101
|
Calhoun JD, Hawkins NA, Zachwieja NJ, Kearney JA. Cacna1g is a genetic modifier of epilepsy caused by mutation of voltage-gated sodium channel Scn2a. Epilepsia 2016; 57:e103-7. [PMID: 27112236 DOI: 10.1111/epi.13390] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 01/02/2023]
Abstract
More than 1,200 mutations in neuronal voltage-gated sodium channel (VGSC) genes have been identified in patients with several epilepsy syndromes. A common feature of genetic epilepsies is variable expressivity among individuals with the same mutation. The Scn2a(Q54) transgenic mouse model has a mutation in Scn2a that results in spontaneous epilepsy. Scn2a(Q54) phenotype severity varies depending on the genetic strain background, making it a useful model for identifying and characterizing epilepsy modifier genes. Scn2a(Q54) mice on the [C57BL/6JxSJL/J]F1 background exhibit earlier seizure onset, elevated spontaneous seizure frequency, and decreased survival compared to Scn2a(Q54) mice congenic on the C57BL/6J strain. Genetic mapping and RNA-Seq analysis identified Cacna1g as a candidate modifier gene at the Moe1 locus, which influences Scn2a(Q54) phenotype severity. In this study, we evaluated the modifier potential of Cacna1g, encoding the Cav3.1 voltage-gated calcium channel, by testing whether transgenic alteration of Cacna1g expression modifies severity of the Scn2a(Q54) seizure phenotype. Scn2a(Q54) mice exhibited increased spontaneous seizure frequency with elevated Cacna1g expression and decreased seizure frequency with decreased Cacna1g expression. These results provide support for Cacna1g as an epilepsy modifier gene and suggest that modulation of Cav3.1 may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A.,Department of Medicine, Vanderbilt University, Nashville, Tennessee, U.S.A
| | - Nicole A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A.,Neuroscience Program, Vanderbilt University, Nashville, Tennessee, U.S.A
| | - Nicole J Zachwieja
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A.,Department of Medicine, Vanderbilt University, Nashville, Tennessee, U.S.A
| |
Collapse
|
102
|
Wang H, Zhang X, Xue L, Xing J, Jouvin MH, Putney JW, Anderson MP, Trebak M, Kinet JP. Low-Voltage-Activated CaV3.1 Calcium Channels Shape T Helper Cell Cytokine Profiles. Immunity 2016; 44:782-94. [PMID: 27037192 PMCID: PMC6771933 DOI: 10.1016/j.immuni.2016.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 12/30/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022]
Abstract
Activation of T cells is mediated by the engagement of T cell receptors (TCRs) followed by calcium entry via store-operated calcium channels. Here we have shown an additional route for calcium entry into T cells-through the low-voltage-activated T-type CaV3.1 calcium channel. CaV3.1 mediated a substantial current at resting membrane potentials, and its deficiency had no effect on TCR-initiated calcium entry. Mice deficient for CaV3.1 were resistant to the induction of experimental autoimmune encephalomyelitis and had reduced productions of the granulocyte-macrophage colony-stimulating factor (GM-CSF) by central nervous system (CNS)-infiltrating T helper 1 (Th1) and Th17 cells. CaV3.1 deficiency led to decreased secretion of GM-CSF from in vitro polarized Th1 and Th17 cells. Nuclear translocation of the nuclear factor of activated T cell (NFAT) was also reduced in CaV3.1-deficient T cells. These data provide evidence for T-type channels in immune cells and their potential role in shaping the autoimmune response.
Collapse
Affiliation(s)
- Huiyun Wang
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Li Xue
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Juan Xing
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Marie-Hélène Jouvin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - James W Putney
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Matthew P Anderson
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Jean-Pierre Kinet
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
103
|
Elies J, Scragg JL, Boyle JP, Gamper N, Peers C. Regulation of the T-type Ca(2+) channel Cav3.2 by hydrogen sulfide: emerging controversies concerning the role of H2 S in nociception. J Physiol 2016; 594:4119-29. [PMID: 26804000 DOI: 10.1113/jp270963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/26/2015] [Indexed: 12/22/2022] Open
Abstract
Ion channels represent a large and growing family of target proteins regulated by gasotransmitters such as nitric oxide, carbon monoxide and, as described more recently, hydrogen sulfide. Indeed, many of the biological actions of these gases can be accounted for by their ability to modulate ion channel activity. Here, we report recent evidence that H2 S is a modulator of low voltage-activated T-type Ca(2+) channels, and discriminates between the different subtypes of T-type Ca(2+) channel in that it selectively modulates Cav3.2, whilst Cav3.1 and Cav3.3 are unaffected. At high concentrations, H2 S augments Cav3.2 currents, an observation which has led to the suggestion that H2 S exerts its pro-nociceptive effects via this channel, since Cav3.2 plays a central role in sensory nerve excitability. However, at more physiological concentrations, H2 S is seen to inhibit Cav3.2. This inhibitory action requires the presence of the redox-sensitive, extracellular region of the channel which is responsible for tonic metal ion binding and which particularly distinguishes this channel isoform from Cav3.1 and 3.3. Further studies indicate that H2 S may act in a novel manner to alter channel activity by potentiating the zinc sensitivity/affinity of this binding site. This review discusses the different reports of H2 S modulation of T-type Ca(2+) channels, and how such varying effects may impact on nociception given the role of this channel in sensory activity. This subject remains controversial, and future studies are required before the impact of T-type Ca(2+) channel modulation by H2 S might be exploited as a novel approach to pain management.
Collapse
Affiliation(s)
- Jacobo Elies
- Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jason L Scragg
- Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - John P Boyle
- Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nikita Gamper
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK.,Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Chris Peers
- Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
104
|
Park AH, Lee SH, Lee C, Kim J, Lee HE, Paik SB, Lee KJ, Kim D. Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull. ACS NANO 2016; 10:2791-802. [PMID: 26735496 DOI: 10.1021/acsnano.5b07889] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Spatiotemporal mapping of neural interactions through electrocorticography (ECoG) is the key to understanding brain functions and disorders. For the entire brain cortical areas, this approach has been challenging, especially in freely moving states, owing to the need for extensive craniotomy. Here, we introduce a flexible microelectrode array system, termed iWEBS, which can be inserted through a small cranial slit and stably wrap onto the curved cortical surface. Using iWEBS, we measured dynamic changes of signals across major cortical domains, namely, somatosensory, motor, visual and retrosplenial areas, in freely moving mice. iWEBS robustly displayed somatosensory evoked potentials (SEPs) in corresponding cortical areas to specific somatosensory stimuli. We also used iWEBS for mapping functional interactions between cortical areas in the propagation of spike-and-wave discharges (SWDs), the neurological marker of absence seizures, triggered by optogenetic inhibition of a specific thalamic nucleus. This demonstrates that iWEBS represents a significant improvement over conventional ECoG recording methodologies and, therefore, is a competitive recording system for mapping wide-range brain connectivity under various behavioral conditions.
Collapse
Affiliation(s)
- Ah Hyung Park
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung Hyun Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Changju Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongjin Kim
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Han Eol Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
105
|
Criminal Minds: Cav3.2 Channels Are the Culprits, but NMDAR Are the Co-Conspirators. Epilepsy Curr 2016; 16:36-8. [PMID: 26900377 DOI: 10.5698/1535-7597-16.1.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
106
|
|
107
|
Abstract
A central theme in the quest to unravel the genetic basis of epilepsy has been the effort to elucidate the roles played by inherited defects in ion channels. The ubiquitous expression of voltage-gated calcium channels (VGCCs) throughout the central nervous system (CNS), along with their involvement in fundamental processes, such as neuronal excitability and synaptic transmission, has made them attractive candidates. Recent insights provided by the identification of mutations in the P/Q-type calcium channel in humans and rodents with epilepsy and the finding of thalamic T-type calcium channel dysfunction in the absence of seizures have raised expectations of a causal role of calcium channels in the polygenic inheritance of idiopathic epilepsy. In this review, we consider how genetic variation in neuronal VGCCs may influence the development of epilepsy.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| | - Michael G Hanna
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
108
|
Morino H, Matsuda Y, Muguruma K, Miyamoto R, Ohsawa R, Ohtake T, Otobe R, Watanabe M, Maruyama H, Hashimoto K, Kawakami H. A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Mol Brain 2015; 8:89. [PMID: 26715324 PMCID: PMC4693440 DOI: 10.1186/s13041-015-0180-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia (SCA) is a genetically heterogeneous disease. To date, 36 dominantly inherited loci have been reported, and 31 causative genes have been identified. RESULTS In this study, we analyzed a Japanese family with autosomal dominant SCA using linkage analysis and exome sequencing, and identified CACNA1G, which encodes the calcium channel CaV3.1, as a new causative gene. The same mutation was also found in another family with SCA. Although most patients exhibited the pure form of cerebellar ataxia, two patients showed prominent resting tremor in addition to ataxia. CaV3.1 is classified as a low-threshold voltage-dependent calcium channel (T-type) and is expressed abundantly in the central nervous system, including the cerebellum. The mutation p.Arg1715His, identified in this study, was found to be located at S4 of repeat IV, the voltage sensor of the CaV3.1. Electrophysiological analyses revealed that the membrane potential dependency of the mutant CaV3.1 transfected into HEK293T cells shifted toward a positive potential. We established induced pluripotent stem cells (iPSCs) from fibroblasts of the patient, and to our knowledge, this is the first report of successful differentiation from the patient-derived iPSCs into Purkinje cells. There was no significant difference in the differentiation status between control- and patient-derived iPSCs. CONCLUSIONS To date, several channel genes have been reported as causative genes for SCA. Our findings provide important insights into the pathogenesis of SCA as a channelopathy.
