101
|
Traoré DAK, El Ghazouani A, Ilango S, Dupuy J, Jacquamet L, Ferrer JL, Caux-Thang C, Duarte V, Latour JM. Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Mol Microbiol 2006; 61:1211-9. [PMID: 16925555 DOI: 10.1111/j.1365-2958.2006.05313.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteria adapt to elevated levels of Reactive Oxygen Species (ROS) by increasing the expression of defence and repair proteins, which is regulated by ROS responsive transcription factors. In Bacillus subtilis the zinc protein PerR, a peroxide sensor that binds DNA in the presence of a regulatory metal Mn2+ or Fe2+, mediates the adaptive response to H2O2. This study presents the first crystal structure of apo-PerR-Zn which shows that all four cysteine residues of the protein are involved in zinc co-ordination. The Zn(Cys)4 site locks the dimerization domain and stabilizes the dimer. Sequence alignment of PerR-like proteins supports that this structural site may constitute a distinctive feature of this class of peroxide stress regulators.
Collapse
Affiliation(s)
- Daouda A K Traoré
- DRDC/Laboratoire de Physicochimie des Métaux en Biologie, UMR 5155 CEA-CNRS-UJF, CEA-Grenoble, 38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Saha RP, Chakrabarti P. Molecular modeling and characterization of Vibrio cholerae transcription regulator HlyU. BMC STRUCTURAL BIOLOGY 2006; 6:24. [PMID: 17116251 PMCID: PMC1665450 DOI: 10.1186/1472-6807-6-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 11/20/2006] [Indexed: 11/15/2022]
Abstract
Background The SmtB/ArsR family of prokaryotic metal-regulatory transcriptional repressors represses the expression of operons linked to stress-inducing concentrations of heavy metal ions, while derepression results from direct binding of metal ions by these 'metal-sensor' proteins. The HlyU protein from Vibrio cholerae is the positive regulator of haemolysin gene, it also plays important role in the regulation of expression of the virulence genes. Despite the understanding of biochemical properties, its structure and relationship to other protein families remain unknown. Results We find that HlyU exhibits structural features common to the SmtB/ArsR family of transcriptional repressors. Analysis of the modeled structure of HlyU reveals that it does not have the key metal-sensing residues which are unique to the SmtB/ArsR family of repressors, yet the tertiary structure is very similar to the family members. HlyU is the only member that has a positive control on transcription, while all the other members in the family are repressors. An evolutionary analysis with other SmtB/ArsR family members suggests that during evolution HlyU probably occurred by gene duplication and mutational events that led to the emergence of this protein from ancestral transcriptional repressor by the loss of the metal-binding sites. Conclusion The study indicates that the same protein family can contain both the positive regulator of transcription and repressors – the exact function being controlled by the absence or the presence of metal-binding sites.
Collapse
Affiliation(s)
- Rudra P Saha
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054, India
| |
Collapse
|
103
|
Evangelista-Martínez Z, González-Cerón G, Servín-González L. A conserved inverted repeat, the LipR box, mediates transcriptional activation of the Streptomyces exfoliatus lipase gene by LipR, a member of the STAND class of P-loop nucleoside triphosphatases. J Bacteriol 2006; 188:7082-9. [PMID: 17015647 PMCID: PMC1636227 DOI: 10.1128/jb.00896-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the Streptomyces exfoliatus lipA gene, which encodes an extracellular lipase, depends on LipR, a transcriptional activator that belongs to the STAND class of P-loop nucleoside triphosphatases. LipR is closely related to activators present in some antibiotic biosynthesis clusters of actinomycetes, forming the LipR/TchG family of regulators. In this work we showed that purified LipR protein is essential for activation of lipA transcription in vitro and that this transcription depends on the presence of a conserved inverted repeat, the LipR box, located upstream of the lipA promoter. Mutagenesis of the lipA promoter region indicated that most transcription depends on LipR binding to the proximal half-site of the LipR box in close proximity to the -35 region of the promoter. Our experiments also indicated that LipR establishes contact with the RNA polymerase on both sides of the LipR box, since some activation was observed when only the distal half-site was present or when the entire LipR box was moved further upstream. We also showed that the LipR proteins of S. exfoliatus and Streptomyces coelicolor are functionally interchangeable both in vitro and in vivo, revealing the functional conservation of the regulatory elements in these two species.
Collapse
|
104
|
Abstract
The alpha-helical hairpin is the fundamental building block of the widespread helix-turn-helix DNA binding motif. With two antiparallel helices connected by a reverse turn, the alpha-helical hairpin structure may be regarded as a "supersecondary structural element" and, therefore, could exhibit rather unique folding properties. So far, the folding mechanism of alpha-helical hairpins has not been studied in detail and remains elusive. Herein, we examine the effects of the turn, the hydrophobic cluster, and a disulfide cross-linker on the folding kinetics of a designed alpha-helical hairpin, Z34C, using an infrared temperature-jump (T-jump) method in conjunction with site-specific mutagenesis. Our results show that Z34C folds with an ultrafast rate ( approximately 4.0 x 10(5) s(-1)) and support a folding mechanism in which the rate-limiting step corresponds to the formation of the reverse turn. On the other hand, the hydrophobic cluster and the disulfide cross-linker appear to largely stabilize the native state but not the folding transition state.
Collapse
Affiliation(s)
- Deguo Du
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
105
|
Schilling O, Herzberg C, Hertrich T, Vörsmann H, Jessen D, Hübner S, Titgemeyer F, Stülke J. Keeping signals straight in transcription regulation: specificity determinants for the interaction of a family of conserved bacterial RNA-protein couples. Nucleic Acids Res 2006; 34:6102-15. [PMID: 17074746 PMCID: PMC1635312 DOI: 10.1093/nar/gkl733] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regulatory systems often evolve by duplication of ancestral systems and subsequent specialization of the components of the novel signal transduction systems. In the Gram-positive soil bacterium Bacillus subtilis, four homologous antitermination systems control the expression of genes involved in the metabolism of glucose, sucrose and β-glucosides. Each of these systems is made up of a sensory sugar permease that does also act as phosphotransferase, an antitermination protein, and a RNA switch that is composed of two mutually exclusive structures, a RNA antiterminator (RAT) and a transcriptional terminator. We have studied the contributions of sugar specificity of the permeases, carbon catabolite repression, and protein–RAT recognition for the straightness of the signalling chains. We found that the β-glucoside permease BglP does also have a minor activity in glucose transport. However, this activity is irrelevant under physiological conditions since carbon catabolite repression in the presence of glucose prevents the synthesis of the β-glucoside permease. Reporter gene studies, in vitro RNA–protein interaction analyzes and northern blot transcript analyzes revealed that the interactions between the antiterminator proteins and their RNA targets are the major factor contributing to regulatory specificity. Both structural features in the RATs and individual bases are important specificity determinants. Our study revealed that the specificity of protein–RNA interactions, substrate specificity of the permeases as well as the general mechanism of carbon catabolite repression together allow to keep the signalling chains straight and to avoid excessive cross-talk between the systems.
Collapse
Affiliation(s)
| | | | - Tina Hertrich
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | | | | | | | - Fritz Titgemeyer
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Jörg Stülke
- To whom correspondence should be addressed. Tel: +49 551 393781; Fax: +49 551 393808;
| |
Collapse
|
106
|
Kawamura T, Le LUK, Zhou H, Dahlquist FW. Solution structure of Escherichia coli PapI, a key regulator of the pap pili phase variation. J Mol Biol 2006; 365:1130-42. [PMID: 17109885 PMCID: PMC2594013 DOI: 10.1016/j.jmb.2006.10.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 10/11/2006] [Accepted: 10/18/2006] [Indexed: 10/24/2022]
Abstract
Pyelonephritis-associated pili (pap) allow uropathogenic Escherichia coli to bind to epithelial cells and play an important role in urinary tract infection. Expression of pap is controlled by a phase-variation mechanism, based on the two distinct heritable states that are the result of adenine N6-methylation in either of the two GATC sequences in its regulatory region. The methylation status of these two sequences is sensed by the action of two proteins, Lrp and PapI, and they play a central role in determining pap gene expression in both phase-ON and phase-OFF cells. We used modern NMR techniques to determine the solution structure and backbone dynamics of PapI. We found its overall fold resembles closely that of the winged helix-turn-helix family of DNA-binding proteins. We determined that PapI possesses its own DNA-binding activity, albeit non-sequence-specific, independent of Lrp. PapI appears to bind to DNA with a K(d) in the 10 microM range. Possible mechanisms by which PapI might participate in the regulation of the pap operon are discussed in light of these new findings.
Collapse
|
107
|
Hamed MY, Al-Jabour S. Iron(II) triggered conformational changes in Escherichia coli fur upon DNA binding: a study using molecular modeling. J Mol Graph Model 2006; 25:234-46. [PMID: 16443380 DOI: 10.1016/j.jmgm.2005.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 11/27/2022]
Abstract
In order to identify the Fur dimerization domain, a three-dimensional structure of the ferric uptake regulation protein from Escherichia coli (Fur EC) was determined using homology modeling and energy minimization. The Fur monomer consists of turn- helix -turn motif on the N-terminal domain, followed by another helix-turn-helix-turn motif, and two beta-strands separated by a turn which forms the wing. The C-terminal domain, separated by a long coil from the N-terminal, and consisting of two anti parallel beta strands, and a turn-helix-turn-helix-turn motif. Residues in central domain were found to aid the dimer formation, residues 45-70 as evident in the calculated distances; this region is rich in hydrophobic residues. Most interactions occur between residues Val55, Leu53, Gln52, Glu49 and Tyr56 with closest contacts occurring at residues 49-56. These residues are part of an alpha-helix (alpha(4)) near the N-terminal. Upon raising the Fe(2+) concentration the binding of Fur dimer to DNA was enhanced, this was evident when, the Fur EC dimer was docked onto DNA "iron box" (it was found to bind the AT-rich region) and upon addition of Fe(2+) the helices near the N-terminal bound to the major groove of the DNA. Addition of high Fe(2+) concentration triggered further conformational changes in the Fur dimer as was measured by distances between the two subunits, Fe(2+) mediated the Fur binding to DNA by attaching itself to the DNA. At the same time DNA changed conformation as was evident in the distortion in the backbone and the shrinking of major groove distance from 11.4 to 9.3A. Two major Fe(2+) sites were observed on the C-terminal domain: site 1, the traditional Zn site, the cavity contains the residues Cys92, Cys95, Asp137, Asp141, Arg139, Glu 140, His 145 and His 143 at distances range from 1.3 to 2.2A. Site 2 enclave consists of His71, Ile50, Asn72, Gly97, Asp105 and Ala109 at very close proximity to Fe(2+). The closest contacts between Fur dimer and DNA at the AT-rich region were at residues Ala11, Gly12, Leu13, Pro18 and Arg19 mostly hydrophobic residues near the N-terminal domain. Close contacts repeated at His87, His88 and Arg112, and a third region near the C-terminal at Asn137, Arg 139, Glu140, Asn141, His143, Asn141 and His145. Fur dimer has three major contact regions with DNA, the first on the N-terminal domain, a second smaller region at His87, His88 and Arg112 mediated by Fe(2+) ions, and a third region on the C-terminal domain consisting mainly of hydrophobic contacts and mediated by Fe(2+) ions at high concentration.
