101
|
Bauer EM, Zheng H, Lotze MT, Bauer PM. Recombinant human interferon alpha 2b prevents and reverses experimental pulmonary hypertension. PLoS One 2014; 9:e96720. [PMID: 24837600 PMCID: PMC4024039 DOI: 10.1371/journal.pone.0096720] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/10/2014] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive and fatal disease with no cure. Vascular remodeling in PH involves intraluminal growth of endothelial and smooth muscle cells, leading to obliterative vascular lesions. Cell growth in these lesions is quasi-neoplastic, with evidence of monoclonality, apoptosis resistance and cancer-like metabolic derangements. Herein we tested the effect of human interferon alpha 2b (IFNα), a pleiotropic cytokine and anti-cancer therapeutic, on the development and progression of PH in the rat SU5416/hypoxia (SUH) model and mouse hypoxia model of the disease. In both models IFNα attenuated the development of PH and reversed established PH as assessed by measuring right ventricular systolic pressure and right ventricular hypertrophy. The effect of IFNα was dependent on the type I interferon receptor (IFNAR) since mice lacking a subunit of the IFNAR were not protected by IFNα. Morphometric analysis of pulmonary aterioles from hypoxic mice or SUH rats showed that IFNα inhibited pulmonary vascular remodeling in both models and that IFNα reversed remodeling in SUH rats with established disease. Immunohistochemical staining revealed that IFNα decreased the number of PCNA and Tunel positive cells in the wall of pulmonary arterioles. In vitro, IFNα inhibited proliferation of human pulmonary artery smooth muscle cells and as well as human pulmonary artery endothelial cell proliferation and apoptosis. Together these findings demonstrate that IFNα reverses established experimental PH and provide a rationale for further exploration of the use of IFNα and other immunotherpies in PH.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Blotting, Western
- Cells, Cultured
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/pathology
- Hypoxia/complications
- Immunohistochemistry
- In Situ Nick-End Labeling
- Interferon alpha-2
- Interferon-alpha/pharmacology
- Interferon-alpha/therapeutic use
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Rats
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Vascular Remodeling/drug effects
- Ventricular Pressure/physiology
Collapse
Affiliation(s)
- Eileen M. Bauer
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Han Zheng
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Philip M. Bauer
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
102
|
Sergin I, Razani B. Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis. Trends Endocrinol Metab 2014; 25:225-34. [PMID: 24746519 PMCID: PMC4061377 DOI: 10.1016/j.tem.2014.03.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/22/2014] [Accepted: 03/25/2014] [Indexed: 12/31/2022]
Abstract
Autophagy (or 'self-eating') is the process by which cellular contents are recycled to support downstream metabolism. An explosion in research in the past decade has implicated its role in both health and disease and established the importance of the autophagic response during periods of stress and nutrient deprivation. Atherosclerosis is a state where chronic exposure to cellular stressors promotes disease progression, and alterations in autophagy are predicted to be consequential. Recent reports linking macrophage autophagy to lipid metabolism, blunted inflammatory signaling, and an overall suppression of proatherogenic processes support this notion. We review these data and provide a framework for understanding the role of macrophage autophagy in the pathogenesis of atherosclerosis, one of the most formidable diseases of our time.
Collapse
Affiliation(s)
- Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
103
|
Farhat M, Poissonnier A, Hamze A, Ouk-Martin C, Brion JD, Alami M, Feuillard J, Jayat-Vignoles C. Reversion of apoptotic resistance of TP53-mutated Burkitt lymphoma B-cells to spindle poisons by exogenous activation of JNK and p38 MAP kinases. Cell Death Dis 2014; 5:e1201. [PMID: 24787013 PMCID: PMC4047855 DOI: 10.1038/cddis.2014.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/10/2023]
Abstract
Defects in apoptosis are frequently the cause of cancer emergence, as well as cellular resistance to chemotherapy. These phenotypes may be due to mutations of the tumor suppressor TP53 gene. In this study, we examined the effect of various mitotic spindle poisons, including the new isocombretastatin derivative isoNH2CA-4 (a tubulin-destabilizing molecule, considered to bind to the colchicine site by analogy with combretastatin A-4), on BL (Burkitt lymphoma) cells. We found that resistance to spindle poison-induced apoptosis could be reverted in tumor protein p53 (TP53)-mutated cells by EBV (Epstein Barr virus) infection. This reversion was due to restoration of the intrinsic apoptotic pathway, as assessed by relocation of the pro-apoptotic molecule Bax to mitochondria, loss of mitochondrial integrity and activation of the caspase cascade with PARP (poly ADP ribose polymerase) cleavage. EBV sensitized TP53-mutated BL cells to all spindle poisons tested, including vincristine and taxol, an effect that was systematically downmodulated by pretreatment of cells with inhibitors of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. Exogenous activation of p38 and JNK pathways by dihydrosphingosine reverted resistance of TP53-mutated BL cells to spindle poisons. Dihydrosphingosine treatment of TP53-deficient Jurkat and K562 cell lines was also able to induce cell death. We conclude that activation of p38 and JNK pathways may revert resistance of TP53-mutated cells to spindle poisons. This opens new perspectives for developing alternative therapeutic strategies when the TP53 gene is inactivated.
Collapse
Affiliation(s)
- M Farhat
- Univ Limoges, Faculté de Médecine, CNRS UMR 7276, Laboratoire CRIBL, Limoges, France
| | - A Poissonnier
- Univ Limoges, Faculté de Médecine, CNRS UMR 7276, Laboratoire CRIBL, Limoges, France
| | - A Hamze
- Univ Paris Sud, Faculté de Pharmacie, CNRS UMR 8076, Laboratoire BioCIS, Châtenay Malabry, France
| | - C Ouk-Martin
- Univ Limoges, Faculté de Médecine, CNRS UMR 7276, Laboratoire CRIBL, Limoges, France
| | - J-D Brion
- Univ Paris Sud, Faculté de Pharmacie, CNRS UMR 8076, Laboratoire BioCIS, Châtenay Malabry, France
| | - M Alami
- Univ Paris Sud, Faculté de Pharmacie, CNRS UMR 8076, Laboratoire BioCIS, Châtenay Malabry, France
| | - J Feuillard
- 1] Univ Limoges, Faculté de Médecine, CNRS UMR 7276, Laboratoire CRIBL, Limoges, France [2] CHU Limoges, Hôpital Dupuytren, Service d'hématologie, Limoges, France
| | - C Jayat-Vignoles
- Univ Limoges, Faculté de Médecine, CNRS UMR 7276, Laboratoire CRIBL, Limoges, France
| |
Collapse
|
104
|
Luna-Gomes T, Filardy AA, Rocha JDB, Decote-Ricardo D, LaRocque-de-Freitas IF, Morrot A, Bozza PT, Castro-Faria-Neto HC, DosReis GA, Nunes MP, Freire-de-Lima CG. Neutrophils increase or reduce parasite burden in Trypanosoma cruzi-infected macrophages, depending on host strain: role of neutrophil elastase. PLoS One 2014; 9:e90582. [PMID: 24599360 PMCID: PMC3944110 DOI: 10.1371/journal.pone.0090582] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/30/2014] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are involved in the initial steps of most responses to pathogens and are essential components of the innate immune response. Due to the ability to produce and release various soluble mediators, neutrophils may participate in the regulation of the inflammatory response. Little is known about the role of neutrophils during protozoan infections including infection by Trypanosoma cruzi. In the present study we investigated the importance of inflammatory neutrophils on macrophage activation and T. cruzi replication in vitro, in cells obtained from BALB/c mice and C57Bl/6 mice. Co-cultures of BALB/c apoptotic or live neutrophils with infected peritoneal macrophages resulted in increased replication of the parasites and in the production of TGF-β and PGE2. The treatment with anti-TGF-β neutralizing antibody and COX inhibitor blocked the parasite replication in vitro. On the other hand, co-cultures of T. cruzi infected macrophages with live neutrophils isolated from C57BL/6 mice resulted in decreased number of trypomastigotes in culture and increased production of TNF-α and NO. The addition of anti-TNF-α neutralizing antibody or elastase inhibitor resulted in the abolishment of macrophage microbicidal effect and increased parasite replication. Addition of elastase to infected macrophages reduced the replication of the parasites, and on the other hand, addition of a selective inhibitor of iNOS increased parasite growth, suggesting the role of NO in this system. Our findings reveal that neutrophils may regulate T. cruzi experimental infection and determine susceptibility and resistance to infection.
