101
|
Gareiss M, Eberhardt K, Krüger E, Kandert S, Böhm C, Zentgraf H, Müller CR, Dabauvalle MC. Emerin expression in early development of Xenopus laevis. Eur J Cell Biol 2005; 84:295-309. [PMID: 15819409 DOI: 10.1016/j.ejcb.2004.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerin is an integral protein of the inner nuclear membrane in the majority of differentiated vertebrate cells. In humans, deficiency of emerin causes a progressive muscular dystrophy of the Emery-Dreifuss type. The physiological role of emerin is poorly understood. By screening and sequencing of EST clones we have identified two emerin homologues in Xenopus laevis, Xemerin1 and Xemerin2. Xemerins share with mammalian emerins the N-terminal LEM domain and a single transmembrane domain at the C-terminus. As shown by immunoblot analysis with Xemerin-specific antibodies, both proteins have an apparent molecular mass of 24 kDa but differ in their isoelectric points. Xemerin1 and Xemerin2 proteins are not detectable in oocytes nor during early embryogenesis. Protein expression is first found at stage 43 and persists in somatic cells. However, RT-PCR and Northern blot analysis show Xemerin mRNAs of approximately 4.0 kb to be present in oocytes and throughout embryogenesis. During embryogenesis the level of Xemerin mRNAs increases at stage 22 and is particularly abundant in mesodermal and neuro-ectodermal regions of the embryo. These data provide the necessary background to further investigate the role of emerin in nuclear envelope assembly, gene expression and organ development of X. laevis as a model organism.
Collapse
Affiliation(s)
- Martin Gareiss
- Department of Cell and Developmental Biology, University of Würzburg, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Shimi T, Koujin T, Segura-Totten M, Wilson KL, Haraguchi T, Hiraoka Y. Dynamic interaction between BAF and emerin revealed by FRAP, FLIP, and FRET analyses in living HeLa cells. J Struct Biol 2005; 147:31-41. [PMID: 15109603 DOI: 10.1016/j.jsb.2003.11.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 11/05/2003] [Indexed: 10/26/2022]
Abstract
Barrier-to-autointegration factor (BAF) is a conserved 10 kDa DNA-binding protein. BAF interacts with LEM-domain proteins including emerin, LAP2 beta, and MAN1 in the inner nuclear membrane. Using fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP), we compared the mobility of BAF to its partners emerin, LAP2 beta, and MAN1 in living HeLa cells. Like endogenous BAF, GFP-BAF was enriched at the nuclear envelope, and found inside the nucleus and in the cytoplasm during interphase. At every location, FRAP and FLIP analysis showed that GFP-BAF diffused rapidly; the halftimes for recovery in a 0.8 microm square area were 260 ms at the nuclear envelope, and even faster inside the nucleus and in the cytoplasm. GFP-fused emerin, LAP2 beta, and MAN1 were all relatively immobile, with recovery halftimes of about 1 min, for a 2 microm square area. Thus, BAF is dynamic and mobile during interphase, in stark contrast to its nuclear envelope partners. FLIP results further showed that rapidly diffusing cytoplasmic and nuclear pools of GFP-BAF were distinctly regulated, with nuclear GFP-BAF unable to replenish cytoplasmic BAF. Fluorescence resonance energy transfer (FRET) results showed that CFP-BAF binds directly to YFP-emerin at the inner nuclear membrane of living cells. We propose a "touch-and-go" model in which BAF binds emerin frequently but transiently during interphase. These findings contrast with the slow mobility of both GFP-BAF and GFP-emerin during telophase, when they colocalized at the 'core' region of telophase chromosomes at early stages of nuclear assembly.
Collapse
Affiliation(s)
- Takeshi Shimi
- CREST of JST, Kansai Advanced Research Center, CRL, Kobe 651-2492, Japan
| | | | | | | | | | | |
Collapse
|
103
|
Maraldi NM, Squarzoni S, Sabatelli P, Capanni C, Mattioli E, Ognibene A, Lattanzi G. Laminopathies: Involvement of structural nuclear proteins in the pathogenesis of an increasing number of human diseases. J Cell Physiol 2005; 203:319-27. [PMID: 15389628 DOI: 10.1002/jcp.20217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Just at the beginning of the millennium the neologism laminopathies has been introduced in the scientific vocabulary. An exponential increase of interest on the subject started concomitantly, so that a formerly quite neglected group of rare human diseases is now widely investigated. This review will cover the history of the identification of the molecular basis for fourteen (since now) hereditary diseases arising from defects in genes that encode nuclear envelope and nuclear lamina-associated proteins and will also consider the hypotheses that can account for the role of structural nuclear proteins in the pathogenesis of diseases affecting a wide spectrum of tissues.
Collapse
Affiliation(s)
- Nadir M Maraldi
- ITOI-CNR, Unit of Bologna via di Barbiano 1/10 c/o IOR, 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
104
|
Maraldi NM, Lattanzi G, Squarzoni S, Capanni C, Cenni V, Manzoli FA. Implications for nuclear organization and gene transcription of lamin A/C specific mutations. ACTA ACUST UNITED AC 2005; 45:1-16. [PMID: 16185751 DOI: 10.1016/j.advenzreg.2005.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
105
|
Margalit A, Vlcek S, Gruenbaum Y, Foisner R. Breaking and making of the nuclear envelope. J Cell Biochem 2005; 95:454-65. [PMID: 15832341 DOI: 10.1002/jcb.20433] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During mitosis, a single nucleus gives rise to two nuclei that are identical to the parent nucleus. Mitosis consists of a continuous sequence of events that must be carried out once and only once. Two such important events are the disassembly of the nuclear envelope (NE) during the first stages of mitosis, and its accurate reassembly during the last stages of mitosis. NE breakdown (NEBD) is initiated when maturation-promoting factor (MPF) enters the nucleus and starts phosphorylating nuclear pore complexes (NPCs) and nuclear lamina proteins, followed by NPC and lamina breakdown. Nuclear reassembly starts when nuclear membranes assemble onto the chromatin. This article focuses on the different models of NEBD and reassembly with emphasis on recent data.
Collapse
Affiliation(s)
- Ayelet Margalit
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
106
|
Worman HJ, Courvalin JC. Nuclear envelope, nuclear lamina, and inherited disease. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:231-79. [PMID: 16164970 DOI: 10.1016/s0074-7696(05)46006-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear envelope is composed of the nuclear membranes, nuclear lamina, and nuclear pore complexes. In recent years, mutations in nuclear-envelope proteins have been shown to cause a surprisingly wide array of inherited diseases. While the mutant proteins are generally expressed in most or all differentiated somatic cells, many mutations cause fairly tissue-specific disorders. Perhaps the most dramatic case is that of mutations in A-type lamins, intermediate filament proteins associated with the inner nuclear membrane. Different mutations in the same lamin proteins have been shown to cause striated muscle diseases, partial lipodystrophy syndromes, a peripheral neuropathy, and disorders with features of severe premature aging. In this review, we summarize fundamental aspects of nuclear envelope structure and function, the inherited diseases caused by mutations in lamins and other nuclear envelope proteins, and possible pathogenic mechanisms.
Collapse
Affiliation(s)
- Howard J Worman
- Department of Medicine and Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
107
|
Abstract
Nuclear lamins form a fibrous nucleoskeletal network of intermediate-sized filaments that underlies the inner nuclear membrane. It associates with this membrane through interactions with specific integral nuclear membrane proteins, while within this flattened lamin lattice the nuclear pore complexes are embedded. Next to this peripheral network, the lamins can form intranuclear structures. The lamins are the evolutionary progenitors of the cytoplasmic intermediate filament proteins and have profound influences on nuclear structure and function. These influences require that lamins have dynamic properties and dual identities as structural building blocks on the one hand, and transcription regulators on the other. Which of these identities underlies the laminopathies, a myriad of genetic diseases caused by mutations in lamins or lamin-associated proteins, is a topic of intense debate.
Collapse
Affiliation(s)
- Jos L V Broers
- Department of Molecular Cell Biology, Research Institutes CARIM, GROW, and EURON, University of Maastricht, The Netherlands
| | | | | |
Collapse
|
108
|
Dechat T, Gajewski A, Korbei B, Gerlich D, Daigle N, Haraguchi T, Furukawa K, Ellenberg J, Foisner R. LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J Cell Sci 2004; 117:6117-28. [PMID: 15546916 DOI: 10.1242/jcs.01529] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Lamina-associated polypeptide (LAP) 2α is a LEM (lamina-associated polypeptide emerin MAN1) family protein associated with nucleoplasmic A-type lamins and chromatin. Using live cell imaging and fluorescence microscopy we demonstrate that LAP2α was mostly cytoplasmic in metaphase and associated with telomeres in anaphase. Telomeric LAP2α clusters grew in size, formed `core' structures on chromatin adjacent to the spindle in telophase, and translocated to the nucleoplasm in G1 phase. A subfraction of lamin C and emerin followed LAP2α to the core region early on, whereas LAP2β, lamin B receptor and lamin B initially bound to more peripheral regions of chromatin, before they spread to core structures with different kinetics. Furthermore, the DNA-crosslinking protein barrier-to-autointegration factor (BAF) bound to LAP2α in vitro and in mitotic extracts, and subfractions of BAF relocalized to core structures with LAP2α. We propose that LAP2α and a subfraction of BAF form defined complexes in chromatin core regions and may be involved in chromatin reorganization during early stages of nuclear assembly.
