101
|
Ashby M, Houmard J. Cyanobacterial two-component proteins: structure, diversity, distribution, and evolution. Microbiol Mol Biol Rev 2006; 70:472-509. [PMID: 16760311 PMCID: PMC1489541 DOI: 10.1128/mmbr.00046-05] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A survey of the already characterized and potential two-component protein sequences that exist in the nine complete and seven partially annotated cyanobacterial genome sequences available (as of May 2005) showed that the cyanobacteria possess a much larger repertoire of such proteins than most other bacteria. By analysis of the domain structure of the 1,171 potential histidine kinases, response regulators, and hybrid kinases, many various arrangements of about thirty different modules could be distinguished. The number of two-component proteins is related in part to genome size but also to the variety of physiological properties and ecophysiologies of the different strains. Groups of orthologues were defined, only a few of which have representatives with known physiological functions. Based on comparisons with the proposed phylogenetic relationships between the strains, the orthology groups show that (i) a few genes, some of them clustered on the genome, have been conserved by all species, suggesting their very ancient origin and an essential role for the corresponding proteins, and (ii) duplications, fusions, gene losses, insertions, and deletions, as well as domain shuffling, occurred during evolution, leading to the extant repertoire. These mechanisms are put in perspective with the different genetic properties that cyanobacteria have to achieve genome plasticity. This review is designed to serve as a basis for orienting further research aimed at defining the most ancient regulatory mechanisms and understanding how evolution worked to select and keep the most appropriate systems for cyanobacteria to develop in the quite different environments that they have successfully colonized.
Collapse
Affiliation(s)
- Mark
K. Ashby
- Department
of Basic Medical Sciences, Biochemistry Section, University of the West
Indies, Mona Campus, Kingston 7,
Jamaica, Ecole Normale
Supérieure, CNRS UMR 8541, Génétique
Moléculaire, 46 rue d'Ulm, 75230 Paris Cedex 05,
France
| | - Jean Houmard
- Department
of Basic Medical Sciences, Biochemistry Section, University of the West
Indies, Mona Campus, Kingston 7,
Jamaica, Ecole Normale
Supérieure, CNRS UMR 8541, Génétique
Moléculaire, 46 rue d'Ulm, 75230 Paris Cedex 05,
France
- Corresponding
author. Mailing address: Ecole Normale Supérieure, CNRS UMR 8541,
Génétique Moléculaire, 46 rue d'Ulm, 75230 Paris
Cedex 05, France. Phone: 33 1 44 32 35 19. Fax: 33 1 44 96 53 60.
E-mail:
| |
Collapse
|
102
|
Yoshida T, Qin L, Egger LA, Inouye M. Transcription Regulation of ompF and ompC by a Single Transcription Factor, OmpR. J Biol Chem 2006; 281:17114-17123. [PMID: 16618701 DOI: 10.1074/jbc.m602112200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ompF and ompC genes of Escherichia coli are reciprocally regulated by a single transcription factor, phosphorylated OmpR (OmpR-P), depending upon medium osmolarity. This regulation involves activation of ompF and its repression with concomitant activation of ompC. This occurs through OmpR-P binding to four (F1, F2, F3, and F4) and three (C1, C2, and C3) sites located upstream of the ompF and ompC promoters, respectively, through a novel mechanism. Here we show that there is a distinct OmpR-P binding hierarchy within F1, F2, and F3 sites as well as within C1, C2, and C3 sites. Each of these sites contains two tandem 10-bp OmpR-P-binding subsites, a-site and b-site (from 5' to 3' direction). OmpR-P has higher affinity to the downstream b-site than to the upstream a-site in each case. Six OmpR-P molecules bind to F and C sites two-by-two in a discontinuous "galloping" manner. We propose that this tight hierarchical binding of a transcription factor, OmpR, allows distinct stepwise regulation of ompF and ompC transcription, which minimizes their overlapping expression upon changes in the medium osmolarity to achieve the reciprocal expression of ompF and ompC.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ling Qin
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Linda A Egger
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854.