Collapse
Affiliation(s)
- Mazen Y Hamed
- Computational Science Program, Chemistry Department, Birzeit University, PO Box 14, Birzeit, Palestine.
| | | |
Collapse
|
108
|
Brillet B, Benjamin B, Bigot Y, Yves B, Augé-Gouillou C, Corinne AG. Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains. Genetica 2006; 130:105-20. [PMID: 16912840 DOI: 10.1007/s10709-006-0025-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 06/02/2006] [Indexed: 01/20/2023]
Abstract
In this review, we focus on the assembly of DNA/protein complexes that trigger transposition in eukaryotic members of the IS630-Tc1-mariner (ITm) super-family, the Tc1- and mariner-like elements (TLEs and MLEs). Elements belonging to this super-family encode transposases with DNA binding domains of different origins, and recent data indicate that the chimerization of functional domains has been an important evolutionary aspect in the generation of new transposons within the ITm super-family. These data also reveal that the inverted terminal repeats (ITRs) at the ends of transposons contain three kinds of motif within their sequences. The first two are well known and correspond to the cleavage site on the outer ITR extremities, and the transposase DNA binding site. The organization of ITRs and of the transposase DNA binding domains implies that differing pathways are used by MLEs and TLEs to regulate transposition initiation. These differences imply that the ways ITRs are recognized also differ leading to the formation of differently organized synaptic complexes. The third kind of motif is the transposition enhancers, which have been found in almost all the functional MLEs and TLEs analyzed to date. Finally, in vitro and in vivo assays of various elements all suggest that the transposition initiation complex is not formed randomly, but involves a mechanism of oriented transposon scanning.
Collapse
Affiliation(s)
- Benjamin Brillet
- Laboratoire d'Etudes des Parasites Génétiques, Université François Rabelais, FRE CNRS 2969, UFR Sciences & Techniques, Parc Grandmont, 37200, Tours, France
| | | | | | | | | | | |
Collapse
|
109
|
Kamionka A, Majewski M, Roth K, Bertram R, Kraft C, Hillen W. Induction of single chain tetracycline repressor requires the binding of two inducers. Nucleic Acids Res 2006; 34:3834-41. [PMID: 16899452 PMCID: PMC1557800 DOI: 10.1093/nar/gkl316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/20/2006] [Accepted: 04/12/2006] [Indexed: 11/13/2022] Open
Abstract
In this article we report the in vivo and in vitro characterization of single chain tetracycline repressor (scTetR) variants in Escherichia coli. ScTetR is genetically and proteolytically stable and exhibits the same regulatory properties as dimeric TetR in E.coli. Urea-dependent denaturation of scTetR is independent of the protein concentration and follows the two-state model with a monophasic transition. Contrary to dimeric TetR, scTetR allows the construction of scTetR mutants, in which one subunit contains a defective inducer binding site while the other is functional. We have used this approach to establish that scTetR needs occupation of both inducer binding sites for in vivo and in vitro induction. Single mutations causing loss of induction in dimeric TetR lead to non-inducible scTetR when inserted into one half-side. The construction of scTetR H64K S135L S138I (scTetR(i2)) in which one half-side is specific for 4-dedimethylamino-anhydrotetracycline (4-ddma-atc) and the other for tetracycline (tc) leads to a protein which is only inducible by the mixture of tc and 4-ddma-atc. Fluorescence titration of scTetR(i2) with both inducers revealed distinct occupancy with each of these inducers yielding roughly a 1:1 stoichiometry of each inducer per scTetR(i2). The properties of this gain of function mutant clearly demonstrate that scTetR requires the binding of two inducers for induction of transcription.
Collapse
Affiliation(s)
- Annette Kamionka
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergStaudtstrasse 5, 91058 Erlangen, Germany
| | - Marius Majewski
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergStaudtstrasse 5, 91058 Erlangen, Germany
| | - Karin Roth
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergStaudtstrasse 5, 91058 Erlangen, Germany
| | - Ralph Bertram
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergStaudtstrasse 5, 91058 Erlangen, Germany
| | - Christine Kraft
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergStaudtstrasse 5, 91058 Erlangen, Germany
| | - Wolfgang Hillen
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-NürnbergStaudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
110
|
Seetharaman J, Kumaran D, Bonanno JB, Burley SK, Swaminathan S. Crystal structure of a putative HTH-type transcriptional regulator yxaF from Bacillus subtilis. Proteins 2006; 63:1087-91. [PMID: 16475182 PMCID: PMC1752215 DOI: 10.1002/prot.20924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
111
|
Walker JR, Altamentova S, Ezersky A, Lorca G, Skarina T, Kudritska M, Ball LJ, Bochkarev A, Savchenko A. Structural and Biochemical Study of Effector Molecule Recognition by the E.coli Glyoxylate and Allantoin Utilization Regulatory Protein AllR. J Mol Biol 2006; 358:810-28. [PMID: 16546208 DOI: 10.1016/j.jmb.2006.02.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 02/09/2006] [Accepted: 02/12/2006] [Indexed: 10/24/2022]
Abstract
The interaction of Escherichia coli AllR regulator with operator DNA is disrupted by the effector molecule glyoxylate. This is a general, yet uncharacterized regulatory mechanism for the large IclR family of transcriptional regulators to which AllR belongs. The crystal structures of the C-terminal effector-binding domain of AllR regulator and its complex with glyoxylate were determined at 1.7 and 1.8 A, respectively. Residues involved in glyoxylate binding were explored in vitro and in vivo. Altering the residues Cys217, Ser234 and Ser236 resulted in glyoxylate-independent repression by AllR. Sequence analysis revealed low conservation of amino acid residues participating in effector binding among IclR regulators, which reflects potential chemical diversity of effector molecules, recognized by members of this family. Comparing the AllR structure to that of Thermotoga maritima TM0065, the other representative of the IclR family that has been structurally characterized, indicates that both proteins assume similar quaternary structures as a dimer of dimers. Mutations in the tetramerization region, which in AllR involve the Cys135-Cys142 region, resulted in dissociation of AllR tetramer to dimers in vitro and were functionally inactive in vivo. Glyoxylate does not appear to function through the inhibition of tetramerization. Using sedimentation velocity, glyoxylate was shown to conformationally change the AllR tetramer as well as monomer and dimer resulting in altered outline of AllR molecules.
Collapse
Affiliation(s)
- John R Walker
- Ontario Center for Structural Proteomics, Best Institute, 112 College St., Toronto, Ontario, M5G1L6 Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Prangishvili D, Garrett RA, Koonin EV. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life. Virus Res 2006; 117:52-67. [PMID: 16503363 DOI: 10.1016/j.virusres.2006.01.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 01/05/2006] [Accepted: 01/09/2006] [Indexed: 10/25/2022]
Abstract
In terms of virion morphology, the known viruses of archaea fall into two distinct classes: viruses of mesophilic and moderately thermophilic Eueryarchaeota closely resemble head-and-tail bacteriophages whereas viruses of hyperthermophilic Crenarchaeota show a variety of unique morphotypes. In accord with this distinction, the sequenced genomes of euryarchaeal viruses encode many proteins homologous to bacteriophage capsid proteins. In contrast, initial analysis of the crenarchaeal viral genomes revealed no relationships with bacteriophages and, generally, very few proteins with detectable homologs. Here we describe a re-analysis of the proteins encoded by archaeal viruses, with an emphasis on comparative genomics of the unique viruses of Crenarchaeota. Detailed examination of conserved domains and motifs uncovered a significant number of previously unnoticed homologous relationships among the proteins of crenarchaeal viruses and between viral proteins and those from cellular life forms and allowed functional predictions for some of these conserved genes. A small pool of genes is shared by overlapping subsets of crenarchaeal viruses, in a general analogy with the metagenome structure of bacteriophages. The proteins encoded by the genes belonging to this pool include predicted transcription regulators, ATPases implicated in viral DNA replication and packaging, enzymes of DNA precursor metabolism, RNA modification enzymes, and glycosylases. In addition, each of the crenarchaeal viruses encodes several proteins with prokaryotic but not viral homologs, some of which, predictably, seem to have been scavenged from the crenarchaeal hosts, but others might have been acquired from bacteria. We conclude that crenarchaeal viruses are, in general, evolutionarily unrelated to other known viruses and, probably, evolved via independent accretion of genes derived from the hosts and, through more complex routes of horizontal gene transfer, from other prokaryotes.
Collapse
Affiliation(s)
- David Prangishvili
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, rue Dr. Roux 25, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
113
|
Büttner D, Lorenz C, Weber E, Bonas U. Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex fromXanthomonas campestrispv.vesicatoria. Mol Microbiol 2005; 59:513-27. [PMID: 16390446 DOI: 10.1111/j.1365-2958.2005.04924.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Gram-negative plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria translocates effector proteins via a specialized type III secretion (TTS) system into the host cell cytosol. The efficient secretion of many effector proteins depends on the global TTS chaperone HpaB. Here, we identified a novel export control protein, HpaC, which significantly contributes to bacterial pathogenicity. Deletion of hpaC leads to a severe reduction in secretion of effector proteins and the putative type III translocon proteins HrpF and XopA. By contrast, secretion of the TTS pilus protein HrpE is not affected. We provide experimental evidence that HpaC differentiates between two classes of effector proteins. Using an in vivo reporter assay, we found that HpaC specifically promotes the translocation of the effector proteins XopJ and XopF1 into the plant cell, whereas AvrBs3 and XopC are efficiently translocated even in the absence of HpaC. Similar findings were obtained for HpaB. Inhibition of protein synthesis suggests that HpaB is involved in the secretion of stored effector proteins. Furthermore, protein-protein interaction studies revealed that HpaB and HpaC form an oligomeric protein complex and that they interact with members of both effector protein classes and the conserved TTS system component HrcV. Taken together, our data indicate that HpaB and HpaC play a central role in recruiting TTS substrates to the secretion apparatus.
