101
|
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
102
|
Hao Y, Ren J, Liu J, Luo S, Ma T, Li R, Su Y. The Protective Role of Zinc against Acute Toxicity of Depleted Uranium in Rats. Basic Clin Pharmacol Toxicol 2012; 111:402-10. [DOI: 10.1111/j.1742-7843.2012.00910.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/30/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Jiong Ren
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Shenglin Luo
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Ting Ma
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| |
Collapse
|
103
|
Sequeira A, Morgan L, Walsh DM, Cartagena PM, Choudary P, Li J, Schatzberg AF, Watson SJ, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide. PLoS One 2012; 7:e35367. [PMID: 22558144 PMCID: PMC3340369 DOI: 10.1371/journal.pone.0035367] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 03/15/2012] [Indexed: 12/23/2022] Open
Abstract
Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P≤0.01 and fold change±1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.
Collapse
Affiliation(s)
- Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Morahan JM, Yu B, Trent RJ, Pamphlett R. Screening the metallothionein III gene in sporadic amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/14660820410021249a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
105
|
Luther EM, Schmidt MM, Diendorf J, Epple M, Dringen R. Upregulation of Metallothioneins After Exposure of Cultured Primary Astrocytes to Silver Nanoparticles. Neurochem Res 2012; 37:1639-48. [DOI: 10.1007/s11064-012-0767-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/20/2012] [Accepted: 03/27/2012] [Indexed: 12/18/2022]
|
106
|
Ladhar-Chaabouni R, Machreki-Ajmi M, Hamza-Chaffai A. Use of metallothioneins as biomarkers for environmental quality assessment in the Gulf of Gabès (Tunisia). ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:2177-2192. [PMID: 21611846 DOI: 10.1007/s10661-011-2108-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 04/26/2011] [Indexed: 05/30/2023]
Abstract
Detection and assessment of the impact of pollution on biological resources imply increasing research on early-warning markers such as metallothioneins (MTs) in metal exposure. In this paper, we have collated published information on the use of metallothioneins and metallothionein-like proteins (MTLPs) as biomarkers for environmental quality assessment in the Gulf of Gabès. In this area, some species of fish and bivalve were used as bioindicators of pollution. In these species, an induction of MTs/MTLPs by the essential metals such as Cu and Zn and the non-essential metals such as Cd was observed by different authors who suggest the potential use of these proteins as biomarkers. However, MT concentrations can be influenced by many biotic (sex, maturity stages, and tissues) and abiotic factors (temperature, salinity, and pH). This is essentially the case in field studies where many parameters can randomly affect MT levels, so the endogeneous regulation of MTs must be considered before using MTs as an indicator of heavy metal exposure. Moreover, the use of biomarker cannot be examined independently of the evaluation of techniques that enable its quantification. Therefore, the approach to the use of MTs/MTLP as biomarkers of exposure for an assessment of the physiological status of aquatic organisms is discussed in this paper.
Collapse
Affiliation(s)
- Rim Ladhar-Chaabouni
- UR 09-03 Marine Environmental Toxicology, Sfax University, IPEIS BP 1172, 3018, Sfax, Tunisia.
| | | | | |
Collapse
|
107
|
Kim JH, Nam YP, Jeon SM, Han HS, Suk K. Amyloid neurotoxicity is attenuated by metallothionein: dual mechanisms at work. J Neurochem 2012; 121:751-62. [PMID: 22404335 DOI: 10.1111/j.1471-4159.2012.07725.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognition. One of the hallmarks of AD is the accumulation of beta-amyloid (Aβ). Although endoplasmic reticulum stress, mitochondrial dysfunction, and oxidative stress have been implicated in Aβ toxicity, the molecular mechanism(s) of Aβ-induced neurotoxicity are not fully understood. In this study, we present evidence that the glia-derived stress protein metallothionein (MT) attenuates Aβ-induced neurotoxicity by unique mechanisms. MT expression was increased in brain astrocytes of a NSE-APPsw transgenic mouse model of AD. Astrocyte-derived MT protected N2a neuroblastoma cells and primary cortical neurons against Aβ toxicity with concurrent reduction of reactive oxygen species levels. MT reversed Aβ-induced down-regulation of Bcl-2 and survival signaling in neuroblastoma cells. Moreover, MT inhibited Aβ-induced proinflammatory cytokine production from microglia. The neurotoxicity of Aβ-stimulated microglia was significantly attenuated by MT-I. The results indicate that MT released from reactive astrocytes may antagonize Aβ neurotoxicity by direct inhibition of Aβ neurotoxicity and indirect suppression of neurotoxic microglial activation. These findings broaden the understanding of neurotoxic mechanisms of Aβ and the crosstalk between Aβ and MT in AD.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Department of Pharmacology, CMRI, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | |
Collapse
|
108
|
Theocharis S, Klijanienko J, Giaginis C, Rodriguez J, Jouffroy T, Girod A, Point D, Tsourouflis G, Sastre-Garau X. Metallothionein expression in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patient survival. Histopathology 2012; 59:514-25. [PMID: 22034891 DOI: 10.1111/j.1365-2559.2011.03947.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Metallothionein (MT) has been implicated in several aspects of cancer pathobiology, such as differentiation, proliferation, apoptosis and invasion. The aim of the present study was to evaluate the clinical significance of MT expression in mobile tongue squamous cell carcinoma (SCC). METHODS AND RESULTS MT protein expression was assessed immunohistochemically on 49 mobile tongue SCC specimens, and was analysed in relation to clinicopathological characteristics, and overall and disease-free patient survival. All of the examined mobile tongue SCC cases showed MT positivity in tumour cells; however, neither MT overexpression nor staining intensity was significantly associated with clinicopathological parameters. MT cellular distribution was significantly associated with histopathological grade of differentiation and depth of invasion (P = 0.0188 and P = 0.0484, respectively). MT staining intensity was identified as a significant predictor of overall patient survival at both univariate (P = 0.0377) and multivariate (P = 0.0472) levels. Twenty-seven (55.10%) of the examined SCC cases showed MT positivity in squamous tongue epithelium adjacent to the tumour, the MT positivity being correlated with depth of invasion (P = 0.0281), vascular invasion (P = 0.0194), and the existence of lymph node metastases (P = 0.0194). CONCLUSIONS MT may be implicated in the development and progression of mobile tongue SCC and could be considered as a useful clinical marker for patient management and prognosis.