Collapse
Affiliation(s)
- Thomas Dechat
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
We analyzed the influence of lamins on nuclear envelope growth in cultured Xenopus A6 cells by the overexpression of human lamin A, Xenopus and zebrafish lamins B2 and Drosophila lamins Dm0 and C as GFP fusion proteins. Lamins containing a CxxM motif in their primary sequence (lamins A, B2, Dm0) induced the formation of lobulated nuclei with multi-membrane-layered, highly folded nuclear membranes and intranuclear membrane assemblies, as observed by electron microscopy. Such morphological alterations were not observed with Drosophila lamin C, a lamin without this motif or with a lamin B2 mutant (B2-SxxM) where the cysteine of the CxxM motif is replaced by a serine. Drosophila lamin C mutants containing a CxxM motif behaved like B-type lamins thus confirming that this tetrapeptide is directly involved in the morphological changes we observed. Nuclear membrane proliferation could also be induced by lamin B2 in COS-7 cells and in zebrafish embryos but not by human lamin A in COS-7 cells. We speculate that the human lamin A is incompletely processed in Xenopus A6 cells and therefore behaves in this cell line like a B-type lamin. Our results indicate that the CxxM motif of B-type lamins has a dual function: it mediates lamin targeting to the inner nuclear membrane thereby promoting nuclear membrane growth.
Collapse
Affiliation(s)
- Kristina Prüfert
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | |
Collapse
|
110
|
Abstract
Eukaryotic genomes are distributed on linear chromosomes that are grouped together in the nucleus, an organelle separated from the cytoplasm by a characteristic double membrane studded with large proteinaceous pores. The chromatin within chromosomes has an as yet poorly characterized higher-order structure, but in addition to this, chromosomes and specific subchromosomal domains are nonrandomly positioned in nuclei. This review examines functional implications of the long-range organization of the genome in interphase nuclei. A rigorous test of the physiological importance of nuclear architecture is achieved by introducing mutations that compromise both structure and function. Focussing on such genetic approaches, we address general concepts of interphase nuclear order, the role of the nuclear envelope (NE) and lamins, and finally the importance of spatial organization for DNA replication and heritable gene expression.
Collapse
Affiliation(s)
- Angela Taddei
- University of Geneva, Department of Molecular Biology, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
111
|
Abstract
The gene LMNA encodes the proteins lamins A and C and is implicated in nine different laminopathies - inherited diseases that are linked to premature ageing. Recent evidence has demonstrated that lamins A and C have essential functions in protecting cells from physical damage, as well as in maintaining the function of transcription factors required for the differentiation of adult stem cells. Thus, the degenerative nature of laminopathies is explained because these lamins are essential for maintenance of somatic tissues in adulthood.
Collapse
Affiliation(s)
- Chris J Hutchison
- School of Biological and Biomedical Sciences, The University of Durham, South Road, Durham, DH1 4EB, UK.
| | | |
Collapse
|
112
|
Muchir A, Medioni J, Laluc M, Massart C, Arimura T, van der Kooi AJ, Desguerre I, Mayer M, Ferrer X, Briault S, Hirano M, Worman HJ, Mallet A, Wehnert M, Schwartz K, Bonne G. Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial lipodystrophy carrying lamin A/C gene mutations. Muscle Nerve 2004; 30:444-50. [PMID: 15372542 DOI: 10.1002/mus.20122] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutations in LMNA, the gene that encodes nuclear lamins A and C, cause up to eight different diseases collectively referred to as "laminopathies." These diseases affect striated muscle, adipose tissue, peripheral nerve, and bone, or cause features of premature aging. We investigated the consequences of LMNA mutations on nuclear architecture in skin fibroblasts from 13 patients with different laminopathies. Western-blotting showed that none of the mutations examined led to a decrease in cellular levels of lamin A or C. Regardless of the disease, we observed honeycomb nuclear structures and nuclear envelope blebs in cells examined by immunofluorescence microscopy. Concentrated foci of lamin A/C in the nucleoplasm were also observed. Only mutations in the head and tail domains of lamins A and C significantly altered the nuclear architecture of patient fibroblasts. These results confirm that mutations in lamins A and C may lead to a weakening of a structural support network in the nuclear envelope in fibroblasts and that nuclear architecture changes depend upon the location of the mutation in different domains of lamin A/C.
Collapse
Affiliation(s)
- A Muchir
- INSERM U582, Institut de Myologie, GH Pitié-Salpêtrière, Bâtiment Babinski, 47 boulevard de l'Hôpital, Paris 75013, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Vecerová J, Koberna K, Malínsky J, Soutoglou E, Sullivan T, Stewart CL, Raska I, Misteli T. Formation of nuclear splicing factor compartments is independent of lamins A/C. Mol Biol Cell 2004; 15:4904-10. [PMID: 15356259 PMCID: PMC524741 DOI: 10.1091/mbc.e04-07-0645] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear lamins are major architectural elements of the mammalian cell nucleus, and they have been implicated in the functional organization of the nuclear interior, possibly by providing structural support for nuclear compartments. Colocalization studies have suggested a structural role for lamins in the formation and maintenance of pre-mRNA splicing factor compartments. Here, we have directly tested this hypothesis by analysis of embryonic fibroblasts from knock-out mice lacking A- and C-type lamins. We show that the morphology and cellular properties of splicing factor compartments are independent of A- and C-type lamins. Genetic loss of lamins A/C has no effect on the cellular distribution of several pre-mRNA splicing factors and does not affect the compartment morphology as examined by light and electron microscopy. The association of splicing factors with the nuclear matrix fraction persists in the absence of lamins A/C. Live cell microscopy demonstrates that the intranuclear positional stability of splicing factor compartments is maintained and that the exchange dynamics of SF2/ASF between the compartments and the nucleoplasm is not affected by loss of lamin A/C. Our results demonstrate that formation and maintenance of intranuclear splicing factor compartments is independent of lamins A/C, and they argue against an essential structural role of lamins A/C in splicing factor compartment morphology.
Collapse
Affiliation(s)
- Jaromíra Vecerová
- Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Dahl KN, Kahn SM, Wilson KL, Discher DE. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J Cell Sci 2004; 117:4779-86. [PMID: 15331638 DOI: 10.1242/jcs.01357] [Citation(s) in RCA: 307] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mechanical properties of the nuclear envelope have implications for cell and nuclear architecture as well as gene regulation. Using isolated Xenopus oocyte nuclei, we have established swelling conditions that separate the intact nuclear envelope (membranes, pore complexes and underlying lamin filament network) from nucleoplasm and the majority of chromatin. Swelling proves reversible with addition of high molecular mass dextrans. Micropipette aspiration of swollen and unswollen nuclear envelopes is also reversible and yields a network elastic modulus, unaffected by nucleoplasm, that averages 25 mN/m. Compared to plasma membranes of cells, the nuclear envelope is much stiffer and more resilient. Our results suggest that the nuclear lamina forms a compressed network shell of interconnected rods that is extensible but limited in compressibility from the native state, thus acting as a 'molecular shock absorber'. In light of the conservation of B-type lamins in metazoan evolution, the mechanical properties determined in this investigation suggest physical mechanisms by which mutated lamins can either destabilize nuclear architecture or influence nuclear responses to mechanical signals in Emery-Dreifuss muscular dystrophy, cardiomyopathy, progeria syndromes (premature 'aging') and other laminopathies.