Collapse
Affiliation(s)
- Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Yukiko Matsuda
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Keiko Muguruma
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Japan.
| | - Ryosuke Miyamoto
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Ryosuke Ohsawa
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Toshiyuki Ohtake
- Department of Neurology, Tokyo Metropolitan Health and Medical Treatment Corporation Ebara Hospital, Tokyo, Japan.
| | - Reiko Otobe
- Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, Japan.
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience & Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
109
|
Béhuret S, Deleuze C, Bal T. Corticothalamic Synaptic Noise as a Mechanism for Selective Attention in Thalamic Neurons. Front Neural Circuits 2015; 9:80. [PMID: 26733818 PMCID: PMC4686626 DOI: 10.3389/fncir.2015.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/27/2015] [Indexed: 12/04/2022] Open
Abstract
A reason why the thalamus is more than a passive gateway for sensory signals is that two-third of the synapses of thalamocortical neurons are directly or indirectly related to the activity of corticothalamic axons. While the responses of thalamocortical neurons evoked by sensory stimuli are well characterized, with ON- and OFF-center receptive field structures, the prevalence of synaptic noise resulting from neocortical feedback in intracellularly recorded thalamocortical neurons in vivo has attracted little attention. However, in vitro and modeling experiments point to its critical role for the integration of sensory signals. Here we combine our recent findings in a unified framework suggesting the hypothesis that corticothalamic synaptic activity is adapted to modulate the transfer efficiency of thalamocortical neurons during selective attention at three different levels: First, on ionic channels by interacting with intrinsic membrane properties, second at the neuron level by impacting on the input-output gain, and third even more effectively at the cell assembly level by boosting the information transfer of sensory features encoded in thalamic subnetworks. This top-down population control is achieved by tuning the correlations in subthreshold membrane potential fluctuations and is adapted to modulate the transfer of sensory features encoded by assemblies of thalamocortical relay neurons. We thus propose that cortically-controlled (de-)correlation of subthreshold noise is an efficient and swift dynamic mechanism for selective attention in the thalamus.
Collapse
Affiliation(s)
- Sébastien Béhuret
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique FRE-3693 Gif-sur-Yvette, France
| | - Charlotte Deleuze
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique FRE-3693Gif-sur-Yvette, France; Institut National de la Santé et de la Recherche Médicale U 1127, Centre National de la Recherche Scientifique UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle ÉpinièreParis, France
| | - Thierry Bal
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique FRE-3693 Gif-sur-Yvette, France
| |
Collapse
|
110
|
No apparent role for T-type Ca²⁺ channels in renal autoregulation. Pflugers Arch 2015; 468:541-50. [PMID: 26658945 DOI: 10.1007/s00424-015-1770-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
Renal autoregulation protects glomerular capillaries against increases in renal perfusion pressure (RPP). In the mesentery, both L- and T-type calcium channels are involved in autoregulation. L-type calcium channels participate in renal autoregulation, but the role of T-type channels is not fully elucidated due to lack of selective pharmacological inhibitors. The role of T- and L-type calcium channels in the response to acute increases in RPP in T-type channel knockout mice (CaV3.1) and normo- and hypertensive rats was examined. Changes in afferent arteriolar diameter in the kidneys from wild-type and CaV3.1 knockout mice were assessed. Autoregulation of renal blood flow was examined during acute increases in RPP in normo- and hypertensive rats under pharmacological blockade of T- and L-type calcium channels using mibefradil (0.1 μM) and nifedipine (1 μM). In contrast to the results from previous pharmacological studies, genetic deletion of T-type channels CaV3.1 did not affect renal autoregulation. Pharmacological blockade of T-type channels using concentrations of mibefradil which specifically blocks T-type channels also had no effect in wild-type or knockout mice. Blockade of L-type channels significantly attenuated renal autoregulation in both strains. These findings are supported by in vivo studies where blockade of T-type channels had no effect on changes in the renal vascular resistance after acute increases in RPP in normo- and hypertensive rats. These findings show that genetic deletion of T-type channels CaV3.1 or treatment with low concentrations of mibefradil does not affect renal autoregulation. Thus, T-type calcium channels are not involved in renal autoregulation in response to acute increases in RPP.
Collapse
|
111
|
Sharop BR, Boldyriev OI, Batiuk MY, Shtefan NL, Shuba YM. Compensatory reduction of Cav3.1 expression in thalamocortical neurons of juvenile rats of WAG/Rij model of absence epilepsy. Epilepsy Res 2015; 119:10-2. [PMID: 26656778 DOI: 10.1016/j.eplepsyres.2015.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 11/16/2022]
Abstract
Absence seizures are the non-convulsive form of generalized epilepsy critically dependent on T-type calcium channels (Cav3) in thalamic neurons. In humans, absences accompany only childhood or adolescent epileptic syndromes--though in its polygenic rat models WAG/Rij and GAERS the opposite developmental pattern is observed. Hereby we address this issue by transcriptional and functional study of thalamic Cav3 in juvenile (i.e., free of seizures) rats of the absence-prone WAG/Rij strain and their coevals of the maternal Wistar strain. First, we measured the low voltage-activated (LVA) Ca(2+) current in freshly isolated thalamocortical neurons from laterodorsal nucleus of thalamus. The difference between current densities in control (12.9 ± 1.8pA/pF) and absence epilepsy (7.9 ± 1.8pA/pF) groups reached ∼ 39%. Second, we assessed the contribution of different T-channel isoforms into the reduction of Cav3-mediated current in WAG/Rij juveniles by means of RT PCR. The expression of all three LVA calcium channels was revealed with the prevalence of G and I isoforms. The expression level of G isoform (Cav3.1) was 35% smaller in WAG/Rij strain if compared to the control animals while that of H and I isoforms (Cav3.2 and Cav3.3, respectively) remained stable. The weakened expression of Cav3.1 in juveniles of WAG/Rij rats could represent a compensatory mechanism determining the pattern of the age dependency in the disease manifestation by this model of absence epilepsy.
Collapse
Affiliation(s)
- Bizhan R Sharop
- Department of Nerve & Muscle Physiology, Bogomoletz Institute of Physiology, NASU, Bogomotetz Str., 4, Kiev, 01024, Ukraine; International Center of Molecular Physiology, NASU, Kyiv, Ukraine; State Key Laboratory of Molecular and Cellular Physiology, Kyiv, Ukraine.
| | - Oleksii I Boldyriev
- Department of Nerve & Muscle Physiology, Bogomoletz Institute of Physiology, NASU, Bogomotetz Str., 4, Kiev, 01024, Ukraine; International Center of Molecular Physiology, NASU, Kyiv, Ukraine; State Key Laboratory of Molecular and Cellular Physiology, Kyiv, Ukraine
| | - Mykhailo Y Batiuk
- International Center of Molecular Physiology, NASU, Kyiv, Ukraine; State Key Laboratory of Molecular and Cellular Physiology, Kyiv, Ukraine
| | - Nataliia L Shtefan
- Department of Nerve & Muscle Physiology, Bogomoletz Institute of Physiology, NASU, Bogomotetz Str., 4, Kiev, 01024, Ukraine
| | - Yaroslav M Shuba
- Department of Nerve & Muscle Physiology, Bogomoletz Institute of Physiology, NASU, Bogomotetz Str., 4, Kiev, 01024, Ukraine; International Center of Molecular Physiology, NASU, Kyiv, Ukraine; State Key Laboratory of Molecular and Cellular Physiology, Kyiv, Ukraine
| |
Collapse
|
112
|
Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 2015; 15:19-34. [DOI: 10.1038/nrd.2015.5] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
113
|
Seol M, Kuner T. Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse. Eur J Neurosci 2015; 42:3033-44. [PMID: 26390982 PMCID: PMC5063118 DOI: 10.1111/ejn.13084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 11/27/2022]
Abstract
The properties and molecular determinants of synaptic transmission at giant synapses connecting layer 5B (L5B) neurons of the somatosensory cortex (S1) with relay neurons of the posteriomedial nucleus (POm) of the thalamus have not been investigated in mice. We addressed this by using direct electrical stimulation of fluorescently labelled single corticothalamic terminals combined with molecular perturbations and whole‐cell recordings from POm relay neurons. Consistent with their function as drivers, we found large‐amplitude excitatory postsynaptic currents (EPSCs) and multiple postsynaptic action potentials triggered by a single presynaptic action potential. To study the molecular basis of these two features, ionotropic glutamate receptors and low voltage‐gated T‐type calcium channels were probed by virus‐mediated genetic perturbation. Loss of GluA4 almost abolished the EPSC amplitude, strongly delaying the onset of action potential generation, but maintaining the number of action potentials generated per presynaptic action potential. In contrast, knockdown of the Cav3.1 subunit abrogated the driver function of the synapse at a typical resting membrane potential of −70 mV. However, when depolarizing the membrane potential to −60 mV, the synapse relayed single action potentials. Hence, GluA4 subunits are required to produce an EPSC sufficiently large to trigger postsynaptic action potentials within a defined time window after the presynaptic action potential, while Cav3.1 expression is essential to establish the driver function of L5B‐POm synapses at hyperpolarized membrane potentials.