Collapse
|
109
|
Sekler I, Silverman WF. Zinc homeostasis and signaling in glia. Glia 2012; 60:843-50. [DOI: 10.1002/glia.22286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/02/2011] [Indexed: 11/08/2022]
|
110
|
Qian Y, Zheng Y, Taylor R, Tiffany-Castiglioni E. Involvement of the molecular chaperone Hspa5 in copper homeostasis in astrocytes. Brain Res 2012; 1447:9-19. [PMID: 22342161 DOI: 10.1016/j.brainres.2012.01.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/17/2012] [Accepted: 01/27/2012] [Indexed: 12/24/2022]
Abstract
Copper (Cu) ion availability in tissues and cells must be closely regulated within safe limits by Cu transporters and chaperones. Astrocytes play key roles in metal homeostasis and distribution in the brain that are only partially understood. The purpose of this study was to define the role that the protein chaperone Hspa5, also known as Grp78, plays in Cu homeostasis in astrocytes. First passage cultures of primary astrocytes from neonatal rats and cultures of the C6 rat glioma cells were used as models. We found that the level of Cu accumulation in astrocyte cultures increased with Cu concentrations in the medium, and Cu treatment significantly reduced cellular levels of iron (Fe), manganese (Mn) and zinc (Zn). Cu accumulation specifically induced protein expression of Hspa5 but not metallothioneins (MTs) in astrocytes. In C6 cells, Hspa5 was identified as one component of a Cu-binding complex and shown to directly bind Cu. However, the level of Hspa5 expression was not proportional to Cu accumulation in astrocytes and C6 cells: astrocytes expressed low protein levels of Hspa5 compared to C6 cells but accumulated significantly more Cu than did C6 cells. Consistent with this finding, astrocytes expressed a lower level of the Cu-extruding protein Atp7a than did C6 cells, and depletion of Hspa5 by RNA interference resulted in significantly increased Cu accumulation and induction of MT1/2 expression. These data demonstrate that Hspa5 is involved in Cu homeostasis in astrocytes but not as a Cu storage protein.
Collapse
Affiliation(s)
- Yongchang Qian
- Department of Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
111
|
Lanza C, Raimondo S, Vergani L, Catena N, Sénès F, Tos P, Geuna S. Expression of antioxidant molecules after peripheral nerve injury and regeneration. J Neurosci Res 2012; 90:842-8. [DOI: 10.1002/jnr.22778] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/01/2011] [Accepted: 07/29/2011] [Indexed: 11/11/2022]
|
112
|
Greisen P, Jespersen JB, Kepp KP. Metallothionein Zn2+- and Cu2+-clusters from first-principles calculations. Dalton Trans 2011; 41:2247-56. [PMID: 22183579 DOI: 10.1039/c1dt11785h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detailed electronic structures of Zn(II) and Cu(II) clusters from metallothioneins (MT) have been obtained using density functional theory (DFT), in order to investigate how oxidative stress-caused Cu(II) intermediates affect Zn-binding to MT and cooperatively lead to Cu(I)MT. The inferred accuracy is ∼0.02-0.03 Å for metal-thiolate bond lengths for the models that are the most realistic MT models so far studied by DFT. We find terminal Zn-S and Cu-S bond lengths of 2.35-2.38 Å and 2.30-2.34 Å, whereas bridging M-S bonds are 0.05-0.11 Å longer. This electronic effect is also reflected in changes in electron density on bridging sulfurs. Various imposed backbone constraints quantify the sensitivity of cluster electronic structure towards protein conformational changes. The large negative charge densities of the clusters are central to MT function, and the smaller β-clusters are more prone to modification. Oxidative stress-associated Cu(II) binding weakens the Zn-S bonds and is thus likely to impair the Zn(II) transfer function of MTs, providing a mechanism for cooperative Cu(II) binding leading to loss of Zn(II) and dysfunctional Cu(I)MT clusters.
Collapse
Affiliation(s)
- Per Greisen
- Technical University of Denmark, DTU Physics, 2800, Kongens Lyngby, Denmark
| | | | | |
Collapse
|
113
|
Nakashima AS, Hussain Butt R, Dyck RH. Alterations in protein and gene expression within the barrel cortices of ZnT3 knockout mice: Experience-independent and dependent changes. Neurochem Int 2011; 59:860-70. [DOI: 10.1016/j.neuint.2011.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/27/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022]
|
114
|
Aras MA, Aizenman E. Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons. Antioxid Redox Signal 2011; 15:2249-63. [PMID: 20849376 PMCID: PMC3166180 DOI: 10.1089/ars.2010.3607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Zn(2+) has emerged as a major regulator of neuronal physiology, as well as an important signaling agent in neural injury. The intracellular concentration of this metal is tightly regulated through the actions of Zn(2+) transporters and the thiol-rich metal binding protein metallothionein, closely linking the redox status of the cell to cellular availability of Zn(2+). Accordingly, oxidative and nitrosative stress during ischemic injury leads to an accumulation of neuronal free Zn(2+) and the activation of several downstream cell death processes. While this Zn(2+) rise is an established signaling event in neuronal cell death, recent evidence suggests that a transient, sublethal accumulation of free Zn(2+) can also play a critical role in neuroprotective pathways activated during ischemic preconditioning. Thus, redox-sensitive proteins, like metallothioneins, may play a critical role in determining neuronal cell fate by regulating the localization and concentration of intracellular free Zn(2+).
Collapse
Affiliation(s)
- Mandar A Aras
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace St., Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
115
|
Tiffany‐Castiglioni E, Hong S, Qian Y. Copper handling by astrocytes: Insights into neurodegenerative diseases. Int J Dev Neurosci 2011; 29:811-8. [DOI: 10.1016/j.ijdevneu.2011.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 12/14/2022] Open
Affiliation(s)
- Evelyn Tiffany‐Castiglioni
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasTX77843United States
| | | | - Yongchang Qian
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasTX77843United States
| |
Collapse
|
116
|
Lee SJ, Cho KS, Kim HN, Kim HJ, Koh JY. Role of zinc metallothionein-3 (ZnMt3) in epidermal growth factor (EGF)-induced c-Abl protein activation and actin polymerization in cultured astrocytes. J Biol Chem 2011; 286:40847-56. [PMID: 21900236 DOI: 10.1074/jbc.m111.245993] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent evidence indicates that zinc plays a major role in neurochemistry. Of the many zinc-binding proteins, metallothionein-3 (Mt3) is regarded as one of the major regulators of cellular zinc in the brain. However, biological functions of Mt3 are not yet well characterized. Recently, we found that lysosomal dysfunction in metallothionein-3 (Mt3)-null astrocytes involves down-regulation of c-Abl. In this study, we investigated the role of Mt3 in c-Abl activation and actin polymerization in cultured astrocytes following treatment with epidermal growth factor (EGF). Compared with wild-type (WT) astrocytes, Mt3-null cells exhibited a substantial reduction in the activation of c-Abl upon treatment with EGF. Consistent with previous studies, activation of c-Abl by EGF induced dissociation of c-Abl from F-actin. Mt3 added to astrocytic cell lysates bound F-actin, augmented F-actin polymerization, and promoted the dissociation of c-Abl from F-actin, suggesting a possible role for Mt3 in this process. Conversely, Mt3-deficient astrocytes showed significantly reduced dissociation of c-Abl from F-actin following EGF treatment. Experiments using various peptide fragments of Mt3 showed that a fragment containing the N-terminal TCPCP motif (peptide 1) is sufficient for this effect. Removal of zinc from Mt3 or pep1 with tetrakis(2-pyridylmethyl)ethylenediamine abrogated the effect of Mt3 on the association of c-Abl and F-actin, indicating that zinc binding is necessary for this action. These results suggest that ZnMt3 in cultured astrocytes may be a normal component of c-Abl activation in EGF receptor signaling. Hence, modulation of Mt3 levels or distribution may prove to be a useful strategy for controlling cytoskeletal mobilization following EGF stimulation in brain cells.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | | | | | |
Collapse
|
117
|
Antonelli MC, Guillemin GJ, Raisman-Vozari R, Del-Bel EA, Aschner M, Collins MA, Tizabi Y, Moratalla R, West AK. New strategies in neuroprotection and neurorepair. Neurotox Res 2011; 21:49-56. [PMID: 21861211 DOI: 10.1007/s12640-011-9265-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 07/28/2011] [Accepted: 08/03/2011] [Indexed: 12/29/2022]
Abstract
There are currently few clinical strategies in place, which provide effective neuroprotection and repair, despite an intense international effort over the past decades. One possible explanation for this is that a deeper understanding is required of how endogenous mechanisms act to confer neuroprotection. This mini-review reports the proceedings of a recent workshop "Neuroprotection and Neurorepair: New Strategies" (Iguazu Falls, Misiones, Argentina, April 11-13, 2011, Satellite Symposium of the V Neurotoxicity Society Meeting, 2011) in which four areas of active research were identified to have the potential to generate new insights into this field. Topics discussed were (i) metallothionein and other multipotent neuroprotective molecules; (ii) oxidative stress and their signal mediated pathways in neuroregeneration; (iii) neurotoxins in glial cells, and (iv) drugs of abuse with neuroprotective effects.