Collapse
Affiliation(s)
- Kris Noel Dahl
- Department of Chemical and Biomolecular Engineering, 220 South 33rd Street, University of Pennsylvania, Philadelphia, PA 19104-6393, USA
| | | | | | | |
Collapse
|
115
|
Holaska JM, Kowalski AK, Wilson KL. Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol 2004; 2:E231. [PMID: 15328537 PMCID: PMC509406 DOI: 10.1371/journal.pbio.0020231] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 05/24/2004] [Indexed: 01/03/2023] Open
Abstract
X-linked Emery-Dreifuss muscular dystrophy is caused by loss of emerin, a LEM-domain protein of the nuclear inner membrane. To better understand emerin function, we used affinity chromatography to purify emerin-binding proteins from nuclear extracts of HeLa cells. Complexes that included actin, αII-spectrin and additional proteins, bound specifically to emerin. Actin polymerization assays in the presence or absence of gelsolin or capping protein showed that emerin binds and stabilizes the pointed end of actin filaments, increasing the actin polymerization rate 4- to 12-fold. We propose that emerin contributes to the formation of an actin-based cortical network at the nuclear inner membrane, conceptually analogous to the actin cortical network at the plasma membrane. Thus, in addition to disrupting transcription factors that bind emerin, loss of emerin may destabilize nuclear envelope architecture by weakening a nuclear actin network. Loss of emerin leads to Emery-Dreifuss muscular dystrophy (EDMD). Biochemical studies presented here suggest that emerin drives the formation of an actin-based cortical network at the nuclear membrane, and that network destabilization may contribute to EDMD
Collapse
Affiliation(s)
- James M Holaska
- 1Department of Cell Biology, The Johns Hopkins University School of MedicineBaltimore, MarylandUnited States of America
| | - Amy K Kowalski
- 1Department of Cell Biology, The Johns Hopkins University School of MedicineBaltimore, MarylandUnited States of America
| | - Katherine L Wilson
- 1Department of Cell Biology, The Johns Hopkins University School of MedicineBaltimore, MarylandUnited States of America
| |
Collapse
|
116
|
Vlcek S, Foisner R, Wilson KL. Lco1 is a novel widely expressed lamin-binding protein in the nuclear interior. Exp Cell Res 2004; 298:499-511. [PMID: 15265697 DOI: 10.1016/j.yexcr.2004.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 04/20/2004] [Indexed: 12/25/2022]
Abstract
A-type lamins are localized at the nuclear envelope and in the nucleoplasm, and are implicated in human diseases called laminopathies. In a yeast two-hybrid screen with lamin C, we identified a novel widely expressed 171-kDa protein that we named Lamin companion 1 (Lco1). Three independent biochemical assays showed direct binding of Lco1 to the C-terminal tail of A-type lamins with an affinity of 700 nM. Lco1 also bound the lamin B1 tail with lower affinity (2 microM). Ectopic Lco1 was found primarily in the nucleoplasm and colocalized with endogenous intranuclear A-type lamins in HeLa cells. Overexpression of prelamin A caused redistribution of ectopic Lco1 to the nuclear rim together with ectopic lamin A, confirming association of Lco1 with lamin A in vivo. Whereas the major C-terminal lamin-binding fragment of Lco1 was cytoplasmic, the N-terminal Lco1 fragment localized in the nucleoplasm upon expression in cells. Furthermore, full-length Lco1 was nuclear in cells lacking A-type lamins, showing that A-type lamins are not required for nuclear targeting of Lco1. We conclude that Lco1 is a novel intranuclear lamin-binding protein. We hypothesize that Lco1 is involved in organizing the internal lamin network and potentially relevant as a laminopathy disease gene or modifier.
Collapse
Affiliation(s)
- Sylvia Vlcek
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, A-1030 Vienna, Austria
| | | | | |
Collapse
|
117
|
Gajewski A, Csaszar E, Foisner R. A Phosphorylation Cluster in the Chromatin-binding Region Regulates Chromosome Association of LAP2α. J Biol Chem 2004; 279:35813-21. [PMID: 15208326 DOI: 10.1074/jbc.m402546200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LAP2alpha is a LEM family protein associated with nucleoplasmic A-type lamins and chromatin in interphase. Like lamins and other lamina proteins LAP2alpha is cytoplasmic in metaphase, but it associates with chromosomes prior to nuclear envelope formation in late anaphase to telophase. In vitro phosphorylation analysis and mass spectrometry identified a cluster of at least three mitotic cyclin-dependent kinase 1 phosphorylation sites in the C-terminal chromatin-binding region of LAP2alpha as well as four additional potential sites in the cluster, some of which were targeted alternatively in LAP2alpha mutated at the major sites. LAP2alpha mutants containing serine --> alanine mutations at all seven sites revealed a clear phenotype. Mutated LAP2alpha remained associated with chromosomes throughout mitosis, but the dissociation of lamins into the cytoplasm and nuclear envelope disassembly were not affected. These data demonstrate the in vivo significance of mitotic phosphorylation for the dynamic behavior of LAP2alpha in the cell cycle and show that, unlike the interaction with lamins, the chromatin association of LAP2alpha is regulated by multiple mitosis-specific phosphorylation at sites clustered within a defined region in the C terminus of the protein.
Collapse
Affiliation(s)
- Andreas Gajewski
- Department of Medical Biochemistry, Medical University of Vienna, Austria
| | | | | |
Collapse
|
118
|
Vergnes L, Péterfy M, Bergo MO, Young SG, Reue K. Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci U S A 2004; 101:10428-33. [PMID: 15232008 PMCID: PMC478588 DOI: 10.1073/pnas.0401424101] [Citation(s) in RCA: 305] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Indexed: 12/14/2022] Open
Abstract
Lamins are key structural components of the nuclear lamina, an intermediate filament meshwork that lies beneath the inner nuclear membrane. Lamins play a role in nuclear architecture, DNA replication, and gene expression. Mutations affecting A-type lamins have been associated with a variety of human diseases, including muscular dystrophy, cardiomyopathy, lipodystrophy, and progeria, but mutations in B-type lamins have never been identified in humans or in experimental animals. To investigate the in vivo function of lamin B1, the major B-type lamin, we generated mice with an insertional mutation in Lmnb1. The mutation resulted in the synthesis of a mutant lamin B1 protein lacking several key functional domains, including a portion of the rod domain, the nuclear localization signal, and the CAAX motif (the carboxyl-terminal signal for farnesylation). Homozygous Lmnb1 mutant mice survived embryonic development but died at birth with defects in lung and bone. Fibroblasts from mutant embryos grew under standard cell-culture conditions but displayed grossly misshapen nuclei, impaired differentiation, increased polyploidy, and premature senescence. Thus, the lamin B1 mutant mice provide evidence for a broad and nonredundant function of lamin B1 in mammalian development. These mutant mice and cell lines derived from them will be useful models for studying the role of the nuclear lamina in various cellular processes.
Collapse
Affiliation(s)
- Laurent Vergnes
- Veterans Affairs Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
119
|
Fridkin A, Mills E, Margalit A, Neufeld E, Lee KK, Feinstein N, Cohen M, Wilson KL, Gruenbaum Y. Matefin, a Caenorhabditis elegans germ line-specific SUN-domain nuclear membrane protein, is essential for early embryonic and germ cell development. Proc Natl Acad Sci U S A 2004; 101:6987-92. [PMID: 15100407 PMCID: PMC406453 DOI: 10.1073/pnas.0307880101] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 03/22/2004] [Indexed: 01/12/2023] Open
Abstract
Caenorhabditis elegans mtf-1 encodes matefin, which has a predicted SUN domain, a coiled-coil region, an anti-erbB-2 IgG domain, and two hydrophobic regions. We show that matefin is a nuclear membrane protein that colocalizes in vivo with Ce-lamin, the single nuclear lamin protein in C. elegans, and binds Ce-lamin in vitro but does not require Ce-lamin for its localization. Matefin is detected in all embryonic cells until midembryogenesis and thereafter only in germ-line cells. Embryonic matefin is maternally deposited, and matefin is the first nuclear membrane protein known to have germ line-restricted expression. Animals homozygous for an mtf-1 deletion allele show that matefin is essential for germ line maturation and survival. However, matefin is also required for embryogenesis because mtf-1 (RNAi) embryos die around the approximately 300-cell stage with defects in nuclear structure, DNA content, and chromatin morphology. Down-regulating matefin in mes-3 animals only slightly enhances embryonic lethality, and elimination of UNC-84, the only other SUN-domain gene in C. elegans, has no affect on mtf-1 (RNAi) animals. Thus, mtf-1 mediates a previously uncharacterized pathway(s) required for embryogenesis as well as germ line proliferation or survival.
Collapse
Affiliation(s)
- Alexandra Fridkin
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Barrier-to-autointegration factor (BAF) is an essential protein that is highly conserved in metazoan evolution. BAF binds directly to double-stranded DNA, nuclear LEM-domain proteins, lamin A and transcription activators. BAF is also a host cell component of retroviral pre-integration complexes. BAF binds matrix, a retroviral protein, and facilitates efficient retroviral DNA integration in vitro through unknown mechanisms. New findings suggest that BAF has structural roles in nuclear assembly and chromatin organization, represses gene expression and might interlink chromatin structure, nuclear architecture and gene regulation in metazoans.