Collapse
Affiliation(s)
- Min Seol
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| |
Collapse
|
114
|
Coutelier M, Blesneac I, Monteil A, Monin ML, Ando K, Mundwiller E, Brusco A, Le Ber I, Anheim M, Castrioto A, Duyckaerts C, Brice A, Durr A, Lory P, Stevanin G. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia. Am J Hum Genet 2015; 97:726-37. [PMID: 26456284 DOI: 10.1016/j.ajhg.2015.09.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022] Open
Abstract
Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs.
Collapse
|
115
|
Wang G, Bochorishvili G, Chen Y, Salvati KA, Zhang P, Dubel SJ, Perez-Reyes E, Snutch TP, Stornetta RL, Deisseroth K, Erisir A, Todorovic SM, Luo JH, Kapur J, Beenhakker MP, Zhu JJ. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy. Genes Dev 2015. [PMID: 26220996 PMCID: PMC4526737 DOI: 10.1101/gad.260869.115] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE.
Collapse
Affiliation(s)
- Guangfu Wang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Genrieta Bochorishvili
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Yucai Chen
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Kathryn A Salvati
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Peng Zhang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Steve J Dubel
- Laboratoire de Génomique Fonctionnelle, Département de Physiologie, Unité Propre de Recherche 2580, Centre National de la Recherche Scientifique, 34396 Montpellier, France
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Terrance P Snutch
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jian-Hong Luo
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Mark P Beenhakker
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - J Julius Zhu
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
116
|
Sakkaki S, Gangarossa G, Lerat B, Françon D, Forichon L, Chemin J, Valjent E, Lerner-Natoli M, Lory P. Blockade of T-type calcium channels prevents tonic-clonic seizures in a maximal electroshock seizure model. Neuropharmacology 2015; 101:320-9. [PMID: 26456350 DOI: 10.1016/j.neuropharm.2015.09.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/11/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022]
Abstract
T-type (Cav3) calcium channels play important roles in neuronal excitability, both in normal and pathological activities of the brain. In particular, they contribute to hyper-excitability disorders such as epilepsy. Here we have characterized the anticonvulsant properties of TTA-A2, a selective T-type channel blocker, in mouse. Using the maximal electroshock seizure (MES) as a model of tonic-clonic generalized seizures, we report that mice treated with TTA-A2 (0.3 mg/kg and higher doses) were significantly protected against tonic seizures. Although no major change in Local Field Potential (LFP) pattern was observed during the MES seizure, analysis of the late post-ictal period revealed a significant increase in the delta frequency power in animals treated with TTA-A2. Similar results were obtained for Cav3.1-/- mice, which were less prone to develop tonic seizures in the MES test, but not for Cav3.2-/- mice. Analysis of extracellular signal-regulated kinase 1/2 (ERK) phosphorylation and c-Fos expression revealed a rapid and elevated neuronal activation in the hippocampus following MES clonic seizures, which was unchanged in TTA-A2 treated animals. Overall, our data indicate that TTA-A2 is a potent anticonvulsant and that the Cav3.1 isoform plays a prominent role in mediating TTA-A2 tonic seizure protection.
Collapse
Affiliation(s)
- Sophie Sakkaki
- Université de Montpellier, CNRS UMR 5203, Département Neuroscience & Ion Channel Biology, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; INSERM U1191, Montpellier F34094, France; LabEx 'Ion Channel Science and Therapeutics', Montpellier F34094, France; Sanofi R&D, F-91385 Chilly-Mazarin, France
| | - Giuseppe Gangarossa
- Université de Montpellier, CNRS UMR 5203, Département Neuroscience & Ion Channel Biology, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; INSERM U1191, Montpellier F34094, France
| | - Benoit Lerat
- Université de Montpellier, CNRS UMR 5203, Département Neuroscience & Ion Channel Biology, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; INSERM U1191, Montpellier F34094, France
| | | | - Luc Forichon
- Université de Montpellier, CNRS UMR 5203, Département Neuroscience & Ion Channel Biology, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; INSERM U1191, Montpellier F34094, France
| | - Jean Chemin
- Université de Montpellier, CNRS UMR 5203, Département Neuroscience & Ion Channel Biology, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; INSERM U1191, Montpellier F34094, France; LabEx 'Ion Channel Science and Therapeutics', Montpellier F34094, France
| | - Emmanuel Valjent
- Université de Montpellier, CNRS UMR 5203, Département Neuroscience & Ion Channel Biology, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; INSERM U1191, Montpellier F34094, France
| | - Mireille Lerner-Natoli
- Université de Montpellier, CNRS UMR 5203, Département Neuroscience & Ion Channel Biology, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; INSERM U1191, Montpellier F34094, France
| | - Philippe Lory
- Université de Montpellier, CNRS UMR 5203, Département Neuroscience & Ion Channel Biology, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; INSERM U1191, Montpellier F34094, France; LabEx 'Ion Channel Science and Therapeutics', Montpellier F34094, France.
| |
Collapse
|
117
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 790] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
118
|
Karmažínová M, Jašková K, Griac P, Perez-Reyes E, Lacinová Ľ. Contrasting the roles of the I-II loop gating brake in CaV3.1 and CaV3.3 calcium channels. Pflugers Arch 2015; 467:2519-27. [PMID: 26306541 DOI: 10.1007/s00424-015-1728-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
Abstract
Low-voltage-activated CaV3 channels are distinguished among other voltage-activated calcium channels by the most negative voltage activation threshold. The voltage dependence of current activation is virtually identical in all three CaV3 channels while the current kinetics of the CaV3.3 current is one order slower than that of the CaV3.1 and CaV3.2 channels. We have analyzed the voltage dependence and kinetics of charge (Q) movement in human recombinant CaV3.3 and CaV3.1 channels. The voltage dependence of voltage sensor activation (Qon-V) of the CaV3.3 channel was significantly shifted with respect to that of the CaV3.1 channel by +18.6 mV and the kinetic of Qon activation in the CaV3.3 channel was significantly slower than that of the CaV3.1 channel. Removal of the gating brake in the intracellular loop connecting repeats I and II in the CaV3.3 channel in the ID12 mutant channel shifted the Qon-V relation to a value even more negative than that for the CaV3.1 channel. The kinetic of Qon activation was not significantly different between ID12 and CaV3.1 channels. Deletion of the gating brake in the CaV3.1 channel resulted in a GD12 channel with the voltage dependence of the gating current activation significantly shifted toward more negative potentials. The Qon kinetic was not significantly altered. ID12 and GD12 mutants did not differ significantly in voltage dependence nor in the kinetic of voltage sensor activation. In conclusion, the putative gating brake in the intracellular loop connecting repeats I and II controls the gating current of the CaV3 channels. We suggest that activation of the voltage sensor in domain I is limiting both the voltage dependence and the kinetics of CaV3 channel activation.
Collapse
Affiliation(s)
- Mária Karmažínová
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34, Bratislava, Slovakia
| | - Katarína Jašková
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34, Bratislava, Slovakia
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji, Slovakia
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ľubica Lacinová
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34, Bratislava, Slovakia.
| |
Collapse
|
119
|
Miller MR, Mansell SA, Meyers SA, Lishko PV. Flagellar ion channels of sperm: similarities and differences between species. Cell Calcium 2015; 58:105-13. [DOI: 10.1016/j.ceca.2014.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
120
|
Kim CH. Cav3.1 T-type calcium channel modulates the epileptogenicity of hippocampal seizures in the kainic acid-induced temporal lobe epilepsy model. Brain Res 2015; 1622:204-16. [PMID: 26111648 DOI: 10.1016/j.brainres.2015.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
The molecular mechanism of temporal lobe epilepsy has not been clearly identified. T-type calcium channels play a role in burst firing in neurons and have been implicated in several seizure models. In this study, the role of Cav3.1 T-type (α1G) calcium channel has been investigated in the kainic acid (KA)-induced temporal lobe epilepsy model (TLE) by using conventional α1G knock-out (ko) mice. After intraperitoneal (i.p.) administration or intrahippocampal injection of KA, depth hippocampal and cortical electroencephalogram (EEG) and behavioral monitoring were recorded, and timm and Nissl staining of brain sections were made later. Seizure was mainly identified by EEG signals, rather than behaviorally, with analytic criteria. During the acute status epilepticus (SE) period, both the duration and the frequency of hippocampal seizures were significantly reduced and increased, respectively, in αlG ko mice compared to those of wild type mice. Epileptogenicity, the total period of seizures (hr(-1)), was also significantly reduced in α1G ko mice. However, the latency of seizure occurrence was not significantly different between wild type and ko mice. These differential effects were not observed in cortical seizures. Furthermore, the injection of KA caused a strong increase in δ rhythm power spectrum density (PSD) of EEG in αlG ko mice compared to that in wild type mice. The results with conventional ko mice indicate that α1G T-type calcium channel plays a modulatory role in the duration and frequency of hippocampal seizures as well as the epileptogenicity of KA-induced TLE in mice, mostly during acute periods.
