101
|
Montes-Rodriguez A, Kost B. Direct Comparison of the Performance of Commonly Employed In Vivo F-actin Markers (Lifeact-YFP, YFP-mTn and YFP-FABD2) in Tobacco Pollen Tubes. FRONTIERS IN PLANT SCIENCE 2017; 8:1349. [PMID: 28824684 PMCID: PMC5540898 DOI: 10.3389/fpls.2017.01349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/19/2017] [Indexed: 05/17/2023]
Abstract
In vivo markers for F-actin organization and dynamics are extensively used to investigate cellular functions of the actin cytoskeleton, which are essential for plant development and pathogen defense. The most widely employed markers are GFP variants fused to F-actin binding domains of mouse talin (GFP-mTn), Arabidopsis fimbrin1 (GFP-FABD2) or yeast Abp140 (Lifeact-GFP). Although numerous reports describing applications of one, or occasionally more, of these markers, are available in the literature, a direct quantitative comparison of the performance of all three markers at different expression levels has been missing. Here, we analyze F-actin organization and growth rate displayed by tobacco pollen tubes expressing YFP-mTn, YFP-FABD2 or Lifeact-YFP at different levels. Results obtained establish that: (1) all markers strongly affect F-actin organization and cell expansion at high expression levels, (2) YFP-mTn and Lifeact-YFP non-invasively label the same F-actin structures (longitudinally oriented filaments in the shank, a subapical fringe) at low expression levels, (3) Lifeact-YFP displays a somewhat lower potential to affect F-actin organization and cell expansion than YFP-mTn, and (4) YFP-FABD2 generally fails to label F-actin structures at the pollen tube tip and affects F-actin organization as well as cell expansion already at lowest expression levels. As pointed out in the discussion, these observations (1) are also meaningful for F-actin labeling in other cell types, which generally respond less sensitively to F-actin perturbation than pollen tubes, (2) help selecting suitable markers for future F-actin labeling experiments, and (3) support the assessment of a substantial amount of published data resulting from such experiments.
Collapse
|
102
|
Ma Y, Sun Q, Smith SC. The mechanism of oxidation in chromophore maturation of wild-type green fluorescent protein: a theoretical study. Phys Chem Chem Phys 2017; 19:12942-12952. [DOI: 10.1039/c6cp07983k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DFT calculations suggested that the thermodynamically unfavourable cyclized product was trapped by oxidation.
Collapse
Affiliation(s)
- Yingying Ma
- Institue of Mining Technology
- Inner Mongolia University of Technology
- Hohhot 010051
- P. R. China
- Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation
| | - Qiao Sun
- School of Radiation Medicine and Radiation Protection
- Soochow University
- Suzhou 215123
- P. R. China
| | - Sean C. Smith
- Integrated Materials Design Centre
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
103
|
Chiang CY, Lin CY, Chen YT, Tsai HJ. Blue fluorescent protein derived from the mutated purple chromoprotein isolated from the sea anemone Stichodactyla haddoni. Protein Eng Des Sel 2016; 29:523-530. [PMID: 27578888 DOI: 10.1093/protein/gzw041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 11/14/2022] Open
Abstract
Chromoproteins, especially far-red fluorescent proteins with long stokes shift, are good sources for engineering biological research tools. However, chromoproteins have not been used for developing fluorescent proteins with short emission wavelength. Therefore, we herein report the development of a blue fluorescent protein, termed shBFP, which is derived from a purple chromoprotein isolated from the sea anemone Stichodacyla haddoni (shCP) after shCP was simultaneously mutated on E63L and Y64L. The shBFP chromophore is composed of Leu-Leu-Gly, which introduced a maximum excitation and emission wavelength at 401 nm and 458 nm, respectively, and a quantum yield of 0.79. Interestingly, the N158S and L173I double mutations of shBFP conducted in the chromophore environment further shifted the maximum excitation to 375 nm, and elevated the quantum yield to 0.84. Thus, shBFP, which is based on the Leu-Leu-Gly chromophore composition, results in higher quantum yields and short wavelength emission. Additionally, we found that the cDNA of shBFP is stably expressed in zebrafish embryos with fidelity, indicating the application of shBFP as a biomarker or selective marker.
Collapse
Affiliation(s)
- Cheng-Yi Chiang
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei106, Taiwan
| | - Cheng-Yung Lin
- Institute of Biomedical Sciences, MacKay Medical College, No. 46, Section 3, Zhongzhen Road, Sanzhi Dist., New Taipei City252, Taiwan
| | - Yen-Ting Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei106, Taiwan
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, MacKay Medical College, No. 46, Section 3, Zhongzhen Road, Sanzhi Dist., New Taipei City252, Taiwan
| |
Collapse
|
104
|
Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, Palmer AE, Shu X, Zhang J, Tsien RY. The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends Biochem Sci 2016; 42:111-129. [PMID: 27814948 DOI: 10.1016/j.tibs.2016.09.010] [Citation(s) in RCA: 423] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
Abstract
Over the past 20 years, protein engineering has been extensively used to improve and modify the fundamental properties of fluorescent proteins (FPs) with the goal of adapting them for a fantastic range of applications. FPs have been modified by a combination of rational design, structure-based mutagenesis, and countless cycles of directed evolution (gene diversification followed by selection of clones with desired properties) that have collectively pushed the properties to photophysical and biochemical extremes. In this review, we provide both a summary of the progress that has been made during the past two decades, and a broad overview of the current state of FP development and applications in mammalian systems.
Collapse
Affiliation(s)
- Erik A Rodriguez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| | - John Y Lin
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia.
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA.
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Roger Y Tsien
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
105
|
Expression of varied GFPs in Saccharomyces cerevisiae: codon optimization yields stronger than expected expression and fluorescence intensity. Sci Rep 2016; 6:35932. [PMID: 27782154 PMCID: PMC5080575 DOI: 10.1038/srep35932] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 10/06/2016] [Indexed: 12/25/2022] Open
Abstract
Green fluorescent protein (GFP), which was originally isolated from jellyfish, is a widely used tool in biological research, and homologs from other organisms are available. However, researchers must determine which GFP is the most suitable for a specific host. Here, we expressed GFPs from several sources in codon-optimized and non-codon-optimized forms in the yeast Saccharomyces cerevisiae, which represents an ideal eukaryotic model. Surprisingly, codon-optimized mWasabi and mNeonGreen, which are typically the brightest GFPs, emitted less green fluorescence than did the other five codon-optimized GFPs tested in S. cerevisiae. Further, commercially available GFPs that have been optimized for mammalian codon usage (e.g., EGFP, AcGFP1 and TagGFP2) unexpectedly exhibited extremely low expression levels in S. cerevisiae. In contrast, codon-optimization of the GFPs for S. cerevisiae markedly increased their expression levels, and the fluorescence intensity of the cells increased by a maximum of 101-fold. Among the tested GFPs, the codon-optimized monomeric mUkG1 from soft coral showed the highest levels of both expression and fluorescence. Finally, the expression of this protein as a fusion-tagged protein successfully improved the reporting system's ability to sense signal transduction and protein-protein interactions in S. cerevisiae and increased the detection rates of target cells using flow cytometry.