Collapse
Affiliation(s)
- Miriam Segura-Totten
- Department of Science and Technology, Universidad Metropolitana, PO Box 21150, San Juan, PR 00928, USA
| | | |
Collapse
|
121
|
Wagner N, Weber D, Seitz S, Krohne G. The lamin B receptor of Drosophila melanogaster. J Cell Sci 2004; 117:2015-28. [PMID: 15054108 DOI: 10.1242/jcs.01052] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lamin B receptor (LBR) is an integral membrane protein of the inner nuclear membrane that has so far been characterized only in vertebrates. Here, we describe the Drosophila melanogaster protein encoded by the annotated gene CG17952 that is the putative ortholog to the vertebrate LBR. The Drosophila lamin B receptor (dLBR) has the following properties in common with the vertebrate LBR. First, structure predictions indicate that the 741 amino acid dLBR protein possesses a highly charged N-terminal domain of 307 amino acids followed by eight transmembrane segments in the C-terminal domain of the molecule. Second, immunolocalization and cell fractionation reveal that the dLBR is an integral membrane protein of the inner nuclear membrane. Third, dLBR can be shown by co-immunoprecipitations and in vitro binding assays to bind to the Drosophila B-type lamin Dm0. Fourth, the N-terminal domain of dLBR is sufficient for in vitro binding to sperm chromatin and lamin Dm0. In contrast to the human LBR, dLBR does not possess sterol C14 reductase activity when it is expressed in the Saccharomyces cerevisiae erg24 mutant, which lacks sterol C14 reductase activity. Our data raise the possibility that, during evolution, the enzymatic activity of this insect protein had been lost. To determine whether the dLBR is an essential protein, we depleted it by RNA interference in Drosophila embryos and in cultured S2 and Kc167 cells. There is no obvious effect on the nuclear architecture or viability of treated cells and embryos, whereas the depletion of Drosophila lamin Dm0 in cultured cells and embryos caused morphological alterations of nuclei, nuclear fragility and the arrest of embryonic development. We conclude that dLBR is not a limiting component of the nuclear architecture in Drosophila cells during the first 2 days of development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- COS Cells
- Cell Line
- Cell Nucleus/metabolism
- Chromatin/metabolism
- DNA, Complementary/metabolism
- Databases as Topic
- Down-Regulation
- Drosophila Proteins/metabolism
- Drosophila melanogaster
- Electrophoresis, Polyacrylamide Gel
- Fluorescent Antibody Technique, Indirect
- Green Fluorescent Proteins/metabolism
- Humans
- Immunoprecipitation
- Lamins/metabolism
- Lipid Metabolism
- Male
- Mass Spectrometry
- Methionine/chemistry
- Microscopy, Electron
- Microscopy, Fluorescence
- Molecular Sequence Data
- Mutation
- Nuclear Envelope/metabolism
- Oxidoreductases/metabolism
- Plasmids/metabolism
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Tertiary
- RNA Interference
- RNA, Double-Stranded/chemistry
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Saccharomyces cerevisiae/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Spermatozoa/metabolism
- Sterols/metabolism
- Subcellular Fractions/metabolism
- Xenopus
- Lamin B Receptor
Collapse
Affiliation(s)
- Nicole Wagner
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | |
Collapse
|
122
|
Favreau C, Higuet D, Courvalin JC, Buendia B. Expression of a mutant lamin A that causes Emery-Dreifuss muscular dystrophy inhibits in vitro differentiation of C2C12 myoblasts. Mol Cell Biol 2004; 24:1481-92. [PMID: 14749366 PMCID: PMC344177 DOI: 10.1128/mcb.24.4.1481-1492.2004] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autosomal dominantly inherited missense mutations in lamins A and C cause several tissue-specific diseases, including Emery-Dreifuss muscular dystrophy (EDMD) and Dunnigan-type familial partial lipodystrophy (FPLD). Here we analyze myoblast-to-myotube differentiation in C2C12 clones overexpressing lamin A mutated at arginine 453 (R453W), one of the most frequent mutations in EDMD. In contrast with clones expressing wild-type lamin A, these clones differentiate poorly or not at all, do not exit the cell cycle properly, and are extensively committed to apoptosis. These disorders are correlated with low levels of expression of transcription factor myogenin and with the persistence of a large pool of hyperphosphorylated retinoblastoma protein. Since clones mutated at arginine 482 (a site responsible for FPLD) differentiate normally, we conclude that C2C12 clones expressing R453W-mutated lamin A represent a good cellular model to study the pathophysiology of EDMD. Our hypothesis is that lamin A mutated at arginine 453 fails to build a functional scaffold and/or to maintain the chromatin compartmentation required for differentiation of myoblasts into myocytes.
Collapse
Affiliation(s)
- Catherine Favreau
- Département de Biologie Cellulaire, Institut Jacques Monod, CNRS, Universités Paris 6 & 7, 75251 Paris cedex 05, France
| | | | | | | |
Collapse
|
123
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Zastrow MS, Vlcek S, Wilson KL. Proteins that bind A-type lamins: integrating isolated clues. J Cell Sci 2004; 117:979-87. [PMID: 14996929 DOI: 10.1242/jcs.01102] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
What do such diverse molecules as DNA, actin, retinoblastoma protein and protein kinase Cα all have in common? They and additional partners bind `A-type' lamins, which form stable filaments in animal cell nuclei. Mutations in A-type lamins cause a bewildering range of tissue-specific diseases, termed `laminopathies', including Emery-Dreifuss muscular dystrophy and the devastating Hutchinson-Gilford progeria syndrome, which mimics premature aging. Considered individually and collectively, partners for A-type lamins form four loose groups: architectural partners, chromatin partners, gene-regulatory partners and signaling partners. We describe 16 partners in detail, summarize their binding sites in A-type lamins, and sketch portraits of ternary complexes and functional pathways that might depend on lamins in vivo. On the basis of our limited current knowledge, we propose lamin-associated complexes with multiple components relevant to nuclear structure (e.g. emerin, nesprin 1α, actin) or signaling and gene regulation (e.g. LAP2α, retinoblastoma, E2F-DP heterodimers, genes) as `food for thought'. Testing these ideas will deepen our understanding of nuclear function and human disease.
Collapse
Affiliation(s)
- Michael S Zastrow
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
125
|
Alsheimer M, Liebe B, Sewell L, Stewart CL, Scherthan H, Benavente R. Disruption of spermatogenesis in mice lacking A-type lamins. J Cell Sci 2004; 117:1173-8. [PMID: 14996939 DOI: 10.1242/jcs.00975] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear lamins are structural protein components of the nuclear envelope. Mutations in LMNA, the gene coding for A-type lamins, result in several human hereditary diseases, the laminopathies, which include Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy, familial partial lipodystrophy and Hutchinson-Gilford progeria. Similar to the human conditions, it has been shown that Lmna–/– mice develop severe dystrophies of muscle and fat tissues. Here we report that Lmna–/– mice display impaired spermatogenesis, with a significant accumulation of spermatocytes I during early prophase I stages, while pachytene spermatocytes are severely defective in synaptic pairing of the sex chromosomes in particular, leading to massive apoptosis during the pachytene stage of meiosis I. In contrast, oogenesis remains largely unaffected in Lmna–/– mice. These results reveal A-type lamins as important determinants of male fertility.