Collapse
Affiliation(s)
- Marta C Antonelli
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Metallothionein promotes regenerative axonal sprouting of dorsal root ganglion neurons after physical axotomy. Cell Mol Life Sci 2011; 69:809-17. [PMID: 21833580 DOI: 10.1007/s00018-011-0790-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Prior studies have reported that metallothionein I/II (MT) promote regenerative axonal sprouting and neurite elongation of a variety of central nervous system neurons after injury. In this study, we evaluated whether MT is capable of modulating regenerative axon outgrowth of neurons from the peripheral nervous system. The effect of MT was firstly investigated in dorsal root ganglion (DRG) explants, where axons were scratch-injured in the presence or absence of exogenous MT. The application of MT led to a significant increase in regenerative sprouting of neurons 16 h after injury. We show that the pro-regenerative effect of MT involves an interaction with the low-density lipoprotein receptor megalin, which could be blocked using the competitive antagonist RAP. Pre-treatment with the mitogen-activated protein kinase (MAPK) inhibitor PD98059 also completely abrogated the effect of exogenous MT in promoting axonal outgrowth. Interestingly, we only observed megalin expression in neuronal soma and not axons in the DRG explants. To investigate this matter, an in vitro injury model was established using Campenot chambers, which allowed the application of MT selectively into either the axonal or cell body compartments after scratch injury was performed to axons. At 16 h after injury, regenerating axons were significantly longer only when exogenous MT was applied solely to the soma compartment, in accordance with the localized expression of megalin in neuronal cell bodies. This study provides a clear indication that MT promotes axonal regeneration of DRG neurons, via a megalin- and MAPK-dependent mechanism.
Collapse
|
119
|
West AK, Leung JYK, Chung RS. Neuroprotection and regeneration by extracellular metallothionein via lipoprotein-receptor-related proteins. J Biol Inorg Chem 2011; 16:1115-22. [DOI: 10.1007/s00775-011-0817-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/05/2011] [Indexed: 12/26/2022]
|
120
|
Metallothionein and brain inflammation. J Biol Inorg Chem 2011; 16:1103-13. [PMID: 21678079 DOI: 10.1007/s00775-011-0802-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
Since the seminal discoveries of Bert Vallee regarding zinc and metallothioneins (MTs) more than 50 years ago, thousands of studies have been published concerning this fascinating story. One of the most active areas of research is the involvement of these proteins in the inflammatory response in general, and in neuroinflammation in particular. We describe the general aspects of the inflammatory response, highlighting the essential role of the major cytokine interleukin-6, and review briefly the expression and function of MTs in the central nervous system in the context of neuroinflammation. Particular attention is paid to the Tg2576 Alzheimer disease mouse model and the preliminary results obtained in mice into which human Zn(7)MT-2A was injected, which suggest a reversal of the behavioral deficits while enhancing amyloid plaque load and gliosis.
Collapse
|
121
|
Vašák M, Meloni G. Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem 2011; 16:1067-78. [PMID: 21647776 DOI: 10.1007/s00775-011-0799-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal-thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.
Collapse
Affiliation(s)
- Milan Vašák
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
122
|
Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 2011; 14:2013-54. [PMID: 20649473 PMCID: PMC3078504 DOI: 10.1089/ars.2010.3208] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function.
Collapse
Affiliation(s)
- Cynthia A Massaad
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
123
|
Chrzaszcz M, Venkatesan C, Dragisic T, Watterson DM, Wainwright MS. Minozac treatment prevents increased seizure susceptibility in a mouse "two-hit" model of closed skull traumatic brain injury and electroconvulsive shock-induced seizures. J Neurotrauma 2011; 27:1283-95. [PMID: 20486807 DOI: 10.1089/neu.2009.1227] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mechanisms linking traumatic brain injury (TBI) to post-traumatic epilepsy (PTE) are not known and no therapy for prevention of PTE is available. We used a mouse closed-skull midline impact model to test the hypotheses that TBI increases susceptibility to seizures in a "two-hit" injury model, and that suppression of cytokine upregulation after the first hit will attenuate the increased susceptibility to the second neurological insult. Adult male CD-1 mice underwent midline closed skull pneumatic impact. At 3 and 6 h after impact or sham procedure, the mice were injected IP with either Minozac (Mzc), a suppressor of proinflammatory cytokine upregulation, or vehicle (saline). On day 7 after sham operation or TBI, seizures were induced using electroconvulsive shock (ECS), and susceptibility to seizures was measured by the current required for seizure induction. Activation of glia, neuronal injury, and metallothionein-immunoreactive cells were quantified in the hippocampus by immunohistochemical methods. Neurobehavioral function over 14-day recovery was quantified using the Barnes maze. Following TBI there was a significant increase in susceptibility to seizures induced by ECS, and this susceptibility was prevented by suppression of cytokine upregulation with Mzc. Astrocyte activation, metallothionein expression, and neurobehavioral impairment were also increased in the two-hit group subjected to combined TBI and ECS. These enhanced responses in the two-hit group were also prevented by suppression of proinflammatory cytokine upregulation with Mzc. These data implicate glial activation in the mechanisms of epileptogenesis after TBI, and identify a potential therapeutic approach to attenuate the delayed neurological sequelae of TBI.