Collapse
|
106
|
Tainaka K, Kuno A, Kubota SI, Murakami T, Ueda HR. Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling. Annu Rev Cell Dev Biol 2016; 32:713-741. [DOI: 10.1146/annurev-cellbio-111315-125001] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuki Tainaka
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Shimpei I. Kubota
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatzya Murakami
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
107
|
Chen F, Zeng Q, Zhuang W, Liang W. Characterizing the Structures, Spectra, and Energy Landscapes Involved in the Excited-State Proton Transfer Process of Red Fluorescent Protein LSSmKate1. J Phys Chem B 2016; 120:9833-42. [PMID: 27581731 DOI: 10.1021/acs.jpcb.6b04708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
By applying molecular dynamics (MD) simulations and quantum chemical calculations, we have characterized the states and processes involved in the excited-state proton transfer (ESPT) of LSSmKate1. MD simulations identify two stable structures in the electronic ground state of LSSmKate1, one with a protonated chromophore and the other with a deprotonated chromophore, thus leading to two separate low-energy absorption maxima with a large energy spacing, as observed in the calculated and experimentally measured absorption spectra. Proton transfer is induced by electronic excitation. When LSSmKate1 is excited, the electrons in the chromophore are transferred from the phenol ring to the N-acylimine moiety; the acidity of a phenolic hydroxyl group is thus enhanced. The calculated potential energy curves (PECs) exhibit energetic feasibility in the generation of the fluorescent species in LSSmKate1, and the exact agreement between the calculated and experimentally measured values of the large Stokes shift further provides solid theoretical evidence for the ESPT process taking place in photoexcited LSSmKate1. The molecular environments play a significant role in the geometries and absorption/emission energies of the chromophores. Overall, TD-ωB97X-D/molecular mechanics (MM) provides a better description of the optical properties of LSSmKate1 than TD-B3LYP/MM, although it always overestimates the excitation energies.
Collapse
Affiliation(s)
- Fasheng Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Qiao Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| |
Collapse
|
108
|
Dusny C, Schmid A. TheMOXpromoter inHansenula polymorphais ultrasensitive to glucose-mediated carbon catabolite repression. FEMS Yeast Res 2016; 16:fow067. [DOI: 10.1093/femsyr/fow067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 11/13/2022] Open
|
109
|
Štěpánek P, Cowie TY, Šafařík M, Šebestík J, Pohl R, Bouř P. Resolving Electronic Transitions in Synthetic Fluorescent Protein Chromophores by Magnetic Circular Dichroism. Chemphyschem 2016; 17:2348-54. [PMID: 27124359 DOI: 10.1002/cphc.201600313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Indexed: 11/08/2022]
Abstract
The detailed electronic structures of fluorescent chromophores are important for their use in imaging of living cells. A series of green fluorescent protein chromophore derivatives is examined by magnetic circular dichroism (MCD) spectroscopy, which allows the resolution of more bands than plain absorption and fluorescence. Observed spectral patterns are rationalized with the aid of time-dependent density functional theory (TDDFT) computations and the sum-over-state (SOS) formalism, which also reveals a significant dependence of MCD intensities on chromophore conformation. The combination of organic and theoretical chemistry with spectroscopic techniques also appears useful in the rational design of fluorescence labels and understanding of the chromophore's properties. For example, the absorption threshold can be heavily affected by substitution on the phenyl ring but not much on the five-member ring, and methoxy groups can be used to further tune the electronic levels.
Collapse
Affiliation(s)
- Petr Štěpánek
- NMR Research Group, Faculty of Science, University of Oulu, PO Box 3000, 90014, Oulu, Finland
| | - Thomas Y Cowie
- Institute of Organic Chemistry and Biochemistry, AS CR, Flemingovo náměstí 2, 166 10, Prague, Czech Republic
| | - Martin Šafařík
- Institute of Organic Chemistry and Biochemistry, AS CR, Flemingovo náměstí 2, 166 10, Prague, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry, AS CR, Flemingovo náměstí 2, 166 10, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, AS CR, Flemingovo náměstí 2, 166 10, Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, AS CR, Flemingovo náměstí 2, 166 10, Prague, Czech Republic.
| |
Collapse
|
110
|
Kim IJ, Kim S, Park J, Eom I, Kim S, Kim JH, Ha SC, Kim YG, Hwang KY, Nam KH. Crystal structures of Dronpa complexed with quenchable metal ions provide insight into metal biosensor development. FEBS Lett 2016; 590:2982-90. [DOI: 10.1002/1873-3468.12316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 07/11/2016] [Indexed: 11/12/2022]
Affiliation(s)
- In Jung Kim
- Division of Biotechnology; College of Life Sciences & Biotechnology; Korea University; Seoul Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory; Pohang University of Science and Technology; Korea
| | - Jeahyun Park
- Pohang Accelerator Laboratory; Pohang University of Science and Technology; Korea
| | - Intae Eom
- Pohang Accelerator Laboratory; Pohang University of Science and Technology; Korea
| | - Sunam Kim
- Pohang Accelerator Laboratory; Pohang University of Science and Technology; Korea
| | - Jin-Hong Kim
- Pohang Accelerator Laboratory; Pohang University of Science and Technology; Korea
| | - Sung Chul Ha
- Pohang Accelerator Laboratory; Pohang University of Science and Technology; Korea
| | - Yeon Gil Kim
- Pohang Accelerator Laboratory; Pohang University of Science and Technology; Korea
| | - Kwang Yeon Hwang
- Division of Biotechnology; College of Life Sciences & Biotechnology; Korea University; Seoul Korea
| | - Ki Hyun Nam
- Pohang Accelerator Laboratory; Pohang University of Science and Technology; Korea
| |
Collapse
|
111
|
García-Iriepa C, Ernst HA, Liang Y, Unterreiner AN, Frutos LM, Sampedro D. Study of Model Systems for Bilirubin and Bilin Chromophores: Determination and Modification of Thermal and Photochemical Properties. J Org Chem 2016; 81:6292-302. [PMID: 27391671 DOI: 10.1021/acs.joc.6b00892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bilin chromophores and bilirubin are involved in relevant biological functions such as light perception in plants and as protective agents against Alzheimer and other diseases. Despite their extensive use, a deep rationalization of the main factors controlling the thermal and photochemical properties has not been performed yet, which in turn hampers further applications of these versatile molecules. In an effort to understand those factors and allow control of the relevant properties, a combined experimental and computational study has been carried out for diverse model systems to understand the interconversion between Z and E isomers. In this study, we have demonstrated the crucial role of steric hindrance and hydrogen-bond interactions in thermal stability and the ability to control them by designing novel compounds. We also determined several photochemical properties and studied the photodynamics of two model systems in more detail, observing a fast relaxation of the excited state shorter than 2 ps in both cases. Finally, the computational study allowed us to rationalize the experimental evidence.
Collapse
Affiliation(s)
- Cristina García-Iriepa
- Unidad Docente de Química Física, Universidad de Alcalá , Alcalá de Henares, E-28871 Madrid, Spain
| | - Hanna A Ernst
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) , 76128 Karlsruhe, Germany
| | - Yu Liang
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) , 76128 Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) , 76128 Karlsruhe, Germany
| | - Luis Manuel Frutos
- Unidad Docente de Química Física, Universidad de Alcalá , Alcalá de Henares, E-28871 Madrid, Spain
| | - Diego Sampedro
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja , Madre de Dios 53, E-26006 Logroño, Spain
| |
Collapse
|
112
|
Anderl I, Vesala L, Ihalainen TO, Vanha-aho LM, Andó I, Rämet M, Hultmark D. Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection. PLoS Pathog 2016; 12:e1005746. [PMID: 27414410 PMCID: PMC4945071 DOI: 10.1371/journal.ppat.1005746] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022] Open
Abstract
Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail.