| |
Collapse
|
103
|
Galperin MY. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 2006; 188:4169-82. [PMID: 16740923 PMCID: PMC1482966 DOI: 10.1128/jb.01887-05] [Citation(s) in RCA: 376] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 03/28/2006] [Indexed: 11/20/2022] Open
Abstract
CheY-like phosphoacceptor (or receiver [REC]) domain is a common module in a variety of response regulators of the bacterial signal transduction systems. In this work, 4,610 response regulators, encoded in complete genomes of 200 bacterial and archaeal species, were identified and classified by their domain architectures. Previously uncharacterized output domains were analyzed and, in some cases, assigned to known domain families. Transcriptional regulators of the OmpR, NarL, and NtrC families were found to comprise almost 60% of all response regulators; transcriptional regulators with other DNA-binding domains (LytTR, AraC, Spo0A, Fis, YcbB, RpoE, and MerR) account for an additional 6%. The remaining one-third is represented by the stand-alone REC domain (approximately 14%) and its combinations with a variety of enzymatic (GGDEF, EAL, HD-GYP, CheB, CheC, PP2C, and HisK), RNA-binding (ANTAR and CsrA), protein- or ligand-binding (PAS, GAF, TPR, CAP_ED, and HPt) domains, or newly described domains of unknown function. The diversity of domain architectures and the abundance of alternative domain combinations suggest that fusions between the REC domain and various output domains is a widespread evolutionary mechanism that allows bacterial cells to regulate transcription, enzyme activity, and/or protein-protein interactions in response to environmental challenges. The complete list of response regulators encoded in each of the 200 analyzed genomes is available online at http://www.ncbi.nlm.nih.gov/Complete_Genomes/RRcensus.html.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
104
|
Alderwick LJ, Molle V, Kremer L, Cozzone AJ, Dafforn TR, Besra GS, Fütterer K. Molecular structure of EmbR, a response element of Ser/Thr kinase signaling in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2006; 103:2558-63. [PMID: 16477027 PMCID: PMC1413777 DOI: 10.1073/pnas.0507766103] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ser/Thr phosphorylation has emerged as a critical regulatory mechanism in a number of bacteria, including Mycobacterium tuberculosis. This problematic pathogen encodes 11 eukaryotic-like Ser/Thr kinases, yet few substrates or signaling targets have been characterized. Here, we report the structure of EmbR (2.0 A), a putative transcriptional regulator of key arabinosyltransferases (EmbC, -A, and -B), and an endogenous substrate of the Ser/Thr-kinase PknH. EmbR presents a unique domain architecture: the N-terminal winged-helix DNA-binding domain forms an extensive interface with the all-helical central bacterial transcriptional activation domain and is positioned adjacent to the regulatory C-terminal forkhead-associated (FHA) domain, which mediates binding to a Thr-phosphorylated site in PknH. The structure in complex with a phospho-peptide (1.9 A) reveals a conserved mode of phospho-threonine recognition by the FHA domain and evidence for specific recognition of the cognate kinase. The present structures suggest hypotheses as to how EmbR might propagate the phospho-relay signal from its cognate kinase, while serving as a template for the structurally uncharacterized Streptomyces antibiotic regulatory protein family of transcription factors.
Collapse
Affiliation(s)
- Luke J. Alderwick
- *School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Virginie Molle
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5086, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon Cedex 07, France; and
| | - Laurent Kremer
- Laboratoire de Dynamique Moléculaire des Interactions Membranaires, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5539, Université Montpellier II, Case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Alain J. Cozzone
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5086, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon Cedex 07, France; and
| | - Timothy R. Dafforn
- *School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gurdyal S. Besra
- *School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Klaus Fütterer
- *School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
105
|
Murata N, Suzuki I. Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:235-47. [PMID: 16317040 DOI: 10.1093/jxb/erj005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The perception and subsequent transduction of environmental signals are primary events in the acclimation of living organisms to changes in their environment. Many of the molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Therefore, the genomic information has been exploited in a systematic approach to this problem, performing systematic mutagenesis of potential sensors and transducers, namely, histidine kinases and response regulators, respectively, in combination with DNA microarray analysis, to examine the genome-wide expression of genes in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Using targeted mutagenesis, 44 out of the 47 histidine kinases and 42 out of the 45 response regulators of this organism have successfully been inactivated. The resultant mutant libraries were screened by genome-wide DNA microarray analysis and by slot-blot hybridization analysis under various stress and non-stress conditions. Histidine kinases have been identified that perceive and transduce signals of low-temperature, hyperosmotic, and salt stress, as well as manganese deficiency.
Collapse
Affiliation(s)
- Norio Murata
- National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan.
| | | |
Collapse
|
106
|
Matson JS, DiRita VJ. Degradation of the membrane-localized virulence activator TcpP by the YaeL protease in Vibrio cholerae. Proc Natl Acad Sci U S A 2005; 102:16403-8. [PMID: 16254052 PMCID: PMC1283431 DOI: 10.1073/pnas.0505818102] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A common mechanism inhibiting the activity of transcription factors is their sequestration to the membrane until they are needed, at which point they are released from the membrane by proteolysis. Acting in contrast to this inhibition mechanism are virulence regulators of Vibrio cholerae, the ToxR and TcpP proteins, which are localized to the inner membrane of the cell, where they bind promoter DNA and activate gene expression. TcpP is rapidly degraded in the absence of another protein, TcpH. We used a genetic screen to identify regulators of TcpP stability and identified the YaeL membrane-localized zinc metalloprotease as responsible for degrading TcpP in the absence of TcpH. In Escherichia coli, DegS and YaeL cooperate to degrade RseA, an antisigma factor that sequesters sigma(E) to the inner membrane, thereby inhibiting the activity of sigma(E). When yaeL was disrupted in a V. cholerae tcpH mutant, we observed accumulation of a lower molecular weight species of TcpP. This observation is consistent with TcpP being partially degraded in the absence of YaeL. A mutant lacking both DegS and YaeL continued to accumulate the TcpP degradation product, indicating that protease other than DegS is acting before YaeL in degrading TcpP. The YaeL-dependent degradation pathway is active in TcpH(+) cells under conditions that are not favorable for virulence gene activation. This work expands the knowledge of YaeL-dependent processing in the bacterial cell and reveals an unexpected layer of virulence gene regulation in V. cholerae.