Collapse
Affiliation(s)
- MaryAnn Chrzaszcz
- Department of Pediatrics, Division of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
124
|
Sequeira PA, Martin MV, Vawter MP. The first decade and beyond of transcriptional profiling in schizophrenia. Neurobiol Dis 2011; 45:23-36. [PMID: 21396449 DOI: 10.1016/j.nbd.2011.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 01/19/2023] Open
Abstract
Gene expression changes in brains of individuals with schizophrenia (SZ) have been hypothesized to reflect possible pathways related to pathophysiology and/or medication. Other factors having robust effects on gene expression profiling in brain and possibly influence the schizophrenia transcriptome such as age and pH are examined. Pathways of curated gene expression or gene correlation networks reported in SZ (white matter, apoptosis, neurogenesis, synaptic plasticity, glutamatergic and GABAergic neurotransmission, immune and stress-response, mitochondrial, and neurodevelopment) are not unique to SZ and have been associated with other psychiatric disorders. Suggestions going forward to improve the next decade of profiling: consider multiple brain regions that are carefully dissected, release large datasets from multiple brain regions in controls to better understand neurocircuitry, integrate genetics and gene expression, measure expression variants on genome wide level, peripheral biomarker studies, and analyze the transcriptome across a developmental series of brains. Gene expression, while an important feature of the genomic landscape, requires further systems biology to advance from control brains to a more precise definition of the schizophrenia interactome.
Collapse
Affiliation(s)
- P Adolfo Sequeira
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA 92697-4260, USA
| | | | | |
Collapse
|
125
|
Yu X, Guo J, Fang H, Peng S. Basal metallothionein-I/II protects against NMDA-mediated oxidative injury in cortical neuron/astrocyte cultures. Toxicology 2011; 282:16-22. [PMID: 21215786 DOI: 10.1016/j.tox.2010.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
N-Methyl-D-aspartate (NMDA) receptor overactivation-mediated oxidative stress has been proposed to contribute to brain injury. Metallothionein-I/II (MT-I/II), a member of cysteine-rich metalloproteins, has been found to express in the central nervous system primarily in cortical tissues and be upregulated following brain injury. To address the role of MT-I/II on NMDA-mediated oxidative injury, we established primary cortical neuron/astrocyte cultures from neonatal MT-I/II deficient (MT⁻/⁻) and wild type (MT+/+) mice to test whether basal MT-I/II protects cortical cultures against NMDA-mediated injury. We found that MT-I/II expression was increased by NMDA in MT+/+ cultures but was not detectable in MT⁻/⁻ cultures. NMDA concentration-dependently induced oxidative injury in both MT+/+ and MT⁻/⁻ cultures as evidenced by decrease of cell viability, increases of lipid peroxidation and DNA damage. However, these toxic effects were greater in MT⁻/⁻ than MT+/+ cultures. NMDA significantly increased reactive oxygen species (ROS) generation and disrupted mitochondrial membrane potential in neurons in MT+/+ cultures, and these effects were exaggerated in MT⁻/⁻ cultures. Our findings clearly show that basal MT-I/II provides protection against NMDA-mediated oxidative injury in cortical neuron/astrocyte cultures, and suggest that the protective effects are possibly associated with inhibition of ROS generation and preservation of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20# Dongdajie Rd, Fengtai District, Beijing 100071, PR China
| | | | | | | |
Collapse
|
126
|
Rowinska-Zyrek M, Witkowska D, Bielinska S, Kamysz W, Kozlowski H. The –Cys–Cys– motif in Helicobacter pylori's Hpn and HspA proteins is an essential anchoring site for metal ions. Dalton Trans 2011; 40:5604-10. [DOI: 10.1039/c1dt10187k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
127
|
Saxena S, Shukla D, Saxena S, Khan YA, Singh M, Bansal A, Sairam M, Jain SK. Hypoxia preconditioning by cobalt chloride enhances endurance performance and protects skeletal muscles from exercise-induced oxidative damage in rats. Acta Physiol (Oxf) 2010; 200:249-63. [PMID: 20384596 DOI: 10.1111/j.1748-1716.2010.02136.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Training under hypoxia has several advantages over normoxic training in terms of enhancing the physical performance. Therefore, we tested the protective effect of hypoxia preconditioning by hypoxia mimetic cobalt chloride against exercise-induced oxidative damage in the skeletal muscles and improvement of physical performance. METHOD Male Sprague-Dawley rats were randomly divided into four groups (n=8), namely control, cobalt-supplemented, training and cobalt with training. The red gastrocnemius muscle was examined for all measurements, viz. free radical generation, lipid peroxidation, muscle damage and antioxidative capacity. RESULTS Hypoxic preconditioning with cobalt along with training significantly increased physical performance (33%, P<0.01) in rats compared with training-only rats. Cobalt supplementation activated cellular oxygen sensing system in rat skeletal muscle. It also protected against training-induced oxidative damage as observed by an increase in the GSH/GSSG ratio (36%, P<0.001; 28%, P<0.01 respectively) and reduced lipid peroxidation (15%, P<0.01; 31%, P<0.01 respectively) in both trained and untrained rats compared with their respective controls. Cobalt supplementation along with training enhanced the expression of antioxidant proteins haem oxygenase-1 (HO-1; 1.2-fold, P<0.05) and metallothionein (MT; 4.8-fold, P<0.001) compared with training only. A marked reduction was observed in exercise-induced muscle fibre damage as indicated by decreased necrotic muscle fibre, decreased lipofuscin content of muscle and plasma creatine kinase level (16%, P<0.01) in rats preconditioned with cobalt. CONCLUSION Our study provides strong evidence that hypoxic preconditioning with cobalt chloride enhances physical performance and protects muscle from exercise-induced oxidative damage via GSH, HO-1 and MT-mediated antioxidative capacity.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Cell Hypoxia
- Cobalt/pharmacology
- Creatine Kinase, MM Form/blood
- Cytoprotection
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Glutathione/metabolism
- Heme Oxygenase (Decyclizing)/metabolism
- Lactic Acid/blood
- Lipid Peroxidation/drug effects
- Lipofuscin/metabolism
- Male
- Metallothionein/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Diseases/etiology
- Muscular Diseases/metabolism
- Muscular Diseases/pathology
- Muscular Diseases/physiopathology
- Muscular Diseases/prevention & control
- Necrosis
- Oxidative Stress/drug effects
- Physical Endurance/drug effects
- Physical Exertion
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- S Saxena
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Nakao KI, Kibayashi K, Taki T, Koyama H. Changes in the Brain after Intracerebral Implantation of a Lead Pellet in the Rat. J Neurotrauma 2010; 27:1925-34. [DOI: 10.1089/neu.2010.1379] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ken-ichiro Nakao
- Department of Forensic Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuhiko Kibayashi
- Department of Legal Medicine, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Taki
- Department of Legal Medicine, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyoshi Koyama
- Department of Forensic Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
129
|
Peyre M, Commo F, Dantas-Barbosa C, Andreiuolo F, Puget S, Lacroix L, Drusch F, Scott V, Varlet P, Mauguen A, Dessen P, Lazar V, Vassal G, Grill J. Portrait of ependymoma recurrence in children: biomarkers of tumor progression identified by dual-color microarray-based gene expression analysis. PLoS One 2010; 5:e12932. [PMID: 20885975 PMCID: PMC2945762 DOI: 10.1371/journal.pone.0012932] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 07/14/2010] [Indexed: 01/06/2023] Open
Abstract