Collapse
Affiliation(s)
- Ines Anderl
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Laura Vesala
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
| | - Teemu O. Ihalainen
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
| | - Leena-Maija Vanha-aho
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
| | - István Andó
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Mika Rämet
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
- PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Dan Hultmark
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
113
|
Kornienko O, Lacson R, Kunapuli P, Schneeweis J, Hoffman I, Smith T, Alberts M, Inglese J, Strulovici B. Miniaturization of Whole Live Cell-Based GPCR Assays Using Microdispensing and Detection Systems. ACTA ACUST UNITED AC 2016; 9:186-95. [PMID: 15140380 DOI: 10.1177/1087057103260070] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell-based β-lactamase reporter gene assays designed to measure the functional responses of G-protein-coupled receptors (GPCRs) were miniaturized to less than 2 μL total assay volume in a 3456-well microplate. Studies were done to evaluate both receptor agonists and antagonists. The pharmacology of agonists and antagonists for target GPCRs originally developed in a 96-well format was recapitulated in a 3456-well microplate format without compromising data quality or EC50/IC50 precision. These assays were employed in high-throughput screening campaigns, allowing the testing of more than 150,000 compounds in 8 h. The instrumentation used and practical aspects of the assay development are discussed.
Collapse
MESH Headings
- Animals
- Biological Assay/instrumentation
- Biological Assay/methods
- Combinatorial Chemistry Techniques
- Cricetinae
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical/instrumentation
- Drug Evaluation, Preclinical/methods
- Genes, Reporter
- Humans
- Inhibitory Concentration 50
- Nanotechnology/methods
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, Neurotensin/drug effects
- Receptors, Neurotensin/genetics
- Receptors, Oxytocin/agonists
- Receptors, Oxytocin/antagonists & inhibitors
- Receptors, Oxytocin/genetics
- Reproducibility of Results
- Spectrometry, Fluorescence
- beta-Lactamases/genetics
Collapse
Affiliation(s)
- Oleg Kornienko
- Merck Research Laboratories, Department of Automated Biotechnology, North Wales, PA 19454, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
115
|
Ishag HZA, Liu M, Yang R, Xiong Q, Feng Z, Shao G. GFP as a marker for transient gene transfer and expression in Mycoplasma hyorhinis. SPRINGERPLUS 2016; 5:769. [PMID: 27386255 PMCID: PMC4912516 DOI: 10.1186/s40064-016-2358-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/17/2016] [Indexed: 11/10/2022]
Abstract
Mycoplasma hyorhinis (M. hyorhinis) is an opportunistic pathogen of pigs and has been shown to transform cell cultures, which has increased the interest of researchers. The green florescence proteins (GFP) gene of Aquorea victoria, proved to be a vital marker to identify transformed cells in mixed populations. Use of GFP to observe gene transfer and expression in M. hyorhinis (strain HUB-1) has not been described. We have constructed a pMD18-O/MHRgfp plasmid containing the p97 gene promoter, origin of replication, tetracycline resistance marker and GFP gene controlled by the p97 gene promoter. The plasmid transformed into M. hyorhinis with a frequency of ~4 × 10(-3) cfu/µg plasmid DNA and could be detected by PCR amplification of the GFP gene from the total DNA of the transformant mycoplasmas. Analysis of a single clone grown on KM2-Agar containing tetracycline, showed a green fluorescence color. Conclusively, this report suggests the usefulness of GFP to monitor transient gene transfer and expression in M. hyorhinis, eventually minimizing screening procedures for gene transfer and expression.
Collapse
Affiliation(s)
- Hassan Z A Ishag
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing, 210014 China ; College of Veterinary Sciences, University of Nyala, Nyala, Sudan
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing, 210014 China
| | - Ruosong Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing, 210014 China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing, 210014 China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing, 210014 China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Research Center for Engineering and Technology of Veterinary Bio-products, Nanjing, 210014 China
| |
Collapse
|
116
|
Ma Y, Zhang H, Sun Q, Smith SC. New Insights on the Mechanism of Cyclization in Chromophore Maturation of Wild-Type Green Fluorescence Protein: A Computational Study. J Phys Chem B 2016; 120:5386-94. [DOI: 10.1021/acs.jpcb.6b04406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingying Ma
- Institue
of Mining Technology, Inner Mongolia University of Technology, Hohhot 010051, P. R. China
- Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, P. R. China
| | - Hao Zhang
- College
of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730030, P. R. China
| | - Qiao Sun
- School
of Radiation Medicine and Radiation Protection, Soochow University, Suzhou 215123, P. R. China
| | - Sean C. Smith
- Integrated
Materials Design Centre, School of Chemical Engineering, The University of New South Wales, NSW2052, Sydney, Australia
| |
Collapse
|
117
|
Landete JM, Medina M, Arqués JL. Fluorescent reporter systems for tracking probiotic lactic acid bacteria and bifidobacteria. World J Microbiol Biotechnol 2016; 32:119. [PMID: 27263014 DOI: 10.1007/s11274-016-2077-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/27/2016] [Indexed: 12/19/2022]
Abstract
In the last two decades, there has been increasing evidence supporting the role of the intestinal microbiota in health and disease, as well as the use of probiotics to modulate its activity and composition. Probiotic bacteria selected for commercial use in foods, mostly lactic acid bacteria and bifidobacteria, must survive in sufficient numbers during the manufacturing process, storage, and passage through the gastro-intestinal tract. They have several modes of action and it is crucial to unravel the mechanisms underlying their postulated beneficial effects. To track their survival and persistence, and to analyse their interaction with the gastro-intestinal epithelia it is essential to discriminate probiotic strains from endogenous microbiota. Fluorescent reporter proteins are relevant tools that can be exploited as a non-invasive marker system for in vivo real-time imaging in complex ecosystems as well as in vitro fluorescence labelling. Oxygen is required for many of these reporter proteins to fluoresce, which is a major drawback in anoxic environments. However, some new fluorescent proteins are able to overcome the potential problems caused by oxygen limitations. The current available approaches and the benefits/disadvantages of using reporter vectors containing fluorescent proteins for labelling of bacterial probiotic species commonly used in food are addressed.
Collapse
Affiliation(s)
- José M Landete
- Dpto. de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Margarita Medina
- Dpto. de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain
| | - Juan L Arqués
- Dpto. de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040, Madrid, Spain.
| |
Collapse
|
118
|
Abstract
The advent of fluorescent proteins (FPs) for genetic labeling of molecules and cells has revolutionized fluorescence microscopy. Genetic manipulations have created a vast array of bright and stable FPs spanning blue to red spectral regions. Common to autofluorescent FPs is their tight β-barrel structure, which provides the rigidity and chemical environment needed for effectual fluorescence. Despite the common structure, each FP has unique properties. Thus, there is no single 'best' FP for every circumstance, and each FP has advantages and disadvantages. To guide decisions about which FP is right for a given application, we have quantitatively characterized the brightness, photostability, pH stability and monomeric properties of more than 40 FPs to enable straightforward and direct comparison between them. We focus on popular and/or top-performing FPs in each spectral region.