Collapse
Affiliation(s)
- Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
126
|
Haraguchi T, Holaska JM, Yamane M, Koujin T, Hashiguchi N, Mori C, Wilson KL, Hiraoka Y. Emerin binding to Btf, a death-promoting transcriptional repressor, is disrupted by a missense mutation that causes Emery-Dreifuss muscular dystrophy. ACTA ACUST UNITED AC 2004; 271:1035-45. [PMID: 15009215 DOI: 10.1111/j.1432-1033.2004.04007.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Loss of functional emerin, a nuclear membrane protein, causes X-linked recessive Emery-Dreifuss muscular dystrophy. In a yeast two-hybrid screen, we found that emerin interacts with Btf, a death-promoting transcriptional repressor, which is expressed at high levels in skeletal muscle. Biochemical analysis showed that emerin binds Btf with an equilibrium affinity (KD) of 100 nm. Using a collection of 21 clustered alanine-substitution mutations in emerin, the residues required for binding to Btf mapped to two regions of emerin that flank its lamin-binding domain. Two disease-causing mutations in emerin, S54F and Delta95-99, disrupted binding to Btf. The Delta95-99 mutation was relatively uninformative, as this mutation also disrupts emerin binding to lamin A and a different transcription repressor named germ cell-less (GCL). In striking contrast, emerin mutant S54F, which binds normally to barrier-to-autointegration factor, lamin A and GCL, selectively disrupted emerin binding to Btf. We localized endogenous Btf in HeLa cells by indirect immunoflurorescence using affinity-purified antibodies against Btf. In nonapoptotic HeLa cells Btf was found in dot-like structures throughout the nuclear interior. However, within 3 h after treating cells with Fas antibody to induce apoptosis, the distribution of Btf changed, and Btf concentrated in a distinct zone near the nuclear envelope. These results suggest that Btf localization is regulated by apoptotic signals, and that loss of emerin binding to Btf may be relevant to muscle wasting in Emery-Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Tokuko Haraguchi
- CREST Research Project, Kansai Advanced Research Center, Communications Research Laboratory, Iwaoka-cho, Nishi-ku, Kobe, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Maraldi NM, Lattanzi G, Squarzoni S, Sabatelli P, Marmiroli S, Ognibene A, Manzoli FA. At the nucleus of the problem: nuclear proteins and disease. ADVANCES IN ENZYME REGULATION 2004; 43:411-43. [PMID: 12791400 DOI: 10.1016/s0065-2571(02)00042-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
128
|
Lamin-Associated Proteins. Methods Cell Biol 2004. [DOI: 10.1016/s0091-679x(04)78029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
129
|
Prüfert K, Winkler C, Paulin-Levasseur M, Krohne G. The lamina-associated polypeptide 2 (LAP2) genes of zebrafish and chicken: no LAP2α isoform is synthesised by non-mammalian vertebrates. Eur J Cell Biol 2004; 83:403-11. [PMID: 15506564 DOI: 10.1078/0171-9335-00402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian lamina-associated polypeptide 2 (LAP2) gene encodes six isoforms (LAP2alpha, beta, delta, epsilon, gamma, zeta) that are synthesised from alternatively spliced mRNAs. The mammalian LAP2alpha is one of the predominant isoforms and localised in the nucleoplasm whereas LAP2beta, delta, epsilon, and gamma are integral membrane proteins of the inner nuclear membrane. We have analysed the LAP2 gene structure of the zebrafish Danio rerio as an attractive lower vertebrate model organism. The zebrafish LAP2 (ZLAP2) gene without regulatory sequences spans approximately 19 kb of genomic DNA. It contains 15 exons that encode the isoforms ZLAP2beta, gamma, and omega which are localised in the inner nuclear membrane. By radiation hybrid mapping, we have located the gene onto linkage group 4 between EST markers fc01g04 (213.97cR) and fb49f01 (215.69cR). The identification of a chicken genomic clone comprising the complete coding region of the avian LAP2 gene enabled us to compare the LAP2 gene structure amongst vertebrates. In contrast to the mammalian LAP2 gene, the zebrafish and the chicken sequences do not encode for an alpha-isoform. In parallel we searched for an alpha-isoform in birds using polyclonal and monoclonal LAP2 antibodies specific for the common evolutionary conserved aminoterminal domain present in all isoforms. We detected LAP2beta as the predominant isoform but no LAP2alpha in tissues of 10-day-old chicken embryos and cultured chicken fibroblasts thus confirming the genomic analysis. The comparison of each zebrafish and chicken LAP2 exon with the corresponding exons of the human LAP2 gene demonstrates that the degree of identity at the amino acid level is much higher between the human and chicken than between the human and zebrafish sequences. By Blast search with the nucleotide and amino acid sequences of the human LAP2alpha, we did not find any significant homologies in databases of the zebrafish and chicken sequences. Our data suggest that LAP2alpha is a novelty of mammals.
Collapse
Affiliation(s)
- Kristina Prüfert
- Division of Electron Microscopy, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
130
|
Sullivan EJ, Kasinathan S, Kasinathan P, Robl JM, Collas P. Cloned Calves from Chromatin Remodeled In Vitro1. Biol Reprod 2004; 70:146-53. [PMID: 13679310 DOI: 10.1095/biolreprod.103.021220] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have developed a novel system for remodeling mammalian somatic nuclei in vitro prior to cloning by nuclear transplantation. The system involves permeabilization of the donor cell and chromatin condensation in a mitotic cell extract to promote removal of nuclear factors solubilized during chromosome condensation. The condensed chromosomes are transferred into enucleated oocytes prior to activation. Unlike nuclei of nuclear transplant embryos, nuclei of chromatin transplant embryos exhibit a pattern of markers closely resembling that of normal embryos. Healthy calves were produced by chromatin transfer. Compared with nuclear transfer, chromatin transfer shows a trend toward greater survival of cloned calves up to at least 1 mo after birth. This is the first successful demonstration of a method for directly manipulating the somatic donor chromatin prior to transplantation. This procedure should be useful for investigating mechanisms of nuclear reprogramming and for making improvements in the efficiency of mammalian cloning.
Collapse
|
131
|
Alexandrova O, Solovei I, Cremer T, David CN. Replication labeling patterns and chromosome territories typical of mammalian nuclei are conserved in the early metazoan Hydra. Chromosoma 2003; 112:190-200. [PMID: 14615892 DOI: 10.1007/s00412-003-0259-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 10/17/2003] [Accepted: 10/20/2003] [Indexed: 02/08/2023]
Abstract
To investigate the evolutionary conservation of higher order nuclear architecture previously described for mammalian cells we have analyzed the nuclear architecture of the simple polyp Hydra. These diploblastic organisms have large nuclei (8-10 microm) containing about 3x10(9) bp of DNA organized in 15 chromosome pairs. They belong to the earliest metazoan phylum and are separated from mammals by at least 600 million years. Single and double pulse labeling with halogenated nucleotides (bromodeoxyuridine, iododeoxyuridine and chlorodeoxyuridine) revealed striking similarities to the known sequence of replication labeling patterns in mammalian nuclei. These patterns reflect a persistent nuclear arrangement of early, mid-, and late replicating chromatin foci that could be identified during all stages of interphase over at least 5-10 cell generations. Segregation of labeled chromatids led after several cell divisions to nuclei with single or a few labeled chromosome territories. In such nuclei distinct clusters of labeled chromatin foci were separated by extended nuclear areas with non-labeled chromatin, which is typical of a territorial arrangement of interphase chromosomes. Our results indicate the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals and suggest the existence of conserved mechanism(s) controlling this architecture.
Collapse
Affiliation(s)
- Olga Alexandrova
- Department of Biology II, Cell and Developmental Biology, Ludwig Maximilians University, Munich, Germany
| | | | | | | |
Collapse
|
132
|
Merkle T. Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signalling. Curr Genet 2003; 44:231-60. [PMID: 14523572 DOI: 10.1007/s00294-003-0444-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 08/21/2003] [Accepted: 09/01/2003] [Indexed: 12/21/2022]
Abstract
Considerable progress has been made in the past few years in characterising Arabidopsis nuclear transport receptors and in elucidating plant signal transduction pathways that employ nucleo-cytoplasmic partitioning of a member of the signal transduction chain. This review briefly introduces the major principles of nuclear transport of macromolecules across the nuclear envelope and the proteins involved, as they have been described in vertebrates and yeast. Proteins of the plant nuclear transport machinery that have been identified to date are discussed, the focus being on Importin beta-like nuclear transport receptors. Finally, the importance of nucleo-cytoplasmic partitioning as a regulatory tool for signalling is highlighted, and different plant signal transduction pathways that make use of this regulatory potential are presented.
Collapse
Affiliation(s)
- Thomas Merkle
- Institute of Biology II, Cell Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
133
|
Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 223:83-175. [PMID: 12641211 DOI: 10.1016/s0074-7696(05)23003-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cell biology of intermediate filament (IF) proteins and their filaments is complicated by the fact that the members of the gene family, which in humans amount to at least 65, are differentially expressed in very complex patterns during embryonic development. Thus, different tissues and cells express entirely different sets and amounts of IF proteins, the only exception being the nuclear B-type lamins, which are found in every cell. Moreover, in the course of evolution the individual members of this family have, within one species, diverged so much from each other with regard to sequence and thus molecular properties that it is hard to envision a unifying kind of function for them. The known epidermolytic diseases, caused by single point mutations in keratins, have been used as an argument for a role of IFs in mechanical "stress resistance," something one would not have easily ascribed to the beaded chain filaments, a special type of IF in the eye lens, or to nuclear lamins. Therefore, the power of plastic dish cell biology may be limited in revealing functional clues for these structural elements, and it may therefore be of interest to go to the extreme ends of the life sciences, i.e., from the molecular properties of individual molecules including their structure at the atomic level to targeted inactivation of their genes in living animals, mouse, and worm to define their role more precisely in metazoan cell physiology.