Collapse
Affiliation(s)
- Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science & Technology, Seoul 136-791, Republic of Korea; Department of Neuroscience, Korea University of Science & Technology, Daejeon 305-333, Republic of Korea.
| |
Collapse
|
121
|
Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness. Proc Natl Acad Sci U S A 2015; 112:7839-44. [PMID: 26056284 DOI: 10.1073/pnas.1420983112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In unconscious status (e.g., deep sleep and anesthetic unconsciousness) where cognitive functions are not generated there is still a significant level of brain activity present. Indeed, the electrophysiology of the unconscious brain is characterized by well-defined thalamocortical rhythmicity. Here we address the ionic basis for such thalamocortical rhythms during unconsciousness. In particular, we address the role of CaV3.1 T-type Ca(2+) channels, which are richly expressed in thalamic neurons. Toward this aim, we examined the electrophysiological and behavioral phenotypes of mice lacking CaV3.1 channels (CaV3.1 knockout) during unconsciousness induced by ketamine or ethanol administration. Our findings indicate that CaV3.1 KO mice displayed attenuated low-frequency oscillations in thalamocortical loops, especially in the 1- to 4-Hz delta band, compared with control mice (CaV3.1 WT). Intriguingly, we also found that CaV3.1 KO mice exhibited augmented high-frequency oscillations during unconsciousness. In a behavioral measure of unconsciousness dynamics, CaV3.1 KO mice took longer to fall into the unconscious state than controls. In addition, such unconscious events had a shorter duration than those of control mice. The thalamocortical interaction level between mediodorsal thalamus and frontal cortex in CaV3.1 KO mice was significantly lower, especially for delta band oscillations, compared with that of CaV3.1 WT mice, during unconsciousness. These results suggest that the CaV3.1 channel is required for the generation of a given set of thalamocortical rhythms during unconsciousness. Further, that thalamocortical resonant neuronal activity supported by this channel is important for the control of vigilance states.
Collapse
|
122
|
Interaction of H2S with Calcium Permeable Channels and Transporters. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:323269. [PMID: 26078804 PMCID: PMC4442308 DOI: 10.1155/2015/323269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/14/2014] [Accepted: 11/12/2014] [Indexed: 01/13/2023]
Abstract
A growing amount of evidence has suggested that hydrogen sulfide (H2S), as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC), T-type calcium channels (TTCC), sodium/calcium exchangers (NCX), transient receptor potential (TRP) channels, β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR) in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms.
Collapse
|
123
|
Amarillo Y, Mato G, Nadal MS. Analysis of the role of the low threshold currents IT and Ih in intrinsic delta oscillations of thalamocortical neurons. Front Comput Neurosci 2015; 9:52. [PMID: 25999847 PMCID: PMC4423352 DOI: 10.3389/fncom.2015.00052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/21/2015] [Indexed: 12/04/2022] Open
Abstract
Thalamocortical neurons are involved in the generation and maintenance of brain rhythms associated with global functional states. The repetitive burst firing of TC neurons at delta frequencies (1–4 Hz) has been linked to the oscillations recorded during deep sleep and during episodes of absence seizures. To get insight into the biophysical properties that are the basis for intrinsic delta oscillations in these neurons, we performed a bifurcation analysis of a minimal conductance-based thalamocortical neuron model including only the IT channel and the sodium and potassium leak channels. This analysis unveils the dynamics of repetitive burst firing of TC neurons, and describes how the interplay between the amplifying variable mT and the recovering variable hT of the calcium channel IT is sufficient to generate low threshold oscillations in the delta band. We also explored the role of the hyperpolarization activated cationic current Ih in this reduced model and determine that, albeit not required, Ih amplifies and stabilizes the oscillation.
Collapse
Affiliation(s)
- Yimy Amarillo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Física Estadística e Interdisciplinaria, Centro Atómico Bariloche San Carlos de Bariloche, Argentina
| | - Germán Mato
- Consejo Nacional de Investigaciones Científicas y Técnicas, Física Estadística e Interdisciplinaria, Centro Atómico Bariloche San Carlos de Bariloche, Argentina ; Comisión Nacional de Energía Atómica and Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche and Instituto Balseiro San Carlos de Bariloche, Argentina
| | - Marcela S Nadal
- Consejo Nacional de Investigaciones Científicas y Técnicas, Física Estadística e Interdisciplinaria, Centro Atómico Bariloche San Carlos de Bariloche, Argentina
| |
Collapse
|
124
|
Kasten MR, Anderson MP. Self-regulation of adult thalamocortical neurons. J Neurophysiol 2015; 114:323-31. [PMID: 25948871 DOI: 10.1152/jn.00800.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/03/2015] [Indexed: 11/22/2022] Open
Abstract
The thalamus acts as a conduit for sensory and other information traveling to the cortex. In response to continuous sensory stimulation in vivo, the firing rate of thalamocortical neurons initially increases, but then within a minute firing rate decreases and T-type Ca(2+) channel-dependent action potential burst firing emerges. While neuromodulatory systems could play a role in this inhibitory response, we instead report a novel and cell-autonomous inhibitory mechanism intrinsic to the thalamic relay neuron. Direct intracellular stimulation of thalamocortical neuron firing initially triggered a continuous and high rate of action potential discharge, but within a minute membrane potential (Vm) was hyperpolarized and firing rate to the same stimulus was decreased. This self-inhibition was observed across a wide variety of thalamic nuclei, and in a subset firing mode switched from tonic to bursting. The self-inhibition resisted blockers of intracellular Ca(2+) signaling, Na(+)-K(+)-ATPases, and G protein-regulated inward rectifier (GIRK) channels as implicated in other neuron subtypes, but instead was in part inhibited by an ATP-sensitive K(+) channel blocker. The results identify a new homeostatic mechanism within the thalamus capable of gating excitatory signals at the single-cell level.
Collapse
Affiliation(s)
- Michael R Kasten
- Departments of Neurology and Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Center for Life Science, Boston, Massachusetts
| | - Matthew P Anderson
- Departments of Neurology and Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Center for Life Science, Boston, Massachusetts; Program in Neuroscience, Harvard Medical School, Boston, Massachusetts; and Children's Hospital Boston Intellectual and Developmental Disabilities Research Center, Children's Hospital Boston, Boston, Massachusetts
| |
Collapse
|
125
|
Epileptic activity during early postnatal life in the AY-9944 model of atypical absence epilepsy. Cell Calcium 2015; 57:376-84. [DOI: 10.1016/j.ceca.2015.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/18/2022]
|
126
|
Monteil A, Chausson P, Boutourlinsky K, Mezghrani A, Huc-Brandt S, Blesneac I, Bidaud I, Lemmers C, Leresche N, Lambert RC, Lory P. Inhibition of Cav3.2 T-type Calcium Channels by Its Intracellular I-II Loop. J Biol Chem 2015; 290:16168-76. [PMID: 25931121 DOI: 10.1074/jbc.m114.634261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 11/06/2022] Open
Abstract
Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser(423)-Pro(542)) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels.
Collapse
Affiliation(s)
- Arnaud Monteil
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, Plateforme de Vectorologie, Biocampus Montpellier CNRS UMS 3426, INSERM US009, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France
| | - Patrick Chausson
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, UM 119, Neuroscience Paris Seine (NPS), Paris F-75005, France, CNRS UMR 8246, NPS, Paris F-75005, France, and INSERM, U1130, NPS, Paris F-75005, France
| | - Katia Boutourlinsky
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, UM 119, Neuroscience Paris Seine (NPS), Paris F-75005, France, CNRS UMR 8246, NPS, Paris F-75005, France, and INSERM, U1130, NPS, Paris F-75005, France
| | - Alexandre Mezghrani
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France
| | - Sylvaine Huc-Brandt
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France
| | - Iulia Blesneac
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France
| | - Isabelle Bidaud
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France
| | - Céline Lemmers
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, Plateforme de Vectorologie, Biocampus Montpellier CNRS UMS 3426, INSERM US009, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France
| | - Nathalie Leresche
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, UM 119, Neuroscience Paris Seine (NPS), Paris F-75005, France, CNRS UMR 8246, NPS, Paris F-75005, France, and INSERM, U1130, NPS, Paris F-75005, France
| | - Régis C Lambert
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, UM 119, Neuroscience Paris Seine (NPS), Paris F-75005, France, CNRS UMR 8246, NPS, Paris F-75005, France, and INSERM, U1130, NPS, Paris F-75005, France
| | - Philippe Lory
- From the Université de Montpellier, CNRS UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Montpellier, F-34094 France, INSERM, U1191, Montpellier, F-34094 France, LabEx "Ion Channel Science and Therapeutics," Montpellier, F-34094 France,
| |
Collapse
|
127
|
Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations. Prog Neurobiol 2015; 129:1-36. [PMID: 25817891 DOI: 10.1016/j.pneurobio.2014.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 11/20/2022]
Abstract
Voltage-gated calcium channels (VGCCs) represent a key link between electrical signals and non-electrical processes, such as contraction, secretion and transcription. Evolved to achieve high rates of Ca(2+)-selective flux, they possess an elaborate mechanism for selection of Ca(2+) over foreign ions. It has been convincingly linked to competitive binding in the pore, but the fundamental question of how this is reconcilable with high rates of Ca(2+) transfer remains unanswered. By virtue of their similarity to Ca(2+), polyvalent cations can interfere with the function of VGCCs and have proven instrumental in probing the mechanisms underlying selective permeation. Recent emergence of crystallographic data on a set of Ca(2+)-selective model channels provides a structural framework for permeation in VGCCs, and warrants a reconsideration of their diverse modulation by polyvalent cations, which can be roughly separated into three general mechanisms: (I) long-range interactions with charged regions on the surface, affecting the local potential sensed by the channel or influencing voltage-sensor movement by repulsive forces (electrostatic effects), (II) short-range interactions with sites in the ion-conducting pathway, leading to physical obstruction of the channel (pore block), and in some cases (III) short-range interactions with extracellular binding sites, leading to non-electrostatic modifications of channel gating (allosteric effects). These effects, together with the underlying molecular modifications, provide valuable insights into the function of VGCCs, and have important physiological and pathophysiological implications. Allosteric suppression of some of the pore-forming Cavα1-subunits (Cav2.3, Cav3.2) by Zn(2+) and Cu(2+) may play a major role for the regulation of excitability by endogenous transition metal ions. The fact that these ions can often traverse VGCCs can contribute to the detrimental intracellular accumulation of metal ions following excessive release of endogenous Cu(2+) and Zn(2+) or exposure to non-physiological toxic metal ions.