Collapse
Affiliation(s)
- Daniela Büttner
- Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Saale, Germany.
| | | | | | | |
Collapse
|
114
|
Rothballer M, Schmid M, Fekete A, Hartmann A. Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environ Microbiol 2005; 7:1839-46. [PMID: 16232298 DOI: 10.1111/j.1462-2920.2005.00848.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inoculation of wheat roots with Azospirillum brasilense results in an increase of plant growth and yield, which is proposed to be mainly due to the bacterial production of indole-3-acetic acid in the rhizosphere. Field inoculation experiments had revealed more consistent plant growth stimulation using A. brasilense strain Sp245 as compared with the strain Sp7. Therefore, the in situ expression of the key gene ipdC (indole-3-pyruvate decarboxylase) was examined in these two strains. Within the ipdC promoter of strain Sp245 a region of 150 bases was identified, which was missing in strain Sp7. Thus, three different translational ipdC promoter fusions with gfpmut3 were constructed on plasmid level: the first contained the part of the Sp245 promoter region homologous to strain Sp7, the second was bearing the complete promoter region of Sp245 including the specific insertion and the third comprised the Sp7 promoter region. By comparing the fluorescence levels of these constructs after growth on mineral medium with and without inducing amino acids, it could be demonstrated that ipdC expression in A. brasilense Sp245 was subject to a stricter control compared with strain Sp7. Microscopic detection of these reporter strains colonizing the rhizoplane documented for the first time an in situ expression of ipdC.
Collapse
Affiliation(s)
- Michael Rothballer
- GSF-National Research Center for Environment and Health, Institute of Soil Ecology, Department of Rhizosphere Biology, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| | | | | | | |
Collapse
|
115
|
Tran HJ, Heroven AK, Winkler L, Spreter T, Beatrix B, Dersch P. Analysis of RovA, a transcriptional regulator of Yersinia pseudotuberculosis virulence that acts through antirepression and direct transcriptional activation. J Biol Chem 2005; 280:42423-32. [PMID: 16257976 DOI: 10.1074/jbc.m504464200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transcription factor RovA of Yersinia pseudotuberculosis and analogous proteins in other Enterobacteriaceae activate the expression of virulence genes that play a crucial role in stress adaptation and pathogenesis. In this study, we demonstrate that the RovA protein forms dimers independent of DNA binding, stimulates RNA polymerase, most likely via its C-terminal domain, and counteracts transcriptional repression by the histone-like protein H-NS. As the molecular function of the RovA family is largely uncharacterized, random mutagenesis and terminal deletions were used to identify functionally important domains. Our analysis showed that a winged-helix motif in the center of the molecule is essential and directly involved in DNA binding. Terminal deletions and amino acid changes within both termini also abrogate RovA activation and DNA-binding functions, most likely due to their implication in dimer formation. Finally, we show that the last four amino acids of RovA are crucial for activation of gene transcription. Successive deletions of these residues result in a continuous loss of RovA activity. Their removal reduced the capacity of RovA to activate RNA polymerase and abolished transcription of RovA-activated promoters in the presence of H-NS, although dimerization and DNA binding functions were retained. Our structural model implies that the final amino acids of RovA play a role in protein-protein interactions, adjusting RovA activity.
Collapse
Affiliation(s)
- Hien J Tran
- Junior Research Group 6, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
116
|
Frénois F, Baulard AR, Villeret V. Insights into mechanisms of induction and ligands recognition in the transcriptional repressor EthR from Mycobacterium tuberculosis. Tuberculosis (Edinb) 2005; 86:110-4. [PMID: 16243584 DOI: 10.1016/j.tube.2005.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Indexed: 10/25/2022]
Abstract
Mycobacterium tuberculosis EthR is a repressor of ethA, a gene encoding a mono-oxygenase required for the activation of the prodrug ethionamide. Two EthR crystal structures have been reported recently, either in a ligand-bound (Frenois F, Engohang-Ndong J, Locht C, Baulard AR, Villeret V. Mol Cell 2004; 16: 301-7) or in a presumed apo conformation (Dover LG, Corsino PE, Daniels IR, Cocklin SL, Tatituri V, Besra GS, Futterer K. J Mol Biol 2004; 340: 1095-105). In order to infer the EthR induction mechanism, we have compared these structures. It appears that the two structures are in a conformation incompatible with repressor function, due to the presence in both proteins of fortuitous and structurally unrelated ligands. This observation paves the way to the design of specific drugs that could increase the sensitivity of M. tuberculosis to ethionamide.
Collapse
Affiliation(s)
- Frédéric Frénois
- CNRS-UMR8525, Institut de Biologie de Lille-Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP245 59019 Lille cedex, France
| | | | | |
Collapse
|
117
|
Augé-Gouillou C, Brillet B, Germon S, Hamelin MH, Bigot Y. Mariner Mos1 transposase dimerizes prior to ITR binding. J Mol Biol 2005; 351:117-30. [PMID: 15992822 DOI: 10.1016/j.jmb.2005.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/26/2005] [Accepted: 05/11/2005] [Indexed: 11/22/2022]
Abstract
The mariner Mos1 synaptic complex consists of a tetramer of transposase molecules that bring together the two ends of the element. Such an assembly requires at least two kinds of protein-protein interfaces. The first is involved in "cis" dimerization, and consists of transposase molecules bound side-by-side on a single DNA molecule. The second, which is involved in "trans" dimerization, consists of transposase molecules bound to two different DNA molecules. Here, we used biochemical and genetic methods to enhance the definition of the regions involved in cis and trans-dimerization in the mariner Mos1 transposase. The cis and trans-dimerization interfaces were both found within the first 143 amino acid residues of the protein. The cis-dimerization activity was mainly contained in amino acids 1-20. The region spanning from amino acid residues 116-143, and containing the WVPHEL motif, was involved in the cis- to trans-shift as well as in trans-dimerization stabilization. Although the transposase exists mainly as a monomer in solution, we provide evidence that the transposase cis-dimer is the active species in inverted terminal repeat (ITR) binding. We also observed that the catalytic domain of the mariner Mos1 transposase modulates efficient transposase-transposase interactions in the absence of the transposon ends.
Collapse
Affiliation(s)
- Corinne Augé-Gouillou
- Laboratoire d'Etude des Parasites Génétiques, Université François Rabelais de Tours, EA 3868, UFR Sciences & Techniques, Parc Grandmont, 37200 Tours, France.
| | | | | | | | | |
Collapse
|
118
|
Ramsey DM, Baynham PJ, Wozniak DJ. Binding of Pseudomonas aeruginosa AlgZ to sites upstream of the algZ promoter leads to repression of transcription. J Bacteriol 2005; 187:4430-43. [PMID: 15968052 PMCID: PMC1151789 DOI: 10.1128/jb.187.13.4430-4443.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mucoid variants of the opportunistic pathogen Pseudomonas aeruginosa produce the exopolysaccharide alginate and colonize the respiratory tracts of cystic fibrosis patients. The genes encoding the alginate biosynthetic enzymes are clustered in a single operon, which is under tight transcriptional control. One essential activator of the alginate operon is AlgZ, a proposed ribbon-helix-helix DNA binding protein that shares 30% amino acid identity with the Mnt repressor of Salmonella enterica serovar Typhimurium bacteriophage P22. In the current study, we examined the role of AlgZ as an autoregulator. Using single-copy algZ-lacZ transcription fusions, an increase in algZ transcription was observed in an algZ mutant compared to the isogenic wild-type strain, suggesting that AlgZ may have an additional role as a repressor. To identify the AlgZ binding site, overlapping regions upstream of algZ were incubated with AlgZ and analyzed by electrophoretic mobility shift assays. Specific binding activity was localized to a region spanning from 66 to 185 base pairs upstream of the algZ transcriptional start site. Two AlgZ binding sites were defined using copper-phenanthroline footprinting and deletion analyses, with one site centered at 93 base pairs and the other centered at 161 base pairs upstream of the algZ promoter. Deletion of both binding sites resulted in the loss of AlgZ binding. These results indicate that AlgZ represses algZ transcription, and this activity is mediated by multiple AlgZ-DNA interactions.
Collapse
Affiliation(s)
- Deborah M Ramsey
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
119
|
Ye J, Kandegedara A, Martin P, Rosen BP. Crystal structure of the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor. J Bacteriol 2005; 187:4214-21. [PMID: 15937183 PMCID: PMC1151749 DOI: 10.1128/jb.187.12.4214-4221.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus aureus plasmid pI258 cadCA operon encodes a P-type ATPase, CadA, that confers resistance to the heavy metals Cd(II), Zn(II), and Pb(II). Expression of this heavy-metal efflux pump is regulated by CadC, a homodimeric repressor that dissociates from the cad operator/promoter upon binding of Cd(II), Pb(II), or Zn(II). CadC is a member of the ArsR/SmtB family of metalloregulatory proteins. Here we report the X-ray crystal structure of CadC at 1.9 angstroms resolution. The dimensions of the protein dimer are approximately 30 angstroms by 40 angstroms by 70 angstroms. Each monomer contains six alpha-helices and a three-stranded beta-sheet. Helices 4 and 5 form a classic helix-turn-helix motif that is the putative DNA binding region. The alpha1 helix of one monomer crosses the dimer to approach the alpha4 helix of the other monomer, consistent with the previous proposal that these two regulatory metal binding sites for the inducer cadmium or lead are each formed by Cys-7 and Cys-11 from the N terminus of one monomer and Cys-58 and Cys-60 of the other monomer. Two nonregulatory metal binding sites containing zinc are formed between the two antiparallel alpha6 helices at the dimerization interface. This is the first reported three-dimensional structure of a member of the ArsR/SmtB family with regulatory metal binding sites at the DNA binding domain and the first structure of a transcription repressor that responds to the heavy metals Cd(II) and Pb(II).