Collapse
Affiliation(s)
- Tatiana Luna-Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra A. Filardy
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Dutra B. Rocha
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Alexandre Morrot
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - George A. DosReis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Célio G. Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
105
|
Tim4- and MerTK-mediated engulfment of apoptotic cells by mouse resident peritoneal macrophages. Mol Cell Biol 2014; 34:1512-20. [PMID: 24515440 DOI: 10.1128/mcb.01394-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apoptotic cells are swiftly engulfed by macrophages to prevent the release of noxious materials from dying cells. Apoptotic cells expose phosphatidylserine (PtdSer) on their surface, and macrophages engulf them by recognizing PtdSer using specific receptors and opsonins. Here, we found that mouse resident peritoneal macrophages expressing Tim4 and MerTK are highly efficient at engulfing apoptotic cells. Neutralizing antibodies against either Tim4 or MerTK inhibited the macrophage engulfment of apoptotic cells. Tim4-null macrophages exhibited reduced binding and engulfment of apoptotic cells, whereas MerTK-null macrophages retained the ability to bind apoptotic cells but failed to engulf them. The incubation of wild-type peritoneal macrophages with apoptotic cells induced the rapid tyrosine phosphorylation of MerTK, which was not observed with Tim4-null macrophages. When mouse Ba/F3 cells were transformed with Tim4, apoptotic cells bound to the transformants but were not engulfed. Transformation of Ba/F3 cells with MerTK had no effect on the binding or engulfment of apoptotic cells; however, Tim4/MerTK transformants exhibited strong engulfment activity. Taken together, these results indicate that the engulfment of apoptotic cells by resident peritoneal macrophages proceeds in two steps: binding to Tim4, a PtdSer receptor, followed by MerTK-mediated cell engulfment.
Collapse
|
106
|
Boeddeker SJ, Baston-Buest DM, Altergot-Ahmad O, Kruessel JS, Hess AP. Syndecan-1 knockdown in endometrial epithelial cells alters their apoptotic protein profile and enhances the inducibility of apoptosis. Mol Hum Reprod 2014; 20:567-78. [DOI: 10.1093/molehr/gau009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
107
|
Losada AP, Bermúdez R, Faílde LD, Ruiz de Ocenda MV, Quiroga MI. Study of the distribution of active caspase-3-positive cells in turbot, Scophthalmus maximus (L.), enteromyxosis. JOURNAL OF FISH DISEASES 2014; 37:21-32. [PMID: 24224724 DOI: 10.1111/jfd.12029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 12/06/2011] [Accepted: 01/09/2012] [Indexed: 06/02/2023]
Abstract
Enteromyxosis caused by Enteromyxum scophthalmi is one of the parasitizations with a higher economic impact on turbot, Scophthalmus maximus (L.), aquaculture. This myxosporean produces severe catarrhal enteritis with abundant inflammatory infiltrates in the lamina propria-submucosa (LP), epithelial detachment and leucocyte depletion of the lymphohaematopoietic organs. Some advances made on the pathogenesis pointed to a role of apoptosis in the enteromyxosis. Therefore, the main aim of this work was to employ the TUNEL assay and the anti-(active caspase-3) immunohistochemical assay to detect apoptotic cells in both healthy and E. scophthalmi-infected turbot in order to establish the presence and distribution of apoptotic cells during development of the disease. More apoptotic cells located within the gastrointestinal epithelium were observed in the initial stages of the infection in E. scophthalmi-infected turbot compared with non-infected turbot. As the infection progressed, a higher degree of apoptosis occurred in the epithelium of folds heavily parasitized. In the severely infected turbot, apoptosis was also found among the leucocytes of the intestinal inflammatory infiltrates. Moreover, the number of active caspase-3-positive cells in the lymphohaematopoietic organs tended to increase with disease severity. In view of the results, increased apoptosis in the epithelium may favour the scaling that occurs during enteromyxosis and cell death of leucocytes in the intestinal LP, contributing to leucocyte depletion in severe cases.
Collapse
Affiliation(s)
- A P Losada
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | | | |
Collapse
|
108
|
Ogawa M, Umeda IO, Kosugi M, Kawai A, Hamaya Y, Takashima M, Yin H, Kudoh T, Seno M, Magata Y. Development of 111In-Labeled Liposomes for Vulnerable Atherosclerotic Plaque Imaging. J Nucl Med 2013; 55:115-20. [DOI: 10.2967/jnumed.113.123158] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
109
|
Brown KL, Conboy JC. Lipid Flip-Flop in Binary Membranes Composed of Phosphatidylserine and Phosphatidylcholine. J Phys Chem B 2013; 117:15041-50. [DOI: 10.1021/jp409672q] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Krystal L. Brown
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - John C. Conboy
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
110
|
Libro S, Kaluziak ST, Vollmer SV. RNA-seq profiles of immune related genes in the staghorn coral Acropora cervicornis infected with white band disease. PLoS One 2013; 8:e81821. [PMID: 24278460 PMCID: PMC3836749 DOI: 10.1371/journal.pone.0081821] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/24/2013] [Indexed: 01/20/2023] Open
Abstract
Coral diseases are among the most serious threats to coral reefs worldwide, yet most coral diseases remain poorly understood. How the coral host responds to pathogen infection is an area where very little is known. Here we used next-generation RNA-sequencing (RNA-seq) to produce a transcriptome-wide profile of the immune response of the Staghorn coral Acropora cervicornis to White Band Disease (WBD) by comparing infected versus healthy (asymptomatic) coral tissues. The transcriptome of A. cervicornis was assembled de novo from A-tail selected Illumina mRNA-seq data from whole coral tissues, and parsed bioinformatically into coral and non-coral transcripts using existing Acropora genomes in order to identify putative coral transcripts. Differentially expressed transcripts were identified in the coral and non-coral datasets to identify genes that were up- and down-regulated due to disease infection. RNA-seq analyses indicate that infected corals exhibited significant changes in gene expression across 4% (1,805 out of 47,748 transcripts) of the coral transcriptome. The primary response to infection included transcripts involved in macrophage-mediated pathogen recognition and ROS production, two hallmarks of phagocytosis, as well as key mediators of apoptosis and calcium homeostasis. The strong up-regulation of the enzyme allene oxide synthase-lipoxygenase suggests a key role of the allene oxide pathway in coral immunity. Interestingly, none of the three primary innate immune pathways - Toll-like receptors (TLR), Complement, and prophenoloxydase pathways, were strongly associated with the response of A. cervicornis to infection. Five-hundred and fifty differentially expressed non-coral transcripts were classified as metazoan (n = 84), algal or plant (n = 52), fungi (n = 24) and protozoans (n = 13). None of the 52 putative Symbiodinium or algal transcript had any clear immune functions indicating that the immune response is driven by the coral host, and not its algal symbionts.
Collapse
Affiliation(s)
- Silvia Libro
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
- * E-mail:
| | - Stefan T. Kaluziak
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| | - Steven V. Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| |
Collapse
|
111
|
Wan E, Yeap XY, Dehn S, Terry R, Novak M, Zhang S, Iwata S, Han X, Homma S, Drosatos K, Lomasney J, Engman DM, Miller SD, Vaughan DE, Morrow JP, Kishore R, Thorp EB. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ Res 2013; 113:1004-12. [PMID: 23836795 PMCID: PMC3840464 DOI: 10.1161/circresaha.113.301198] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Efficient clearance of apoptotic cells (efferocytosis) is a prerequisite for inflammation resolution and tissue repair. After myocardial infarction, phagocytes are recruited to the heart and promote clearance of dying cardiomyocytes. The molecular mechanisms of efferocytosis of cardiomyocytes and in the myocardium are unknown. The injured heart provides a unique model to examine relationships between efferocytosis and subsequent inflammation resolution, tissue remodeling, and organ function. OBJECTIVE We set out to identify mechanisms of dying cardiomyocyte engulfment by phagocytes and, for the first time, to assess the causal significance of disrupting efferocytosis during myocardial infarction. METHODS AND RESULTS In contrast to other apoptotic cell receptors, macrophage myeloid-epithelial-reproductive tyrosine kinase was necessary and sufficient for efferocytosis of cardiomyocytes ex vivo. In mice, Mertk was specifically induced in Ly6c(LO) myocardial phagocytes after experimental coronary occlusion. Mertk deficiency led to an accumulation of apoptotic cardiomyocytes, independently of changes in noncardiomyocytes, and a reduced index of in vivo efferocytosis. Importantly, suppressed efferocytosis preceded increases in myocardial infarct size and led to delayed inflammation resolution and reduced systolic performance. Reduced cardiac function was reproduced in chimeric mice deficient in bone marrow Mertk; reciprocal transplantation of Mertk(+/+) marrow into Mertk(-/-) mice corrected systolic dysfunction. Interestingly, an inactivated form of myeloid-epithelial-reproductive tyrosine kinase, known as solMER, was identified in infarcted myocardium, implicating a natural mechanism of myeloid-epithelial-reproductive tyrosine kinase inactivation after myocardial infarction. CONCLUSIONS These data collectively and directly link efferocytosis to wound healing in the heart and identify Mertk as a significant link between acute inflammation resolution and organ function.