Collapse
Affiliation(s)
- Harald Herrmann
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
134
|
Furukawa K, Sugiyama S, Osouda S, Goto H, Inagaki M, Horigome T, Omata S, McConnell M, Fisher PA, Nishida Y. Barrier-to-autointegration factor plays crucial roles in cell cycle progression and nuclear organization in Drosophila. J Cell Sci 2003; 116:3811-23. [PMID: 12902403 DOI: 10.1242/jcs.00682] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Barrier-to-autointegration factor (BAF) is potentially a DNA-bridging protein, which directly associates with inner nuclear membrane proteins carrying LEM domains. These features point to a key role in regulation of nuclear function and organization, dependent on interactions between the nuclear envelope and chromatin. To understand the functions of BAF in vivo, Drosophila baf null mutants generated by P-element-mediated imprecise excision were analyzed. Homozygous null mutants showed a typical mitotic mutant phenotype: lethality at the larval-pupal transition with small brains and missing imaginal discs. Mitotic figures were decreased but a defined anaphase defect as reported for C. elegans RNAi experiments was not observed in these small brains, suggesting a different phase or phases of cell cycle arrest. Specific abnormalities in interphase nuclear structure were frequently found upon electron microscopic examination of baf null mutants, with partial clumping of chromatin and convolution of nuclear shape. At the light microscopic level, grossly aberrant nuclear lamina structure and B-type lamin distribution correlated well with the loss of detectable amounts of BAF protein from nuclei. Together, these data represent evidence of BAF's anticipated function in mediating interactions between the nuclear envelope and interphase chromosomes. We thus conclude that BAF plays essential roles in nuclear organization and that these BAF functions are required in both M phase and interphase of the cell cycle.
Collapse
Affiliation(s)
- Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Laronne A, Rotkopf S, Hellman A, Gruenbaum Y, Porter ACG, Brandeis M. Synchronization of interphase events depends neither on mitosis nor on cdk1. Mol Biol Cell 2003; 14:3730-40. [PMID: 12972560 PMCID: PMC196563 DOI: 10.1091/mbc.e02-12-0850] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human HT2-19 cells with a conditional cdk1 mutation stop dividing upon cdk1 inactivation and undergo multiple rounds of endoreplication. We show herein that major cell cycle events remain synchronized in these endoreplicating cells. DNA replication alternates with gap phases and cell cycle-specific cyclin E expression is maintained. Centrosomes duplicate in synchrony with chromosome replication, giving rise to polyploid cells with multiple centrosomes. Centrosome migration, a typical prophase event, also takes place in endoreplicating cells. The timing of these events is unaffected by cdk1 inactivation compared with normally dividing cells. Nuclear lamina breakdown, in contrast, previously shown to be dependent on cdk1, does not take place in endoreplicating HT2-19 cells. Moreover, breakdown of all other major components of the nuclear lamina, like the inner nuclear membrane proteins and nuclear pore complexes, seems also to depend on cdk1. Interestingly, the APC/C ubiquitin ligase is activated in these endoreplicating cells by fzr but not by fzy. The oscillations of interphase events are thus independent of cdk1 and of mitosis but may depend on APC/Cfzr activity.
Collapse
Affiliation(s)
- Ayelet Laronne
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
136
|
Schoft VK, Beauvais AJ, Lang C, Gajewski A, Prüfert K, Winkler C, Akimenko MA, Paulin-Levasseur M, Krohne G. The lamina-associated polypeptide 2 (LAP2) isoforms beta, gamma and omega of zebrafish: developmental expression and behavior during the cell cycle. J Cell Sci 2003; 116:2505-17. [PMID: 12734396 DOI: 10.1242/jcs.00450] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zebrafish lamina-associated polypeptides 2 (ZLAP2) beta, gamma and omega have in common an N-terminal region with a LEM domain, and in the C-terminal half of the molecule a lamina binding domain and a membrane spanning sequence. The maternally synthesized omega is the largest isoform and the only LAP2 present in the rapidly dividing embryonic cells up to the gastrula stage. ZLAP2omega levels decrease during development, concomitant with the increase of the somatic isoforms ZLAP2beta and gamma. In somatic zebrafish cells ZLAP2gamma is the predominant isoform, whereas only small amounts of ZLAP2beta are present. During early embryonic development, ZLAP2omega becomes associated with mitotic chromosomes before anaphase. The surface of these chromosomes is decorated with vesicles, and each chromosome assembles its own nuclear envelope at the end of mitosis (karyomere formation). Ectopically expressed ZLAP2omega-green fluorescent protein (GFP) fusion protein targets vesicles to mitotic chromosomes in Xenopus A6 cells, suggesting that ZLAP2omega is involved in karyomere formation during early zebrafish development. When ZLAP2beta and gamma were expressed as GFP fusion proteins in Xenopus A6 cells, the beta- but not the gamma-isoform was found in association with mitotic chromosomes, and ZLAP2beta-containing chromosomes were decorated with vesicles. Further analysis of ZLAP2-GFP fusion proteins containing only distinct domains of the ZLAP2 isoforms revealed that the common N-terminal region in conjunction with beta- or omega-specific sequences mediate binding to mitotic chromosomes in vivo.
Collapse
Affiliation(s)
- Vera K Schoft
- Division of Electron Microscopy, Biocenter of the University of Wü rzburg, Am Hubland, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Bechert K, Lagos-Quintana M, Harborth J, Weber K, Osborn M. Effects of expressing lamin A mutant protein causing Emery-Dreifuss muscular dystrophy and familial partial lipodystrophy in HeLa cells. Exp Cell Res 2003; 286:75-86. [PMID: 12729796 DOI: 10.1016/s0014-4827(03)00104-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Patients with the autosomal dominant form of Emery-Dreifuss muscular dystrophy (EDMD) or familial partial lipodystrophy (FPLD) have specific mutations in the lamin A gene. Three such point mutations, G465D (FPLD), R482L, (FPLD), or R527P (EDMD), were introduced by site-specific mutagenesis in the C-terminal tail domain of a FLAG-tagged full-length lamin A construct. HeLa cells were transfected with mutant and wild-type constructs. Lamin A accumulated in nuclear aggregates and the number of cells with aggregates increased with time after transfection. At 72 h post transfection 60-80% of cells transfected with the mutant lamin A constructs had aggregates, while only 35% of the cells transfected with wild-type lamin A revealed aggregates. Mutant transfected cells expressed 10-24x, and wild-type transfected cells 20x, the normal levels of lamin A. Lamins C, B1 and B2, Nup153, LAP2, and emerin were recruited into aggregates, resulting in a decrease of these proteins at the nuclear rim. Aggregates were also characterized by electron microscopy and found to be preferentially associated with the inner nuclear membrane. Aggregates from mutant constructs were larger than those formed by the wild-type constructs, both in immunofluorescence and electron microscopy. The combined results suggest that aggregate formation is in part due to overexpression, but that there are also mutant-specific effects.
Collapse
Affiliation(s)
- Kim Bechert
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
138
|
Osada SI, Ohmori SY, Taira M. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development 2003; 130:1783-94. [PMID: 12642484 DOI: 10.1242/dev.00401] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A family of inner nuclear membrane proteins is implicated in gene regulation by interacting with chromatin, nuclear lamina and intranuclear proteins; however, the physiological functions of these proteins are largely unknown. Using a Xenopus expression screening approach with an anterior neuroectoderm cDNA library, we have identified an inner nuclear membrane protein, XMAN1, as a novel neuralizing factor that is encoded by the Xenopus ortholog of human MAN1. XMAN1 mRNA is expressed maternally, and appears to be restricted to the entire ectoderm at the early gastrula stage, then to the anterior neuroectoderm at the neurula stage. XMAN1 induces anterior neural markers without mesoderm induction in ectodermal explants, and a partial secondary axis when expressed ventrally by dorsalizing the ventral mesoderm. Importantly, XMAN1 antagonizes bone morphogenetic protein (BMP) signaling downstream of its receptor Alk3, as judged by animal cap assays, in which XMAN1 blocks expression of downstream targets of BMP signaling (Xhox3 and Msx1), and by luciferase reporter assays, in which XMAN1 suppresses BMP-dependent activation of the Xvent2 promoter. Deletion mutant analyses reveal that the neuralizing and BMP-antagonizing activities of XMAN1 reside in the C-terminal region, and that the C-terminal region binds to Smad1, Smad5 and Smad8, which are intracellular mediators of the BMP pathway. Interference with endogenous XMAN1 functions with antisense morpholino oligos leads to the reduction of anterior neuroectoderm. These results provide the first evidence that the nuclear envelope protein XMAN1 acts as a Smad-interacting protein to antagonize BMP signaling during Xenopus embryogenesis.