Collapse
Affiliation(s)
- Jun Ye
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, 540 E. Canfield Ave., Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
120
|
Wilkinson SP, Grove A. Negative Cooperativity of Uric Acid Binding to the Transcriptional Regulator HucR from Deinococcus radiodurans. J Mol Biol 2005; 350:617-30. [PMID: 15967460 DOI: 10.1016/j.jmb.2005.05.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 05/09/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
Members of the MarR family of winged helix transcriptional regulators have been shown to regulate multidrug and oxidative stress response, pathogenesis, and catabolism of aromatic compounds. Many respond to anionic lipophilic compounds in their capacity to bind DNA, and the co-crystal structure of MarR bound to salicylate revealed two ligand-binding pockets, SAL-A and SAL-B. The MarR homolog, HucR, from Deinococcus radiodurans has been shown to repress expression of a predicted uricase, and DNA-binding by HucR is antagonized by uric acid, the substrate of uricase. We provide a biochemical investigation of DNA-binding and uric acid-binding by HucR. Equilibrium analytical ultracentrifugation indicates that HucR exists as a dimer. Intrinsic fluorescence spectra suggest that the association of the HucR dimer with its cognate DNA involves conformational flexibility in the globular interior and/or dimerization domain of the protein, and near-UV circular dichroism spectra indicate a concomitant change in the helical twist of the DNA duplex. DNA-binding affinity, measured by electrophoretic mobility-shift assays, for HucR mutants bearing single amino acid substitutions suggests the importance of the beta-hairpin "wing" in DNA binding. Analysis of intrinsic fluorescence spectra demonstrates that uric acid induces conformational changes in HucR and binds with an apparent K(d)=11.6(+/-3.7)muM and a Hill coefficient of 0.7+/-0.1, indicating negative cooperativity. Fluorescence and DNA-binding properties of the HucR variants indicate that SAL-A is a low-affinity, uric acid-binding site and that negative cooperativity exists between homologous, high-affinity sites. The conservation of residues comprising site SAL-A suggests that it is a low-affinity, ligand-binding site in MarR homologs. Mechanistic considerations suggest that HucR is regulated by uric acid to maintain optimal cellular levels of this scavenger of free radicals in response to oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Steven P Wilkinson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
121
|
Servant P, Le Coq D, Aymerich S. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Mol Microbiol 2005; 55:1435-51. [PMID: 15720552 DOI: 10.1111/j.1365-2958.2005.04473.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Bacillus subtilis, the NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (GapB) and the phosphoenolpyruvate carboxykinase (PckA) enzymes are necessary for efficient gluconeogenesis from Krebs cycle intermediates. gapB and pckA transcription is repressed in the presence of glucose but not via CcpA, the major transcriptional regulator for catabolite repression in B. subtilis. A B. subtilis mini-Tn10 transposant library was screened for clones affected in catabolite repression of gapB. Inactivation of a previously unknown gene, yqzB (renamed ccpN for control catabolite protein of gluconeogenic genes), was found to relieve not only gapB but also pckA transcription from catabolite repression. Purified CcpN specifically bound to the gapB and pckA promoters. ccpN is co-transcribed constitutively with another unknown gene, yqfL. A yqfL deletion lowers the level of gapB and pckA transcription threefold under both glycolytic and gluconeogenic conditions and a ccpN deletion is epistatic over a yqfL deletion. YqfL is thus a positive regulator of the expression of gapB and pckA, the effect of which is not influenced by the metabolic regime of the cell but appears to be mediated by CcpN. ccpN has homologues in many Firmicutes, but not all, while yqfL homologues are widely distributed in Eubacteria and also present in some plants. In all analysed bacterial genomes, ccpN and yqfL are physically linked together or to putative gluconeogenic genes. CcpN thus orchestrates a novel CcpA-independent mechanism for catabolite repression of gluconeogenic genes highly conserved in Firmicutes and appears as a functional analogue of FruR in Enterobacteria. The physiological significance of the regulation mediated via the three B. subtilis global transcription regulators, CcpA, CggR and CcpN, is discussed.
Collapse
Affiliation(s)
- Pascale Servant
- Microbiologie et Génétique Moléculaire, INRA (UMR1238) and CNRS (UMR2585), Institut National Agronomique Paris-Grignon, F-78850 Thiverval-Grignon, France
| | | | | |
Collapse
|
122
|
Brune I, Brinkrolf K, Kalinowski J, Pühler A, Tauch A. The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 2005; 6:86. [PMID: 15938759 PMCID: PMC1180825 DOI: 10.1186/1471-2164-6-86] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 06/07/2005] [Indexed: 11/10/2022] Open
Abstract
Background The genus Corynebacterium includes Gram-positive microorganisms of great biotechnologically importance, such as Corynebacterium glutamicum and Corynebacterium efficiens, as well as serious human pathogens, such as Corynebacterium diphtheriae and Corynebacterium jeikeium. Although genome sequences of the respective species have been determined recently, the knowledge about the repertoire of transcriptional regulators and the architecture of global regulatory networks is scarce. Here, we apply a combination of bioinformatic tools and a comparative genomic approach to identify and characterize a set of conserved DNA-binding transcriptional regulators in the four corynebacterial genomes. Results A collection of 127 DNA-binding transcriptional regulators was identified in the C. glutamicum ATCC 13032 genome, whereas 103 regulators were detected in C. efficiens YS-314, 63 in C. diphtheriae NCTC 13129 and 55 in C. jeikeium K411. According to amino acid sequence similarities and protein structure predictions, the DNA-binding transcriptional regulators were grouped into 25 regulatory protein families. The common set of DNA-binding transcriptional regulators present in the four corynebacterial genomes consists of 28 proteins that are apparently involved in the regulation of cell division and septation, SOS and stress response, carbohydrate metabolism and macroelement and metal homeostasis. Conclusion This work describes characteristic features of a set of conserved DNA-binding transcriptional regulators present within the corynebacterial core genome. The knowledge on the physiological function of these proteins should not only contribute to our understanding of the regulation of gene expression but will also provide the basis for comprehensive modeling of transcriptional regulatory networks of these species.
Collapse
Affiliation(s)
- Iris Brune
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Karina Brinkrolf
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
- International NRW Graduate School in Bioinformatics and Genome Research, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Andreas Tauch
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
123
|
Sickmier EA, Brekasis D, Paranawithana S, Bonanno JB, Paget MSB, Burley SK, Kielkopf CL. X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing. Structure 2005; 13:43-54. [PMID: 15642260 DOI: 10.1016/j.str.2004.10.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/17/2004] [Accepted: 10/28/2004] [Indexed: 11/21/2022]
Abstract
The redox-sensing repressor Rex regulates transcription of respiratory genes in response to the intra cellular NADH/NAD(+) redox poise. As a step toward elucidating the molecular mechanism of NADH/NAD(+) sensing, the X-ray structure of Thermus aquaticus Rex (T-Rex) bound to effector NADH has been determined at 2.9 A resolution. The fold of the C-terminal domain of T-Rex is characteristic of NAD(H)-dependent enzymes, whereas the N-terminal domain is similar to a winged helix DNA binding motif. T-Rex dimerization is primarily mediated by "domain-swapped" alpha helices. Each NADH molecule binds to the C-terminal domain near the dimer interface. In contrast to NAD(H)-dependent enzymes, the nicotinamide is deeply buried within a hydrophobic pocket that appears to preclude substrate entry. We show that T-Rex binds to the Rex operator, and NADH but not NAD(+) inhibits T-Rex/DNA binding activity. A mechanism for redox sensing by Rex family members is proposed by analogy with domain closure of NAD(H)-dependent enzymes.
Collapse
Affiliation(s)
- E Allen Sickmier
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Rawlinson ELA, Nes IF, Skaugen M. Identification of the DNA-binding site of the Rgg-like regulator LasX within the lactocin S promoter region. Microbiology (Reading) 2005; 151:813-823. [PMID: 15758227 DOI: 10.1099/mic.0.27364-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LasX regulates the transcription of the divergent operons lasXY and lasA–W, which specify the production of lactocin S in Lactobacillus sakei L45. Using histidine-tagged LasX, and a DNA fragment containing the complete intergenic lasA–lasX region, electrophoresis mobility-shift (EMSA) analyses were employed to demonstrate that LasX binds to the lasA–lasX intergenic DNA. Two direct heptanucleotide motifs directly upstream of P
lasA–W
, and a third imperfect copy of this motif, overlapping the −10 element of P
lasA–W
, were identified as possible LasX-binding sites. To assess the role of the direct repeats in the binding of LasX to the intergenic lasA–lasX region, binding experiments were performed using DNA probes with different combinations of the repeats, and with arbitrarily chosen repeat substitutions. The result of these experiments demonstrated that only the middle repeat was required for the binding of LasX to the las-promoter region. This observation correlated with the results of subsequent reporter-gene analyses, thereby weakening the hypothesis of the involvement of the direct repeats in LasX-mediated transcription regulation. By analysing the ability of LasX to bind successively shortened derivatives of the original intergenic fragment, a tentative 19 bp minimum LasX-binding site was identified.
Collapse
Affiliation(s)
| | - Ingolf F Nes
- Laboratory of Microbial Gene Technology, PO Box 5003, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Morten Skaugen
- Laboratory of Microbial Gene Technology, PO Box 5003, Norwegian University of Life Sciences, N-1432 Ås, Norway
| |
Collapse
|
125
|
Ton-Hoang B, Turlan C, Chandler M. Functional domains of the IS1 transposase: analysis in vivo and in vitro. Mol Microbiol 2005; 53:1529-43. [PMID: 15387827 DOI: 10.1111/j.1365-2958.2004.04223.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The IS1 bacterial insertion sequence family, considered to be restricted to Enterobacteria, has now been extended to other Eubacteria and to Archaebacteria, reviving interest in its study. To analyse the functional domains of the InsAB' transposase of IS1A, a representative of this family, we used an in vivo system which measures IS1-promoted rescue of a temperature-sensitive pSC101 plasmid by fusion with a pBR322::IS1 derivative. We also describe the partial purification of the IS1 transposase and the development of several in vitro assays for transposase activity. These included a DNA band shift assay, a transposase-mediated cleavage assay and an integration assay. Alignments of IS family members (http://www-is.biotoul.fr) not only confirmed the presence of an N-terminal helix-turn-helix and a C-terminal DDE motif in InsAB', but also revealed a putative N-terminal zinc finger. We have combined the in vitro and in vivo tests to carry out a functional analysis of InsAB' using a series of site-directed InsAB' mutants based on these alignments. The results demonstrate that appropriate mutations in the zinc finger and helix-turn-helix motifs result in loss of binding activity to the ends of IS1 whereas mutations in the DDE domain are affected in subsequent transposition steps but not in end binding.