Collapse
Affiliation(s)
- Elaine Wan
- From the Department of Pathology, Microbiology and Immunology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Intracellular delivery of polymeric nanocarriers: a matter of size, shape, charge, elasticity and surface composition. Ther Deliv 2013; 4:705-23. [PMID: 23738668 DOI: 10.4155/tde.13.37] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent progress in drug discovery has enabled the targeting of specific intracellular molecules to achieve therapeutic effects. These next-generation therapeutics are often biologics that cannot enter cells by mere diffusion. Therefore, it is imperative that drug carriers are efficiently internalized by cells and reach specific target organelles before releasing their cargo. Nanoscale polymeric carriers are particularly suitable for such intracellular delivery. Although size and surface charge have been the most studied parameters for nanocarriers, it is now well appreciated that other properties, for example, particle shape, elasticity and surface composition, also play a critical role in their transport across physiological barriers. It is proposed that a multivariate design space that considers the interdependence of particle geometry with its mechanical and surface properties must be optimized to formulate drug nanocarriers for effective accumulation at target sites and efficient intracellular delivery.
Collapse
|
113
|
Cusulin C, Monni E, Ahlenius H, Wood J, Brune JC, Lindvall O, Kokaia Z. Embryonic stem cell-derived neural stem cells fuse with microglia and mature neurons. Stem Cells 2013; 30:2657-71. [PMID: 22961761 DOI: 10.1002/stem.1227] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/10/2012] [Indexed: 12/12/2022]
Abstract
Transplantation of neural stem cells (NSCs) is a novel strategy to restore function in the diseased brain, acting through multiple mechanisms, for example, neuronal replacement, neuroprotection, and modulation of inflammation. Whether transplanted NSCs can operate by fusing with microglial cells or mature neurons is largely unknown. Here, we have studied the interaction of a mouse embryonic stem cell-derived neural stem (NS) cell line with rat and mouse microglia and neurons in vitro and in vivo. We show that NS cells spontaneously fuse with cocultured cortical neurons, and that this process requires the presence of microglia. Our in vitro data indicate that the NS cells can first fuse with microglia and then with neurons. The fused NS/microglial cells express markers and retain genetic and functional characteristics of both parental cell types, being able to respond to microglia-specific stimuli (LPS and IL-4/IL-13) and to differentiate to neurons and astrocytes. The NS cells fuse with microglia, at least partly, through interaction between phosphatidylserine exposed on the surface of NS cells and CD36 receptor on microglia. Transplantation of NS cells into rodent cortex results in fusion with mature pyramidal neurons, which often carry two nuclei, a process probably mediated by microglia. The fusogenic role of microglia could be even more important after NSC transplantation into brains affected by neurodegenerative diseases associated with microglia activation. It remains to be elucidated how the occurrence of the fused cells will influence the functional outcome after NSC transplantation in the diseased brain.
Collapse
Affiliation(s)
- Carlo Cusulin
- Laboratory of Stem Cells and Restorative Neurology, Department of Laboratory Medicine, University Hospital, SE-22184 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
114
|
Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants. Mediators Inflamm 2013; 2013:619523. [PMID: 24058272 PMCID: PMC3766602 DOI: 10.1155/2013/619523] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/13/2013] [Indexed: 11/18/2022] Open
Abstract
Large population cohort studies have indicated an association between exposure to particulate matter and cardiopulmonary morbidity and mortality. The inhalation of toxic environmental particles and gases impacts the innate and adaptive defense systems of the lung. Lung macrophages play a critically important role in the recognition and processing of any inhaled foreign material such as pathogens or particulate matter. Alveolar macrophages and lung epithelial cells are the predominant cells that process and remove inhaled particulate matter from the lung. Cooperatively, they produce proinflammatory mediators when exposed to atmospheric particles. These mediators produce integrated local (lung, controlled predominantly by epithelial cells) and systemic (bone marrow and vascular system, controlled predominantly by macrophages) inflammatory responses. The systemic response results in an increase in the release of leukocytes from the bone marrow and an increased production of acute phase proteins from the liver, with both factors impacting blood vessels and leading to destabilization of existing atherosclerotic plaques. This review focuses on lung macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants.
Collapse
|
115
|
Wang X, Bu HF, Zhong W, Asai A, Zhou Z, Tan XD. MFG-E8 and HMGB1 are involved in the mechanism underlying alcohol-induced impairment of macrophage efferocytosis. Mol Med 2013; 19:170-82. [PMID: 23552724 DOI: 10.2119/molmed.2012.00260] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 03/26/2013] [Indexed: 12/14/2022] Open
Abstract
Efferocytosis is a unique phagocytic process for macrophages to remove apoptotic cells in inflammatory loci. This event is maintained by milk fat globule-EGF factor 8 (MFG-E8), but attenuated by high mobility group box 1 (HMGB1). Alcohol abuse causes injury and inflammation in multiple tissues. It alters efferocytosis, but precise molecular mechanisms for this effect remain largely unknown. Here, we showed that acute exposure of macrophages to alcohol (25 mmol/L) inhibited MFG-E8 gene expression and impaired efferocytosis. The effect was mimicked by hydrogen peroxide. Moreover, N-acetylcysteine (NAC), a potent antioxidant, blocked acute alcohol effect on inhibition of macrophage MFG-E8 gene expression and efferocytosis. In addition, recombinant MFG-E8 rescued the activity of alcohol-treated macrophages in efferocytosis. Together, the data suggest that acute alcohol exposure impairs macrophage efferocytosis via inhibition of MFG-E8 gene expression through a reactive oxygen species dependent mechanism. Alcohol has been found to suppress or exacerbate immune cell activities depending on the length of alcohol exposure. Thus, we further examined the role of chronic alcohol exposure on macrophage efferocytosis. Interestingly, treatment of macrophages with alcohol for seven days in vitro enhanced MFG-E8 gene expression and efferocytosis. However, chronic feeding of mice with alcohol caused increase in HMGB1 levels in serum. Furthermore, HMGB1 diminished efferocytosis by macrophages that were treated chronically with alcohol, suggesting that HMGB1 might attenuate the direct effect of chronic alcohol on macrophage efferocytosis in vivo. Therefore, we speculated that the balance between MFG-E8 and HMGB1 levels determines pathophysiological effects of chronic alcohol exposure on macrophage efferocytosis in vivo.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Intestinal and Liver Inflammation Research, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
116
|
|
117
|
Pessach I, Shimoni A, Nagler A. Apoptotic cells in allogeneic hematopoietic stem cell transplantations: "turning trash into gold". Leuk Lymphoma 2013; 53:2130-5. [PMID: 22553946 DOI: 10.3109/10428194.2012.690099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HST) is an important therapeutic option for various malignant and non-malignant conditions. HST during first remission offers the best cure for patients for whom conventional chemotherapy alone is not sufficient. Yet, in spite of the high curative potential and recent advances in this treatment modality, it remains limited by transplant related toxicity and grant-versus-host disease (GVHD). Apoptotic cells, which used to be regarded as immunologically "bland," are now recognized as important modulators of immune responses. Taking into account the immunological properties of apoptotic cells and the nature of the side effects of HST, they have been administered simultaneously with hematopoietic stem cells in experimental transplantation models, in anticipation of improved outcome. Under these conditions, engraftment and full-donor chimerism are facilitated without significant generation of anti-apoptotic cell auto-antibodies. In addition they prevent alloimmunization, up-regulate T regulatory cells and reduce both the frequency and the severity of GVHD. These favorable effects require host macrophages and donor bone marrow plasmatoid dendritic cells, and are associated with tumor growth factor-β (TGF-β) production. To summarize, apoptotic cells can play a crucial role in the setting of transplantations, and may be viewed as "turning trash into gold." Clinical studies are underway.