Collapse
|
128
|
Lee HJ, Son Y, Kim J, Lee CJ, Yoon ES, Cho IJ. A multichannel neural probe with embedded microfluidic channels for simultaneous in vivo neural recording and drug delivery. LAB ON A CHIP 2015; 15:1590-7. [PMID: 25651943 DOI: 10.1039/c4lc01321b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Multi-functional neural probes integrated with various stimulation modalities are becoming essential tools in neuroscience to study the brain more effectively. In this paper, we present a new multi-functional neural probe that allows chemical stimulation through drug delivery and simultaneous recording of individual neuron signals through a microelectrode array. By embedding microchannels in silicon using a proposed glass reflow process, we successfully fabricated 40 μm thick silicon neural probes suitable for small animal experiments. The electrochemical impedance spectroscopy confirms that impedance of iridium microelectrodes is low enough (<1 MΩ at 1 kHz) to measure neural signals. Flow rate characterization in a 0.9% w/v agarose gel shows the capability to deliver a small volume of drugs (<1 μl) at a controlled flow rate. We demonstrate the viability and potential of this new probe by conducting in vivo experiments on mice. Because of the proposed compact structure, both action potentials of individual neurons and local field potentials (LFP) at the thalamus region of a mouse brain were successfully detected with a noise level of ~30 μVpp. Furthermore, we successfully induced absence seizure by injecting seizure-inducing drugs (baclofen) at a local target region and observed distinctive changes in neural signal patterns. Specifically, spike-wave discharge (SWD), which is an indicative signal pattern of absence seizure, was successfully recorded. These signals were also directly compared to SWD detected after inducing absence seizure through direct injection of baclofen through the abdomen. This work demonstrates the potential of our multi-functional neural probes for use in effective investigation of brain functions and disorders by using widely available mouse models.
Collapse
Affiliation(s)
- Hyunjoo J Lee
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.
| | | | | | | | | | | |
Collapse
|
129
|
Hansen PBL. Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system: news from the world of knockout mice. Am J Physiol Regul Integr Comp Physiol 2015; 308:R227-37. [DOI: 10.1152/ajpregu.00276.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the years, it has been discussed whether T-type calcium channels Cav3 play a role in the cardiovascular and renal system. T-type channels have been reported to play an important role in renal hemodynamics, contractility of resistance vessels, and pacemaker activity in the heart. However, the lack of highly specific blockers cast doubt on the conclusions. As new T-type channel antagonists are being designed, the roles of T-type channels in cardiovascular and renal pathology need to be elucidated before T-type blockers can be clinically useful. Two types of T-type channels, Cav3.1 and Cav3.2, are expressed in blood vessels, the kidney, and the heart. Studies with gene-deficient mice have provided a way to investigate the Cav3.1 and Cav3.2 channels and their role in the cardiovascular system. This review discusses the results from these knockout mice. Evaluation of the literature leads to the conclusion that Cav3.1 and Cav3.2 channels have important, but different, functions in mice. T-type Cav3.1 channels affect heart rate, whereas Cav3.2 channels are involved in cardiac hypertrophy. In the vascular system, Cav3.2 activation leads to dilation of blood vessels, whereas Cav3.1 channels are mainly suggested to affect constriction. The Cav3.1 channel is also involved in neointima formation following vascular damage. In the kidney, Cav3.1 regulates plasma flow and Cav3.2 plays a role setting glomerular filtration rate. In conclusion, Cav3.1 and Cav3.2 are new therapeutic targets in several cardiovascular pathologies, but the use of T-type blockers should be specifically directed to the disease and to the channel subtype.
Collapse
Affiliation(s)
- Pernille B. L. Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
130
|
Powell KL, Cain SM, Snutch TP, O'Brien TJ. Low threshold T-type calcium channels as targets for novel epilepsy treatments. Br J Clin Pharmacol 2015; 77:729-39. [PMID: 23834404 DOI: 10.1111/bcp.12205] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/02/2013] [Indexed: 12/21/2022] Open
Abstract
Low voltage-activated T-type calcium channels were originally cloned in the 1990s and much research has since focused on identifying the physiological roles of these channels in health and disease states. T-type calcium channels are expressed widely throughout the brain and peripheral tissues, and thus have been proposed as therapeutic targets for a variety of diseases such as epilepsy, insomnia, pain, cancer and hypertension. This review discusses the literature concerning the role of T-type calcium channels in physiological and pathological processes related to epilepsy. T-type calcium channels have been implicated in pathology of both the genetic and acquired epilepsies and several anti-epileptic drugs (AEDs) in clinical use are known to suppress seizures via inhibition of T-type calcium channels. Despite the fact that more than 15 new AEDs have become clinically available over the past 20 years at least 30% of epilepsy patients still fail to achieve seizure control, and many patients experience unwanted side effects. Furthermore there are no treatments that prevent the development of epilepsy or mitigate the epileptic state once established. Therefore there is an urgent need for the development of new AEDs that are effective in patients with drug resistant epilepsy, are anti-epileptogenic and are better tolerated. We also review the mechanisms of action of the current AEDs with known effects on T-type calcium channels and discuss novel compounds that are being investigated as new treatments for epilepsy.
Collapse
Affiliation(s)
- Kim L Powell
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
131
|
Venzi M, Di Giovanni G, Crunelli V. A critical evaluation of the gamma-hydroxybutyrate (GHB) model of absence seizures. CNS Neurosci Ther 2015; 21:123-40. [PMID: 25403866 PMCID: PMC4335601 DOI: 10.1111/cns.12337] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/13/2014] [Accepted: 09/17/2014] [Indexed: 12/13/2022] Open
Abstract
Typical absence seizures (ASs) are nonconvulsive epileptic events which are commonly observed in pediatric and juvenile epilepsies and may be present in adults suffering from other idiopathic generalized epilepsies. Our understanding of the pathophysiological mechanisms of ASs has been greatly advanced by the availability of genetic and pharmacological models, in particular the γ-hydroxybutyrate (GHB) model which, in recent years, has been extensively used in studies in transgenic mice. GHB is an endogenous brain molecule that upon administration to various species, including humans, induces not only ASs but also a state of sedation/hypnosis. Analysis of the available data clearly indicates that only in the rat does there exist a set of GHB-elicited behavioral and EEG events that can be confidently classified as ASs. Other GHB activities, particularly in mice, appear to be mostly of a sedative/hypnotic nature: thus, their relevance to ASs requires further investigation. At the molecular level, GHB acts as a weak GABA-B agonist, while the existence of a GHB receptor remains elusive. The pre- and postsynaptic actions underlying GHB-elicited ASs have been thoroughly elucidated in thalamus, but little is known about the cellular/network effects of GHB in neocortex, the other brain region involved in the generation of ASs.
Collapse
Affiliation(s)
- Marcello Venzi
- Neuroscience DivisionSchool of BioscienceCardiff UniversityCardiffUK
| | - Giuseppe Di Giovanni
- Neuroscience DivisionSchool of BioscienceCardiff UniversityCardiffUK
- Department of Physiology and BiochemistryMalta UniversityMsida, Malta
| | - Vincenzo Crunelli
- Neuroscience DivisionSchool of BioscienceCardiff UniversityCardiffUK
| |
Collapse
|
132
|
Park YG, Choi JH, Lee C, Kim S, Kim Y, Chang KY, Paek SH, Kim D. Heterogeneity of tremor mechanisms assessed by tremor-related cortical potential in mice. Mol Brain 2015; 8:3. [PMID: 25588467 PMCID: PMC4304607 DOI: 10.1186/s13041-015-0093-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying a neural circuit mechanism that is differentially involved in tremor would aid in the diagnosis and cure of such cases. Here, we demonstrate that tremor-related cortical potential (TRCP) is differentially expressed in two different mouse models of tremor. RESULTS Hybrid tremor analysis of harmaline-induced and genetic tremor in mice revealed that two authentic tremor frequencies for each type of tremor were conserved and showed an opposite dependence on CaV3.1 T-type Ca(2+) channels. Electroencephalogram recordings revealed that α1(-/-);α1G(-/-) mice double-null for the GABA receptor α1 subunit (Gabra1) and CaV3.1 T-type Ca(2+) channels (Cacna1g), in which the tremor caused by the absence of Gabra1 is potentiated by the absence of Cacna1g, showed a coherent TRCP that exhibited an onset that preceded the initiation of behavioral tremor by 3 ms. However, harmaline-induced tremor, which is known to be abolished by α1G(-/-), showed no TRCP. CONCLUSIONS Our results demonstrate that the α1(-/-);α1G(-/-) double-knockout tremor model is useful for studying cortical mechanisms of tremor.