Background Children with ependymoma may experience a relapse in up to 50% of cases depending on the extent of resection. Key biological events associated with recurrence are unknown. Methodology/Principal Findings To discover the biology behind the recurrence of ependymomas, we performed CGHarray and a dual-color gene expression microarray analysis of 17 tumors at diagnosis co-hybridized with the corresponding 27 first or subsequent relapses from the same patient. As treatment and location had only limited influence on specific gene expression changes at relapse, we established a common signature for relapse. Eighty-seven genes showed an absolute fold change ≥2 in at least 50% of relapses and were defined as the gene expression signature of ependymoma recurrence. The most frequently upregulated genes are involved in the kinetochore (ASPM, KIF11) or in neural development (CD133, Wnt and Notch pathways). Metallothionein (MT) genes were downregulated in up to 80% of the recurrences. Quantitative PCR for ASPM, KIF11 and MT3 plus immunohistochemistry for ASPM and MT3 confirmed the microarray results. Immunohistochemistry on an independent series of 24 tumor pairs at diagnosis and at relapse confirmed the decrease of MT3 expression at recurrence in 17/24 tumor pairs (p = 0.002). Conversely, ASPM expression was more frequently positive at relapse (87.5% vs 37.5%, p = 0.03). Loss or deletion of the MT genes cluster was never observed at relapse. Promoter sequencing after bisulfite treatment of DNA from primary tumors and recurrences as well as treatment of short-term ependymoma cells cultures with a demethylating agent showed that methylation was not involved in MT3 downregulation. However, in vitro treatment with a histone deacetylase inhibitor or zinc restored MT3 expression. Conclusions/Significance The most frequent molecular events associated with ependymoma recurrence were over-expression of kinetochore proteins and down-regulation of metallothioneins. Metallothionein-3 expression is epigenetically controlled and can be restored in vitro by histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Matthieu Peyre
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
| | - Frédéric Commo
- CNRS FRE 2939, Bioinformatics Group, Gustave Roussy Institute, Villejuif, France
| | - Carmela Dantas-Barbosa
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
| | - Felipe Andreiuolo
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
- Translational Research Laboratory, Gustave Roussy Institute, Villejuif, France
| | - Stéphanie Puget
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
- Department of Neurosurgery, Necker Sick Children's Hospital, Université Paris V Descartes, Paris, France
| | - Ludovic Lacroix
- Translational Research Laboratory, Gustave Roussy Institute, Villejuif, France
| | - Françoise Drusch
- Translational Research Laboratory, Gustave Roussy Institute, Villejuif, France
| | - Véronique Scott
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital, Paris, France
| | - Audrey Mauguen
- Department of Biostatistics, Gustave Roussy Institute, Villejuif, France
| | - Philippe Dessen
- CNRS FRE 2939, Bioinformatics Group, Gustave Roussy Institute, Villejuif, France
| | - Vladimir Lazar
- Functional Genomics Unit, Gustave Roussy Institute, Villejuif, France
| | - Gilles Vassal
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, Villejuif, France
| | - Jacques Grill
- Université Paris-Sud, CNRS UMR 8203 “Vectorology and Anticancer Treatments”, Gustave Roussy Institute, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, Villejuif, France
- * E-mail:
| |
Collapse
|
130
|
The native copper- and zinc-binding protein metallothionein blocks copper-mediated Abeta aggregation and toxicity in rat cortical neurons. PLoS One 2010; 5:e12030. [PMID: 20711450 PMCID: PMC2920313 DOI: 10.1371/journal.pone.0012030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 07/15/2010] [Indexed: 11/30/2022] Open
Abstract
Background A major pathological hallmark of AD is the deposition of insoluble extracellular β-amyloid (Aβ) plaques. There are compelling data suggesting that Aβ aggregation is catalysed by reaction with the metals zinc and copper. Methodology/Principal Findings We now report that the major human-expressed metallothionein (MT) subtype, MT-2A, is capable of preventing the in vitro copper-mediated aggregation of Aβ1–40 and Aβ1–42. This action of MT-2A appears to involve a metal-swap between Zn7MT-2A and Cu(II)-Aβ, since neither Cu10MT-2A or carboxymethylated MT-2A blocked Cu(II)-Aβ aggregation. Furthermore, Zn7MT-2A blocked Cu(II)-Aβ induced changes in ionic homeostasis and subsequent neurotoxicity of cultured cortical neurons. Conclusions/Significance These results indicate that MTs of the type represented by MT-2A are capable of protecting against Aβ aggregation and toxicity. Given the recent interest in metal-chelation therapies for AD that remove metal from Aβ leaving a metal-free Aβ that can readily bind metals again, we believe that MT-2A might represent a different therapeutic approach as the metal exchange between MT and Aβ leaves the Aβ in a Zn-bound, relatively inert form.
Collapse
|
131
|
Basu A, Krishnamurthy S. Cellular responses to Cisplatin-induced DNA damage. J Nucleic Acids 2010; 2010:201367. [PMID: 20811617 PMCID: PMC2929606 DOI: 10.4061/2010/201367] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 06/28/2010] [Indexed: 12/29/2022] Open
Abstract
Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center and Institute for Cancer Research, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Soumya Krishnamurthy
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center and Institute for Cancer Research, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
132
|
Lee SJ, Park MH, Kim HJ, Koh JY. Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia 2010; 58:1186-96. [PMID: 20544854 DOI: 10.1002/glia.20998] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular zinc plays a key role in lysosomal change and cell death in neurons and astrocytes under oxidative stress. Here, using astrocytes lacking metallothionein-3 (MT3), a potential source of labile zinc in the brain, we studied the role of MT3 in oxidative stress responses. H(2)O(2) induced a large increase in labile zinc in wild-type (WT) astrocytes, but stimulated only a modest rise in MT3-null astrocytes. In addition, H(2)O(2)-induced lysosomal membrane permeabilization (LMP) and cell death were comparably attenuated in MT3-null astrocytes. Expression and glycosylation of Lamp1 (lysosome-associated membrane protein 1) and Lamp2 were increased in MT3-null astrocytes, and the activities of several lysosomal enzymes were significantly reduced, indicating an effect of MT3 on lysosomal components. Consistent with lysosomal dysfunction in MT3-null cells, the level of LC3-II (microtubule-associated protein 1 light chain 3), a marker of early autophagy, was increased by oxidative stress in WT astrocytes, but not in MT3-null cells. Similar changes in Lamp1, LC3, and cathepsin-D were induced by the lysosomal inhibitors bafilomycin A1, chloroquine, and monensin, indicating that lysosomal dysfunction may lie upstream of changes observed in MT3-null astrocytes. Consistent with this idea, lysosomal accumulation of cholesterol and lipofuscin were augmented in MT3-null astrocytes. Similar to the results seen in MT3-null cells, MT3 knockdown by siRNA inhibited oxidative stress-induced increases in zinc and LMP. These results indicate that MT3 may play a key role in normal lysosomal function in cultured astrocytes.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
133
|
Manso Y, Serra M, Comes G, Giralt M, Carrasco J, Cols N, Vasák M, González-Duarte P, Hidalgo J. The comparison of mouse full metallothionein-1 versus alpha and beta domains and metallothionein-1-to-3 mutation following traumatic brain injury reveals different biological motifs. J Neurosci Res 2010; 88:1708-18. [PMID: 20127815 DOI: 10.1002/jnr.22342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Traumatic injury to the brain is one of the leading causes of injury-related death or disability, but current therapies are limited. Previously it has been shown that the antioxidant proteins metallothioneins (MTs) are potent neuroprotective factors in animal models of brain injury. The exogenous administration of MTs causes effects consistent with the roles proposed from studies in knock-out mice. We herewith report the results comparing full mouse MT-1 with the independent alpha and beta domains, alone or together, in a cryoinjury model. The lesion of the cortex caused the mice to perform worse in the horizontal ladder beam and the rota-rod tests; all the proteins showed a modest effect in the former test, while only full MT-1 improved the performance of animals in the rota-rod, and the alpha domain showed a rather detrimental effect. Gene expression analysis by RNA protection assay demonstrated that all proteins may alter the expression of host-response genes such as GFAP, Mac1 and ICAM, in some cases being the beta domain more effective than the alpha domain or even the full MT-1. A MT-1-to-MT-3 mutation blunted some but not all the effects caused by the normal MT-1, and in some cases increased its potency. Thus, splitting the two MT-1 domains do not seem to eliminate all MT functions but certainly modifies them, and different motifs seem to be present in the protein underlying such functions.