Collapse
|
119
|
Bose S, Chakrabarty S, Ghosh D. Effect of Solvation on Electron Detachment and Excitation Energies of a Green Fluorescent Protein Chromophore Variant. J Phys Chem B 2016; 120:4410-20. [DOI: 10.1021/acs.jpcb.6b03723] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samik Bose
- Physical
and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Suman Chakrabarty
- Physical
and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Debashree Ghosh
- Physical
and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
120
|
Evolution and characterization of a new reversibly photoswitching chromogenic protein, Dathail. J Mol Biol 2016; 428:1776-89. [DOI: 10.1016/j.jmb.2016.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/11/2022]
|
121
|
Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters. Biophys Rev 2016; 8:121-138. [PMID: 28510054 PMCID: PMC4884202 DOI: 10.1007/s12551-016-0195-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/09/2016] [Indexed: 01/26/2023] Open
Abstract
Over the past decades many researchers have made major contributions towards the development of genetically encoded (GE) fluorescent sensors derived from fluorescent proteins. GE sensors are now used to study biological phenomena by facilitating the measurement of biochemical behaviors at various scales, ranging from single molecules to single cells or even whole animals. Here, we review the historical development of GE fluorescent sensors and report on their current status. We specifically focus on the development strategies of the GE sensors used for measuring pH, ion concentrations (e.g., chloride and calcium), redox indicators, membrane potential, temperature, pressure, and molecular crowding. We demonstrate that these fluroescent protein-based sensors have a shared history of concepts and development strategies, and we highlight the most original concepts used to date. We believe that the understanding and application of these various concepts will pave the road for the development of future GE sensors and lead to new breakthroughs in bioimaging.
Collapse
|
122
|
Dependence of fluorescent protein brightness on protein concentration in solution and enhancement of it. Sci Rep 2016; 6:22342. [PMID: 26956628 PMCID: PMC4783657 DOI: 10.1038/srep22342] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023] Open
Abstract
Fluorescent proteins have been widely used in biology because of their compatibility and varied applications in living specimens. Fluorescent proteins are often undesirably sensitive to intracellular conditions such as pH and ion concentration, generating considerable issues at times. However, harnessing these intrinsic sensitivities can help develop functional probes. In this study, we found that the fluorescence of yellow fluorescent protein (YFP) depends on the protein concentration in the solution and that this dependence can be enhanced by adding a glycine residue in to the YFP; we applied this finding to construct an intracellular protein-crowding sensor. A Förster resonance energy transfer (FRET) pair, involving a cyan fluorescent protein (CFP) insensitive to protein concentration and a glycine-inserted YFP, works as a genetically encoded probe to evaluate intracellular crowding. By measuring the fluorescence of the present FRET probe, we were able to detect dynamic changes in protein crowding in living cells.
Collapse
|
123
|
Liu XY, Chang XP, Xia SH, Cui G, Thiel W. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore. J Chem Theory Comput 2016; 12:753-64. [PMID: 26744782 PMCID: PMC4750082 DOI: 10.1021/acs.jctc.5b00894] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The chemical locking of the central
single bond in core chromophores
of green fluorescent proteins (GFPs) influences their excited-state
behavior in a distinct manner. Experimentally, it significantly enhances
the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl
group, while it has almost no effect on the photophysics of GFP chromophores
with a para-hydroxyl group. To unravel the underlying physical reasons
for this different behavior, we report static electronic structure
calculations and nonadiabatic dynamics simulations on excited-state
intramolecular proton transfer, cis–trans isomerization, and
excited-state deactivation in a locked ortho-substituted GFP model
chromophore (o-LHBI). On the basis of our previous and present results,
we find that the S1 keto species is responsible for the
fluorescence emission of the unlocked o-HBI and the locked o-LHBI
species. Chemical locking does not change the parts of the S1 and S0 potential energy surfaces relevant to enol–keto
tautomerization; hence, in both chromophores, there is an ultrafast
excited-state intramolecular proton transfer that takes only 35 fs
on average. However, the locking effectively hinders the S1 keto species from approaching the keto S1/S0 conical intersections so that most of trajectories are trapped in
the S1 keto region for the entire 2 ps simulation time.
Therefore, the fluorescence quantum yield of o-LHBI is enhanced compared
with that of unlocked o-HBI, in which the S1 excited-state
decay is efficient and ultrafast. In the case of the para-substituted
GFP model chromophores p-HBI and p-LHBI, chemical locking hardly affects
their efficient excited-state deactivation via cis–trans isomerization;
thus, the fluorescence quantum yields in these chromophores remain
very low. The insights gained from the present work may help to guide
the design of new GFP chromophores with improved fluorescence emission
and brightness.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China and
| | - Xue-Ping Chang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China and
| | - Shu-Hua Xia
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China and
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China and
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
124
|
Merritt J, Senpuku H, Kreth J. Let there be bioluminescence: development of a biophotonic imaging platform for in situ analyses of oral biofilms in animal models. Environ Microbiol 2016; 18:174-90. [PMID: 26119252 PMCID: PMC5050008 DOI: 10.1111/1462-2920.12953] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/23/2022]
Abstract
In the current study, we describe a novel biophotonic imaging-based reporter system that is particularly useful for the study of virulence in polymicrobial infections and interspecies interactions within animal models. A suite of luciferase enzymes was compared using three early colonizing species of the human oral flora (Streptococcus mutans, Streptococcus gordonii and Streptococcus sanguinis) to determine the utility of the different reporters for multiplexed imaging studies in vivo. Using the multiplex approach, we were able to track individual species within a dual-species oral infection model in mice with both temporal and spatial resolution. We also demonstrate how biophotonic imaging of multiplexed luciferase reporters could be adapted for real-time quantification of bacterial gene expression in situ. By creating an inducible dual-luciferase expressing reporter strain of S. mutans, we were able to exogenously control and measure expression of nlmAB (encoding the bacteriocin mutacin IV) within mice to assess its importance for the persistence ability of S. mutans in the oral cavity. The imaging system described in the current study circumvents many of the inherent limitations of current animal model systems, which should now make it feasible to test hypotheses that were previously impractical to model.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Jens Kreth
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
125
|
Hogue IB, Bosse JB, Engel EA, Scherer J, Hu JR, Del Rio T, Enquist LW. Fluorescent Protein Approaches in Alpha Herpesvirus Research. Viruses 2015; 7:5933-61. [PMID: 26610544 PMCID: PMC4664988 DOI: 10.3390/v7112915] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/28/2022] Open
Abstract
In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer.
Collapse
Affiliation(s)
- Ian B Hogue
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Jens B Bosse
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Esteban A Engel
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Julian Scherer
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Jiun-Ruey Hu
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Tony Del Rio
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Lynn W Enquist
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
126
|
Fron E, De Keersmaecker H, Rocha S, Baeten Y, Lu G, Uji-i H, Van der Auweraer M, Hofkens J, Mizuno H. Mechanism Behind the Apparent Large Stokes Shift in LSSmOrange Investigated by Time-Resolved Spectroscopy. J Phys Chem B 2015; 119:14880-91. [PMID: 26529379 DOI: 10.1021/acs.jpcb.5b09189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
LSSmOrange is a fluorescent protein with a large energy gap between the absorption and emission bands (5275 cm(-1)). The electronic structure of the LSSmOrange chromophore, 2-[(5-)-2-hydroxy-dihydrooxazole]-4-(p-hydroxybenzylidene)-5-imidazolinone, is affected by deprotonation of the p-hydroxybenzylidene group. We investigated LSSmOrange by time-resolved spectroscopy in the femtosecond and nanosecond range. The ground state chromophore was almost exclusively in the neutral form, which had a main absorption band at 437 nm with a small shoulder at 475 nm. The absorption at a wavelength within the former band promoted the protein to the excited state where excited state proton transfer (ESPT) could lead to deprotonation in 0.8 ps. Following ESPT, the chromophore emitted fluorescence with a maximum at 573 nm and a decay time of 3500 ps. Although deprotonation by ESPT occurs, we unexpectedly found a slow accumulation of the anionic form in the ground state upon repeated high intensity excitation. This accumulation of the anionic form was accompanied by a shift of the absorption band to 553 nm without changing the emission band. MALDI-MS revealed that this shift is accompanied by decarboxylation of E222, which is interacting with the imidazolinone ring of the chromophore. We concluded that the photoinduced decarboxylation induced a conformational change that affected local environment around the hydroxyl group, resulting in a stable deprotonated form of the chromophore.