Collapse
Affiliation(s)
- Young-Gyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Jee Hyun Choi
- Center for Neural Science, Division of Life Science, Korea Institute of Science and Technology, Seoul, 136-79, Republic of Korea.
| | - Chungki Lee
- Center for Neural Science, Division of Life Science, Korea Institute of Science and Technology, Seoul, 136-79, Republic of Korea.
| | - Sehyun Kim
- Department of Physics, KAIST, Daejeon, 305-701, Republic of Korea.
| | - Youngsoo Kim
- Department of Medical Science and Engineering, KAIST, Daejeon, 305-701, Republic of Korea.
| | - Ki-Young Chang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Sun Ha Paek
- Department of Neurosurgery, Hypoxia/Ischemia Disease Institute, Seoul National University College of Medicine, Seoul, 110-744, Republic of Korea.
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
133
|
Rønnekleiv OK, Zhang C, Bosch MA, Kelly MJ. Kisspeptin and Gonadotropin-Releasing Hormone Neuronal Excitability: Molecular Mechanisms Driven by 17β-Estradiol. Neuroendocrinology 2014; 102:184-93. [PMID: 25612870 PMCID: PMC4459938 DOI: 10.1159/000370311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022]
Abstract
Kisspeptin is a neuropeptide that signals via a Gαq-coupled receptor, GPR54, in gonadotropin-releasing hormone (GnRH) neurons and is essential for pubertal maturation and fertility. Kisspeptin depolarizes and excites GnRH neurons primarily through the activation of canonical transient receptor potential (TRPC) channels and the inhibition of K+ channels. The gonadal steroid 17β-estradiol (E2) upregulates not only kisspeptin (Kiss1) mRNA but also increases the excitability of the rostral forebrain Kiss1 neurons. In addition, a primary postsynaptic action of E2 on GnRH neurons is to upregulate the expression of channel transcripts that orchestrate the downstream signaling of kisspeptin in GnRH neurons. These include not only TRPC4 channels but also low-voltage-activated T-type calcium channels and high-voltage-activated L-, N- and R-type calcium channel transcripts. Moreover, E2 has direct membrane-initiated actions to alter the excitability of GnRH neurons by enhancing ATP-sensitive potassium channel activity, which is critical for maintaining GnRH neurons in a hyperpolarized state for the recruitment of T-type calcium channels that are important for burst firing. Therefore, E2 modulates the excitability of GnRH neurons as well as of Kiss1 neurons by altering the expression and/or function of ion channels; moreover, kisspeptin provides critical excitatory input to GnRH neurons to facilitate burst firing activity and peptide release.
Collapse
Affiliation(s)
- Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Chunguang Zhang
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - Martha A. Bosch
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - Martin J. Kelly
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| |
Collapse
|
134
|
Guan W, Stephens RF, Spafford JD. Cav3 T-type channels as drug targets for treating epilepsy. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Wendy Guan
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Robert F Stephens
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - J David Spafford
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
135
|
Flow- and voltage-dependent blocking effect of ethosuximide on the inward rectifier K⁺ (Kir2.1) channel. Pflugers Arch 2014; 467:1733-46. [PMID: 25220134 DOI: 10.1007/s00424-014-1611-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/21/2014] [Accepted: 09/05/2014] [Indexed: 12/31/2022]
Abstract
Absence seizures are manifestations of abnormal thalamocortical oscillations characterized by spike-and-wave complexes in EEG. Ethosuximide (ETX) is one of the principal medications against absence seizures. We investigate the effect of ETX on the Kir2.1 channel, a prototypical inward rectifier K(+) channel possibly playing an important role in the setting of neuronal membrane potential. We demonstrate that the outward currents of Kir2.1 channels are significantly inhibited by intracellular ETX. We further show that the movement of neutral molecule ETX in the Kir2.1 channel is accompanied by ∼1.2 K(+), giving rise to the vivid voltage dependence of ETX unbinding rate. Moreover, the apparent affinity (K d ) of ETX in the channels are decreased by single-point mutations involving M183, E224, and S165, and especially by double mutations involving T141/S165, which always also disrupt the flux-coupling feature of ETX block. Molecular dynamics simulation demonstrates narrowing of the pore at ∼D172 by binding of ETX to S165 or T141. ETX block of the Kir2.1 channels may cause a modest but critical depolarization of the relevant neurons, decreasing available T-type Ca(2+) channels and consequently lessening pathological thalamocortical burst discharges.
Collapse
|
136
|
Schmouth JF, Dion PA, Rouleau GA. Genetics of essential tremor: From phenotype to genes, insights from both human and mouse studies. Prog Neurobiol 2014; 119-120:1-19. [DOI: 10.1016/j.pneurobio.2014.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/16/2014] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
|
137
|
Thalamocortical neurons display suppressed burst-firing due to an enhanced Ih current in a genetic model of absence epilepsy. Pflugers Arch 2014; 467:1367-82. [PMID: 24953239 PMCID: PMC4435665 DOI: 10.1007/s00424-014-1549-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Burst-firing in distinct subsets of thalamic relay (TR) neurons is thought to be a key requirement for the propagation of absence seizures. However, in the well-regarded Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model as yet there has been no link described between burst-firing in TR neurons and spike-and-wave discharges (SWDs). GAERS ventrobasal (VB) neurons are a specific subset of TR neurons that do not normally display burst-firing during absence seizures in the GAERS model, and here, we assessed the underlying relationship of VB burst-firing with Ih and T-type calcium currents between GAERS and non-epileptic control (NEC) animals. In response to 200-ms hyperpolarizing current injections, adult epileptic but not pre-epileptic GAERS VB neurons displayed suppressed burst-firing compared to NEC. In response to longer duration 1,000-ms hyperpolarizing current injections, both pre-epileptic and epileptic GAERS VB neurons required significantly more hyperpolarizing current injection to burst-fire than those of NEC animals. The current density of the Hyperpolarization and Cyclic Nucleotide-activated (HCN) current (Ih) was found to be increased in GAERS VB neurons, and the blockade of Ih relieved the suppressed burst-firing in both pre-epileptic P15-P20 and adult animals. In support, levels of HCN-1 and HCN-3 isoform channel proteins were increased in GAERS VB thalamic tissue. T-type calcium channel whole-cell currents were found to be decreased in P7-P9 GAERS VB neurons, and also noted was a decrease in CaV3.1 mRNA and protein levels in adults. Z944, a potent T-type calcium channel blocker with anti-epileptic properties, completely abolished hyperpolarization-induced VB burst-firing in both NEC and GAERS VB neurons.
Collapse
|
138
|
Regionally specific expression of high-voltage-activated calcium channels in thalamic nuclei of epileptic and non-epileptic rats. Mol Cell Neurosci 2014; 61:110-22. [PMID: 24914823 DOI: 10.1016/j.mcn.2014.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 11/21/2022] Open
Abstract
The polygenic origin of generalized absence epilepsy results in dysfunction of ion channels that allows the switch from physiological asynchronous to pathophysiological highly synchronous network activity. Evidence from rat and mouse models of absence epilepsy indicates that altered Ca(2+) channel activity contributes to cellular and network alterations that lead to seizure activity. Under physiological circumstances, high voltage-activated (HVA) Ca(2+) channels are important in determining the thalamic firing profile. Here, we investigated a possible contribution of HVA channels to the epileptic phenotype using a rodent genetic model of absence epilepsy. In this study, HVA Ca(2+) currents were recorded from neurons of three different thalamic nuclei that are involved in both sensory signal transmission and rhythmic-synchronized activity during epileptic spike-and-wave discharges (SWD), namely the dorsal part of the lateral geniculate nucleus (dLGN), the ventrobasal thalamic complex (VB) and the reticular thalamic nucleus (NRT) of epileptic Wistar Albino Glaxo rats from Rijswijk (WAG/Rij) and non-epileptic August Copenhagen Irish (ACI) rats. HVA Ca(2+) current densities in dLGN neurons were significantly increased in epileptic rats compared with non-epileptic controls while other thalamic regions revealed no differences between the strains. Application of specific channel blockers revealed that the increased current was carried by L-type Ca(2+) channels. Electrophysiological evidence of increased L-type current correlated with up-regulated mRNA and protein expression of a particular L-type channel, namely Cav1.3, in dLGN of epileptic rats. No significant changes were found for other HVA Ca(2+) channels. Moreover, pharmacological inactivation of L-type Ca(2+) channels results in altered firing profiles of thalamocortical relay (TC) neurons from non-epileptic rather than from epileptic rats. While HVA Ca(2+) channels influence tonic and burst firing in ACI and WAG/Rij differently, it is discussed that increased Cav1.3 expression may indirectly contribute to increased robustness of burst firing and thereby the epileptic phenotype of absence epilepsy.