Collapse
Affiliation(s)
- Shin-Ichi Osada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
139
|
Liu J, Lee KK, Segura-Totten M, Neufeld E, Wilson KL, Gruenbaum Y. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2003; 100:4598-603. [PMID: 12684533 PMCID: PMC153601 DOI: 10.1073/pnas.0730821100] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2002] [Accepted: 02/11/2003] [Indexed: 11/18/2022] Open
Abstract
Emerin and MAN1 are LEM domain-containing integral membrane proteins of the vertebrate nuclear envelope. The function of MAN1 is unknown, whereas emerin is known to interact with nuclear lamins, barrier-to-autointegration factor (BAF), nesprin-1 alpha, and a transcription repressor. Mutations in emerin cause X-linked recessive Emery-Dreifuss muscular dystrophy. Emerin and MAN1 homologs are both conserved in Caenorhabditis elegans, but loss of Ce-emerin has no detectable phenotype. We therefore used C. elegans to test the hypothesis that Ce-MAN1 overlaps functionally with Ce-emerin. Supporting this model, Ce-MAN1 interacted directly with Ce-lamin and Ce-BAF in vitro and required Ce-lamin for its nuclear envelope localization. Interestingly, RNA interference-mediated removal of approximately 90% of Ce-MAN1 was lethal to approximately 15% of embryos. However, in the absence of Ce-emerin, approximately 90% reduction of Ce-MAN1 was lethal to all embryos by the 100-cell stage, with a phenotype involving repeated cycles of anaphase chromosome bridging and cytokinesis ["cell untimely torn" (cut) phenotype]. Immunostaining showed that the anaphase-bridged chromatin specifically retained a mitosis-specific phosphohistone H3 epitope and failed to recruit detectable Ce-lamin or Ce-BAF. These findings show that LEM domain proteins are essential for cell division and that Ce-emerin and Ce-MAN1 share at least one and possibly multiple overlapping functions, which may be relevant to Emery-Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, 439 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
140
|
Abstract
Several neuromuscular diseases are caused by mutations in emerin and A-type lamins, proteins of the nuclear envelope. Emery-Dreifuss muscular dystrophy is caused by mutations in emerin (X-linked) or A-type lamins (autosomal dominant). Mutations in A-type lamins also cause limb-girdle muscular dystrophy type 1B, dilated cardiomyopathy with conduction defect, and Charcot-Marie-Tooth disorder type 2B1. They also cause partial lipodystrophy syndromes. The functions of emerin and A-type lamins and the mechanisms of how mutations in these proteins cause tissue-specific diseases are not well understood. The mutated proteins may cause structural damage to cells but may also affect processes such as gene regulation. This review gives an overview of this topic and describes recent advances in identification of disease-causing mutations, studies of cells and tissues from subjects with these diseases, and animal and cell culture models.
Collapse
Affiliation(s)
- Cecilia Ostlund
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, Tenth Floor, New York, New York 10032, USA
| | | |
Collapse
|
141
|
Lang C, Krohne G. Lamina-associated polypeptide 2beta (LAP2beta) is contained in a protein complex together with A- and B-type lamins. Eur J Cell Biol 2003; 82:143-53. [PMID: 12691263 DOI: 10.1078/0171-9335-00305] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lamina-associated polypeptide 2beta (LAP2beta) of vertebrates is an integral membrane protein of the inner nuclear membrane that is generated by alternative splicing from the LAP2 gene. In the majority of Xenopus somatic cells including cultured kidney epithelial cells (A6 cells) there is only one major LAP2 isoform expressed that has the highest similarities with the mammalian LAP2beta whereas isoforms corresponding in size to the mammalian LAP2gamma and alpha are not detectable. We selected A6 cells and A6 cells stably expressing GFP fusion proteins of Xenopus LAP2beta (XLAP2Pbeta) as a model system to study interactions between LAP2beta and lamins. In vitro binding experiments with GST-XLAP2beta fusion proteins and immunoprecipitations with antibodies to GFP revealed that XLAP2beta is part of a complex that contains A- and B-type lamins. For the targeting to the nuclear envelope and the in vivo formation of this complex, GFP fusion proteins were sufficient comprising only the carboxyterminal 135 amino acids of XLAP2beta or the comparable region of zebrafish LAP2beta. A highly conserved 36 amino acids long sequence is located in this region of LAP2beta that is part of the lamina-binding domain previously identified in rat LAP2beta. GFP-LAP2beta fusion proteins of Xenopus, zebrafish, and rat that contained this sequence do compete with endogenous LAP2 in transfected cells for the same binding sites in the lamina. Our data indicate that the lamina-binding site of LAP2beta has been highly conserved during vertebrate evolution and suggests that this region of LAP2beta mediates the interactions between polymers of A- and B-type lamins.
Collapse
Affiliation(s)
- Carmen Lang
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Würzburg/Germany
| | | |
Collapse
|
142
|
Holaska JM, Lee KK, Kowalski AK, Wilson KL. Transcriptional repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to emerin in vitro. J Biol Chem 2003; 278:6969-75. [PMID: 12493765 DOI: 10.1074/jbc.m208811200] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emerin belongs to the "LEM domain" family of nuclear proteins, which contain a characteristic approximately 40-residue LEM motif. The LEM domain mediates direct binding to barrier to autointegration factor (BAF), a conserved 10-kDa chromatin protein essential for embryogenesis in Caenorhabditis elegans. In mammalian cells, BAF recruits emerin to chromatin during nuclear assembly. BAF also mediates chromatin decondensation during nuclear assembly. The LEM domain and central region of emerin are essential for binding to BAF and lamin A, respectively. However, two other conserved regions of emerin lacked ascribed functions, suggesting that emerin could have additional partners. We discovered that these "unascribed" domains of emerin mediate direct binding to a transcriptional repressor, germ cell-less (GCL). GCL co-immunoprecipitates with emerin from HeLa cells. We determined the binding affinities of emerin for GCL, BAF, and lamin A and analyzed their oligomeric interactions. We showed that emerin forms stable complexes with either lamin A plus GCL or lamin A plus BAF. Importantly, BAF competed with GCL for binding to emerin in vitro, predicting that emerin can form at least two distinct types of complexes in vivo. Loss of emerin causes Emery-Dreifuss muscular dystrophy, a tissue-specific inherited disease that affects skeletal muscles, major tendons, and the cardiac conduction system. Although GCL alone cannot explain the disease mechanism, our results strongly support gene expression models for Emery-Dreifuss muscular dystrophy by showing that emerin binds directly to a transcriptional repressor, GCL, and by suggesting that emerin-repressor complexes might be regulated by BAF. Biochemical roles for emerin in gene expression are discussed.
Collapse
Affiliation(s)
- James M Holaska
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
143
|
Kimura T, Ito C, Watanabe S, Takahashi T, Ikawa M, Yomogida K, Fujita Y, Ikeuchi M, Asada N, Matsumiya K, Okuyama A, Okabe M, Toshimori K, Nakano T. Mouse germ cell-less as an essential component for nuclear integrity. Mol Cell Biol 2003; 23:1304-15. [PMID: 12556490 PMCID: PMC141152 DOI: 10.1128/mcb.23.4.1304-1315.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mouse homologue of the Drosophila melanogaster germ cell-less (mgcl-1) gene is expressed ubiquitously, and its gene product is localized to the nuclear envelope based on its binding to LAP2 beta (lamina-associated polypeptide 2 beta). To elucidate the role of mgcl-1, we analyzed two mutant mouse lines that lacked mgcl-1 gene expression. Abnormal nuclear morphologies that were probably due to impaired nuclear envelope integrity were observed in the liver, exocrine pancreas, and testis. In particular, functional abnormalities were observed in testis in which the highest expression of mgcl-1 was detected. Fertility was significantly impaired in mgcl-1-null male mice, probably as a result of severe morphological abnormalities in the sperm. Electron microscopic observations showed insufficient chromatin condensation and abnormal acrosome structures in mgcl-1-null sperm. In addition, the expression patterns of transition proteins and protamines, both of which are essential for chromatin remodeling during spermatogenesis, were aberrant. Considering that the first abnormality during the process of spermatogenesis was abnormal nuclear envelope structure in spermatocytes, the mgcl-1 gene product appears to be essential for appropriate nuclear-lamina organization, which in turn is essential for normal sperm morphogenesis and chromatin remodeling.