Collapse
Affiliation(s)
- Eduard Fron
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Herlinde De Keersmaecker
- Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven , Celestijnenlaan 200G, bus 2403, 3001 Heverlee, Belgium
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Yannick Baeten
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Gang Lu
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Hiroshi Uji-i
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Mark Van der Auweraer
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Hideaki Mizuno
- Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven , Celestijnenlaan 200G, bus 2403, 3001 Heverlee, Belgium
| |
Collapse
|
127
|
Schwarz N, Moch M, Windoffer R, Leube RE. Multidimensional Monitoring of Keratin Intermediate Filaments in Cultured Cells and Tissues. Methods Enzymol 2015; 568:59-83. [PMID: 26795467 DOI: 10.1016/bs.mie.2015.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Keratin filaments are a hallmark of epithelial differentiation. Their cell type-specific spatial organization and dynamic properties reflect and support epithelial function. To study this interdependency, imaging of fluorescently tagged keratins is a widely used method by which the temporospatial organization and behavior of the keratin intermediate filament network can be analyzed in living cells. Here, we describe methods that have been adapted and optimized to dissect and quantify keratin intermediate filament network dynamics in vital cultured cells and functional tissues.
Collapse
Affiliation(s)
- Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
128
|
Zuverink M, Barbieri JT. From GFP to β-lactamase: advancing intact cell imaging for toxins and effectors. Pathog Dis 2015; 73:ftv097. [PMID: 26500183 DOI: 10.1093/femspd/ftv097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
Abstract
Canonical reporters such as green fluorescent protein (GFP) and luciferase have assisted researchers in probing cellular pathways and processes. Prior research in pathogenesis depended on sensitivity of biochemical and biophysical techniques to identify effectors and elucidate entry mechanisms. Recently, the β-lactamase (βlac) reporter system has advanced toxin and effector reporting by permitting measurement of βlac delivery into the cytosol or host βlac expression in intact cells. βlac measurement in cells was facilitated by the development of the fluorogenic substrate, CCF2-AM, to identify novel effectors, target cells, and domains involved in bacterial pathogenesis. The assay is also adaptable for high-throughput screening of small molecule inhibitors against toxins, providing information on mechanism and potential therapeutic agents. The versatility and limitations of the βlac reporter system as applied to toxins and effectors are discussed in this review.
Collapse
Affiliation(s)
- Madison Zuverink
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI 53226, USA
| | - Joseph T Barbieri
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI 53226, USA
| |
Collapse
|
129
|
Meyer AJ, Ellefson JW, Ellington AD. Directed Evolution of a Panel of Orthogonal T7 RNA Polymerase Variants for in Vivo or in Vitro Synthetic Circuitry. ACS Synth Biol 2015; 4:1070-6. [PMID: 25279711 DOI: 10.1021/sb500299c] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
T7 RNA polymerase is the foundation of synthetic biological circuitry both in vivo and in vitro due to its robust and specific control of transcription from its cognate promoter. Here we present the directed evolution of a panel of orthogonal T7 RNA polymerase:promoter pairs that each specifically recognizes a synthetic promoter. These newly described pairs can be used to independently control up to six circuits in parallel.
Collapse
Affiliation(s)
- Adam J. Meyer
- Institute for Cellular and Molecular Biology, ‡Department of Chemistry and Biochemistry, and §Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jared W. Ellefson
- Institute for Cellular and Molecular Biology, ‡Department of Chemistry and Biochemistry, and §Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew D. Ellington
- Institute for Cellular and Molecular Biology, ‡Department of Chemistry and Biochemistry, and §Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
130
|
Stoehr LC, Endes C, Radauer-Preiml I, Boyles MSP, Casals E, Balog S, Pesch M, Petri-Fink A, Rothen-Rutishauser B, Himly M, Clift MJD, Duschl A. Assessment of a panel of interleukin-8 reporter lung epithelial cell lines to monitor the pro-inflammatory response following zinc oxide nanoparticle exposure under different cell culture conditions. Part Fibre Toxicol 2015; 12:29. [PMID: 26415698 PMCID: PMC4587722 DOI: 10.1186/s12989-015-0104-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/18/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Stably transfected lung epithelial reporter cell lines pose an advantageous alternative to replace complex experimental techniques to monitor the pro-inflammatory response following nanoparticle (NP) exposure. Previously, reporter cell lines have been used under submerged culture conditions, however, their potential usefulness in combination with air-liquid interface (ALI) exposures is currently unknown. Therefore, the aim of the present study was to compare a panel of interleukin-8 promoter (pIL8)-reporter cell lines (i.e. green or red fluorescent protein (GFP, RFP), and luciferase (Luc)), originating from A549 lung epithelial type II-like cells cells, following NPs exposure under both submerged and ALI conditions. METHODS All cell lines were exposed to zinc oxide (ZnO) NPs at 0.6 and 6.2 μg/cm(2) for 3 and 16 hours under both submerged and ALI conditions. Following physicochemical characterization, the cytotoxic profile of the ZnO-NPs was determined for each exposure scenario. Expression of IL-8 from all cell types was analyzed at the promoter level and compared to the mRNA (qRT-PCR) and protein level (ELISA). RESULTS In summary, each reporter cell line detected acute pro-inflammatory effects following ZnO exposure under each condition tested. The pIL8-Luc cell line was the most sensitive in terms of reporter signal strength and onset velocity following TNF-α treatment. Both pIL8-GFP and pIL8-RFP also showed a marked signal induction in response to TNF-α, although only after 16 hrs. In terms of ZnO-NP-induced cytotoxicity pIL8-RFP cells were the most affected, whilst the pIL8-Luc were found the least responsive. CONCLUSIONS In conclusion, the use of fluorescence-based reporter cell lines can provide a useful tool in screening the pro-inflammatory response following NP exposure in both submerged and ALI cell cultures.
Collapse
Affiliation(s)
- Linda C Stoehr
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria. .,Grimm Aerosol Technik GmbH & Co. KG, Ainring, Germany.
| | - Carola Endes
- BioNanomaterials, Adolphe Merkle Institute, Université de Fribourg, Fribourg, Switzerland.
| | - Isabella Radauer-Preiml
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Matthew S P Boyles
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Eudald Casals
- Institut Català de Nanotecnologia (ICN), Bellaterra, Spain.
| | - Sandor Balog
- Soft Matter Scattering, Adolphe Merkle Institute, Université de Fribourg, Fribourg, Switzerland.
| | - Markus Pesch
- Grimm Aerosol Technik GmbH & Co. KG, Ainring, Germany.
| | - Alke Petri-Fink
- BioNanomaterials, Adolphe Merkle Institute, Université de Fribourg, Fribourg, Switzerland.
| | | | - Martin Himly
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Martin J D Clift
- BioNanomaterials, Adolphe Merkle Institute, Université de Fribourg, Fribourg, Switzerland.