Collapse
Affiliation(s)
- Jyl S Matson
- Department of Microbiology and Immunology and Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | |
Collapse
|
107
|
Azcarate-Peril MA, McAuliffe O, Altermann E, Lick S, Russell WM, Klaenhammer TR. Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl Environ Microbiol 2005; 71:5794-804. [PMID: 16204490 PMCID: PMC1266013 DOI: 10.1128/aem.71.10.5794-5804.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 05/13/2005] [Indexed: 01/19/2023] Open
Abstract
Two-component regulatory systems are one primary mechanism for environmental sensing and signal transduction. Annotation of the complete genome sequence of the probiotic bacterium Lactobacillus acidophilus NCFM revealed nine two-component regulatory systems. In this study, the histidine protein kinase of a two-component regulatory system (LBA1524HPK-LBA1525RR), similar to the acid-related system lisRK from Listeria monocytogenes (P. D. Cotter et al., J. Bacteriol. 181:6840-6843, 1999), was insertionally inactivated. A whole-genome microarray containing 97.4% of the annotated genes of L. acidophilus was used to compare genome-wide patterns of transcription at various pHs between the control and the histidine protein kinase mutant. The expression pattern of approximately 80 genes was affected by the LBA1524HPK mutation. Putative LBA1525RR target loci included two oligopeptide-transport systems present in the L. acidophilus genome, other components of the proteolytic system, and a LuxS homolog, suspected of participating in synthesis of the AI-2 signaling compound. The mutant exhibited lower tolerance to acid and ethanol in logarithmic-phase cells and poor acidification rates in milk. Supplementation of milk with Casamino Acids essentially restored the acid-producing ability of the mutant, providing additional evidence for a role of this two component system in regulating proteolytic activity in L. acidophilus.
Collapse
Affiliation(s)
- M Andrea Azcarate-Peril
- Department of Food Science, North Carolina State University, Box 7624, Raleigh, NC 27695, USA
| | | | | | | | | | | |
Collapse
|
108
|
Maris AE, Walthers D, Mattison K, Byers N, Kenney LJ. The Response Regulator OmpR Oligomerizes via β-Sheets to Form Head-to-head Dimers. J Mol Biol 2005; 350:843-56. [PMID: 15979641 DOI: 10.1016/j.jmb.2005.05.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/18/2005] [Accepted: 05/24/2005] [Indexed: 11/29/2022]
Abstract
In Escherichia coli, the EnvZ/OmpR two-component regulatory system regulates expression of the porin genes ompF and ompC in response to changes in osmolarity. It has recently become apparent that OmpR functions as a global regulator, by regulating the expression of many genes in addition to the porin genes. OmpR consists of two domains; phosphorylation of the N-terminal receiver domain increases DNA binding affinity of the C-terminal domain and vice versa. Many response regulators including PhoB and FixJ dimerize upon phosphorylation. Here, we demonstrate that OmpR dimerization is stimulated by phosphorylation or by DNA binding. The dimerization interface revealed here was unanticipated and had previously not been predicted. Using the accepted head-to-tail tandem-binding model as a guide, we set out to examine the intermolecular interactions between OmpR dimers bound to DNA by protein-protein cross-linking methods. Surprisingly, amino acid positions that we expected to form cross-linked dimers did not. Conversely, positions predicted not to form dimers did. Because of these results, we designed a series of 23 cysteine-substituted OmpR mutants that were used to investigate dimer interfaces formed via the beta-sheet region. This four-stranded beta-sheet is a unique feature of the OmpR group of winged helix-turn-helix proteins. Many of the cysteine-substituted mutants are dominant to wild-type OmpR, are phosphorylated by acetyl phosphate as well as the cognate kinase EnvZ, and the cross-linked proteins are capable of binding to DNA. Our results are consistent with a model in which OmpR binds to DNA in a head-to-head orientation, in contrast to the previously proposed asymmetric head-to-tail model. They also raise the possibility that OmpR may be capable of adopting more than one orientation as it binds to a vast array of genes to activate or repress transcription.
Collapse
Affiliation(s)
- Ann E Maris
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | |
Collapse
|
109
|
Mukhopadhyay D, Varughese KI. A computational analysis on the specificity of interactions between histidine kinases and response regulators. J Biomol Struct Dyn 2005; 22:555-62. [PMID: 15702927 DOI: 10.1080/07391102.2005.10507025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bacteria process and transmit signals simultaneously through several two-component/phosphorelay networks using closely related proteins. Therefore discrimination against mismatches and discrete recognition between protein partners is an absolute requirement for producing the correct responses. We tried to address this issue by comparing and analyzing sequences from the helix-bundle regions of histidine kinases of Bacillus subtilis. Our analysis shows how conservation and variability in the sequences give rise to selective association and unique recognition. The observed pattern suggests that the chances for cross talk between non-partner proteins are extremely low, but cross talk could take place in special cases.