Collapse
Affiliation(s)
- Bao Ton-Hoang
- Laboratoire de Microbiologie et de Génétique Moléculaire, CNRS, 118 route de Narbonne, 31062, Toulouse Cedex, France.
| | | | | |
Collapse
|
126
|
De Silva RS, Kovacikova G, Lin W, Taylor RK, Skorupski K, Kull FJ. Crystal structure of the virulence gene activator AphA from Vibrio cholerae reveals it is a novel member of the winged helix transcription factor superfamily. J Biol Chem 2005; 280:13779-83. [PMID: 15647287 PMCID: PMC2652724 DOI: 10.1074/jbc.m413781200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AphA is a member of a new and largely uncharacterized family of transcriptional activators that is required for initiating virulence gene expression in Vibrio cholerae, the causative agent of the frequently fatal epidemic diarrheal disease cholera. AphA activates transcription by an unusual mechanism that appears to involve a direct interaction with the LysR-type regulator AphB at the tcpPH promoter. As a first step toward understanding the molecular basis for tcpPH activation by AphA and AphB, we have determined the crystal structure of AphA to 2.2 angstrom resolution. AphA is a dimer with an N-terminal winged helix DNA binding domain that is architecturally similar to that of the MarR family of transcriptional regulators. Unlike this family, however, AphA has a unique C-terminal antiparallel coiled coil domain that serves as its primary dimerization interface. AphA monomers are highly unstable by themselves and form a linked topology, requiring the protein to partially unfold to form the dimer. The structure of AphA also provides insights into how it cooperates with AphB to activate transcription, most likely by forming a heterotetrameric complex at the tcpPH promoter.
Collapse
Affiliation(s)
- Rukman S. De Silva
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755
| | - Gabriela Kovacikova
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Wei Lin
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Karen Skorupski
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755
| | - F. Jon Kull
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755
- To whom correspondence should be addressed: Dept. of Chemistry, 6128 Burke Laboratory, Dartmouth College, Hanover, NH, 03755. Tel.: 603-646-1552; Fax: 603-646-3946; E-mail:
| |
Collapse
|
127
|
Barragán MJL, Blázquez B, Zamarro MT, Mancheño JM, García JL, Díaz E, Carmona M. BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J Biol Chem 2005; 280:10683-94. [PMID: 15634675 DOI: 10.1074/jbc.m412259200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we have studied the transcriptional regulation of the bzd operon involved in the anaerobic catabolism of benzoate in the denitrifying Azoarcus sp. strain CIB. The transcription start site of the P(N) promoter running the expression of the bzd catabolic genes was identified. Gel retardation assays and P(N)::lacZ translational fusion experiments performed both in Azoarcus sp. CIB and Escherichia coli cells have shown that bzdR encodes a specific repressor that controls the inducible expression of the adjacent bzd catabolic operon, being the first intermediate of the catabolic pathway (i.e. benzoyl-CoA, the actual inducer molecule). This is the first report of a transcriptional repressor and a CoA-derived aromatic inducer controlling gene expression in the anaerobic catabolism of aromatic compounds. DNase I footprinting experiments revealed that BzdR protected three regions (operators) at the P(N) promoter. The three operators contain direct repetitions of a TGCA sequence that forms part of longer palindromic structures. In agreement with the repressor role of BzdR, operator region I spans the transcription initiation site as well as the -10 sequence for recognition of the RNA polymerase. Primary sequence analyses of BzdR showed an unusual modular organization with an N-terminal region homologous to members of the HTH-XRE family of transcriptional regulators and a C-terminal region similar to shikimate kinases. A three-dimensional model of the N-terminal and C-terminal regions of BzdR, generated by comparison with the crystal structures of the SinR regulator from Bacillus subtilis and the shikimate kinase I protein from E. coli, strongly suggests that they contain the helix-turn-helix DNA-binding motif and the benzoyl-CoA binding groove, respectively. The BzdR protein constitutes, therefore, the prototype of a new subfamily of transcriptional regulators.
Collapse
Affiliation(s)
- María J L Barragán
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
128
|
Büsch A, Pohlmann A, Friedrich B, Cramm R. A DNA region recognized by the nitric oxide-responsive transcriptional activator NorR is conserved in beta- and gamma-proteobacteria. J Bacteriol 2004; 186:7980-7. [PMID: 15547270 PMCID: PMC529094 DOI: 10.1128/jb.186.23.7980-7987.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma(54)-dependent regulator NorR activates transcription of target genes in response to nitric oxide (NO) or NO-generating agents. In Ralstonia eutropha H16, NorR activates transcription of the dicistronic norAB operon that encodes NorA, a protein of unknown function, and NorB, a nitric oxide reductase. A constitutively activating NorR derivative (NorR'), in which the N-terminal signaling domain was replaced by MalE, specifically bound to the norAB upstream region as revealed by gel retardation analysis. Within a 73-bp DNA segment protected by MalE-NorR' in a DNase I footprint assay, three conserved inverted repeats, GGT-(N(7))-ACC (where N is any base), that we consider to be NorR-binding boxes were identified. Mutations altering the spacing or the base sequence of these repeats resulted in an 80 to 90% decrease of transcriptional activation by wild-type NorR. Genome database analyses demonstrate that the GT-(N(7))-AC core of the inverted repeat is found in several proteobacteria upstream of gene loci encoding proteins of nitric oxide metabolism, including nitric oxide reductase (NorB), flavorubredoxin (NorV), NO dioxygenase (Hmp), and hybrid cluster protein (Hcp).
Collapse
Affiliation(s)
- Andrea Büsch
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
129
|
Nilsson MTI, Widersten M. Repertoire selection of variant single-chain Cro: toward directed DNA-binding specificity of helix-turn-helix proteins. Biochemistry 2004; 43:12038-47. [PMID: 15379544 DOI: 10.1021/bi049122k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A single-chain derivative of the lambda Cro repressor (scCro) has been randomly mutated in amino acid residues critical for specific DNA recognition to create libraries of protein variants. Utilizing phage display-afforded affinity selection, scCro variants have been isolated for binding to synthetic DNA ligands. Isolated scCro variants were analyzed functionally, both in fusion with phage particles and after expression of the corresponding free proteins. The binding properties with regard to specificity and affinity in binding to different DNA ligands were investigated by inhibition studies and determination of equilibrium dissociation constants for formed complexes. Variant proteins with altered DNA-sequence specificity were identified, which favored binding of targeted synthetic DNA sequences over a consensus operator sequence, bound with high affinity by wild-type Cro. The specificities were relatively modest (2-3-fold, as calculated from K(D) values), which can be attributed to the inherent properties in the design of the selection system; one half-site of the synthetic DNA sequences maintains the consensus operator sequence, and one "subunit" of the variant single-chain Cro dimers was conserved as wild-type sequence. The anticipated interaction between the wild-type subunit and the consensus DNA half-site of target DNA ligands is, hence, expected to contribute to the overlap in sequence discrimination. The binding affinity for the synthetic DNA sequences, however, was improved 10-30-fold in selected variant proteins as compared to "wild-type" scCro.
Collapse
Affiliation(s)
- Mikael T I Nilsson
- Department of Biochemistry, Uppsala University, Biomedical Center, Box 576, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
130
|
Matsuo Y, Eda S, Gotoh N, Yoshihara E, Nakae T. MexZ-mediated regulation ofmexXYmultidrug efflux pump expression inPseudomonas aeruginosaby binding on themexZ-mexXintergenic DNA. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09732.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
131
|
Lee AYL, Hsu CH, Wu SH. Functional domains of Brevibacillus thermoruber lon protease for oligomerization and DNA binding: role of N-terminal and sensor and substrate discrimination domains. J Biol Chem 2004; 279:34903-12. [PMID: 15181012 DOI: 10.1074/jbc.m403562200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lon protease is a multifunctional enzyme, and its functions include the degradation of damaged proteins and naturally short lived proteins, ATPase and chaperone-like activities, as well as DNA binding. A thermostable Lon protease from Brevibacillus thermoruber WR-249 (Bt-Lon) has been cloned and characterized with an N-terminal domain, a central ATPase domain that includes a sensor and substrate discrimination (SSD) domain, and a C-terminal protease domain. Here we present a detailed structure-function characterization of Bt-Lon, not only dissecting the individual roles of Bt-Lon domains in oligomerization, catalytic activities, chaperone-like activity, and DNA binding activity but also describing the nature of oligomerization. Seven truncated mutants of Bt-Lon were designed, expressed, and purified. Our results show that the N-terminal domain is essential for oligomerization. The truncation of the N-terminal domain resulted in the failure of oligomerization and led to the inactivation of proteolytic, ATPase, and chaperone-like activities but retained the DNA binding activity, suggesting that oligomerization of Bt-Lon is a prerequisite for its catalytic and chaperone-like activities. We further found that the SSD is involved in DNA binding based on gel mobility shift assays. On the other hand, the oligomerization of Bt-Lon proceeds through a dimer <--> tetramer <--> hexamer assembly model revealed by chemical cross-linking experiments. The results also showed that hydrophobic interactions may play important roles in the dimerization of Bt-Lon, and ionic interactions are mainly responsible for the assembly of hexamers.
Collapse
|
132
|
Pérez-Marín MC, López-Rubio JJ, Murillo FJ, Elías-Arnanz M, Padmanabhan S. The N terminus of Myxococcus xanthus CarA repressor is an autonomously folding domain that mediates physical and functional interactions with both operator DNA and antirepressor protein. J Biol Chem 2004; 279:33093-103. [PMID: 15163666 DOI: 10.1074/jbc.m405225200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the Myxococcus xanthus carB operon, which encodes the majority of the enzymes involved in light-induced carotenogenesis, is down-regulated in the dark by the CarA repressor binding to its bipartite operator. CarS, produced on illumination, relieves repression of carB by physically interacting with CarA to dis-mantle CarA-DNA complexes. Here, we demonstrate that the N- and C-terminal portions of CarA are organized as distinct structural and functional domains. Specifically, we show that the 78 N-terminal residues of CarA, CarA(Nter), form a monomeric, highly helical, autonomously folding unit with significant structural stability. Significantly, CarA(Nter) houses both the operator and CarS binding specificity determinants of CarA. CarA(Nter) binds operator with a lower affinity than whole CarA, and the CarA(Nter)-CarS complex has a 1:1 stoichiometry. In vitro, sufficiently high concentrations of CarA(Nter) block M. xanthus RNA polymerase-promoter binding, and this is relieved by CarS. In vivo, substitution of the gene carA by that for CarA(Nter) results in constitutive expression of carB just as in a carA-deleted background. However, re-engineering the latter strain to overexpress CarA(Nter) restores repression of carB. Thus, the 78-residue N-terminal portion of CarA is an autonomously folded, dual function domain that orchestrates specific DNA-protein and protein-protein interactions and, when overexpressed, can be functionally competent in vivo.