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| |
Collapse
|
131
|
Coutant EP, Janin YL. Synthetic Routes to Coelenterazine and Other Imidazo[1,2-a]pyrazin-3-one Luciferins: Essential Tools for Bioluminescence-Based Investigations. Chemistry 2015; 21:17158-71. [DOI: 10.1002/chem.201501531] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
132
|
Phenotypic Heterogeneity, a Phenomenon That May Explain Why Quorum Sensing Does Not Always Result in Truly Homogenous Cell Behavior. Appl Environ Microbiol 2015. [PMID: 26025903 DOI: 10.1128/aem.00900-15/format/epub] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Phenotypic heterogeneity describes the occurrence of "nonconformist" cells within an isogenic population. The nonconformists show an expression profile partially different from that of the remainder of the population. Phenotypic heterogeneity affects many aspects of the different bacterial lifestyles, and it is assumed that it increases bacterial fitness and the chances for survival of the whole population or smaller subpopulations in unfavorable environments. Well-known examples for phenotypic heterogeneity have been associated with antibiotic resistance and frequently occurring persister cells. Other examples include heterogeneous behavior within biofilms, DNA uptake and bacterial competence, motility (i.e., the synthesis of additional flagella), onset of spore formation, lysis of phages within a small subpopulation, and others. Interestingly, phenotypic heterogeneity was recently also observed with respect to quorum-sensing (QS)-dependent processes, and the expression of autoinducer (AI) synthase genes and other QS-dependent genes was found to be highly heterogeneous at a single-cell level. This phenomenon was observed in several Gram-negative bacteria affiliated with the genera Vibrio, Dinoroseobacter, Pseudomonas, Sinorhizobium, and Mesorhizobium. A similar observation was made for the Gram-positive bacterium Listeria monocytogenes. Since AI molecules have historically been thought to be the keys to homogeneous behavior within isogenic populations, the observation of heterogeneous expression is quite intriguing and adds a new level of complexity to the QS-dependent regulatory networks. All together, the many examples of phenotypic heterogeneity imply that we may have to partially revise the concept of homogeneous and coordinated gene expression in isogenic bacterial populations.
Collapse
|
133
|
Liu L, Cui G, Fang WH. Excited States and Photochemistry of Chromophores in the Photoactive Proteins Explored by the Combined Quantum Mechanical and Molecular Mechanical Calculations. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 100:255-84. [PMID: 26415847 DOI: 10.1016/bs.apcsb.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoactive protein usually contains a unique chromophore that is responsible for the initial photoresponse and functions of the photoactive protein are determined by the interaction between the chromophore and its protein surroundings. The combined quantum mechanical and molecular mechanical (QM/MM) approach is demonstrated to be a very useful tool for exploring structures and functions of a photoactive protein with the chromophore and its protein surroundings treated by the QM and MM methods, respectively. In this review, we summarize the basic formulas of the QM/MM approach and emphasize its applications to excited states and photoreactions of chromophores in rhodopsin protein, photoactive yellow protein, and green fluorescent protein.
Collapse
Affiliation(s)
- Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
134
|
Chiang CY, Lee CC, Lo SY, Wang AHJ, Tsai HJ. Chromophore Deprotonation State Alters the Optical Properties of Blue Chromoprotein. PLoS One 2015. [PMID: 26218063 PMCID: PMC4517874 DOI: 10.1371/journal.pone.0134108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chromoproteins (CPs) have unique colors and can be used in biological applications. In this work, a novel blue CP with a maximum absorption peak (λmax) at 608 nm was identified from the carpet anemone Stichodactyla gigantea (sgBP). In vivo expression of sgBP in zebrafish would change the appearance of the fishes to have a blue color, indicating the potential biomarker function. To enhance the color properties, the crystal structure of sgBP at 2.25 Å resolution was determined to allow structure-based protein engineering. Among the mutations conducted in the Gln-Tyr-Gly chromophore and chromophore environment, a S157C mutation shifted the λmax to 604 nm with an extinction coefficient (ε) of 58,029 M-1·cm-1 and darkened the blue color expression. The S157C mutation in the sgBP chromophore environment could affect the color expression by altering the deprotonation state of the phenolic group in the chromophore. Our results provide a structural basis for the blue color enhancement of the biomarker development.
Collapse
Affiliation(s)
- Cheng-Yi Chiang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facility for Protein Production and X-ray Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Shin-Yi Lo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facility for Protein Production and X-ray Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facility for Protein Production and X-ray Structural Analysis, Academia Sinica, Taipei, Taiwan
- * E-mail: (HJT); (AHJW)
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
- * E-mail: (HJT); (AHJW)
| |
Collapse
|
135
|
Armengol P, Gelabert R, Moreno M, Lluch JM. Theoretical Computer-Aided Mutagenic Study on the Triple Green Fluorescent Protein Mutant S65T/H148D/Y145F. Chemphyschem 2015; 16:2134-9. [PMID: 25916771 DOI: 10.1002/cphc.201500158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/27/2015] [Indexed: 11/07/2022]
Abstract
Green fluorescent protein (GFP) mutant S65T/H148D has been proposed to host a photocycle that involves an excited-state proton transfer between the chromophore (Cro) and the Asp148 residue and takes place in less than 50 fs without a measurable kinetic isotope effect. It has been suggested that the interaction between the unsuspected Tyr145 residue and the chromophore is needed for the ultrafast sub-50 fs rise in fluorescence. To verify this, we have performed a computer-aided mutagenic study to introduce the additional mutation Y145F, which eliminates this interaction. By means of QM/MM molecular dynamics simulations and time-dependent density functional theory studies, we have assessed the importance of the Cro-Tyr145 interaction and the solvation of Asp148 and shown that in the triple mutant S65T/H148D/Y145F a significant loss in the ultrafast rise of the Stokes-shifted fluorescence should be expected.
Collapse
Affiliation(s)
- Pau Armengol
- Department de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)
| | - Ricard Gelabert
- Department de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain).
| | - Miquel Moreno
- Department de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)
| | - José M Lluch
- Department de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain).,Institut de Bioquímica i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)
| |
Collapse
|
136
|
Penicillium chrysogenum as a model system for studying cellular effects of methylglyoxal. BMC Microbiol 2015; 15:138. [PMID: 26156309 PMCID: PMC4496818 DOI: 10.1186/s12866-015-0472-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/26/2015] [Indexed: 01/10/2023] Open
Abstract
Background α-oxoaldehydes are formed as toxic by-products during metabolic activity. The biologically most important compound of this class, methylglyoxal, results from spontaneous phosphate elimination from dihydroxyacetone phosphate and glyceraldehyde 3-phosphate which are intermediate glycolysis products. Methylglyoxal-mediated modification of lipids, nucleic acids and proteins is known to lead to the formation of advanced glycation end products. These modifications contribute to the aetiology of severe diseases like diabetes and neurodegenerative disorders. By using simple model organisms it is possible to conveniently study the effects of methylglyoxal on cellular processes. Here, results are presented on the effects of methylglyoxal on mycelium growth, stationary phase entry (monitored by autophagy induction), mitochondrial morphology and protein composition in the filamentous fungus Penicillium chrysogenum. Results Methylglyoxal leads to growth rate reduction of this fungus so that the entry into the stationary phase is delayed. Mitochondrial morphology is not changed by methylglyoxal. However, rapamycin-mediated fragmentation of mitochondria is prevented by methylglyoxal. Furthermore, three proteins are identified that are present in lower abundance when methylglyoxal is added to the growth medium (aldo-keto reductase [Pc22g04850], 5-methyl-tetrahydropteroyl-triglutamate-homocysteine S-methyltransferase [Pc22g18630] and NAD-dependent formate dehydrogenase [Pc12g04310]). Conclusions The presented results contribute to the understanding of cellular pathways and mechanisms that are affected by the ubiquitous α-oxoaldehyde methylglyoxal.