Collapse
Affiliation(s)
- Debashis Mukhopadhyay
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, MEM-116, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
110
|
Toro-Roman A, Mack TR, Stock AM. Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the alpha4-beta5-alpha5 face. J Mol Biol 2005; 349:11-26. [PMID: 15876365 PMCID: PMC3690759 DOI: 10.1016/j.jmb.2005.03.059] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/20/2005] [Accepted: 03/22/2005] [Indexed: 12/24/2022]
Abstract
Escherichia coli react to changes from aerobic to anaerobic conditions of growth using the ArcA-ArcB two-component signal transduction system. This system, in conjunction with other proteins, regulates the respiratory metabolic pathways in the organism. ArcA is a member of the OmpR/PhoB subfamily of response regulator transcription factors that are known to regulate transcription by binding in tandem to target DNA direct repeats. It is still unclear in this subfamily how activation by phosphorylation of the regulatory domain of response regulators stimulates DNA binding by the effector domain and how dimerization and domain orientation, as well as intra- and intermolecular interactions, affect this process. In order to address these questions we have solved the crystal structures of the regulatory domain of ArcA in the presence and absence of the phosphoryl analog, BeF3-. In the crystal structures, the regulatory domain of ArcA forms a symmetric dimer mediated by the alpha4-beta5-alpha5 face of the protein and involving a number of residues that are highly conserved in the OmpR/PhoB subfamily. It is hypothesized that members of this subfamily use a common mechanism of regulation by dimerization. Additional biophysical studies were employed to probe the oligomerization state of ArcA, as well as its individual domains, in solution. The solution studies show the propensity of the individual domains to associate into oligomers larger than the dimer observed for the intact protein, and suggest that the C-terminal DNA-binding domain also plays a role in oligomerization.
Collapse
Affiliation(s)
- Alejandro Toro-Roman
- Department of Chemistry and Chemical Biology, Rutgers University
- Center for Advanced Biotechnology and Medicine
| | - Timothy R. Mack
- Center for Advanced Biotechnology and Medicine
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School
- Howard Hughes Medical Institute, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Corresponding author:
| |
Collapse
|
111
|
Gunsior M, Breazeale SD, Lind AJ, Ravel J, Janc JW, Townsend CA. The biosynthetic gene cluster for a monocyclic beta-lactam antibiotic, nocardicin A. ACTA ACUST UNITED AC 2005; 11:927-38. [PMID: 15271351 DOI: 10.1016/j.chembiol.2004.04.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 03/29/2004] [Accepted: 04/21/2004] [Indexed: 11/25/2022]
Abstract
The monocyclic beta-lactam antibiotic nocardicin A is related structurally and biologically to the bicyclic beta-lactams comprised of penicillins/cephalosporins, clavams, and carbapenems. Biosynthetic gene clusters are known for each of the latter, but not for monocyclic beta-lactams. A previously cloned gene encoding an enzyme specific to the biosynthetic pathway was used to isolate the nocardicin A cluster from Nocardia uniformis. Sequence analysis revealed the presence of 14 open reading frames involved in antibiotic production, resistance, and export. Among these are a two-protein nonribosomal peptide synthetase system, p-hydroxyphenylglycine biosynthetic genes, an S-adenosylmethionine-dependent 3-amino-3-carboxypropyl transferase (Nat), and a cytochrome P450. Gene disruption mutants of Nat, as well as an activation domain of the NRPS system, led to loss of nocardicin A formation. Several enzymes involved in antibiotic biosynthesis were heterologously overproduced, and biochemical characterization confirmed their proposed activities.
Collapse
Affiliation(s)
- Michele Gunsior
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
112
|
Beck NA, Krukonis ES, DiRita VJ. TcpH influences virulence gene expression in Vibrio cholerae by inhibiting degradation of the transcription activator TcpP. J Bacteriol 2005; 186:8309-16. [PMID: 15576780 PMCID: PMC532408 DOI: 10.1128/jb.186.24.8309-8316.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of toxT, the transcription activator of cholera toxin and pilus production in Vibrio cholerae, is the consequence of a complex cascade of regulatory events that culminates in activation of the toxT promoter by TcpP and ToxR, two membrane-localized transcription factors. Both are encoded in operons with genes whose products, TcpH and ToxS, which are also membrane localized, are hypothesized to control their activity. In this study we analyzed the role of TcpH in controlling TcpP function. We show that a mutant of V. cholerae lacking TcpH expressed virtually undetectable levels of TcpP, although tcpP mRNA levels remain unaffected. A time course experiment showed that levels of TcpP, expressed from a plasmid, are dramatically reduced over time without co-overexpression of TcpH. By contrast, deletion of toxS did not affect ToxR protein levels. A fusion protein in which the TcpP periplasmic domain is replaced with that of ToxR remains stable, suggesting that the periplasmic domain of TcpP is the target for degradation of the protein. Placement of the periplasmic domain of TcpP on ToxR, an otherwise stable protein, results in instability, providing further evidence for the hypothesis that the periplasmic domain of TcpP is a target for degradation. Consistent with this interpretation is our finding that derivatives of TcpP lacking a periplasmic domain are more stable in V. cholerae than are derivatives in which the periplasmic domain has been truncated. This work identifies at least one role for the periplasmic domain of TcpP, i.e., to act as a target for a protein degradation pathway that regulates TcpP levels. It also provides a rationale for why the V. cholerae tcpH mutant strain is avirulent. We hypothesize that regulator degradation may be an important mechanism for regulating virulence gene expression in V. cholerae.