Collapse
Affiliation(s)
- Mari Cruz Pérez-Marín
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 30071, Spain
| | | | | | | | | |
Collapse
|
133
|
Sam MD, Cascio D, Johnson RC, Clubb RT. Crystal structure of the excisionase-DNA complex from bacteriophage lambda. J Mol Biol 2004; 338:229-40. [PMID: 15066428 DOI: 10.1016/j.jmb.2004.02.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/23/2004] [Accepted: 02/24/2004] [Indexed: 10/26/2022]
Abstract
The excisionase (Xis) protein from bacteriophage lambda is the best characterized member of a large family of recombination directionality factors that control integrase-mediated DNA rearrangements. It triggers phage excision by cooperatively binding to sites X1 and X2 within the phage, bending DNA significantly and recruiting the phage-encoded integrase (Int) protein to site P2. We have determined the co-crystal structure of Xis with its X2 DNA-binding site at 1.7A resolution. Xis forms a unique winged-helix motif that interacts with the major and minor grooves of its binding site using an alpha-helix and an ordered beta-hairpin (wing), respectively. Recognition is achieved through an elaborate water-mediated hydrogen-bonding network at the major groove interface, while the preformed hairpin forms largely non-specific interactions with the minor groove. The structure of the complex provides insights into how Xis recruits Int cooperatively, and suggests a plausible mechanism by which it may distort longer DNA fragments significantly. It reveals a surface on the protein that is likely to mediate Xis-Xis interactions required for its cooperative binding to DNA.
Collapse
Affiliation(s)
- My D Sam
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1570, USA
| | | | | | | |
Collapse
|
134
|
Kovacikova G, Lin W, Skorupski K. Vibrio cholerae AphA uses a novel mechanism for virulence gene activation that involves interaction with the LysR-type regulator AphB at the tcpPH promoter. Mol Microbiol 2004; 53:129-42. [PMID: 15225309 DOI: 10.1111/j.1365-2958.2004.04121.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AphA is required for expression of the Vibrio cholerae virulence cascade and for its regulation by quorum sensing. In order to activate transcription, AphA functions together with a second protein, the LysR-type regulator AphB, at the tcpPH promoter. As AphA is a member of a new and largely uncharacterized regulator family, random mutagenesis was used to gain insights into how this protein activates transcription. As shown here, 17 amino acid substitutions were identified in AphA that reduced expression of the tcpPH promoter and prevented the protein from binding DNA. The amino acids involved in DNA recognition inferred from a dominant-negative analysis were located throughout the N-terminal domain from amino acids 18 to 67. This region of AphA has a conserved domain architecture similar to that of MarR, a multiple antibiotic resistance repressor. The analogous positions of the dominant-negative mutations in AphA and MarR confirm that the DNA-binding domains of these proteins are similar and indicate that AphA is a new member of the winged helix family of transcription factors. We also show that AphB is capable of rescuing two of the DNA binding-defective AphA mutants, suggesting that the proteins interact directly on the DNA. Disruption of this interaction by insertion of half a helical turn between the two binding sites prevented AphB from rescuing the mutants and prevented the expression of the virulence cascade in a wild-type background. These results provide a novel mechanism for the initiation of virulence gene expression at tcpPH.
Collapse
Affiliation(s)
- Gabriela Kovacikova
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
135
|
López-Rubio JJ, Padmanabhan S, Lázaro JM, Salas M, Murillo FJ, Elías-Arnanz M. Operator design and mechanism for CarA repressor-mediated down-regulation of the photoinducible carB operon in Myxococcus xanthus. J Biol Chem 2004; 279:28945-53. [PMID: 15123730 DOI: 10.1074/jbc.m403459200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carB operon encodes all except one of the enzymes involved in light-induced carotenogenesis in Myxococcus xanthus. Expression of its promoter (P(B)) is repressed in the dark by sequence-specific DNA binding of CarA to a palindrome (pI) located between positions -47 and -64 relative to the transcription start site. This promotes subsequent binding of CarA to additional sites that remain to be defined. CarS, produced in the light, interacts physically with CarA, abrogates CarA-DNA binding, and thereby derepresses P(B). In this study, we delineate the operator design that exists for CarA by precisely mapping out the second operator element. For this, we examined how stepwise deletions and site-directed mutagenesis in the region between the palindrome and the transcription start site affect CarA binding around P(B) in vitro and expression of P(B) in vivo. These revealed the second operator element to be an imperfect interrupted palindrome (pII) spanning positions -26 to -40. In vitro assays using purified M. xanthus RNA polymerase showed that CarA abolishes P(B)-RNA polymerase binding and runoff transcription and that both were restored by CarS, thus rationalizing the observations in vivo. CarA binding to pII (after association with pI) effectively occludes RNA polymerase from P(B) and so provides the operative mechanism for the repression of the carB operon by CarA. The bipartite operator design, whereby transcription is blocked by the low affinity CarA-pII binding and is readily restored by CarS, may have evolved to match the needs for a rapid and an effective response to light.
Collapse
Affiliation(s)
- José Juan López-Rubio
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 30071
| | | | | | | | | | | |
Collapse
|
136
|
Kim S, Zhang Z, Upchurch S, Isern N, Chen Y. Structure and DNA-binding Sites of the SWI1 AT-rich Interaction Domain (ARID) Suggest Determinants for Sequence-specific DNA Recognition. J Biol Chem 2004; 279:16670-6. [PMID: 14722072 DOI: 10.1074/jbc.m312115200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ARID (AT-rich interaction domain) is a homologous family of DNA-binding domains that occur in DNA-binding proteins from a wide variety of species, ranging from yeast to nematodes, insects, mammals, and plants. SWI1, a member of the SWI/SNF protein complex that is involved in chromatin remodeling during transcription, contains the ARID motif. The ARID domain of human SWI1 (also known as p270) does not select for a specific DNA sequence from a random sequence pool. The lack of sequence specificity shown by the SWI1 ARID domain stands in contrast to the other characterized ARID domains, which recognize specific AT-rich sequences. We have solved the three-dimensional structure of human SWI1 ARID using solution NMR methods. In addition, we have characterized nonspecific DNA binding by the SWI1 ARID domain. Results from this study indicate that a flexible, long, internal loop in the ARID motif is likely to be important for sequence-specific DNA recognition. The structure of the human SWI1 ARID domain also represents a distinct structural subfamily. Studies of ARID indicate that the boundary of DNA binding structural and functional domains can extend beyond the sequence homologous region in a homologous family of proteins. Structural studies of homologous domains such as the ARID family of DNA-binding domains should provide information to better predict the boundary of structural and functional domains in structural genomic studies.
Collapse
Affiliation(s)
- Suhkmann Kim
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
137
|
Newberry KJ, Brennan RG. The structural mechanism for transcription activation by MerR family member multidrug transporter activation, N terminus. J Biol Chem 2004; 279:20356-62. [PMID: 14985361 DOI: 10.1074/jbc.m400960200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription regulators of the MerR family respond to myriad stress signals to activate sigma70/sigmaA-targeted genes, which contain suboptimal 19-bp spacers between their -35 and -10 promoter elements. The crystal structure of a BmrR-TPP(+)-DNA complex provided initial insight into the transcription activation mechanism of the MerR family, which involves base pair distortion, DNA undertwisting and shortening of the spacer, and realignment of the -35 and -10 boxes. Here, we describe the crystal structure of MerR family member MtaN bound to the mta promoter. Although the global DNA binding modes of MtaN and BmrR differ somewhat, homologous protein-DNA interactions are maintained. Moreover, despite their different sequences, the mta promoter conformation is essentially identical to that of the BmrR-TPP(+)-bound bmr promoter, indicating that this DNA distortion mechanism is common to the entire MerR family. Interestingly, DNA binding experiments reveal that the identity of the two central bases of the mta and bmr promoters, which are conserved as either a thymidine or an adenine in nearly all MerR promoters, is not important for DNA affinity. Comparison of the free and DNA-bound MtaN structures reveals that a conformational hinge, centered at residues N-terminal to the ubiquitous coiled coil, is key for mta promoter binding. Analysis of the structures of BmrR, CueR, and ZntR indicates that this hinge may be common to all MerR family members.
Collapse
Affiliation(s)
- Kate J Newberry
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | |
Collapse
|
138
|
Fischer HP, Brunner NA, Wieland B, Paquette J, Macko L, Ziegelbauer K, Freiberg C. Identification of antibiotic stress-inducible promoters: a systematic approach to novel pathway-specific reporter assays for antibacterial drug discovery. Genome Res 2004; 14:90-8. [PMID: 14707172 PMCID: PMC314284 DOI: 10.1101/gr.1275704] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
As present antibiotics therapy becomes increasingly ineffectual, new technologies are required to identify and develop novel classes of antibacterial agents. An attractive alternative to the classical target-based approach is the use of promoter-inducible reporter assays for high-throughput screening. The wide usage of these assays is, however, limited by the small number of specifically responding promoters that are known at present. This work describes a novel approach for identifying genetic regulators that are suitable for the design of pathway-specific assays. The basis for the proposed strategy is a large set of antibiotics-triggered expression profiles ("Reference Compendium"). Pattern recognition algorithms applied to the expression data pinpoint the relevant transcription-factor-binding sites in whole-genome sequences. Using this technique, we constructed a fatty-acid-pathway-specific reporter assay that is based on a novel stress-inducible promoter. In a proof-of-principle experiment, this assay was shown to enable screening for new small-molecule inhibitors of bacterial growth.