Collapse
|
118
|
How does the brain limit the severity of inflammation and tissue injury during bacterial meningitis? J Neuropathol Exp Neurol 2013; 72:370-85. [PMID: 23584204 DOI: 10.1097/nen.0b013e3182909f2f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The most devastating CNS bacterial infection, bacterial meningitis, has both acute and long-term neurologic consequences. The CNS defends itself against bacterial invasion through a combination of physical barriers (i.e. blood-brain barrier, meninges, and ependyma), which contain macrophages that express a range of pattern-recognition receptors that detect pathogens before they gain access to the CNS and cerebrospinal fluid. This activates an antipathogen response consisting of inflammatory cytokines, complement, and chemoattractants. Regulation of the antipathogen inflammatory response is essential for preventing irreversible brain injury and protecting stem cell populations in the ventricle wall. The severity of brain inflammation is regulated by the clearance of apoptotic inflammatory cells and neurons. Death signaling pathways are expressed by glia to stimulate apoptosis of neutrophils, lymphocytes, and damaged neurons and to regulate in flammation and remove necrotic cells. The emerging group of neuroimmunoregulatory molecules adjusts the balance of the anti-inflammatory and proinflammatory response to provide optimal conditions for effective clearance of pathogens and apoptotic cells but reduce the severity of the inflammatory response to prevent injury to brain cells, including stem cell populations. The neuroimmunoregulatory molecules and other CNS anti-inflammatory pathways represent potential therapeutic targets capable of reducing brain injury caused by bacterial infection.
Collapse
|
119
|
|
120
|
Chen D, Jian Y, Liu X, Zhang Y, Liang J, Qi X, Du H, Zou W, Chen L, Chai Y, Ou G, Miao L, Wang Y, Yang C. Clathrin and AP2 are required for phagocytic receptor-mediated apoptotic cell clearance in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003517. [PMID: 23696751 PMCID: PMC3656144 DOI: 10.1371/journal.pgen.1003517] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
Clathrin and the multi-subunit adaptor protein complex AP2 are central players in clathrin-mediated endocytosis by which the cell selectively internalizes surface materials. Here, we report the essential role of clathrin and AP2 in phagocytosis of apoptotic cells. In Caenorhabditis elegans, depletion of the clathrin heavy chain CHC-1 and individual components of AP2 led to a significant accumulation of germ cell corpses, which resulted from defects in both cell corpse engulfment and phagosome maturation required for corpse removal. CHC-1 and AP2 components associate with phagosomes in an inter-dependent manner. Importantly, we found that the phagocytic receptor CED-1 interacts with the α subunit of AP2, while the CED-6/Gulp adaptor forms a complex with both CHC-1 and the AP2 complex, which likely mediates the rearrangement of the actin cytoskeleton required for cell corpse engulfment triggered by the CED-1 signaling pathway. In addition, CHC-1 and AP2 promote the phagosomal association of LST-4/Snx9/18/33 and DYN-1/dynamin by forming a complex with them, thereby facilitating the maturation of phagosomes necessary for corpse degradation. These findings reveal a non-classical role of clathrin and AP2 and establish them as indispensable regulators in phagocytic receptor-mediated apoptotic cell clearance.
Collapse
Affiliation(s)
- Didi Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Youli Jian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuezhao Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaying Qi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Wei Zou
- National Institute of Biological Sciences, Beijing, China
| | - Lianwan Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongping Chai
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangshuo Ou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Long Miao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
121
|
Fortunato G, Vidal DTA, Klein W, Neto A, Angrizani A, Vasconcelos JF, Kaneto C, Souza BSDF, Ribeiro-dos-Santos R, Soares MBP, Macambira SG. Recovery of pulmonary structure and exercise capacity by treatment with granulocyte-colony stimulating factor (G-CSF) in a mouse model of emphysema. Pulm Pharmacol Ther 2013; 27:144-9. [PMID: 23603459 DOI: 10.1016/j.pupt.2013.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 01/08/2023]
Abstract
Emphysema is a chronic obstructive pulmonary disease characterized abnormal dilatation of alveolar spaces, which impairs alveolar gas exchange, compromising the physical capacity of a patient due to airflow limitations. Here we tested the effects of G-CSF administration in pulmonary tissue and exercise capacity in emphysematous mice. C57Bl/6 female mice were treated with elastase intratracheally to induce emphysema. Their exercise capacities were evaluated in a treadmill. Lung histological sections were prepared to evaluate mean linear intercept measurement. Emphysematous mice were treated with G-CSF (3 cycles of 200 μg/kg/day for 5 consecutive days, with 7-day intervals) or saline and submitted to a third evaluation 8 weeks after treatment. Values of run distance and linear intercept measurement were expressed as mean ± SD and compared applying a paired t-test. Effects of treatment on these parameters were analyzed applying a Repeated Measures ANOVA, followed by Tukey's post hoc analysis. p < 0.05 was considered statistically significant. Twenty eight days later, animals ran significantly less in a treadmill compared to normal mice (549.7 ± 181.2 m and 821.7 ± 131.3 m, respectively; p < 0.01). Treatment with G-CSF significantly increased the exercise capacity of emphysematous mice (719.6 ± 200.5 m), whereas saline treatment had no effect on distance run (595.8 ± 178.5 m). The PCR cytokines genes analysis did not detect difference between experimental groups. Morphometric analyses in the lung showed that saline-treated mice had a mean linear intercept significantly higher (p < 0.01) when compared to mice treated with G-CSF, which did not significantly differ from that of normal mice. Treatment with G-CSF promoted the recovery of exercise capacity and regeneration of alveolar structural alterations in emphysematous mice.
Collapse
Affiliation(s)
- Gustavo Fortunato
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil.
| | - Daniel T A Vidal
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, Brazil.
| | - Wilfried Klein
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Brazil; Instituto Nacional de Ciência e Tecnologia em Fisiologia Comparada, UNESP, Rio Claro, SP, Brazil.
| | - Alberto Neto
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, Brazil.
| | - André Angrizani
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil.
| | - Juliana F Vasconcelos
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil.
| | - Carla Kaneto
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, Brazil.
| | | | | | - Milena B P Soares
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, Brazil.
| | - Simone G Macambira
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil; Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, Brazil; Departamento de Biofunção, Instituto de Ciências da Saúde, Universidade Federal da Bahia, BA, Brazil.
| |
Collapse
|
122
|
Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 2013; 16:571-9. [PMID: 23542689 PMCID: PMC3637847 DOI: 10.1038/nn.3357] [Citation(s) in RCA: 433] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 02/13/2013] [Indexed: 12/11/2022]
Abstract
Oligodendrocytes associate with axons to establish myelin and provide metabolic support to neurons. In the spinal cord of ALS mice, oligodendrocytes downregulate transporters that transfer glycolytic substrates to neurons and oligodendrocyte progenitors (NG2+ cells) exhibit enhanced proliferation and differentiation, although the cause of these changes in oligodendroglia is unknown. Here we report that there is extensive degeneration of gray matter oligodendrocytes in the spinal cord of ALS mice before disease onset. Although new oligodendrocytes were formed, they failed to mature, resulting in progressive demyelination. Oligodendrocyte dysfunction also is prevalent in human ALS, as gray matter demyelination and reactive changes in NG2+ cells were observed in motor cortex and spinal cord of ALS patients. Selective removal of mutant SOD1 from oligodendroglia substantially delayed disease onset and prolonged survival in ALS mice, suggesting that ALS-linked genes enhance the vulnerability of motor neurons and accelerate disease by directly impairing the function of oligodendrocytes.
Collapse
|
123
|
Keinan D, Leigh NJ, Nelson JW, De Oleo L, Baker OJ. Understanding resolvin signaling pathways to improve oral health. Int J Mol Sci 2013; 14:5501-18. [PMID: 23528855 PMCID: PMC3634469 DOI: 10.3390/ijms14035501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/19/2013] [Accepted: 02/22/2013] [Indexed: 12/15/2022] Open
Abstract
The discovery of resolvins has been a major breakthrough for understanding the processes involved in resolution of inflammation. Resolvins belong to a family of novel lipid mediators that possess dual anti-inflammatory and pro-resolution actions. Specifically, they protect healthy tissue during immune-inflammatory responses to infection or injury, thereby aiding inflammation resolution and promoting tissue healing. One of the major concerns in modern medicine is the management and treatment of oral diseases, as they are related to systemic outcomes impacting the quality of life of many patients. This review summarizes known signaling pathways utilized by resolvins to regulate inflammatory responses associated with the oral cavity.