Collapse
Affiliation(s)
- Yasmina Manso
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Zeitoun-Ghandour S, Charnock JM, Hodson ME, Leszczyszyn OI, Blindauer CA, Stürzenbaum SR. The two Caenorhabditis elegans metallothioneins (CeMT-1 and CeMT-2) discriminate between essential zinc and toxic cadmium. FEBS J 2010; 277:2531-42. [PMID: 20553489 DOI: 10.1111/j.1742-4658.2010.07667.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nematode Caenorhabditis elegans expresses two metallothioneins (MTs), CeMT-1 and CeMT-2, that are believed to be key players in the protection against metal toxicity. In this study, both isoforms were expressed in vitro in the presence of either Zn(II) or Cd(II). Metal binding stoichiometries and affinities were determined by ESI-MS and NMR, respectively. Both isoforms had equal zinc binding ability, but differed in their cadmium binding behaviour, with higher affinity found for CeMT-2. In addition, wild-type C. elegans, single MT knockouts and a double MT knockout allele were exposed to zinc (340 microm) or cadmium (25 microm) to investigate effects in vivo. Zinc levels were significantly increased in all knockout strains, but were most pronounced in the CeMT-1 knockout, mtl-1 (tm1770), while cadmium accumulation was highest in the CeMT-2 knockout, mtl-2 (gk125) and the double knockout mtl-1;mtl-2 (zs1). In addition, metal speciation was assessed by X-ray absorption fine-structure spectroscopy. This showed that O-donating, probably phosphate-rich, ligands play a dominant role in maintaining the physiological concentration of zinc, independently of metallothionein status. In contrast, cadmium was shown to coordinate with thiol groups, and the cadmium speciation of the wild-type and the CeMT-2 knockout strain was distinctly different to the CeMT-1 and double knockouts. Taken together, and supported by a simple model calculation, these findings show for the first time that the two MT isoforms have differential affinities towards Cd(II) and Zn(II) at a cellular level, and this is reflected at the protein level. This suggests that the two MT isoforms have distinct in vivo roles.
Collapse
|
135
|
Sonn K, Pankratova S, Korshunova I, Zharkovsky A, Bock E, Berezin V, Kiryushko D. A metallothionein mimetic peptide protects neurons against kainic acid-induced excitotoxicity. J Neurosci Res 2010; 88:1074-82. [PMID: 19937811 DOI: 10.1002/jnr.22281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metallothioneins I and II (MTI/II) are metal-binding proteins overexpressed in response to brain injury. Recently, we have designed a peptide, termed EmtinB, which is modeled after the beta-domain of MT-II and mimics the biological effects of MTI/II in vitro. Here, we demonstrate the neuroprotective effect of EmtinB in the in vitro and in vivo models of kainic acid (KA)-induced neurotoxicity. We show that EmtinB passes the blood-brain barrier and is detectable in plasma for up to 24 hr. Treatment with EmtinB significantly attenuates seizures in C57BL/6J mice exposed to moderate (20 mg/kg) and high (30 mg/kg) KA doses and tends to decrease mortality induced by the high KA dose. Histopathological evaluation of hippocampal (CA3 and CA1) and cortical areas of mice treated with 20 mg/kg KA shows that EmtinB treatment reduces KA-induced neurodegeneration in the CA1 region. These findings establish EmtinB as a promising target for therapeutic development.
Collapse
Affiliation(s)
- Katrin Sonn
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
136
|
Grünblatt E, Bartl J, Riederer P. The link between iron, metabolic syndrome, and Alzheimer's disease. J Neural Transm (Vienna) 2010; 118:371-9. [PMID: 20556444 DOI: 10.1007/s00702-010-0426-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/22/2010] [Indexed: 01/07/2023]
Abstract
Both Alzheimer's disease (AD), the most common form of dementia, and type-2 diabetes mellitus (T2DM), a disease associated with metabolic syndrome (MetS), affect a great number of the world population and both have increased prevalence with age. Recently, many studies demonstrated that pre-diabetes, MetS, and T2DM are risk factors in the development of AD and have many common mechanisms. The main focus of studies is the insulin resistance outcome found both in MetS as well as in brains of AD subjects. However, oxidative stress (OS)-related mechanisms, which are well known to be involved in AD, including mitochondrial dysfunction, elevated iron concentration, reactive oxygen species (ROS), and stress-related enzyme or proteins (e.g. heme oxygenase-1, transferrin, etc.), have not been elucidated in MetS or T2DM brains although OS and iron are involved in the degeneration of the pancreatic islet β cells. Therefore, this review sets to cover the current literature regarding OS and iron in MetS and T2DM and the similarities to mechanisms in AD both in human subjects as well as in animal models.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry, University of Zurich, Neumuensterallee 9, 8032, Zurich, Switzerland.
| | | | | |
Collapse
|
137
|
Faller P. Neuronal growth-inhibitory factor (metallothionein-3): reactivity and structure of metal-thiolate clusters*. FEBS J 2010; 277:2921-30. [DOI: 10.1111/j.1742-4658.2010.07717.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
138
|
Howells C, West AK, Chung RS. Neuronal growth-inhibitory factor (metallothionein-3): evaluation of the biological function of growth-inhibitory factor in the injured and neurodegenerative brain. FEBS J 2010; 277:2931-9. [PMID: 20561053 DOI: 10.1111/j.1742-4658.2010.07718.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal growth-inhibitory factor, later renamed metallothionein-3, is one of four members of the mammalian metallothionein family. Metallothioneins are a family of ubiquitous, low-molecular-weight, cysteine-rich proteins. Although neuronal growth-inhibitory factor shares metal-binding and reactive oxygen species scavenging properties with the other metallothioneins, it displays several distinct biological properties. In this review, we examine the recent developments regarding the function of neuronal growth-inhibitory factor within the brain, particularly in response to brain injury or during neurodegenerative disease progression.