Collapse
|
137
|
Ma Y, Yu JG, Sun Q, Li Z, Smith SC. The mechanism of dehydration in chromophore maturation of wild-type green fluorescent protein: A theoretical study. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.04.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
138
|
Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria. Appl Microbiol Biotechnol 2015; 99:6865-77. [DOI: 10.1007/s00253-015-6770-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 01/09/2023]
|
139
|
Gengler S, Batoko H, Wattiau P. Method for fluorescent marker swapping and its application in Steinernema nematode colonization studies. J Microbiol Methods 2015; 113:34-7. [PMID: 25835465 DOI: 10.1016/j.mimet.2015.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 10/23/2022]
Abstract
An allelic exchange vector was constructed to replace gfp by mCherry in bacteria previously tagged with mini-Tn5 derivatives. The method was successfully applied to a gfp-labeled Yersinia pseudotuberculosis strain and the re-engineered bacterium was used to study the colonization of Steinernema nematodes hosting their Xenorhabdus symbiont using dual-color confocal microscopy.
Collapse
Affiliation(s)
- Samuel Gengler
- Veterinary & Agrochemical Research Centre, Brussels, Belgium; Institute of life sciences (ISV), Catholic University of Louvain-la-Neuve (UCL), Belgium
| | - Henri Batoko
- Institute of life sciences (ISV), Catholic University of Louvain-la-Neuve (UCL), Belgium
| | - Pierre Wattiau
- Veterinary & Agrochemical Research Centre, Brussels, Belgium.
| |
Collapse
|
140
|
Phenotypic Heterogeneity, a Phenomenon That May Explain Why Quorum Sensing Does Not Always Result in Truly Homogenous Cell Behavior. Appl Environ Microbiol 2015; 81:5280-9. [PMID: 26025903 DOI: 10.1128/aem.00900-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phenotypic heterogeneity describes the occurrence of "nonconformist" cells within an isogenic population. The nonconformists show an expression profile partially different from that of the remainder of the population. Phenotypic heterogeneity affects many aspects of the different bacterial lifestyles, and it is assumed that it increases bacterial fitness and the chances for survival of the whole population or smaller subpopulations in unfavorable environments. Well-known examples for phenotypic heterogeneity have been associated with antibiotic resistance and frequently occurring persister cells. Other examples include heterogeneous behavior within biofilms, DNA uptake and bacterial competence, motility (i.e., the synthesis of additional flagella), onset of spore formation, lysis of phages within a small subpopulation, and others. Interestingly, phenotypic heterogeneity was recently also observed with respect to quorum-sensing (QS)-dependent processes, and the expression of autoinducer (AI) synthase genes and other QS-dependent genes was found to be highly heterogeneous at a single-cell level. This phenomenon was observed in several Gram-negative bacteria affiliated with the genera Vibrio, Dinoroseobacter, Pseudomonas, Sinorhizobium, and Mesorhizobium. A similar observation was made for the Gram-positive bacterium Listeria monocytogenes. Since AI molecules have historically been thought to be the keys to homogeneous behavior within isogenic populations, the observation of heterogeneous expression is quite intriguing and adds a new level of complexity to the QS-dependent regulatory networks. All together, the many examples of phenotypic heterogeneity imply that we may have to partially revise the concept of homogeneous and coordinated gene expression in isogenic bacterial populations.
Collapse
|
141
|
A pipeline for the systematic identification of non-redundant full-ORF cDNAs for polymorphic and evolutionary divergent genomes: Application to the ascidian Ciona intestinalis. Dev Biol 2015; 404:149-63. [PMID: 26025923 PMCID: PMC4528069 DOI: 10.1016/j.ydbio.2015.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/17/2022]
Abstract
Genome-wide resources, such as collections of cDNA clones encoding for complete proteins (full-ORF clones), are crucial tools for studying the evolution of gene function and genetic interactions. Non-model organisms, in particular marine organisms, provide a rich source of functional diversity. Marine organism genomes are, however, frequently highly polymorphic and encode proteins that diverge significantly from those of well-annotated model genomes. The construction of full-ORF clone collections from non-model organisms is hindered by the difficulty of predicting accurately the N-terminal ends of proteins, and distinguishing recent paralogs from highly polymorphic alleles. We report a computational strategy that overcomes these difficulties, and allows for accurate gene level clustering of transcript data followed by the automated identification of full-ORFs with correct 5'- and 3'-ends. It is robust to polymorphism, includes paralog calling and does not require evolutionary proximity to well annotated model organisms. We developed this pipeline for the ascidian Ciona intestinalis, a highly polymorphic member of the divergent sister group of the vertebrates, emerging as a powerful model organism to study chordate gene function, Gene Regulatory Networks and molecular mechanisms underlying human pathologies. Using this pipeline we have generated the first full-ORF collection for a highly polymorphic marine invertebrate. It contains 19,163 full-ORF cDNA clones covering 60% of Ciona coding genes, and full-ORF orthologs for approximately half of curated human disease-associated genes.
Collapse
|
142
|
Don Paul C, Traore DAK, Olsen S, Devenish RJ, Close DW, Bell TDM, Bradbury A, Wilce MCJ, Prescott M. X-Ray Crystal Structure and Properties of Phanta, a Weakly Fluorescent Photochromic GFP-Like Protein. PLoS One 2015; 10:e0123338. [PMID: 25923520 PMCID: PMC4414407 DOI: 10.1371/journal.pone.0123338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/02/2015] [Indexed: 01/07/2023] Open
Abstract
Phanta is a reversibly photoswitching chromoprotein (ΦF, 0.003), useful for pcFRET, that was isolated from a mutagenesis screen of the bright green fluorescent eCGP123 (ΦF, 0.8). We have investigated the contribution of substitutions at positions His193, Thr69 and Gln62, individually and in combination, to the optical properties of Phanta. Single amino acid substitutions at position 193 resulted in proteins with very low ΦF, indicating the importance of this position in controlling the fluorescence efficiency of the variant proteins. The substitution Thr69Val in Phanta was important for supressing the formation of a protonated chromophore species observed in some His193 substituted variants, whereas the substitution Gln62Met did not significantly contribute to the useful optical properties of Phanta. X-ray crystal structures for Phanta (2.3 Å), eCGP123T69V (2.0 Å) and eCGP123H193Q (2.2 Å) in their non-photoswitched state were determined, revealing the presence of a cis-coplanar chromophore. We conclude that changes in the hydrogen-bonding network supporting the cis-chromophore, and its contacts with the surrounding protein matrix, are responsible for the low fluorescence emission of eCGP123 variants containing a His193 substitution.