Collapse
Affiliation(s)
- Nancy A Beck
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103-0620, USA
| | | | | |
Collapse
|
113
|
Rebets Y, Ostash B, Luzhetskyy A, Kushnir S, Fukuhara M, Bechthold A, Nashimoto M, Nakamura T, Fedorenko V. DNA-binding activity of LndI protein and temporal expression of the gene that upregulates landomycin E production in Streptomyces globisporus 1912. Microbiology (Reading) 2005; 151:281-290. [PMID: 15632445 DOI: 10.1099/mic.0.27244-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene lndI is involved in the pathway-specific positive regulation of biosynthesis of the antitumour polyketide landomycin E in Streptomyces globisporus 1912. LndI was overexpressed in Escherichia coli as a protein C-terminally fused to the intein-chitin-binding-domain tag and purified in a one-step column procedure. Results of in vivo LndI titration, DNA gel mobility-shift assays and promoter-probing experiments indicate that LndI is an autoregulatory DNA-binding protein that binds to its own gene promoter and to the promoter of the structural gene lndE. Enhanced green fluorescent protein was used as a reporter to study the temporal and spatial pattern of lndI transcription. Expression of lndI started before cells entered mid-exponential phase and peak expression coincided with maximal accumulation of landomycin E and biomass. In solid-phase analysis, lndI expression was evident in substrate mycelia but was absent from aerial hyphae and spores.
Collapse
Affiliation(s)
- Yu Rebets
- Department of Genetics and Biotechnology of Ivan Franko National University of L'viv, Grushevskogo st.4, L'viv 79005, Ukraine
| | - B Ostash
- Department of Genetics and Biotechnology of Ivan Franko National University of L'viv, Grushevskogo st.4, L'viv 79005, Ukraine
| | - A Luzhetskyy
- Institut für Pharmazeutische Wissenschaften, Lehrstuhl für Pharmazeutische Biologie und Biotechnologie Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
- Department of Genetics and Biotechnology of Ivan Franko National University of L'viv, Grushevskogo st.4, L'viv 79005, Ukraine
| | - S Kushnir
- Department of Genetics and Biotechnology of Ivan Franko National University of L'viv, Grushevskogo st.4, L'viv 79005, Ukraine
| | - M Fukuhara
- Department of Microbiology, Niigata University of Pharmacy, Kami-Shinei-cho 5-13-2, Niigata 950-2081, Japan
| | - A Bechthold
- Institut für Pharmazeutische Wissenschaften, Lehrstuhl für Pharmazeutische Biologie und Biotechnologie Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - M Nashimoto
- Department of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, Kami-Shinei-cho 5-13-2, Niigata 950-2081, Japan
| | - T Nakamura
- Department of Microbiology, Niigata University of Pharmacy, Kami-Shinei-cho 5-13-2, Niigata 950-2081, Japan
| | - V Fedorenko
- Department of Genetics and Biotechnology of Ivan Franko National University of L'viv, Grushevskogo st.4, L'viv 79005, Ukraine
| |
Collapse
|
114
|
Suzuki T, Yoshimura H, Hisabori T, Ohmori M. Two cAMP receptor proteins with different biochemical properties in the filamentous cyanobacterium Anabaena sp. PCC 7120. FEBS Lett 2004; 571:154-60. [PMID: 15280034 DOI: 10.1016/j.febslet.2004.06.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 06/24/2004] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
Two open reading frames (ORFs), alr0295 and alr2325, are found to encode putative cAMP receptor proteins (CRPs) in the genome of the filamentous cyanobacterium Anabaena sp. PCC 7120. These ORFs were named cAMP receptor protein-like gene A in Anabaena sp. PCC 7120 (ancrpA) and cAMP receptor protein-like gene B in Anabaena sp. PCC 7120 (ancrpB), respectively, and those translated products were investigated. The equilibrium dialysis measurements revealed that AnCrpA bound with cAMP specifically, while AnCrpB bound with both cAMP and cGMP, though the affinity for cGMP was weak. The binding affinity for cAMP of AnCrpA showed the lowest dissociation constant, approximately 0.8 microM, among bacterial CRPs. A gel mobility shift assay elucidated that AnCrpA and AnCrpB formed a complex with the consensus DNA sequence in the presence of cAMP, although AnCrpB did not have ordinary DNA-binding motifs.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
115
|
Goh EB, Siino DF, Igo MM. The Escherichia coli tppB (ydgR) gene represents a new class of OmpR-regulated genes. J Bacteriol 2004; 186:4019-24. [PMID: 15175316 PMCID: PMC419963 DOI: 10.1128/jb.186.12.4019-4024.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EnvZ/OmpR two-component regulatory system plays a critical role in the Escherichia coli stress response. In this study, we examined the expression of a new OmpR-regulated gene, ydgR. Our results indicate that ydgR is equivalent to the Salmonella enterica serovar Typhimurium tppB gene and represents a new class of OmpR-regulated genes.