Collapse
Affiliation(s)
- David Keinan
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214-3932, USA; E-Mail:
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214-3932, USA; E-Mails: (N.J.L.); (J.W.N.); (L.D.O.)
| | - Noel J. Leigh
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214-3932, USA; E-Mails: (N.J.L.); (J.W.N.); (L.D.O.)
| | - Joel W. Nelson
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214-3932, USA; E-Mails: (N.J.L.); (J.W.N.); (L.D.O.)
| | - Laura De Oleo
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214-3932, USA; E-Mails: (N.J.L.); (J.W.N.); (L.D.O.)
| | - Olga J. Baker
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214-3932, USA; E-Mails: (N.J.L.); (J.W.N.); (L.D.O.)
- To whom correspondence should be addressed; E-Mail: ; Tel.: +1-716-829-3667; Fax: +1-716-829-3942
| |
Collapse
|
124
|
Cell survival and apoptosis signaling as therapeutic target for cancer: marine bioactive compounds. Int J Mol Sci 2013; 14:2334-54. [PMID: 23348928 PMCID: PMC3587990 DOI: 10.3390/ijms14022334] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 02/06/2023] Open
Abstract
Inhibition of apoptosis leads to activation of cell survival factors (e.g., AKT) causes continuous cell proliferation in cancer. Apoptosis, the major form of cellular suicide, is central to various physiological processes and the maintenance of homeostasis in multicellular organisms. A number of discoveries have clarified the molecular mechanism of apoptosis, thus clarifying the link between apoptosis and cell survival factors, which has a therapeutic outcome. Induction of apoptosis and inhibition of cell survival by anticancer agents has been shown to correlate with tumor response. Cellular damage induces growth arrest and tumor suppression by inducing apoptosis, necrosis and senescence; the mechanism of cell death depends on the magnitude of DNA damage following exposure to various anticancer agents. Apoptosis is mainly regulated by cell survival and proliferating signaling molecules. As a new therapeutic strategy, alternative types of cell death might be exploited to control and eradicate cancer cells. This review discusses the signaling of apoptosis and cell survival, as well as the potential contribution of marine bioactive compounds, suggesting that new therapeutic strategies might follow.
Collapse
|
125
|
Burger P, Kostova E, Bloem E, Hilarius-Stokman P, Meijer AB, van den Berg TK, Verhoeven AJ, de Korte D, van Bruggen R. Potassium leakage primes stored erythrocytes for phosphatidylserine exposure and shedding of pro-coagulant vesicles. Br J Haematol 2012. [PMID: 23190498 DOI: 10.1111/bjh.12133] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During storage, erythrocytes undergo changes that alter their clearance and function after transfusion and there is increasing evidence that these changes contribute to the complications observed in transfused patients. Stored erythrocytes were incubated overnight at 37°C to mimic the temperature after transfusion. After incubation, several markers for erythrocyte damage were analysed. After overnight incubation, stored erythrocytes showed increased potassium leakage, haemolysis, PS exposure and vesicle formation, and all these effects increased with increasing storage time. Furthermore, we demonstrated that long-term stored erythrocytes develop decreased flippase activity and increased scrambling activity after overnight incubation, leading to PS exposure and the release of vesicles. Reduced intracellular potassium was identified as the cause of the decreased flippase activity. Lastly, we provide evidence that erythrocytes can return to a PS-negative state by shedding parts of their membrane as PS-containing vesicles and that these vesicles can serve as a platform for the coagulation cascade. These findings reveal that potassium leakage, a well-known phenomenon of prolonged erythrocyte storage, primes erythrocytes for PS exposure. PS exposure will lead to vesicle formation and might have an important impact on the post-transfusion function and side effects of stored erythrocytes.
Collapse
Affiliation(s)
- Patrick Burger
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Lauzon RJ, Brown C, Kerr L, Tiozzo S. Phagocyte dynamics in a highly regenerative urochordate: insights into development and host defense. Dev Biol 2012; 374:357-73. [PMID: 23174529 DOI: 10.1016/j.ydbio.2012.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/31/2012] [Accepted: 11/09/2012] [Indexed: 11/29/2022]
Abstract
Phagocytosis is a cellular process by which particles and foreign bodies are engulfed and degraded by specialized cells. It is functionally involved in nutrient acquisition and represents a fundamental mechanism used to remove pathogens and cellular debris. In the marine invertebrate chordate Botryllus schlosseri, cell corpse engulfment by phagocytic cells is the recurrent mechanism of programmed cell clearance and a critical process for the successful execution of asexual regeneration and colony homeostasis. In the present study, we have utilized a naturally occurring process of vascular parabiosis coupled with intravascular microinjection of fluorescent bioparticles and liposomes as tools to investigate the dynamics of phagocyte behavior in real-time during cyclical body regeneration. Our findings indicate that B. schlosseri harbors two major populations of post-mitotic phagocytes, which display distinct phagocytic specificity and homing patterns: a static population that lines the circulatory system epithelia, and a mobile population that continuously recirculates throughout the colony and exhibits a characteristic homing pattern within mesenchymal niches called ventral islands (VI). We observed that a significant proportion of ventral island phagocytes (VIP) die and are engulfed by other VIP following takeover. Selective impairment of VIP activity curtailed zooid resorption and asexual development. Together, these findings strongly suggest that ventral islands are sites of phagocyte homing and turnover. As botryllid ascidians represent invertebrate chordates capable of whole body regeneration in a non-embryonic scenario, we discuss the pivotal role that phagocytosis plays in homeostasis, tissue renewal and host defense.
Collapse
Affiliation(s)
- Robert J Lauzon
- Department of Biological Sciences, Union College, Science and Engineering Center, Schenectady, NY 12308, USA.
| | | | | | | |
Collapse
|
127
|
Geninatti Crich S, Alberti D, Orio L, Stefania R, Longo D, Aime S. Lipid-Based Nanoparticles in Cardiovascular Molecular Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012. [DOI: 10.1007/s12410-012-9180-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
128
|
Sung HJ, Son SJ, Yang SJ, Rhee KJ, Kim YS. Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase. BMB Rep 2012; 45:414-8. [PMID: 22831977 DOI: 10.5483/bmbrep.2012.45.7.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-1β (IL-1β) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-1β, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-1β, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-1β expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-1β expression by TG-treated macrophages may play a role during atherogenesis.
Collapse
Affiliation(s)
- Ho Joong Sung
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Gyeongi-Do, Korea
| | | | | | | | | |
Collapse
|
129
|
Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 2012; 109:E3186-95. [PMID: 23100531 DOI: 10.1073/pnas.1119964109] [Citation(s) in RCA: 718] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although macrophages are widely recognized to have a profibrotic role in inflammation, we have used a highly tractable CCl(4)-induced model of reversible hepatic fibrosis to identify and characterize the macrophage phenotype responsible for tissue remodeling: the hitherto elusive restorative macrophage. This CD11B(hi) F4/80(int) Ly-6C(lo) macrophage subset was most abundant in livers during maximal fibrosis resolution and represented the principle matrix metalloproteinase (MMP) -expressing subset. Depletion of this population in CD11B promoter-diphtheria toxin receptor (CD11B-DTR) transgenic mice caused a failure of scar remodeling. Adoptive transfer and in situ labeling experiments showed that these restorative macrophages derive from recruited Ly-6C(hi) monocytes, a common origin with profibrotic Ly-6C(hi) macrophages, indicative of a phenotypic switch in vivo conferring proresolution properties. Microarray profiling of the Ly-6C(lo) subset, compared with Ly-6C(hi) macrophages, showed a phenotype outside the M1/M2 classification, with increased expression of MMPs, growth factors, and phagocytosis-related genes, including Mmp9, Mmp12, insulin-like growth factor 1 (Igf1), and Glycoprotein (transmembrane) nmb (Gpnmb). Confocal microscopy confirmed the postphagocytic nature of restorative macrophages. Furthermore, the restorative macrophage phenotype was recapitulated in vitro by the phagocytosis of cellular debris with associated activation of the ERK signaling cascade. Critically, induced phagocytic behavior in vivo, through administration of liposomes, increased restorative macrophage number and accelerated fibrosis resolution, offering a therapeutic strategy to this orphan pathological process.