Collapse
MESH Headings
- 5' Flanking Region/drug effects
- 5' Flanking Region/genetics
- Amino Acid Sequence
- Anti-Bacterial Agents/pharmacology
- Bacillus/drug effects
- Bacillus/genetics
- Binding Sites/genetics
- Cell Extracts/chemistry
- Chromosome Mapping
- Consensus Sequence
- Conserved Sequence
- Drug Design
- Drug Evaluation, Preclinical/methods
- Drug Resistance, Bacterial/genetics
- Fatty Acids/biosynthesis
- Gene Expression Profiling/methods
- Gene Expression Regulation, Bacterial/drug effects
- Gene Expression Regulation, Bacterial/genetics
- Genes, Regulator/drug effects
- Genes, Regulator/genetics
- Genes, Reporter/drug effects
- Genes, Reporter/genetics
- Genome, Bacterial
- Molecular Sequence Data
- Operon/genetics
- Promoter Regions, Genetic/drug effects
- Transcription Factors/genetics
Collapse
|
139
|
Engohang-Ndong J, Baillat D, Aumercier M, Bellefontaine F, Besra GS, Locht C, Baulard AR. EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in mycobacteria, octamerizes cooperatively on its operator. Mol Microbiol 2004; 51:175-88. [PMID: 14651620 DOI: 10.1046/j.1365-2958.2003.03809.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ethionamide (ETH) is an important second-line antitubercular drug used for the treatment of patients infected with multidrug-resistant Mycobacterium tuberculosis. Although ETH is a structural analogue of isoniazid, only little cross-resistance to these two drugs is observed among clinical isolates. Both isoniazid and ETH are pro-drugs that need to be activated by mycobacterial enzymes to exert their antimicrobial activity. We have recently identified two M. tuberculosis genes, Rv3854c (ethA) and Rv3855 (ethR), involved in resistance to ETH. ethA encodes a protein that belongs to the Flavin-containing monooxygenase family catalysing the activation of ETH. We show here that ethR, which encodes a repressor belonging to the TetR/CamR family of transcriptional regulators, negatively regulates the expression of ethA. By the insertion of the ethA promoter region upstream of the lacZ reporter gene, overexpression of ethR in trans was found to cause a strong inhibition of ethA expression, independently of the presence of ETH in the culture media. Electrophoretic mobility shift assays indicated that EthR interacts directly with the ethA promoter region. This interaction was confirmed by DNA footprinting analysis, which, in addition, identified the EthR-binding region. Unlike other TetR/CamR members, which typically bind 15 bp operators, EthR recognises an unusually long 55 bp region suggesting multimerization of the repressor on its operator. Identification by primer-extension of the ethA transcriptional start site indicated that it is located within the EthR-binding region. Taken together, bacterial two-hybrid experiments and gel filtration assays suggested a dimerization of EthR in the absence of its operator. In contrast, surface plasmon resonance analyses showed that eight EthR molecules bind cooperatively to the 55 bp operator, which represents a novel repression mechanism for a TetR/CamR member.
Collapse
Affiliation(s)
- Jean Engohang-Ndong
- INSERM-U447, Institut de Biologie de Lille - Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
140
|
Anantharaman V, Aravind L. New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol 2003; 4:R81. [PMID: 14659018 PMCID: PMC329420 DOI: 10.1186/gb-2003-4-12-r81] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 10/13/2003] [Accepted: 10/10/2003] [Indexed: 11/28/2022] Open
Abstract
Sequence profile analysis of the RelE- and ParE-type post-segregational cell killing (PSK) toxins from diverse bacteria and archaea has unified these proteins into a single superfamily. Further comparative analysis suggests that the core of the eukaryotic nonsense-mediated RNA decay system has probably evolved from a PSK-related system. Background Several prokaryotic plasmids maintain themselves in their hosts by means of diverse post-segregational cell killing systems. Recent findings suggest that chromosomally encoded copies of toxins and antitoxins of post-segregational cell killing systems - such as the RelE system - might function as regulatory switches under stress conditions. The RelE toxin cleaves ribosome-associated transcripts, whereas another post-segregational cell killing toxin, ParE, functions as a gyrase inhibitor. Results Using sequence profile analysis we were able unify the RelE- and ParE-type toxins with several families of small, uncharacterized proteins from diverse bacteria and archaea into a single superfamily. Gene neighborhood analysis showed that the majority of these proteins were encoded by genes in characteristic neighborhoods, in which genes encoding toxins always co-occurred with genes encoding transcription factors that are also antitoxins. The transcription factors accompanying the RelE/ParE superfamily may belong to unrelated or distantly related superfamilies, however. We used this conserved neighborhood template to transitively search genomes and identify novel post-segregational cell killing-related systems. One of these novel systems, observed in several prokaryotes, contained a predicted toxin with a PilT-N terminal (PIN) domain, which is also found in proteins of the eukaryotic nonsense-mediated RNA decay system. These searches also identified novel transcription factors (antitoxins) in post-segregational cell killing systems. Furthermore, the toxin Doc defines a potential metalloenzyme superfamily, with novel representatives in bacteria, archaea and eukaryotes, that probably acts on nucleic acids. Conclusions The tightly maintained gene neighborhoods of post-segregational cell killing-related systems appear to have evolved by in situ displacement of genes for toxins or antitoxins by functionally equivalent but evolutionarily unrelated genes. We predict that the novel post-segregational cell killing-related systems containing a PilT-N terminal domain toxin and the eukaryotic nonsense-mediated RNA decay system are likely to function via a common mechanism, in which the PilT-N terminal domain cleaves ribosome-associated transcripts. The core of the eukaryotic nonsense-mediated RNA decay system has probably evolved from a post-segregational cell killing-related system.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
141
|
Kalivoda KA, Steenbergen SM, Vimr ER, Plumbridge J. Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. J Bacteriol 2003; 185:4806-15. [PMID: 12897000 PMCID: PMC166481 DOI: 10.1128/jb.185.16.4806-4815.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Accepted: 05/15/2003] [Indexed: 11/20/2022] Open
Abstract
All Escherichia coli strains so far examined possess a chromosomally encoded nanATEK-yhcH operon for the catabolism of sialic acids. These unique nine-carbon sugars are synthesized primarily by higher eukaryotes and can be used as carbon, nitrogen, and energy sources by a variety of microbial pathogens or commensals. The gene nanR, located immediately upstream of the operon, encodes a protein of the FadR/GntR family that represses nan expression in trans. S1 analysis identified the nan transcriptional start, and DNA footprint analysis showed that NanR binds to a region of approximately 30 bp covering the promoter region. Native (nondenaturing) polyacrylamide gel electrophoresis, mass spectrometry, and chemical cross-linking indicated that NanR forms homodimers in solution. The region protected by NanR contains three tandem repeats of the hexameric sequence GGTATA. Gel shift analysis with purified hexahistidine-tagged or native NanR detected three retarded complexes, suggesting that NanR binds sequentially to the three repeats. Artificial operators carrying different numbers of repeats formed the corresponding number of complexes. Among the sugars tested that were predicted to be products of the nan-encoded system, only the exogenous addition of sialic acid resulted in the dramatic induction of a chromosomal nanA-lacZ fusion or displaced NanR from its operator in vitro. Titration of NanR by the nan promoter region or artificial operators carrying different numbers of the GGTATA repeat on plasmids in this fusion strain supported the binding of the regulator to target DNA in vivo. Together, the results indicate that GGTATA is important for NanR binding, but the precise mechanism remains to be determined.
Collapse
Affiliation(s)
- Kathryn A Kalivoda
- Laboratory of Sialobiology, Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | |
Collapse
|
142
|
Serban D, Benevides JM, Thomas GJ. HU protein employs similar mechanisms of minor-groove recognition in binding to different B-DNA sites: demonstration by Raman spectroscopy. Biochemistry 2003; 42:7390-9. [PMID: 12809494 DOI: 10.1021/bi030050r] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sequence isomers d(CGCAAATTTGCG) and d(TCAAGGCCTTGA) form self-complementary duplexes that present distinct targets for binding of the homodimeric architectural protein HU of Bacillus stearothermophilus (HUBst). Raman spectroscopy shows that although each duplex structure is of the B-DNA type, there are subtle conformational dissimilarities between them, involving torsion angles of the phosphodiester backbone and the arrangements of stacked bases. Each DNA duplex forms a stable stoichiometric (1:1) complex with HUBst, in which the structure of the HUBst dimer is largely conserved. However, the Raman signature of each DNA duplex is perturbed significantly and similarly with HUBst binding, as reflected in marker bands assigned to localized vibrations of the phosphodiester moieties and base residues. The spectral perturbations identify a reorganization of the DNA backbone and partial unstacking of bases with HUBst binding, which is consistent with non-sequence-specific minor-groove recognition. Prominent among the HUBst-induced perturbations of B-DNA are a conversion of approximately one-third of the alpha/beta/gamma torsions from the canonical g(-)/t/g(+) conformation to an alternative conformation, an equivalent conversion of deoxyadenosyl moieties from the C2'-endo/anti to the C3'-endo/anti conformation, and appreciable unstacking of purines. The results imply that each solution complex is characterized by structural perturbations extending throughout the 12-bp sequence. Comparison with previously studied protein/DNA complexes suggests that binding of HUBst bends DNA by approximately 70 degrees.
Collapse
Affiliation(s)
- Doinita Serban
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | |
Collapse
|
143
|
Wu RY, Zhang RG, Zagnitko O, Dementieva I, Maltzev N, Watson JD, Laskowski R, Gornicki P, Joachimiak A. Crystal structure of Enterococcus faecalis SlyA-like transcriptional factor. J Biol Chem 2003; 278:20240-4. [PMID: 12649270 PMCID: PMC2792031 DOI: 10.1074/jbc.m300292200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of a SlyA transcriptional regulator at 1.6 A resolution is presented, and structural relationships between members of the MarR/SlyA family are discussed. The SlyA family, which includes SlyA, Rap, Hor, and RovA proteins, is widely distributed in bacterial and archaeal genomes. Current evidence suggests that SlyA-like factors act as repressors, activators, and modulators of gene transcription. These proteins have been shown to up-regulate the expression of molecular chaperones, acid-resistance proteins, and cytolysin, and down-regulate several biosynthetic enzymes. The structure of SlyA from Enterococcus faecalis, determined as a part of an ongoing structural genomics initiative (www.mcsg.anl.gov), revealed the same winged helix DNA-binding motif that was recently found in the MarR repressor from Escherichia coli and the MexR repressor from Pseudomonas aeruginosa, a sequence homologue of MarR. Phylogenetic analysis of the MarR/SlyA family suggests that Sly is placed between the SlyA and MarR subfamilies and shows significant sequence similarity to members of both subfamilies.