Collapse
Affiliation(s)
- Ee-Been Goh
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
116
|
Pragman AA, Yarwood JM, Tripp TJ, Schlievert PM. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. J Bacteriol 2004; 186:2430-8. [PMID: 15060046 PMCID: PMC412142 DOI: 10.1128/jb.186.8.2430-2438.2004] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Workers in our laboratory have previously identified the staphylococcal respiratory response AB (SrrAB), a Staphylococcus aureus two-component system that acts in the global regulation of virulence factors. This system down-regulates production of agr RNAIII, protein A, and toxic shock syndrome toxin 1 (TSST-1), particularly under low-oxygen conditions. In this study we investigated the localization and membrane orientation of SrrA and SrrB, transcription of the srrAB operon, the DNA-binding properties of SrrA, and the effect of SrrAB expression on S. aureus virulence. We found that SrrA is localized to the S. aureus cytoplasm, while SrrB is localized to the membrane and is properly oriented to function as a histidine kinase. srrAB has one transcriptional start site which results in either an srrA transcript or a full-length srrAB transcript; srrB must be cotranscribed with srrA. Gel shift assays of the agr P2, agr P3, protein A (spa), TSST-1 (tst), and srr promoters revealed SrrA binding at each of these promoters. Analysis of SrrAB-overexpressing strains by using the rabbit model of bacterial endocarditis demonstrated that overexpression of SrrAB decreased the virulence of the organisms compared to the virulence of isogenic strains that do not overexpress SrrAB. We concluded that SrrAB is properly localized and oriented to function as a two-component system. Overexpression of SrrAB, which represses agr RNAIII, TSST-1, and protein A in vitro, decreases virulence in the rabbit endocarditis model. Repression of these virulence factors is likely due to a direct interaction between SrrA and the agr, tst, and spa promoters.
Collapse
Affiliation(s)
- Alexa A Pragman
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
117
|
Geng H, Nakano S, Nakano MM. Transcriptional activation by Bacillus subtilis ResD: tandem binding to target elements and phosphorylation-dependent and -independent transcriptional activation. J Bacteriol 2004; 186:2028-37. [PMID: 15028686 PMCID: PMC374413 DOI: 10.1128/jb.186.7.2028-2037.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of genes involved in nitrate respiration in Bacillus subtilis is regulated by the ResD-ResE two-component signal transduction system. The membrane-bound ResE sensor kinase perceives a redox-related signal(s) and phosphorylates the cognate response regulator ResD, which enables interaction of ResD with ResD-dependent promoters to activate transcription. Hydroxyl radical footprinting analysis revealed that ResD tandemly binds to the -41 to -83 region of hmp and the -46 to -92 region of nasD. In vitro runoff transcription experiments showed that ResD is necessary and sufficient to activate transcription of the ResDE regulon. Although phosphorylation of ResD by ResE kinase greatly stimulated transcription, unphosphorylated ResD, as well as ResD with a phosphorylation site (Asp57) mutation, was able to activate transcription at a low level. The D57A mutant was shown to retain the activity in vivo to induce transcription of the ResDE regulon in response to oxygen limitation, suggesting that ResD itself, in addition to its activation through phosphorylation-mediated conformation change, senses oxygen limitation via an unknown mechanism leading to anaerobic gene activation.
Collapse
Affiliation(s)
- Hao Geng
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
118
|
Chen Y, Abdel-Fattah WR, Hulett FM. Residues required for Bacillus subtilis PhoP DNA binding or RNA polymerase interaction: alanine scanning of PhoP effector domain transactivation loop and alpha helix 3. J Bacteriol 2004; 186:1493-502. [PMID: 14973033 PMCID: PMC344424 DOI: 10.1128/jb.186.5.1493-1502.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis PhoP is a member of the OmpR family of response regulators that activates or represses genes of the Pho regulon upon phosphorylation by PhoR in response to phosphate deficiency. Because PhoP binds DNA and is a dimer in solution independent of its phosphorylation state, phosphorylation of PhoP may optimize DNA binding or the interaction with RNA polymerase. We describe alanine scanning mutagenesis of the PhoP alpha loop and alpha helix 3 region of PhoPC (Val190 to E214) and functional analysis of the mutated proteins. Eight residues important for DNA binding were clustered between Val202 and Arg210. Using in vivo and in vitro functional analyses, we identified three classes of mutated proteins. Class I proteins (PhoP(I206A), PhoP(R210A), PhoP(L209A), and PhoP(H208A)) were phosphorylation proficient and could dimerize but could not bind DNA or activate transcription in vivo or in vitro. Class II proteins (PhoP(H205A) and PhoP(V204A)) were phosphorylation proficient and could dimerize but could not bind DNA prior to phosphorylation. Members of this class had higher transcription activation in vitro than in vivo. The class III mutants, PhoP(V202A) and PhoP(D203A), had a reduced rate of phosphotransfer and could dimerize but could not bind DNA or activate transcription in vivo or in vitro. Seven alanine substitutions in PhoP (PhoP(V190A), PhoP(W191A), PhoP(Y193A), PhoP(F195A), PhoP(G197A,) PhoP(T199A), and PhoP(R200A)) that specifically affected transcription activation were broadly distributed throughout the transactivation loop extending from Val190 to as far toward the C terminus as Arg200. PhoP(W191A) and PhoP(R200A) could not activate transcription, while the other five mutant proteins showed decreased transcription activation in vivo or in vitro or both. The mutagenesis studies may indicate that PhoP has a long transactivation loop and a short alpha helix 3, more similar to OmpR than to PhoB of Escherichia coli.