Collapse
Affiliation(s)
- Claire Howells
- Menzies Research Institute, University of Tasmania, Hobart, Australia
| | | | | |
Collapse
|
139
|
Ceccatelli S, Daré E, Moors M. Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact 2010; 188:301-8. [PMID: 20399200 DOI: 10.1016/j.cbi.2010.04.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 12/24/2022]
Abstract
Methylmercury is a widely distributed environmental toxicant with detrimental effects on the developing and adult nervous system. Due to its accumulation in the food chain, chronic exposure to methylmercury via consumption of fish and sea mammals is still a major concern for human health, especially developmental exposure that may lead to neurological alterations, including cognitive and motor dysfunctions. Mercury-induced neurotoxicity and the identification of the underlying mechanisms has been a main focus of research in the neurotoxicology field. Three major mechanisms have been identified as critical in methylmercury-induced cell damage including (i) disruption of calcium homeostasis, (ii) induction of oxidative stress via overproduction of reactive oxygen species or reduction of antioxidative defenses and (iii) interactions with sulfhydryl groups. In vivo and in vitro studies have provided solid evidence for the occurrence of neural cell death, as well as cytoarchitectural alterations in the nervous system after exposure to methylmercury. Signaling cascades leading to cell death induced by methylmercury involve the release of mitochondrial factors, such as cytochrome c and AIF with subsequent caspase-dependent or -independent apoptosis, respectively; induction of calcium-dependent proteases calpains; interaction with lysosomes leading to release of cathepsins. Interestingly, several pathways can be activated in parallel, depending on the cell type. In this paper, we provide an overview of recent findings on methylmercury-induced neurotoxicity and cell death pathways that have been described in neural and endocrine cell systems.
Collapse
Affiliation(s)
- Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
140
|
Ontogenesis and migration of metallothionein I/II-containing glial cells in the human telencephalon during the second trimester. Brain Res 2010; 1327:16-23. [PMID: 20206148 DOI: 10.1016/j.brainres.2010.02.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 02/21/2010] [Accepted: 02/23/2010] [Indexed: 12/30/2022]
Abstract
Metallothioneins (MT) belong to a widespread family of proteins characterized by a high metal content (mainly Cu(2+) and Zn(2+)) and by the presence of cysteine residues. The expression of metallothionein I-II (MT I/II), glial fibrillary acid protein (GFAP), and vimentin was examined in a series of 16 developing human brains of the second trimester. The brains of a stillborn/newborn individual and two postnatal individuals were studied for comparison. MT I/II-containing cells became consistently and clearly visible only from gestational week 21 onwards. On the other hand, several densely packed GFAP- and vimentin-containing elements were evident in the neuroepithelium at several periventricular locations and in the subventricular zone of all fetuses of the series. GFAP- and vimentin-containing elements also entered the intermediate plate, but only a few elements were evident in the outer layers of the maturing cortex. The relatively late onset of MT I/II expression and their distribution are discussed in relation to the uptake of trace elements during the last trimester of pregnancy, and the role of astrocytes in neuronal guidance and maturation of cortical circuits.
Collapse
|
141
|
Ono SI, Hirai K, Tokuda EI. Effects of pergolide mesilate on metallothionein mRNAs expression in a mouse model for Parkinson disease. Biol Pharm Bull 2010; 32:1813-7. [PMID: 19801850 DOI: 10.1248/bpb.32.1813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dopamine agonists have neuroprotective properties in addition to their original pharmacologic function. We examined the effects of pergolide mesilate (PM) on the levels of metallothionein mRNA expression and lipid peroxidation in the corpus striata of 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonian mice. Mice were administered normal saline (vehicle as a control), PM, or MPTP. A consecutive 7-d administration of MPTP via a gastric tube at a dose of 30 mg/kg significantly decreased metallothionein (MT)-I mRNA expression but did not influence MT-III mRNA expression. Lipid peroxidation, measured as the production of malondialdehyde reactive substances, did not increase after MPTP treatment. Although PM administration alone did not effect MT-I expression, an additional consecutive 7-d administration of PM (30 mug/kg) following MPTP treatment recovered the decreased MT-I level and increased MT-III expression. Lipid peroxidation was significantly suppressed. These results suggest that PM exerts an antioxidative property through the induction of MT-I and MT-III mRNAs simultaneously in response to cellular and/or tissue injury.
Collapse
Affiliation(s)
- Shin-ichi Ono
- Research Unit of Clinical Pharmacy, College of Pharmacy, Nihon University, Funabashi, Chiba274-8555, Japan.
| | | | | |
Collapse
|
142
|
Kiliç GA, Kutlu M. Effects of exogenous metallothionein against thallium-induced oxidative stress in rat liver. Food Chem Toxicol 2010; 48:980-7. [PMID: 20079794 DOI: 10.1016/j.fct.2010.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/30/2009] [Accepted: 01/11/2010] [Indexed: 11/26/2022]
Abstract
Metallothionein (MT) is a low-molecular weight sulfur-rich protein that plays role in metal homeostasis/detoxification and radical scavenging. The following study investigated the ability of exogenous MT to protect against oxidative damage induced by thallium (TI) in rat liver. Male Wistar rats were divided into four groups; a control and three experimental groups. The control group received physiological saline. Group 1 animals were injected with thallium acetate intraperitoneally (i.p.) at a single dose of LD(50) (32 mg/kg). In group 2 and group 3, metallothionein I was administrated once at two different doses (1 or 2.5mg/kg i.p., respectively) 1h before TI intoxication. Levels of endogenous antioxidants, oxidative stress markers were measured and histopathological examinations were performed 4 days after TI administration. TI accumulation in liver decreased related to the dose of MT. Mostly all of the alterations in the levels antioxidants restored to normal levels in MT administrated animals. H(2)O(2) levels and lipid peroxidation decreased, integrity of hepatocytes and membranous structures inside the cells were preserved. The toxic effects of TI were modulated in MT administrated animals particularly at the dose of 2.5mg/kg. These findings suggest an active role of exogenous MT against TI-induced oxidative stress in rat liver.