Collapse
Affiliation(s)
- Tohru Kimura
- Department of Molecular Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Maraldi NM, Squarzoni S, Sabatelli P, Lattanzi G, Ognibene A, Manzoli FA. Emery-Dreifuss muscular dystrophy, nuclear cell signaling and chromatin remodeling. ADVANCES IN ENZYME REGULATION 2002; 42:1-18. [PMID: 12123703 DOI: 10.1016/s0065-2571(01)00022-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nadir M Maraldi
- Institute of Citomorfologia Normale e Patologica C.N.R. and Laboratory of Biologia Cellulare e Microscopia Elettronica, I. O. R., Bologna, Italy
| | | | | | | | | | | |
Collapse
|
145
|
Markiewicz E, Dechat T, Foisner R, Quinlan RA, Hutchison CJ. Lamin A/C binding protein LAP2alpha is required for nuclear anchorage of retinoblastoma protein. Mol Biol Cell 2002; 13:4401-13. [PMID: 12475961 PMCID: PMC138642 DOI: 10.1091/mbc.e02-07-0450] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Revised: 07/31/2002] [Accepted: 08/29/2002] [Indexed: 11/11/2022] Open
Abstract
The phosphorylation-dependent anchorage of retinoblastoma protein Rb in the nucleus is essential for its function. We show that its pocket C domain is both necessary and sufficient for nuclear anchorage by transiently expressing green fluorescent protein (GFP) chimeras of Rb fragments in tissue culture cells and by extracting the cells with hypotonic solutions. Solid phase binding assays using glutathione S-transferase-fusion of Rb pockets A, B, and C revealed a direct association of lamin C exclusively to pocket C. Lamina-associated polypeptide (LAP) 2alpha, a binding partner of lamins A/C, bound strongly to pocket C and weakly to pocket B. When LAP2alpha was immunoprecipitated from soluble nuclear fractions, lamins A/C and hypophosphorylated Rb were coprecipitated efficiently. Similarly, immunoprecipitation of expressed GFP-Rb fragments by using anti-GFP antibodies coprecipitated LAP2alpha, provided that pocket C was present in the GFP chimeras. On redistribution of endogenous lamin A/C and LAP2alpha into nuclear aggregates by overexpressing dominant negative lamin mutants in tissue culture cells, Rb was also sequestered into these aggregates. In primary skin fibroblasts, LAP2alpha is expressed in a growth-dependent manner. Anchorage of hypophosphorylated Rb in the nucleus was weakened significantly in the absence of LAP2alpha. Together, these data suggest that hypophosphorylated Rb is anchored in the nucleus by the interaction of pocket C with LAP2alpha-lamin A/C complexes.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Department of Biological Sciences, The University of Durham, Durham DH1 3LE, United Kingdom
| | | | | | | | | |
Collapse
|
146
|
Broers JLV, Bronnenberg NMHJ, Kuijpers HJH, Schutte B, Hutchison CJ, Ramaekers FCS. Partial cleavage of A-type lamins concurs with their total disintegration from the nuclear lamina during apoptosis. Eur J Cell Biol 2002; 81:677-91. [PMID: 12553668 DOI: 10.1078/0171-9335-00282] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although activated caspase 6 is capable of cleaving both A- and B-type lamins during apoptosis, the higher-order structure of the nuclear lamina may cause a differential breakdown of these two types of lamins. In order to obtain a better understanding of the dynamics and the consequences of the rapid, coordinated breakdown of the lamina complex, we applied the green fluorescent protein (GFP) technology in living cells, in which the fate of individual caspase cleavage fragments of A- and B-type lamins was examined. CHO-K1 cells were stably transfected with cDNA constructs encoding N-terminally GFP-labelled hybrids of lamin A, lamin Adelta10, lamin C or lamin B1. The course of the apoptotic process, induced by the kinase inhibitor staurosporine or by the proteasome inhibitor MG132, was monitored by digital imaging microscopy or confocal microscopy. Time-lapse recordings showed that parallel to DNA condensation N-terminally GFP-tagged A-type lamins became diffusely dispersed throughout the nucleoplasm and rapidly translocated to the cytoplasm. In contrast, the majority of GFP-lamin B1 signal remained localised at the nuclear periphery, even after extensive DNA condensation. Comparison of lamin B1-GFP signal with A-type lamin antibody staining in the same apoptotic cells confirmed the temporal differences between A- and B-type lamina dispersal. Immunoblotting revealed only a partial cleavage of A-type lamins and an almost complete cleavage of lamin B1 during apoptosis. In contrast to lamin B1 in normal cells, this cleaved lamin B1, which is apparently still associated with the nuclear membrane, can be completely extracted by methanol or ethanol. Fluorescence loss of intensity after photobleaching experiments showed that in apoptotic cells A-type lamin-GFP molecules diffuse almost freely in both nucleoplasm and cytoplasm, while the lamin B1-GFP fragments remain more stably associated with the nuclear membrane, which is confirmed by co-localisation immunofluorescence studies with a nucleoporin p62 antibody. Our results therefore clearly show a differential behaviour of A- and B-type lamins during apoptosis, suggesting not only distinct differences in the organisation of the lamina filaments, but also that caspase cleavage of only a small fraction of A-type lamins is needed for its complete disintegration.
Collapse
Affiliation(s)
- Jos L V Broers
- Department of Molecular Cell Biology, Research Institute Growth & Development (GROW), University of Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
147
|
Abstract
Inherited disorders of the nuclear lamina present some of the most intriguing puzzles in cell biology. Mutations in lamin A and lamin C - nuclear intermediate filament proteins that are expressed in nearly all somatic cells - cause tissue-specific diseases that affect striated muscle, adipose tissue and peripheral nerve or skeletal development. Recent studies provide clues about how different mutations in these proteins cause either muscle disease or partial lipodystrophy. Although the precise pathogenic mechanisms are currently unknown, the involvement of lamins in several different disorders shows that research on the nuclear lamina will shed light on common human pathologies.
Collapse
Affiliation(s)
- Howard J Worman
- Dept of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
148
|
Kametaka A, Takagi M, Hayakawa T, Haraguchi T, Hiraoka Y, Yoneda Y. Interaction of the chromatin compaction-inducing domain (LR domain) of Ki-67 antigen with HP1 proteins. Genes Cells 2002; 7:1231-42. [PMID: 12485163 DOI: 10.1046/j.1365-2443.2002.00596.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The LR domain of marsupial chmadrin is defined by its C-terminal amino acid sequence, which contains several pairs of leucine (L) and arginine (R) residues. The LR domain of chmadrin causes a significant compaction of chromatin over the entire length of chromosomes when it is overproduced. The possible human homologue of chmadrin, Ki-67 antigen (pKi-67), also has a stretch of LR pairs, but with no obvious overall similarity, at its C-terminus. RESULTS The LR domain of human pKi-67 also induced chromatin compaction, both in human and marsupial cells. A yeast two-hybrid assay and an in vitro binding assay demonstrated that the human LR domain binds to heterochromatin protein 1 (HP1), a well-characterized molecule as a mediator of heterochromatin formation. In fixed cells stained with specific antibodies, the pKi-67 was found to be co-localized partially with HP1 at foci on chromosomes in an early G1 phase. Time-lapse observation in living cells co-expressing the fluorescently tagged proteins showed that the LR domain formed foci on chromosomes over a limited period of the cell cycle from the telophase to early G1 phase and that HP1 subsequently accumulated at these foci of the LR domain. CONCLUSIONS Marsupial chmadrin and human pKi-67 induce chromatin compaction across species, possibly via the interaction of its LR domain with HP1.
Collapse
Affiliation(s)
- Ai Kametaka
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Japan
| | | | | | | | | | | |
Collapse
|
149
|
Zinn-Justin S. Maladies génétiques et lamines de type A : apport de la biologie structurale. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/200218111054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
150
|
Wang X, Xu S, Rivolta C, Li LY, Peng GH, Swain PK, Sung CH, Swaroop A, Berson EL, Dryja TP, Chen S. Barrier to autointegration factor interacts with the cone-rod homeobox and represses its transactivation function. J Biol Chem 2002; 277:43288-300. [PMID: 12215455 DOI: 10.1074/jbc.m207952200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crx (cone-rod homeobox) is a homeodomain transcription factor implicated in regulating the expression of photoreceptor and pineal genes. To identify proteins that interact with Crx in the retina, we carried out a yeast two-hybrid screen of a retinal cDNA library. One of the identified clones encodes Baf (barrier to autointegration factor), which was previously shown to have a role in mitosis and retroviral integration. Additional biochemical assays provided supporting evidence for a Baf-Crx interaction. The Baf protein is detectable in all nuclear layers of the mouse retina, including the photoreceptors and the bipolar cells where Crx is expressed. Transient transfection assays with a rhodopsin-luciferase reporter in HEK293 cells demonstrate that overexpression of Baf represses Crx-mediated transactivation, suggesting that Baf acts as a negative regulator of Crx. Consistent with this role for Baf, an E80A mutation of CRX associated with cone-rod dystrophy has a higher than normal transactivation potency but a reduced interaction with Baf. Although our studies did not identify a causative Baf mutation in retinopathies, we suggest that Baf may contribute to the phenotype of a photoreceptor degenerative disease by modifying the activity of Crx. In view of the ubiquitous expression of Baf, we hypothesize that it may play a role in regulating tissue- or cell type-specific gene expression by interacting with homeodomain transcription factors.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Ophthalmology and Visual Sciences, Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|