Collapse
Affiliation(s)
- Yinghua Chen
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
119
|
References. Antibiotics (Basel) 2003. [DOI: 10.1128/9781555817886.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
120
|
Sinha SC, Krahn J, Shin BS, Tomchick DR, Zalkin H, Smith JL. The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation. J Bacteriol 2003; 185:4087-98. [PMID: 12837783 PMCID: PMC164869 DOI: 10.1128/jb.185.14.4087-4098.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Accepted: 04/29/2003] [Indexed: 11/20/2022] Open
Abstract
The purine repressor from Bacillus subtilis, PurR, represses transcription from a number of genes with functions in the synthesis, transport, and metabolism of purines. The 2.2-A crystal structure of PurR reveals a two-domain protein organized as a dimer. The larger C-terminal domain belongs to the PRT structural family, in accord with a sequence motif for binding the inducer phosphoribosylpyrophosphate (PRPP). The PRT domain is fused to a smaller N-terminal domain that belongs to the winged-helix family of DNA binding proteins. A positively charged surface on the winged-helix domain likely binds specific DNA sequences in the recognition site. A second positively charged surface surrounds the PRPP site at the opposite end of the PurR dimer. Conserved amino acids in the sequences of PurR homologs in 21 gram-positive bacteria cluster on the proposed recognition surface of the winged-helix domain and around the PRPP binding site at the opposite end of the molecule, supporting a common function of DNA and PRPP binding for all of the proteins. The structure supports a binding mechanism in which extended regions of DNA interact with extensive protein surface. Unlike most PRT proteins, which are phosphoribosyltransferases (PRTases), PurR lacks catalytic activity. This is explained by a tyrosine side chain that blocks the site for a nucleophile cosubstrate in PRTases. Thus, B. subtilis has adapted an enzyme fold to serve as an effector-binding domain and has used it in a novel combination with the DNA-binding winged-helix domain as a repressor of purine genes.
Collapse
Affiliation(s)
- Sangita C Sinha
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
121
|
Krukonis ES, DiRita VJ. DNA binding and ToxR responsiveness by the wing domain of TcpP, an activator of virulence gene expression in Vibrio cholerae. Mol Cell 2003; 12:157-65. [PMID: 12887901 DOI: 10.1016/s1097-2765(03)00222-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Virulence in Vibrio cholerae requires activation of toxT by two membrane-localized activators, TcpP and ToxR. We isolated 12 tcpP activation mutants that fell into two classes: class I mutants were inactive irrespective of the presence of ToxR, and class II mutants exhibited near wild-type activity when coexpressed with ToxR. Most class I mutants had lesions in the wing domain predicted by homology with the winged helix-turn-helix family of activators. Class I mutants bound promoter DNA poorly and were largely unable to interact with ToxR in a crosslinking assay, whereas class II mutants retained physical interaction with ToxR. One mutant constructed in vitro bound DNA poorly but nevertheless responded to ToxR by activating toxT and also maintained ToxR interaction. We propose that ToxR interaction, but not DNA binding, is essential for TcpP function and that the wing domain of TcpP enables contact with ToxR required for productive TcpP-RNA polymerase association.