Collapse
|
139
|
Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 2014; 82:24-45. [PMID: 24698266 DOI: 10.1016/j.neuron.2014.03.016] [Citation(s) in RCA: 456] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Voltage-gated calcium channels are the primary mediators of depolarization-induced calcium entry into neurons. There is great diversity of calcium channel subtypes due to multiple genes that encode calcium channel α1 subunits, coassembly with a variety of ancillary calcium channel subunits, and alternative splicing. This allows these channels to fulfill highly specialized roles in specific neuronal subtypes and at particular subcellular loci. While calcium channels are of critical importance to brain function, their inappropriate expression or dysfunction gives rise to a variety of neurological disorders, including, pain, epilepsy, migraine, and ataxia. This Review discusses salient aspects of voltage-gated calcium channel function, physiology, and pathophysiology.
Collapse
Affiliation(s)
- Brett A Simms
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
140
|
Chen Y, Parker WD, Wang K. The role of T-type calcium channel genes in absence seizures. Front Neurol 2014; 5:45. [PMID: 24847307 PMCID: PMC4023043 DOI: 10.3389/fneur.2014.00045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/24/2014] [Indexed: 12/05/2022] Open
Abstract
The thalamic relay neurons, reticular thalamic nucleus, and neocortical pyramidal cells form a circuit that sustains oscillatory burst firing, and is regarded as the underlying mechanism of absence seizures. T-type calcium channels play a key role in this circuit. Here, we review the role of T-type calcium channel genes in the development of absence seizures, and emphasize gain or loss of function mutations, and other variations that alter both quantity and quality of transcripts, and methylation status of isoforms of T-type calcium channel proteins might be of equal importance in understanding the pathological mechanism of absence seizures.
Collapse
Affiliation(s)
- Yucai Chen
- University of Illinois at Chicago , Peoria, IL , USA
| | | | - Keling Wang
- Hebei Children Hospital , Shijiazhuang , China
| |
Collapse
|
141
|
Siwek ME, Müller R, Henseler C, Broich K, Papazoglou A, Weiergräber M. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture. Sleep 2014; 37:881-92. [PMID: 24790266 DOI: 10.5665/sleep.3652] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3(-/-) mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca(2+) influx into RTN neurons can trigger small-conductance Ca(2+)-activated K(+)-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca(2+) channels in rodent sleep. METHODS The role of CaV2.3 Ca(2+) channels was analyzed in CaV2.3(-/-) mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. RESULTS CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3(-/-) mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca(2+) channel expression. The detailed mechanisms of SWS increase in CaV2.3(-/-) mice remain to be determined. CONCLUSIONS Low-voltage activated CaV2.3 R-type Ca(2+) channels in the thalamocortical loop and extra-thalamocortical circuitries substantially regulate rodent sleep architecture thus representing a novel potential target for pharmacological treatment of sleep disorders in the future.
Collapse
Affiliation(s)
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | - Karl Broich
- Federal Institute for Drugs and Medical Devices, Bonn, BfArM, Germany
| | - Anna Papazoglou
- Federal Institute for Drugs and Medical Devices, Bonn, BfArM, Germany
| | - Marco Weiergräber
- Federal Institute for Drugs and Medical Devices, Bonn, BfArM, Germany ; Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| |
Collapse
|
142
|
González-Ramírez R, Martínez-Hernández E, Sandoval A, Felix R. Transcription factor Sp1 regulates T-type Ca(2+) channel CaV 3.1 gene expression. J Cell Physiol 2014; 229:551-60. [PMID: 23868804 DOI: 10.1002/jcp.24432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/11/2013] [Indexed: 01/30/2023]
Abstract
Voltage-gated T-type Ca(2+) (CaV 3) channels mediate a number of physiological events in developing and mature cells, and are implicated in neurological and cardiovascular diseases. In mammals, there are three distinct T-channel genes (CACNA1G, CACNA1H, and CACNA1I) encoding proteins (CaV 3.1-CaV 3.3) that differ in their localization as well as in molecular, biophysical, and pharmacological properties. The CACNA1G is a large gene that contains 38 exons and is localized in chromosome 17q22. Only basic characteristics of the CACNA1G gene promoter region have been investigated classifying it as a TATA-less sequence containing several potential transcription factor-binding motifs. Here, we cloned and characterized a proximal promoter region and initiated the analysis of transcription factors that control CaV 3.1 channel expression using the murine Cacna1g gene as a model. We isolated a ∼1.5 kb 5'-upstream region of Cacna1g and verified its transcriptional activity in the mouse neuroblastoma N1E-115 cell line. In silico analysis revealed that this region possesses a TATA-less minimal promoter that includes two potential transcription start sites and four binding sites for the transcription factor Sp1. The ability of one of these sites to interact with the transcription factor was confirmed by electrophoretic mobility shift assays. Consistent with this, Sp1 over-expression enhanced promoter activity while siRNA-mediated Sp1 silencing significantly decreased the level of CaV 3.1 protein and reduced the amplitude of whole-cell T-type Ca(2+) currents expressed in the N1E-115 cells. These results provide new insights into the molecular mechanisms that control CaV 3.1 channel expression.
Collapse
Affiliation(s)
- Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | | | | | | |
Collapse
|
143
|
Gangarossa G, Laffray S, Bourinet E, Valjent E. T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants. Front Behav Neurosci 2014; 8:92. [PMID: 24672455 PMCID: PMC3957728 DOI: 10.3389/fnbeh.2014.00092] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/03/2014] [Indexed: 01/28/2023] Open
Abstract
The fine-tuning of neuronal excitability relies on a tight control of Ca2+ homeostasis. The low voltage-activated (LVA) T-type calcium channels (Cav3.1, Cav3.2 and Cav3.3 isoforms) play a critical role in regulating these processes. Despite their wide expression throughout the central nervous system, the implication of T-type Cav3.2 isoform in brain functions is still poorly characterized. Here, we investigate the effect of genetic ablation of this isoform in affective disorders, including anxiety, cognitive functions as well as sensitivity to drugs of abuse. Using a wide range of behavioral assays we show that genetic ablation of the cacna1h gene results in an anxiety-like phenotype, whereas novelty-induced locomotor activity is unaffected. Deletion of the T-type channel Cav3.2 also triggers impairment of hippocampus-dependent recognition memories. Acute and sensitized hyperlocomotion induced by d-amphetamine and cocaine are dramatically reduced in T-type Cav3.2 deficient mice. In addition, the administration of the T-type blocker TTA-A2 prevented the expression of locomotor sensitization observed in wildtype mice. In conclusion, our data reveal that physiological activity of this specific Ca2+ channel is required for affective and cognitive behaviors. Moreover, our work highlights the interest of T-type channel blockers as therapeutic strategies to reverse drug-associated alterations.
Collapse
Affiliation(s)
- Giuseppe Gangarossa
- Institut de Génomique Fonctionnelle, CNRS UMR-5203, Montpellier, France ; INSERM U661, Montpellier, France ; Universités de Montpellier 1 and 2 UMR-5203, Montpellier, France
| | - Sophie Laffray
- Institut de Génomique Fonctionnelle, CNRS UMR-5203, Montpellier, France ; INSERM U661, Montpellier, France ; Universités de Montpellier 1 and 2 UMR-5203, Montpellier, France ; Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle Montpellier, France
| | - Emmanuel Bourinet
- Institut de Génomique Fonctionnelle, CNRS UMR-5203, Montpellier, France ; INSERM U661, Montpellier, France ; Universités de Montpellier 1 and 2 UMR-5203, Montpellier, France ; Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle Montpellier, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, CNRS UMR-5203, Montpellier, France ; INSERM U661, Montpellier, France ; Universités de Montpellier 1 and 2 UMR-5203, Montpellier, France
| |
Collapse
|
144
|
T-type calcium channels in chronic pain: mouse models and specific blockers. Pflugers Arch 2014; 466:707-17. [PMID: 24590509 DOI: 10.1007/s00424-014-1484-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 02/01/2023]
Abstract
Pain is a quite frequent complaint accompanying numerous pathologies. Among these pathological cases, neuropathies are retrieved with identified etiologies (chemotherapies, diabetes, surgeries…) and also more diffuse syndromes such as fibromyalgia. More broadly, pain is one of the first consequences of the majority of inherited diseases. Despite its importance for the quality of life, current pain management is limited to drugs that are either old or with a limited efficacy or that possess a bad benefit/risk ratio. As no new pharmacological concept has led to new analgesics in the last decades, the discovery of medications is needed, and to this aim the identification of new druggable targets in pain transmission is a first step. Therefore, studies of ion channels in pain pathways are extremely active. This is particularly true with ion channels in peripheral sensory neurons in dorsal root ganglia (DRG) known now to express unique sets of these channels. Moreover, both spinal and supraspinal levels are clearly important in pain modulation. Among these ion channels, we and others revealed the important role of low voltage-gated calcium channels in cellular excitability in different steps of the pain pathways. These channels, by being activated nearby resting membrane potential have biophysical characteristics suited to facilitate action potential generation and rhythmicity. In this review, we will review the current knowledge on the role of these channels in the perception and modulation of pain.