Collapse
|
130
|
Kiss J, Mollenhauer M, Walmsley SR, Kirchberg J, Radhakrishnan P, Niemietz T, Dudda J, Steinert G, Whyte MKB, Carmeliet P, Mazzone M, Weitz J, Schneider M. Loss of the Oxygen Sensor PHD3 Enhances the Innate Immune Response to Abdominal Sepsis. THE JOURNAL OF IMMUNOLOGY 2012; 189:1955-65. [DOI: 10.4049/jimmunol.1103471] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
131
|
Lai CPK, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 2012; 3:228. [PMID: 22754538 PMCID: PMC3384085 DOI: 10.3389/fphys.2012.00228] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/06/2012] [Indexed: 12/27/2022] Open
Abstract
Extracellular membrane vesicles (EMVs) are nanometer sized vesicles, including exosomes and microvesicles capable of transferring DNAs, mRNAs, microRNAs, non-coding RNAs, proteins, and lipids among cells without direct cell-to-cell contact, thereby representing a novel form of intercellular communication. Many cells in the nervous system have been shown to release EMVs, implicating their active roles in development, function, and pathologies of this system. While substantial progress has been made in understanding the biogenesis, biophysical properties, and involvement of EMVs in diseases, relatively less information is known about their biological function in the normal nervous system. In addition, since EMVs are endogenous vehicles with low immunogenicity, they have also been actively investigated for the delivery of therapeutic genes/molecules in treatment of cancer and neurological diseases. The present review summarizes current knowledge about EMV functions in the nervous system under both physiological and pathological conditions, as well as emerging EMV-based therapies that could be applied to the nervous system in the foreseeable future.
Collapse
Affiliation(s)
- Charles Pin-Kuang Lai
- Department of Neurology, Neuroscience Center, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School Boston, MA, USA
| | | |
Collapse
|
132
|
Park HJ, Baen JY, Lee YJ, Choi YH, Kang JL. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells. Mol Biol Cell 2012; 23:3254-65. [PMID: 22740630 PMCID: PMC3418318 DOI: 10.1091/mbc.e12-01-0029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | | | | | | | | |
Collapse
|
133
|
Mapes J, Chen YZ, Kim A, Mitani S, Kang BH, Xue D. CED-1, CED-7, and TTR-52 regulate surface phosphatidylserine expression on apoptotic and phagocytic cells. Curr Biol 2012; 22:1267-75. [PMID: 22727702 DOI: 10.1016/j.cub.2012.05.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/10/2012] [Accepted: 05/08/2012] [Indexed: 01/17/2023]
Abstract
BACKGROUND Phosphatidylserine (PS) normally confined to the cytoplasmic leaflet of plasma membrane (PM) is externalized to the exoplasmic leaflet (exPS) during apoptosis, where it serves as an "eat-me" signal to phagocytes. In addition, some living cells such as macrophages also express exPS. RESULTS A secreted Annexin V (sAnxV::GFP) PS sensor reveals that exPS appears early on apoptotic cells in C. elegans embryos and decreases in older or unengulfed apoptotic cells. This decrease in exPS expression is blocked by loss of CED-7, an ATP binding cassette (ABC) transporter, or TTR-52, a secreted PS binding protein. Phagocytic cells also express exPS, which is dependent on the activity of CED-7, TTR-52, and TTR-52-interacting phagocyte receptor CED-1. Interestingly, a secreted lactadherin PS sensor (sGFP::Lact(C1C2)) labels apoptotic cells but not phagocytes, prevents sAnxV::GFP from labeling phagocytes, and compromises phagocytosis. Immuno-electron micrographs of embryos expressing sAnxV::GFP or sGFP::Lact(C1C2) reveal the presence of extracellular PS-containing vesicles between the apoptotic cell and neighboring cells, which are absent or greatly reduced in the ced-7 and ttr-52 mutants, respectively, indicating that CED-7 and TTR-52 promote the generation of extracellular PS vesicles. Loss of the tat-1 gene, which maintains PS asymmetry in the PM, restores phagocyte exPS expression in ced-1, ced-7, and ttr-52 mutants and partially rescues their engulfment defects. CONCLUSIONS CED-7 and TTR-52 may promote the efflux of PS from apoptotic cells through the generation of extracellular PS vesicles, which lead to exPS expression on phagocytes via TTR-52 and CED-1 to facilitate cell corpse clearance.
Collapse
Affiliation(s)
- James Mapes
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | |
Collapse
|
134
|
Kang Y, Zhao D, Liang H, Liu B, Zhang Y, Liu Q, Wang X, Liu Y. Structural study of TTR-52 reveals the mechanism by which a bridging molecule mediates apoptotic cell engulfment. Genes Dev 2012; 26:1339-50. [PMID: 22713871 PMCID: PMC3387661 DOI: 10.1101/gad.187815.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 05/03/2012] [Indexed: 11/24/2022]
Abstract
During apoptosis, apoptotic cells are removed by professional phagocytes or neighboring engulfing cells either directly through phagocytic receptors or indirectly through bridging molecules that cross-link dying cells to phagocytes. However, how bridging molecules recognize "eat me" signals and phagocytic receptors to mediate engulfment remains unclear. Here, we report the structural and functional studies of Caenorhabditis elegans TTR-52, a recently identified bridging molecule that cross-links surface-exposed phosphatidylserine (PtdSer) on apoptotic cells to the CED-1 receptor on phagocytes. Crystal structure studies show that TTR-52 has an open β-barrel-like structure with some similarities to the PKCα-C2 domain. TTR-52 is proposed to bind PtdSer via an "ion-mediating" PtdSer-binding mode. Intensive functional studies show that CED-1 binds TTR-52 through its N-terminal EMI domain and that the hydrophobic region of the TTR-52 C terminus is involved in this interaction. In addition, unlike other PtdSer-binding domains, TTR-52 forms dimers, and its dimerization is important for its function in vivo. Our results reveal the first full-length structure of a bridging molecule and the mechanism underlying bridging molecule-mediated apoptotic cell recognition.
Collapse
Affiliation(s)
- Yanyong Kang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Dongfeng Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huanhuan Liang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Bin Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yan Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qinwen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaochen Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yingfang Liu
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| |
Collapse
|
135
|
Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 2012; 50:1115-22. [PMID: 22342796 PMCID: PMC3366436 DOI: 10.1016/j.bone.2012.01.025] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/17/2012] [Accepted: 01/30/2012] [Indexed: 01/19/2023]
Abstract
Osteocyte apoptosis is required to initiate osteoclastic bone resorption following fatigue-induced microdamage in vivo; however, it is unclear whether apoptotic osteocytes also produce the signals that induce osteoclast differentiation. We determined the spatial and temporal patterns of osteocyte apoptosis and expression of pro-osteoclastogenic signaling molecules in vivo. Ulnae from female Sprague-Dawley rats (16-18weeks old) were cyclically loaded to a single fatigue level, and tissues were analyzed 3 and 7days later (prior to the first appearance of osteoclasts). Expression of genes associated with osteoclastogenesis (RANKL, OPG, VEGF) and apoptosis (caspase-3) were assessed by qPCR using RNA isolated from 6mm segments of ulnar mid-diaphysis, with confirmation and spatial localization of gene expression performed by immunohistochemistry. A novel double staining immunohistochemistry method permitted simultaneous localization of apoptotic osteocytes and osteocytes expressing pro-osteoclastogenic signals relative to microdamage sites. Osteocyte staining for caspase-3 and osteoclast regulatory signals exhibited different spatial distributions, with apoptotic (caspase 3-positive) cells highest in the damage region and declining to control levels within several hundred microns of the microdamage focus. Cells expressing RANKL or VEGF peaked between 100 and 300μm from the damage site, then returned to control levels beyond this distance. Conversely, osteocytes in non-fatigued control bones expressed OPG. However, OPG staining was reduced markedly in osteocytes immediately surrounding microdamage. These results demonstrate that while osteocyte apoptosis triggers the bone remodeling response to microdamage, the neighboring non-apoptotic osteocytes are the major source of pro-osteoclastogenic signals. Moreover, both the apoptotic and osteoclast-signaling osteocyte populations are localized in a spatially and temporally restricted pattern consistent with the targeted nature of this remodeling response.