Collapse
Affiliation(s)
- Gözde Aydoğan Kiliç
- Faculty of Science, Department of Biology, Anadolu University, 26470 Eskişehir, Turkey.
| | | |
Collapse
|
143
|
Asmussen JW, Von Sperling ML, Penkowa M. Intraneuronal signaling pathways of metallothionein. J Neurosci Res 2010; 87:2926-36. [PMID: 19405100 DOI: 10.1002/jnr.22118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metallothionein (MT) belongs to a family of metal-binding cysteine-rich proteins comprising several structurally related proteins implicated in tissue protection and regeneration after injuries and functioning as antiapoptotic antioxidants in neurological disorders. This has been demonstrated in animals receiving MT treatment and in mice with endogenous MT overexpression or null mutation during various experimental models of neuropathology, and also in patients with Alzheimer's disease and amyotrophic lateral sclerosis. Exogenously applied MT increases neurite outgrowth and neuronal survival in rat cerebellar, hippocampal, dopaminergic, and cortical neurons in vitro. In this study, the intraneuronal signaling involved in MT-mediated neuritogenesis was examined. The MT-induced neurite outgrowth in cultures of cerebellar granule neurons was dependent on activation of a heterotrimeric G-protein-coupled pathway but not on protein tyrosine kinases or on receptor tyrosine kinases. Activation of phospholipase C was necessary for MT-induced neurite outgrowth, and furthermore it was shown that inhibition of several intracellular protein kinases, such as protein kinase A, protein kinase C, phosphatidylinositol 3-kinase, Ca(2+)/calmodulin kinase-II, and mitogen-activated protein kinase kinase, abrogated the MT-mediated neuritogenic response. In addition, exogenously applied MT resulted in a decrease in phosphorylation of intraneuronal kinases implicated in proinflammatory reactions and apoptotic cell death, such as glycogen synthase-serine kinase 3alpha, Jun, and signal transducer and activator of transcription 3. This paper elucidates the intraneuronal molecular signaling involved in neuroprotective effects of MT.
Collapse
Affiliation(s)
- Johanne Wirenfeldt Asmussen
- Section of Neuroprotection, Institute of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
144
|
Torreggiani A, Tinti A. Raman spectroscopy a promising technique for investigations of metallothioneins. Metallomics 2010; 2:246-60. [DOI: 10.1039/b922526a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
145
|
Durand J, Meloni G, Talmard C, Vašák M, Faller P. Zinc release of Zn7-metallothionein-3 induces fibrillar type amyloid-β aggregates. Metallomics 2010; 2:741-4. [DOI: 10.1039/c0mt00027b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
146
|
Koumura A, Kakefuda K, Honda A, Ito Y, Tsuruma K, Shimazawa M, Uchida Y, Hozumi I, Satoh M, Inuzuka T, Hara H. Metallothionein-3 deficient mice exhibit abnormalities of psychological behaviors. Neurosci Lett 2009; 467:11-4. [DOI: 10.1016/j.neulet.2009.09.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 01/04/2023]
|
147
|
Belloni-Olivi L, Marshall C, Laal B, Andrews GK, Bressler J. Localization of zip1 and zip4 mRNA in the adult rat brain. J Neurosci Res 2009; 87:3221-30. [PMID: 19530166 DOI: 10.1002/jnr.22144] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The localization of two members of the Slc39a (zip1 and zip4) family of zinc transporters was examined in the brains of adult mice. Zip1 was highly enriched in brain regions with high densities of neuronal cell bodies, including the hippocampus, thalamus, and perifontal cortex. Zip1 was also expressed in commissural fiber tracts such as the corpus callosum and anterior commissure, but little was found in the internal and external capsules. Also, very low amounts of zip1 mRNA were detected in resting astrocytes and reactive astrocytes that were examined at 14 days after inflicting a stab wound. Zip1 mRNA was detected in ependymal cells lining the third and lateral ventricles and epithelium cells in the choroid plexus. Interestingly, zip4 mRNA was detected in the choroid plexus but not in the ependymal cells or other neural elements. Zip4 mRNA was also detected in brain capillaries, but zip1 mRNA was not. In zip4 knockout heterozygotes that express green fluorescent protein regulated by the zip4 promoter, green fluorescent protein was detected in brain capillaries. Because zip4 levels are regulated by dietary Zn, our studies suggest that the brain has the potential of adapting to changes in Zn status.
Collapse
|
148
|
Abstract
Zinc is a life-sustaining trace element, serving structural, catalytic, and regulatory roles in cellular biology. It is required for normal mammalian brain development and physiology, such that deficiency or excess of zinc has been shown to contribute to alterations in behavior, abnormal central nervous system development, and neurological disease. In this light, it is not surprising that zinc ions have now been shown to play a role in the neuromodulation of synaptic transmission as well as in cortical plasticity. Zinc is stored in specific synaptic vesicles by a class of glutamatergic or "gluzinergic" neurons and is released in an activity-dependent manner. Because gluzinergic neurons are found almost exclusively in the cerebral cortex and limbic structures, zinc may be critical for normal cognitive and emotional functioning. Conversely, direct evidence shows that zinc might be a relatively potent neurotoxin. Neuronal injury secondary to in vivo zinc mobilization and release occurs in several neurological disorders such as Alzheimer's disease and amyotrophic lateral sclerosis, in addition to epilepsy and ischemia. Thus, zinc homeostasis is integral to normal central nervous system functioning, and in fact its role may be underappreciated. This article provides an overview of zinc neurobiology and reviews the experimental evidence that implicates zinc signals in the pathophysiology of neuropsychiatric diseases. A greater understanding of zinc's role in the central nervous system may therefore allow for the development of therapeutic approaches where aberrant metal homeostasis is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | |
Collapse
|
149
|
Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.05.011] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
150
|
Briet F, Mazer CD, Tsui AKY, Zhang H, Khang J, Pang V, Baker AJ, Hare GMT. Cerebral cortical gene expression in acutely anemic rats: a microarray analysis. Can J Anaesth 2009; 56:921-34. [PMID: 19847587 DOI: 10.1007/s12630-009-9201-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/14/2009] [Indexed: 01/29/2023] Open
Abstract
PURPOSE Hemodilution in perioperative patients has been associated with neurological morbidity and increased mortality by undefined mechanisms. This study assesses whether hemodilutional anemia up-regulated inflammatory cerebral gene expression (microarray) to help define the mechanism. METHODS Hemodilution was performed in anesthetized rats by exchanging 50% of the estimated blood volume (30 mL kg(-1)) with pentastarch. Two groups of control animals were utilized, i.e., a non-anesthetized control (Normal Control) and an anesthetized control group (Anesthesia Control). Blood pressure, hemoglobin concentration, and arterial blood gas analysis were performed before and after hemodilution. Cerebral cortex was harvested from isoflurane-anesthetized rats (n = 6) after 6 and 24 hr of recovery and was used to perform complimentary DNA (cDNA) microarray analyses. Pro-inflammatory chemokine and cytokine protein levels were also measured. RESULTS Microarray analysis demonstrated up-regulation of 72 and 27 genes (6 and 24 hr, respectively) in anemic cerebral cortex. These genes were involved in a number of biological functions, including (1) inflammatory responses; (2) angiogenesis; (3) vascular homeostasis; (4) cellular biology; and (5) apoptosis. Chemokine ribonucleic acid (RNA) expression (CXCL-1, -10, and -11) was highest in anemic brain tissue (P < 0.0125 for each). Protein measurements demonstrated a significant increase in interleukin-6, tumor necrosis factor alpha, and monocyte chemoattractant protein-1 (P < 0.05 for each). CONCLUSION This study utilizes microarray technology to elucidate changes in cerebral cortical gene expression in response to acute hemodilution. These findings demonstrate an increase in pro-inflammatory chemokines (RNA, protein) and cytokines (protein). An improved understanding of the inflammatory response to anemia may help to minimize associated morbidity and mortality.
Collapse
Affiliation(s)
- Françoise Briet
- Department of Anaesthesia, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|