Collapse
|
145
|
Kopecky BJ, Liang R, Bao J. T-type calcium channel blockers as neuroprotective agents. Pflugers Arch 2014; 466:757-65. [PMID: 24563219 DOI: 10.1007/s00424-014-1454-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 01/12/2023]
Abstract
T-type calcium channels are expressed in many diverse tissues, including neuronal, cardiovascular, and endocrine. T-type calcium channels are known to play roles in the development, maintenance, and repair of these tissues but have also been implicated in disease when not properly regulated. Calcium channel blockers have been developed to treat various diseases and their use clinically is widespread due to both their efficacy as well as their safety. Aside from their established clinical applications, recent studies have suggested neuroprotective effects of T-type calcium channel blockers. Many of the current T-type calcium channel blockers could act on other molecular targets besides T-type calcium channels making it uncertain whether their neuroprotective effects are solely due to blocking of T-type calcium channels. In this review, we discuss these drugs as well as newly developed chemical compounds that are designed to be more selective for T-type calcium channels. We review in vitro and in vivo evidence of neuroprotective effects by these T-type calcium channel blockers. We conclude by discussing possible molecular mechanisms underlying the neuroprotective effects by T-type calcium channel blockers.
Collapse
Affiliation(s)
- Benjamin J Kopecky
- Department of Otolaryngology, Center for Aging, Washington University School of Medicine, 4560 Clayton Avenue, St. Louis, MO, 63110, USA
| | | | | |
Collapse
|
146
|
Melatonin inhibits voltage-sensitive Ca(2+) channel-mediated neurotransmitter release. Brain Res 2014; 1557:34-42. [PMID: 24560601 DOI: 10.1016/j.brainres.2014.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 01/20/2023]
Abstract
Melatonin is involved in various neuronal functions such as circadian rhythmicity and thermoregulation. Melatonin has a wide range of pharmacologically effective concentration levels from the nanomolar to millimolar levels. Recently, the antiepileptic effect of high dose melatonin has been the focus of clinical studies; however, its detailed mechanism especially in relation to neurotransmitter release and synaptic transmission remains unclear. We studied the effect of melatonin at high concentrations on the neurotransmitter release by monitoring norepinephrine release in PC12 cells, and excitatory postsynaptic potential in rat hippocampal slices. Melatonin inhibits the 70mM K(+)-induced Ca(2+) increase at millimolar levels without effect on bradykinin-triggered Ca(2+) increase in PC12 cells. Melatonin (1mM) did not affect A2A adenosine receptor-evoked cAMP production, and classical melatonin receptor antagonists did not reverse the melatonin-induced inhibitory effect, suggesting G-protein coupled receptor independency. Melatonin inhibits the 70mM K(+)-induced norepinephrine release at a similar effective concentration range in PC12 cells. We confirmed that melatonin (100µM) inhibits excitatory synaptic transmission of the hippocampal Schaffer collateral pathway with the decrease in basal synaptic transmission and the increase in paired pulse ratio. These results show that melatonin inhibits neurotransmitter release through the blocking of voltage-sensitive Ca(2+) channels and suggest a possible mechanism for the antiepileptic effect of melatonin.
Collapse
|
147
|
T-type Ca2+ channels in absence epilepsy. Pflugers Arch 2014; 466:719-34. [DOI: 10.1007/s00424-014-1461-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/22/2014] [Indexed: 11/25/2022]
|
148
|
Senatore A, Guan W, Spafford JD. Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity. Pflugers Arch 2014; 466:645-60. [PMID: 24515291 DOI: 10.1007/s00424-014-1449-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 12/13/2022]
Abstract
Cav3 T-type channels are low-voltage-gated channels with rapid kinetics that are classified among the calcium-selective Cav1 and Cav2 type channels. Here, we outline the fundamental and unique regulators of T-type channels. An ubiquitous and proximally located "gating brake" works in concert with the voltage-sensor domain and S6 alpha-helical segment from domain II to set the canonical low-threshold and transient gating features of T-type channels. Gene splicing of optional exon 25c (and/or exon 26) in the short III-IV linker provides a developmental switch between modes of activity, such as activating in response to membrane depolarization, to channels requiring hyperpolarization input before being available to activate. Downstream of the gating brake in the I-II linker is a key region for regulating channel expression where alternative splicing patterns correlate with functional diversity of spike patterns, pacemaking rate (especially in the heart), stage of development, and animal size. A small but persistent window conductance depolarizes cells and boosts excitability at rest. T-type channels possess an ion selectivity that can resemble not only the calcium ion exclusive Cav1 and Cav2 channels but also the sodium ion selectivity of Nav1 sodium channels too. Alternative splicing in the extracellular turret of domain II generates highly sodium-permeable channels, which contribute to low-threshold sodium spikes. Cav3 channels are more ubiquitous among multicellular animals and more widespread in tissues than the more brain centric Nav1 sodium channels in invertebrates. Highly sodium-permeant Cav3 channels can functionally replace Nav1 channels in species where they are lacking, such as in Caenorhabditis elegans.
Collapse
Affiliation(s)
- A Senatore
- Department of Biology, University of Waterloo, B1-173, Waterloo, ON, N2L 3G1, Canada
| | | | | |
Collapse
|
149
|
Kerckhove N, Mallet C, François A, Boudes M, Chemin J, Voets T, Bourinet E, Alloui A, Eschalier A. Ca(v)3.2 calcium channels: the key protagonist in the supraspinal effect of paracetamol. Pain 2014; 155:764-772. [PMID: 24447516 DOI: 10.1016/j.pain.2014.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/25/2013] [Accepted: 01/14/2014] [Indexed: 12/20/2022]
Abstract
To exert its analgesic action, paracetamol requires complex metabolism to produce a brain-specific lipoamino acid compound, AM404, which targets central transient receptor potential vanilloid receptors (TRPV1). Lipoamino acids are also known to induce analgesia through T-type calcium-channel inhibition (Ca(v)3.2). In this study we show that the antinociceptive effect of paracetamol in mice is lost when supraspinal Ca(v)3.2 channels are inhibited. Therefore, we hypothesized a relationship between supraspinal Ca(v)3.2 and TRPV1, via AM404, which mediates the analgesic effect of paracetamol. AM404 is able to activate TRPV1 and weakly inhibits Ca(v)3.2. Interestingly, activation of TRPV1 induces a strong inhibition of Ca(v)3.2 current. Supporting this, intracerebroventricular administration of AM404 or capsaicin produces antinociception that is lost in Ca(v)3.2(-/-) mice. Our study, for the first time, (1) provides a molecular mechanism for the supraspinal antinociceptive effect of paracetamol; (2) identifies the relationship between TRPV1 and the Ca(v)3.2 channel; and (3) suggests supraspinal Ca(v)3.2 inhibition as a potential pharmacological strategy to alleviate pain.
Collapse
Affiliation(s)
- Nicolas Kerckhove
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, 63000 Clermont-Ferrand, France INSERM, U 1107, Neuro-Dol, 63000 Clermont-Ferrand, France CHU Clermont-Ferrand, Service de Pharmacologie, 63003 Clermont-Ferrand, France Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France CNRS UMR5203, Montpellier, France INSERM, U661, Montpellier, France IFR3 Universités Montpellier I & II, Montpellier, France Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Zhang Y, Wang H, Qian Z, Feng B, Zhao X, Jiang X, Tao J. Low-voltage-activated T-type Ca2+ channel inhibitors as new tools in the treatment of glioblastoma: the role of endostatin. Pflugers Arch 2014; 466:811-8. [PMID: 24407946 DOI: 10.1007/s00424-013-1427-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 11/25/2022]
Abstract
Ca(2+) plays a key role in intracellular signaling and controls various cellular processes such as proliferation, differentiation, cell growth, death, and apoptosis. Aberrant changes in intracellular Ca(2+) levels can promote undesired cell proliferation and migration and are therefore associated with certain tumor types. Many research groups have suggested a potential role for voltage-gated Ca(2+) channels in the regulation of tumor growth and progression, particularly T-type channels due to their unique biophysical properties. T-type channels are expressed in normal tissues throughout the body and in different types of tumors such as breast carcinoma, retinoblastoma, neuroblastoma, and glioma. It has been demonstrated that increased functional expression of the α1 subunit of T-type channels plays a role in the abnormal proliferation of glioblastoma cells. As such, siRNA-mediated knockdown of the expression of the α1 subunit of T-type channels decreases the proliferation of these cells. Moreover, pharmacological blockade of T-type channels significantly decreases tumor growth. In this review, we focus on the use of T-type channel blockers for the potential treatment of cancers, particularly highly proliferative tumors such as glioblastoma. We conclude that T-type channel blockers such as endostatin can serve as a potential therapeutic tool for tumors whose proliferation depends on increased T-type channel expression.
Collapse
Affiliation(s)
- Yuan Zhang
- The Special Procurement Ward, Department of Geriatrics & Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | | | | | | | | | | | | |
Collapse
|