Collapse
Affiliation(s)
- Oran D. Kennedy
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
| | - Brad C. Herman
- Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Damien M. Laudier
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
| | - Robert J. Majeska
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
| | - Hui B. Sun
- Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Mitchell B. Schaffler
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
- Corresponding author at: Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, Steinman Hall, T-401, NY, NY, 10031, USA. Fax: +1 212 650 6727
| |
Collapse
|
136
|
Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. Mediators Inflamm 2012; 2012:693083. [PMID: 22577254 PMCID: PMC3337637 DOI: 10.1155/2012/693083] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/11/2012] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease, a leading cause of mortality in developed countries, is mainly caused by atherosclerosis, a chronic inflammatory disease. Macrophages, which differentiate from monocytes that are recruited from the blood, account for the majority of leukocytes in atherosclerotic plaques. Apoptosis and the suppressed clearance of apoptotic macrophages (efferocytosis) are associated with vulnerable plaques that are prone to rupture, leading to thrombosis. Based on the central functions of macrophages in atherogenesis, cytokines, chemokines, enzymes, or microRNAs related to or produced by macrophages have become important clinical prognostic or diagnostic biomarkers. This paper discusses the impact of monocyte-derived macrophages in early atherogenesis and advanced disease. The role and possible future development of macrophage inflammatory biomarkers are also described.
Collapse
|
137
|
Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J, Tabas I. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 2012; 15:545-53. [PMID: 22445600 PMCID: PMC3322248 DOI: 10.1016/j.cmet.2012.01.022] [Citation(s) in RCA: 484] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 11/16/2011] [Accepted: 01/26/2012] [Indexed: 01/22/2023]
Abstract
In advanced atherosclerosis, macrophage apoptosis coupled with defective phagocytic clearance of the apoptotic cells (efferocytosis) promotes plaque necrosis, which precipitates acute atherothrombotic cardiovascular events. Oxidative and endoplasmic reticulum (ER) stress in macrophages are important causes of advanced lesional macrophage apoptosis. We now show that proapoptotic oxidative/ER stress inducers trigger another stress reaction in macrophages, autophagy. Inhibition of autophagy by silencing ATG5 or other autophagy mediators enhances apoptosis and NADPH oxidase-mediated oxidative stress while at the same time rendering the apoptotic cells less well recognized by efferocytes. Most importantly, macrophage ATG5 deficiency in fat-fed Ldlr(-/-) mice increases apoptosis and oxidative stress in advanced lesional macrophages, promotes plaque necrosis, and worsens lesional efferocytosis. These findings reveal a protective process in oxidatively stressed macrophages relevant to plaque necrosis, suggesting a mechanism-based strategy to therapeutically suppress atherosclerosis progression and its clinical sequelae.
Collapse
Affiliation(s)
- Xianghai Liao
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Lööv C, Hillered L, Ebendal T, Erlandsson A. Engulfing astrocytes protect neurons from contact-induced apoptosis following injury. PLoS One 2012; 7:e33090. [PMID: 22461890 PMCID: PMC3312890 DOI: 10.1371/journal.pone.0033090] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/03/2012] [Indexed: 12/12/2022] Open
Abstract
Clearing of dead cells is a fundamental process to limit tissue damage following brain injury. Engulfment has classically been believed to be performed by professional phagocytes, but recent data show that non-professional phagocytes are highly involved in the removal of cell corpses in various situations. The role of astrocytes in cell clearance following trauma has however not been studied in detail. We have found that astrocytes actively collect and engulf whole dead cells in an in vitro model of brain injury and thereby protect healthy neurons from bystander cell death. Time-lapse experiments showed that migrating neurons that come in contact with free-floating cell corpses induced apoptosis, while neurons that migrate through groups of dead cells, garnered by astrocytes, remain unaffected. Furthermore, apoptotic cells are present within astrocytes in the mouse brain following traumatic brain injury (TBI), indicating a possible role for astrocytes in engulfment of apoptotic cells in vivo. qRT-PCR analysis showed that members of both ced pathways and Megf8 are expressed in the cell culture, indicating their possible involvement in astrocytic engulfment. Moreover, addition of dead cells had a positive effect on the protein expression of MEGF10, an ortholog to CED1, known to initiate phagocytosis by binding to phosphatidylserine. Although cultured astrocytes have an immense capacity for engulfment, seemingly without adverse effects, the ingested material is stored rather than degraded. This finding might explain the multinuclear astrocytes that are found at the lesion site in patients with various brain disorders.
Collapse
Affiliation(s)
| | | | | | - Anna Erlandsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
139
|
Meurs I, Lammers B, Zhao Y, Out R, Hildebrand RB, Hoekstra M, Van Berkel TJ, Van Eck M. The effect of ABCG1 deficiency on atherosclerotic lesion development in LDL receptor knockout mice depends on the stage of atherogenesis. Atherosclerosis 2012; 221:41-7. [DOI: 10.1016/j.atherosclerosis.2011.11.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 10/25/2011] [Accepted: 11/17/2011] [Indexed: 01/01/2023]
|
140
|
Xu JM, Shi GP. Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases. Endocr Rev 2012; 33:71-108. [PMID: 22240242 PMCID: PMC3365842 DOI: 10.1210/er.2011-0013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022]
Abstract
Mast cells are essential in allergic immune responses. Recent discoveries have revealed their direct participation in cardiovascular diseases and metabolic disorders. Although more sophisticated mechanisms are still unknown, data from animal studies suggest that mast cells act similarly to macrophages and other inflammatory cells and contribute to human diseases through cell-cell interactions and the release of proinflammatory cytokines, chemokines, and proteases to induce inflammatory cell recruitment, cell apoptosis, angiogenesis, and matrix protein remodeling. Reduced cardiovascular complications and improved metabolic symptoms in animals receiving over-the-counter antiallergy medications that stabilize mast cells open another era of mast cell biology and bring new hope to human patients suffering from these conditions.
Collapse
Affiliation(s)
- Jia-Ming Xu
- Department of Medicine, Nanfang Hospital and Southern Medical University, Guangzhou 510515, China
| | | |
Collapse
|
141
|
Elumalai P, Gunadharini DN, Senthilkumar K, Banudevi S, Arunkumar R, Benson CS, Sharmila G, Arunakaran J. Ethanolic neem (Azadirachta indica A. Juss) leaf extract induces apoptosis and inhibits the IGF signaling pathway in breast cancer cell lines. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bionut.2011.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
142
|
Abstract
Multicellular organisms have developed ways to recognize potentially life-threatening events (danger signals). Classically, danger signals have been defined as exogenous, pathogen-associated molecular patterns (PAMPs) such as bacterial cell wall components (e.g., lipopolysaccharide and peptideglycan) or viral DNA/RNA. PAMPs interact with dedicated receptors on immune cells, so-called pattern recognition receptors (PRRs) and activate immune systems. A well-known family of PRRs is the toll-like receptors (TLRs) in which each member recognizes a specific set of PAMPs. However, not only exogenous pathogens but also several endogenous molecules released from necrotic cells (damaged self) also activate immune systems. These endogenous adjuvants are called damage-associated molecular patterns (DAMPs). It has been reported that high-mobility group box 1 protein (HMGB1), uric acid, heat shock proteins (HSPs) and nucleotides act as endogenous adjuvants. DAMPs are recognized by specific receptors (danger receptors) expressed mainly on antigen-presenting cells such as dendritic cells and macrophages and induce cell maturation and the production of inflammatory cytokines by activating the NF-kB pathway. In this chapter, we will review danger signals released from necrotic cells and its recognition receptors.
Collapse
|
143
|
Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 2011; 35:445-55. [PMID: 22035837 DOI: 10.1016/j.immuni.2011.09.004] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 08/31/2011] [Accepted: 09/02/2011] [Indexed: 12/11/2022]
Abstract
Prompt and efficient clearance of apoptotic cells is necessary to prevent secondary necrosis of dying cells and to avoid immune responses to autoantigens. Recent studies have shed light on how apoptotic cells through soluble "find-me" signals advertise their presence to phagocytes at the earliest stages of cell death. Phagocytes sense the find-me signal gradient, and in turn the presence of dying cells, and migrate to their vicinity. The apoptotic cells also expose specific "eat-me" signals on their surface that are recognized by phagocytes through specific engulfment receptors. This review covers the recent progress in the areas of find-me and eat-me signals and how these relate to prompt and immunologically silent clearance of apoptotic cells.