Collapse
Affiliation(s)
- Rui-ying Wu
- Biosciences Division and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois 60439
| | - Rong-guang Zhang
- Biosciences Division and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois 60439
| | - Olga Zagnitko
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Irina Dementieva
- Biosciences Division and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois 60439
| | - Natalia Maltzev
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - James D. Watson
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Roman Laskowski
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Piotr Gornicki
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Andrzej Joachimiak
- Biosciences Division and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois 60439
- To whom correspondence should be addressed: Biosciences Division and Structural Biology Center, Argonne National Laboratory, 9700 S. Cass Ave., Bldg. 202, Argonne, IL 60439. Tel.: 630-252-3926; Fax: 620-252-6126;
| |
Collapse
|
144
|
Oakey HJ, Cullen BR, Owens L. The complete nucleotide sequence of the Vibrio harveyi bacteriophage VHML. J Appl Microbiol 2003; 93:1089-98. [PMID: 12452967 DOI: 10.1046/j.1365-2672.2002.01776.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS To determine the complete nucleotide sequence of the bacteriophage VHML and establish a hypothesis for the virulence conversion caused by VHML infection of Vibrio harveyi. METHODS AND RESULTS The complete nucleotide sequence of VHML was determined (43,193 bp) and used to identify putative genes. The translated products of these genes were compared with reported sequences to assign hypothetical functions. All anticipated structural genes and putative genes for lysogeny were identified. In addition, we found a complete N6-adenine methyltransferase (Dam) gene that appeared to have an essential site for ADP-ribosylating toxins at the C-terminal of the translated product. CONCLUSIONS Virulence conversion of V. harveyi by VHML may be associated with Dam transcriptional regulation. The Dam gene may also encode for a toxin component similar to ADP-ribosylating toxins. SIGNIFICANCE AND IMPACT OF THE STUDY This manuscript lays the foundation for understanding the virulence of toxin-producing V. harveyi. Further research into aspects discussed here will lead to a greater comprehension regarding the invertebrate disease vibriosis and its control in the farming of these animals.
Collapse
Affiliation(s)
- H J Oakey
- Department of Microbiology and Immunology, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | |
Collapse
|
145
|
Doan T, Aymerich S. Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol Microbiol 2003; 47:1709-21. [PMID: 12622823 DOI: 10.1046/j.1365-2958.2003.03404.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycolysis is one of the best and widely conserved general metabolic pathways. Bacillus subtilis enzymes catalysing the central part of glycolysis, gathering the steps of interconversion of the triose phosphates from dihydroxyacetone-phosphate to phosphoenolpyruvate, are encoded by five genes, gapA, pgk, tpi, pgm and eno. They are transcribed in a hexacistronic operon together with cggR, the first cistron, encoding the repressor of this gapA operon. Using deletion analysis, we have localized the CggR operator between the promoter and the first gene of the operon. CggR was purified and used in gel mobility shift assays and DNase I footprinting experiments to delimit its target sequence. Site-directed mutagenesis and in vivo tests demonstrated that it consists of two direct-repeats (CGGGACN6TGTCN4CGGGACN6TG TC). Sequence analysis and transcriptome comparison of a wild-type and a cggR mutant strain strongly suggested that CggR regulates only the gapA operon. The presence of glycolytic carbon sources induces expression of the gapA operon. Genetic experiments allowed us to identify the metabolic steps required for the formation of the CggR effector. In vitro experiments with the suggested candidates allowed us to demonstrate that fructose-1,6-biphosphate (FBP) acts as an inhibitor of CggR DNA-binding activity (10 mM for full inhibition). FBP is thus the major signal for both CcpA-dependent catabolite repression (or activation) and activation of the central glycolytic genes. Genomic sequence comparisons suggest that these results can apply to numerous low-G+C, Gram-positive bacterial species.
Collapse
Affiliation(s)
- Thierry Doan
- Génétique Moléculaire et Cellulaire, INRA (UMR216) CNRS (URA1925) and INAP-G, F-78850 Thiverval-Grignon, France
| | | |
Collapse
|
146
|
Nair M, McIntosh PB, Frenkiel TA, Kelly G, Taylor IA, Smerdon SJ, Lane AN. NMR structure of the DNA-binding domain of the cell cycle protein Mbp1 from Saccharomyces cerevisiae. Biochemistry 2003; 42:1266-73. [PMID: 12564929 DOI: 10.1021/bi0205247] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three-dimensional solution structure of the DNA-binding domain of Mlu-1 box binding protein (Mbp1) has been determined by multidimensional NMR spectroscopy. Mbp1 is a cell cycle transcription factor from Saccharomyces cerevisiae and consists of an N-terminal DNA-binding domain, a series of ankyrin repeats, and a heterodimerization domain at the C-terminus. A set of conformers comprising 19 refined structures was calculated via a molecular dynamics simulated annealing protocol using distance, dihedral angle, and residual dipolar coupling restraints derived from either double or triple resonance NMR experiments. The solution structure consists of a six-stranded beta-sheet segment folded against two pairs of alpha-helices in the topology of the winged helix-turn-helix family of proteins and is in agreement with the X-ray structures. In addition, the solution structure shows that the C-terminal tail region of this domain folds back and makes specific interactions with the N-terminal beta-strand of the protein. This C-terminal region is essential for full DNA-binding activity but appears in the X-ray structure to be disordered. The fold-back structure extends the region of positive electrostatic potential, and this may enhance the nonspecific contribution to binding by favorable electrostatic interactions with the DNA backbone.
Collapse
Affiliation(s)
- Margie Nair
- Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
147
|
Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 2003; 47:903-15. [PMID: 12581348 DOI: 10.1046/j.1365-2958.2003.03337.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron is an essential element for almost all organisms, although an overload of this element results in toxicity because of the formation of hydroxyl radicals. Consequently, most living entities have developed sophisticated mechanisms to control their intracellular iron concentration. In many bacteria, including the opportunistic pathogen Pseudomonas aeruginosa, this task is performed by the ferric uptake regulator (Fur). Fur controls a wide variety of basic physiological processes including iron uptake systems and the expression of exotoxin A. Here, we present the first crystal structure of Fur from P. aeruginosa in complex with Zn2+ determined at a resolution of 1.8 A. Furthermore, X-ray absorption spectroscopic measurements and microPIXE analysis were performed in order to characterize the distinct zinc and iron binding sites in solution. The combination of these complementary techniques enables us to present a model for the activation and DNA binding of the Fur protein.
Collapse
Affiliation(s)
- Ehmke Pohl
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, D-22603 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
148
|
Hitomi M, Nishimura H, Tsujimoto Y, Matsui H, Watanabe K. Identification of a helix-turn-helix motif of Bacillus thermoglucosidasius HrcA essential for binding to the CIRCE element and thermostability of the HrcA-CIRCE complex, indicating a role as a thermosensor. J Bacteriol 2003; 185:381-5. [PMID: 12486078 PMCID: PMC141899 DOI: 10.1128/jb.185.1.381-385.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the heat shock response of bacillary cells, HrcA repressor proteins negatively control the expression of the major heat shock genes, the groE and dnaK operons, by binding the CIRCE (controlling inverted repeat of chaperone expression) element. Studies on two critical but yet unresolved issues related to the structure and function of HrcA were performed using mainly the HrcA from the obligate thermophile Bacillus thermoglucosidasius KP1006. These two critical issues are (i) identifying the region at which HrcA binds to the CIRCE element and (ii) determining whether HrcA can play the role of a thermosensor. We identified the position of a helix-turn-helix (HTH) motif in B. thermoglucosidasius HrcA, which is typical of DNA-binding proteins, and indicated that two residues in the HTH motif are crucial for the binding of HrcA to the CIRCE element. Furthermore, we compared the thermostabilities of the HrcA-CIRCE complexes derived from Bacillus subtilis and B. thermoglucosidasius, which grow at vastly different ranges of temperature. The thermostability profiles of their HrcA-CIRCE complexes were quite consistent with the difference in the growth temperatures of B. thermoglucosidasius and B. subtilis and, thus, suggested that HrcA can function as a thermosensor to detect temperature changes in cells.
Collapse
Affiliation(s)
- Masafumi Hitomi
- Department of Applied Biochemistry, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto 606-8522, Japan
| | | | | | | | | |
Collapse
|
149
|
Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002; 66:671-701, table of contents. [PMID: 12456787 PMCID: PMC134658 DOI: 10.1128/mmbr.66.4.671-701.2002] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The active transport of toxic compounds by membrane-bound efflux proteins is becoming an increasingly frequent mechanism by which cells exhibit resistance to therapeutic drugs. This review examines the regulation of bacterial drug efflux systems, which occurs primarily at the level of transcription. Investigations into these regulatory networks have yielded a substantial volume of information that has either not been forthcoming from or complements that obtained by analysis of the transport proteins themselves. Several local regulatory proteins, including the activator BmrR from Bacillus subtilis and the repressors QacR from Staphylococcus aureus and TetR and EmrR from Escherichia coli, have been shown to mediate increases in the expression of drug efflux genes by directly sensing the presence of the toxic substrates exported by their cognate pump. This ability to bind transporter substrates has permitted detailed structural information to be gathered on protein-antimicrobial agent-ligand interactions. In addition, bacterial multidrug efflux determinants are frequently controlled at a global level and may belong to stress response regulons such as E. coli mar, expression of which is controlled by the MarA and MarR proteins. However, many regulatory systems are ill-adapted for detecting the presence of toxic pump substrates and instead are likely to respond to alternative signals related to unidentified physiological roles of the transporter. Hence, in a number of important pathogens, regulatory mutations that result in drug transporter overexpression and concomitant elevated antimicrobial resistance are often observed.
Collapse
Affiliation(s)
- Steve Grkovic
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
150
|
Godsey MH, Zheleznova Heldwein EE, Brennan RG. Structural biology of bacterial multidrug resistance gene regulators. J Biol Chem 2002; 277:40169-72. [PMID: 12186881 DOI: 10.1074/jbc.r200018200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Michael H Godsey
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | |
Collapse
|