB) phosphorylation in rat hippocampal slices, facilitates long-term potentiation in rat hippocampal slices, and enhances object recognition in mice. Together, these data demonstrate that the natural product fisetin can facilitate long-term memory, and therefore it may be useful for treating patients with memory disorders.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|