Collapse
|
144
|
Chao MP, Majeti R, Weissman IL. Programmed cell removal: a new obstacle in the road to developing cancer. Nat Rev Cancer 2011; 12:58-67. [PMID: 22158022 DOI: 10.1038/nrc3171] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of cancer involves mechanisms by which aberrant cells overcome normal regulatory pathways that limit their numbers and their migration. The evasion of programmed cell death is one of several key early events that need to be overcome in the progression from normal cellular homeostasis to malignant transformation. Recently, we provided evidence in mouse and human cancers that successful cancer clones must also overcome programmed cell removal. In this Opinion article, we explore the role of programmed cell removal in both normal and neoplastic cells, and we place this pathway in the context of the initiation of programmed cell death.
Collapse
Affiliation(s)
- Mark P Chao
- Institute for Stem Cell Biology and Regenerative Medicine and Cancer Institute, Division of Haematology, Stanford University School of Medicine, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, California 94305, USA.
| | | | | |
Collapse
|
145
|
Radmayr C, Schwentner C, Lunacek A, Karatzas A, Oswald J. Embryology and anatomy of the vesicoureteric junction with special reference to the etiology of vesicoureteral reflux. Ther Adv Urol 2011; 1:243-50. [PMID: 21789071 DOI: 10.1177/1756287209348985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Concerning the ureterovesical junction - the region most important for the anti-reflux mechanism - there is still a lot of misunderstanding and misinterpretation with regard to normal fetal development. Data are scarce on possible causes of primary vesicoureteral reflux and on involved mechanisms of the so-called maturation process of refluxing ureteral endings. The ratio of the intravesical ureteral length to the ureteral diameter is obviously lower than assumed so far, as clearly revealed by some studies. Therefore it can be doubted that the length and course of the intravesical ureter is of sole importance in the prevention of reflux. Additionally refluxing intravesical ureteral endings present with dysplasia, atrophy, and architectural derangement of smooth muscle fibers. Besides, a pathologically increased matrix remodeling combined with deprivation of the intramural nerve supply has been confirmed. Consequently, symmetrical narrowing of the very distal ureteral smooth muscle coat creating the active valve mechanism to defend reflux is not achievable. It is apparent that primary congenital vesicoureteral reflux seems to be the result of an abnormality within the ureterovesical junction with an insufficient muscular wrap. Nature is believed to establish much more sophisticated mechanisms than the so-called passive anti-reflux mechanism. Remodeling processes within the ureterovesical junction of refluxing ureteral endings support that maturation itself is nothing else than wound or defect healing and not a restitution of a morphological normal ureterovesical junction. Lacking the nerve supply a restoration of any muscular structure can not be achieved.
Collapse
Affiliation(s)
- Christian Radmayr
- Professor of Urology, Pediatric Urology, Medical University Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
146
|
McEwan WA, Mallery DL, Rhodes DA, Trowsdale J, James LC. Intracellular antibody-mediated immunity and the role of TRIM21. Bioessays 2011; 33:803-9. [PMID: 22006823 DOI: 10.1002/bies.201100093] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protection against bacterial and viral pathogens by antibodies has always been thought to end at the cell surface. Once inside the cell, a pathogen was understood to be safe from humoral immunity. However, it has now been found that antibodies can routinely enter cells attached to viral particles and mediate an intracellular immune response. Antibody-coated virions are detected inside the cell by means of an intracellular antibody receptor, TRIM21, which directs their degradation by recruitment of the ubiquitin-proteasome system. In this article we assess how this discovery alters our view of the way in which antibodies neutralise viral infection. We also consider the antiviral function of TRIM21 in the context of its other reported roles in immune signalling and autoimmunity. Finally, we discuss the conceptual implications of intracellular antibody immunity and how it alters our view of the discrete separation of extracellular and intracellular environments.
Collapse
Affiliation(s)
- William A McEwan
- MRC Laboratory of Molecular Biology, PNAC Division, Cambridge, UK
| | | | | | | | | |
Collapse
|
147
|
Totino PRR, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Refractoriness of eryptotic red blood cells to Plasmodium falciparum infection: a putative host defense mechanism limiting parasitaemia. PLoS One 2011; 6:e26575. [PMID: 22031840 PMCID: PMC3198779 DOI: 10.1371/journal.pone.0026575] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/29/2011] [Indexed: 12/24/2022] Open
Abstract
Recently, we have described that apoptosis-like process of red blood cells (RBC) – eryptosis – in malaria is not restricted to parasitized cells, occurring also in non-parasitized RBC (nRBC). Besides to pathogenic proprieties, apoptosis also participates in the innate defense trough restriction of intracellular pathogens propagation. In the present study, we investigated the capacity of P. falciparum parasites to infect eryptotic RBC. Schizont parasitized RBC concentrated by magnetic separation were cultured with eryptotic RBC obtained by ionomycin treatment and, then, parasite growth was evaluated in Giemsa-stained thin blood smears. While parasites infected and developed normally in control non-eryptotic RBC, cultures performed with eryptotic RBC had a marked decrease in parasitaemia. It was noteworthy a great number of free merozoites in eryptotic RBC cultures, indicating that these cells were not susceptible to invasion. We suggest that although eryptosis could be involved in malaria pathogenesis, it could also acting protectively by controlling parasite propagation.
Collapse
|
148
|
Szondy Z, Korponay-Szabó I, Király R, Fésüs L. Transglutaminase 2 Dysfunctions in the Development of Autoimmune Disorders: Celiac Disease and TG2 −/−Mouse. ADVANCES IN ENZYMOLOGY - AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:295-345. [DOI: 10.1002/9781118105771.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
149
|
Kürn U, Rendulic S, Tiozzo S, Lauzon RJ. Asexual propagation and regeneration in colonial ascidians. THE BIOLOGICAL BULLETIN 2011; 221:43-61. [PMID: 21876110 DOI: 10.1086/bblv221n1p43] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Regeneration is widely distributed among the metazoans. However, clear differences exist as to the degree of regenerative capacity: some phyla can only replace missing body parts, whereas others can generate entirely new individuals. Ascidians are animals that possess a remarkable regenerative plasticity and exhibit a great diversity of mechanisms for asexual propagation and survival. They are marine invertebrate members of the subphylum Tunicata and represent modern-day descendants of the chordate ancestor; in their tadpole stage they exhibit a chordate body plan that is resorbed during metamorphosis. Solitary species grow into an adult that can reach several centimeters in length, whereas colonial species grow by asexual propagation, creating a colony of genetically identical individuals. In this review, we present an overview of the biology of colonial ascidians as a paradigm for study in stem cell and regenerative biology. Focusing on botryllid ascidians, we introduce the potential roles played by multipotent epithelia and multipotent/pluripotent stem cells as source of asexual propagation and regenerative plasticity in the different budding mechanisms, and consider the putative mechanism of body repatterning in a non-embryonic scenario. We also discuss the involvement of intra-colony homeostatic processes in regulating budding potential, and the functional link between allorecognition, chimerism, and regenerative potential.
Collapse
Affiliation(s)
- Ulrich Kürn
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse, Germany
| | | | | | | |
Collapse
|
150
|
Abstract
Vascular inflammation is associated with and in large part driven by changes in the leukocyte compartment of the vessel wall. Here, we focus on monocyte influx during atherosclerosis, the most common form of vascular inflammation. Although the arterial wall contains a large number of resident macrophages and some resident dendritic cells, atherosclerosis drives a rapid influx of inflammatory monocytes (Ly-6C(+) in mice) and other monocytes (Ly-6C(-) in mice, also known as patrolling monocytes). Once in the vessel wall, Ly-6C(+) monocytes differentiate to a phenotype consistent with inflammatory macrophages and inflammatory dendritic cells. The phenotype of these cells is modulated by lipid uptake, Toll-like receptor ligands, hematopoietic growth factors, cytokines, and chemokines. In addition to newly recruited macrophages, it is likely that resident macrophages also change their phenotype. Monocyte-derived inflammatory macrophages have a short half-life. After undergoing apoptosis, they may be taken up by surrounding macrophages or, if the phagocytic capacity is overwhelmed, can undergo secondary necrosis, a key event in forming the necrotic core of atherosclerotic lesions. In this review, we discuss these and other processes associated with monocytic cell dynamics in the vascular wall and their role in the initiation and progression of atherosclerosis.
Collapse
Affiliation(s)
- Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|