Collapse
Affiliation(s)
- Craig Don Paul
- Department of Neuro- and Sensory Physiology, University Medicine, Göttingen, 37073, Göttingen, Germany
| | - Daouda A. K. Traore
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Seth Olsen
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Rodney J. Devenish
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Devin W. Close
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Andrew Bradbury
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
- * E-mail: (MP); (MCJW)
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
- * E-mail: (MP); (MCJW)
| |
Collapse
|
143
|
Ronda L, Bruno S, Bettati S, Storici P, Mozzarelli A. From protein structure to function via single crystal optical spectroscopy. Front Mol Biosci 2015; 2:12. [PMID: 25988179 PMCID: PMC4428442 DOI: 10.3389/fmolb.2015.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Neurosciences, University of Parma Parma, Italy
| | - Stefano Bruno
- Department of Pharmacy, University of Parma Parma, Italy
| | - Stefano Bettati
- Department of Neurosciences, University of Parma Parma, Italy ; National Institute of Biostructures and Biosystems Rome, Italy
| | | | - Andrea Mozzarelli
- Department of Pharmacy, University of Parma Parma, Italy ; National Institute of Biostructures and Biosystems Rome, Italy ; Institute of Biophysics, Consiglio Nazionale delle Ricerche Pisa, Italy
| |
Collapse
|
144
|
Mukherjee A, Weyant KB, Agrawal U, Walker J, Cann IKO, Schroeder CM. Engineering and characterization of new LOV-based fluorescent proteins from Chlamydomonas reinhardtii and Vaucheria frigida. ACS Synth Biol 2015; 4:371-7. [PMID: 25881501 DOI: 10.1021/sb500237x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Flavin-based fluorescent proteins (FbFPs) are a new class of fluorescent reporters that exhibit oxygen-independent fluorescence, which is a key advantage over the green fluorescent protein. Broad application of FbFPs, however, has been generally hindered by low brightness. To maximize the utility of FbFPs, there is a pressing need to expand and diversify the limited FbFP library through the inclusion of bright and robust variants. In this work, we use genome mining to identify and engineer two new FbFPs (CreiLOV and VafLOV) from Chlamydomonas reinhardtii and Vaucheria frigida. We show that CreiLOV is a thermostable, photostable, and fast-maturing monomeric reporter that outperforms existing FbFPs in brightness and operational pH range. Furthermore, we show that CreiLOV can be used to monitor dynamic gene expression in Escherichia coli. Overall, our work introduces CreiLOV as a robust addition to the FbFP repertoire and highlights genome mining as a powerful approach to engineer improved FbFPs.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Department of Chemical & Biomolecular Engineering, ‡Department of Microbiology, §Institute for Genomic Biology, ∥Department of Animal Sciences, ⊥Energy Biosciences Institute, #Center for Biophysics and Quantitative Biology, ∇Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kevin B. Weyant
- Department of Chemical & Biomolecular Engineering, ‡Department of Microbiology, §Institute for Genomic Biology, ∥Department of Animal Sciences, ⊥Energy Biosciences Institute, #Center for Biophysics and Quantitative Biology, ∇Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Utsav Agrawal
- Department of Chemical & Biomolecular Engineering, ‡Department of Microbiology, §Institute for Genomic Biology, ∥Department of Animal Sciences, ⊥Energy Biosciences Institute, #Center for Biophysics and Quantitative Biology, ∇Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Joshua Walker
- Department of Chemical & Biomolecular Engineering, ‡Department of Microbiology, §Institute for Genomic Biology, ∥Department of Animal Sciences, ⊥Energy Biosciences Institute, #Center for Biophysics and Quantitative Biology, ∇Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Isaac K. O. Cann
- Department of Chemical & Biomolecular Engineering, ‡Department of Microbiology, §Institute for Genomic Biology, ∥Department of Animal Sciences, ⊥Energy Biosciences Institute, #Center for Biophysics and Quantitative Biology, ∇Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles M. Schroeder
- Department of Chemical & Biomolecular Engineering, ‡Department of Microbiology, §Institute for Genomic Biology, ∥Department of Animal Sciences, ⊥Energy Biosciences Institute, #Center for Biophysics and Quantitative Biology, ∇Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
145
|
Live imaging of endogenous PSD-95 using ENABLED: a conditional strategy to fluorescently label endogenous proteins. J Neurosci 2015; 34:16698-712. [PMID: 25505322 DOI: 10.1523/jneurosci.3888-14.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo.
Collapse
|
146
|
West CW, Bull JN, Hudson AS, Cobb SL, Verlet JRR. Excited State Dynamics of the Isolated Green Fluorescent Protein Chromophore Anion Following UV Excitation. J Phys Chem B 2015; 119:3982-7. [DOI: 10.1021/acs.jpcb.5b01432] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - James N. Bull
- Department of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom
| | - Alex S. Hudson
- Department of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom
| | - Steven L. Cobb
- Department of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom
| | - Jan R. R. Verlet
- Department of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
147
|
Mukherjee A, Schroeder CM. Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Curr Opin Biotechnol 2015; 31:16-23. [DOI: 10.1016/j.copbio.2014.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023]
|
148
|
Scheckhuber CQ. Analysis of autophagy in Penicillium chrysogenum by using starvation pads in combination with fluorescence microscopy. J Vis Exp 2015:52577. [PMID: 25741895 PMCID: PMC4354607 DOI: 10.3791/52577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The study of cellular quality control systems has emerged as a highly dynamic and relevant field of contemporary research. It has become clear that cells possess several lines of defense against damage to biologically relevant molecules like nucleic acids, lipids and proteins. In addition to organelle dynamics (fusion/fission/motility/inheritance) and tightly controlled protease activity, the degradation of surplus, damaged or compromised organelles by autophagy (cellular 'self-eating') has received much attention from the scientific community. The regulation of autophagy is quite complex and depends on genetic and environmental factors, many of which have so far not been elucidated. Here a novel method is presented that allows the convenient study of autophagy in the filamentous fungus Penicillium chrysogenum. It is based on growth of the fungus on so-called 'starvation pads' for stimulation of autophagy in a reproducible manner. Samples are directly assayed by microscopy and evaluated for autophagy induction / progress. The protocol presented here is not limited for use with P. chrysogenum and can be easily adapted for use in other filamentous fungi.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- LOEWE Excellence Cluster for Integrative Fungal Research (IPF), Senckenberg Research Institute;
| |
Collapse
|
149
|
Abstract
AbstractDue to the considerable stability of green fluorescent proteins and their capacity to be readily permutated or mutated, they may be exploited in multiple ways to enhance the functionality of in vitro biosensors. Many possibilities, such as the formation of chimeras with other proteins or antibodies, as well as Förster resonance emission transfer performance, may be used for the highly sensitive and specific detection of the target molecules. This review considers the great potential of green fluorescent proteins as the fluorescent probing or recognition biomolecule in various in vitro biosensors applications, as well as obstacles associated with their use.
Collapse
|
150
|
Bourge M, Fort C, Soler MN, Satiat-Jeunemaître B, Brown SC. A pulse-chase strategy combining click-EdU and photoconvertible fluorescent reporter: tracking Golgi protein dynamics during the cell cycle. THE NEW PHYTOLOGIST 2015; 205:938-50. [PMID: 25266734 DOI: 10.1111/nph.13069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/13/2014] [Indexed: 05/12/2023]
Abstract
Imaging or quantifying protein synthesis in cellulo through a well-resolved analysis of the cell cycle (also defining G1 subcompartments) is a methodological challenge. Click chemistry is the method of choice to reveal the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU) and track proliferating nuclei undergoing DNA synthesis. However, the click reaction quenches fluorescent proteins. Our challenge was to reconcile these two tools. A robust protocol based on a high-resolution cytometric cell cycle analysis in tobacco (Nicotiana tabacum) BY2 cells expressing fluorescent Golgi markers has been established. This was broadly applicable to tissues, cell clusters, and other eukaryotic material, and compatible with Scale clearing. EdU was then used with the photoconvertible protein sialyl transferase (ST)-Kaede as a Golgi marker in a photoconversion pulse-chase cytometric configuration resolving, in addition, subcompartments of G1. Quantitative restoration of protein fluorescence was achieved by introducing acidic EDTA washes to strip the copper from these proteins which were then imaged at neutral pH. The rate of synthesis of this Golgi membrane marker was low during early G1, but in the second half of G1 (30% of cycle duration) much of the synthesis occurred. Marker synthesis then persisted during S and G2. These insights into Golgi biology are discussed in terms of the cell's ability to adapt exocytosis to cell growth needs.
Collapse
Affiliation(s)
- Mickaël Bourge
- Pôle de Biologie Cellulaire, Imagif, Centre de Recherche de Gif (FRC3115), CNRS, Saclay Plant Sciences, 91198, Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|