Collapse
Affiliation(s)
- Eric S Krukonis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
122
|
Robinson VL, Wu T, Stock AM. Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J Bacteriol 2003; 185:4186-94. [PMID: 12837793 PMCID: PMC164896 DOI: 10.1128/jb.185.14.4186-4194.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal regulatory domains of bacterial response regulator proteins catalyze phosphoryl transfer and function as phosphorylation-dependent regulatory switches to control the output activities of C-terminal effector domains. Structures of numerous isolated regulatory and effector domains have been determined. However, a detailed understanding of regulatory interactions among these domains has been limited by the relative paucity of structural data for intact multidomain response regulator proteins. The first multidomain structures determined, those of transcription factor NarL and methylesterase CheB, both revealed extensive interdomain interfaces. The regulatory domains obstruct access to the functional sites of the effector domains, indicating a regulatory mechanism based on inhibition. In contrast, the recently determined structure of the OmpR/PhoB homologue DrrD revealed no significant interdomain interface, suggesting that the domains are tethered by a flexible linker and lack a fixed orientation relative to each other. To address the generality of this feature, we have determined the 1.8-A resolution crystal structure of Thermotoga maritima DrrB, providing a second structure of a multidomain response regulator of the OmpR/PhoB subfamily. The structure reveals an extensive domain interface of 751 A(2) and therefore differs greatly from that observed in DrrD. Residues that are crucial players in defining the activation state of the regulatory domain contribute to this interface, implying that conformational changes associated with phosphorylation will influence these intramolecular contacts. The DrrB and DrrD structures are suggestive of different signaling mechanisms, with intramolecular communication between N- and C-terminal domains making substantially different contributions to effector domain regulation in individual members of the OmpR/PhoB family.
Collapse
Affiliation(s)
- Victoria L Robinson
- Howard Hughes Medical Institute, Center for Advanced Biotechnology and Medicine, and Department of Biochemistry, Robert Wood Johnson Medical School, The University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
123
|
Castelli ME, Cauerhff A, Amongero M, Soncini FC, Vescovi EG. The H box-harboring domain is key to the function of the Salmonella enterica PhoQ Mg2+-sensor in the recognition of its partner PhoP. J Biol Chem 2003; 278:23579-85. [PMID: 12702718 DOI: 10.1074/jbc.m303042200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In two-component signaling systems, the transduction strategy relies on a conserved His-Asp phosphoryl exchange between the sensor histidine kinase and its cognate response-regulator, and structural and functional consensus motifs are found when comparing either the diverse histidine kinases or response regulators present in a single cell. Therefore, the mechanism that guarantees the specific recognition between partners of an individual pair is essential to unequivocally generate the appropriate adaptive response. Based on sequence alignments with other histidine kinases, we dissected the Salmonella enterica Mg2+-sensor PhoQ in different subdomains and examined by in vivo and in vitro assays its interaction with the associated response regulator PhoP. This signal transduction system allows Salmonella to withstand environmental Mg2+ limitation by triggering gene expression that is vital throughout the infective cycle in the host. Using resonant mirror biosensor technology, we calculated the kinetic and equilibrium binding constants and determined that the His-phosphotransfer domain is essential for the PhoQ specific recognition and interaction with PhoP. Additionally, we show the role of this domain in the bimolecular transphosphorylation and provide evidence that this region undergoes dimerization.
Collapse
Affiliation(s)
- María E Castelli
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|
124
|
Abstract
The accessory genes of Staphylococcus aureus, including those involved in pathogenesis, are controlled by a complex regulatory network that includes at least four two-component systems, one of which, agr, is a quorum sensor, an alternative sigma factor and a large set of transcription factors, including at least two of the superantigen genes, tst and seb. These regulatory genes are hypothesized to act in a time- and population density-dependent manner to integrate signals received from the external environment with the internal metabolic machinery of the cell, in order to achieve the production of particular subsets of accessory/virulence factors at the time and in quantities that are appropriate to the needs of the organism at any given location. From the standpoint of pathogenesis, the regulatory agenda is presumably tuned to particular sites in the host organism. To address this hypothesis, it will be necessary to understand in considerable detail the regulatory interactions among the organism's numerous controlling systems. This review is an attempt to integrate a large body of data into the beginnings of a model that will hopefully help to guide research towards a full-scale test.
Collapse
Affiliation(s)
- Richard P Novick
- Program in Molecular Pathogenesis, Skirball Institute, Department of Microbiology, New York University School of Medicine, 10016, USA.
| |
Collapse
|
125
|
Rebets Y, Ostash B, Luzhetskyy A, Hoffmeister D, Brana A, Mendez C, Salas JA, Bechthold A, Fedorenko V. Production of landomycins in Streptomyces globisporus 1912 and S cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiol Lett 2003; 222:149-53. [PMID: 12757959 DOI: 10.1016/s0378-1097(03)00258-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory genes lanI and lndI have been cloned from the landomycin A (LaA) producer Streptomyces cyanogenus S136 and from the landomycin E (LaE) producer Streptomyces globisporus 1912, respectively and both have been sequenced. A culture of S. globisporus I2-1 carrying a disrupted lndI gene did not produce LaE and other related intermediates. Complementation of S. globisporus I2-1 with either the lndI or lanI gene reconstituted LaE production indicating that LanI and LndI are involved in activation of structural genes in the respective clusters. Structural features of these regulatory genes are discussed.
Collapse
Affiliation(s)
- Y Rebets
- Department of Genetics and Biotechnology, Ivan Franko National University of L'viv, Grushevskyy st 4, L'viv 79005, Ukraine
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Feng X, Oropeza R, Kenney LJ. Dual regulation by phospho-OmpR of ssrA/B gene expression in Salmonella pathogenicity island 2. Mol Microbiol 2003; 48:1131-43. [PMID: 12753201 DOI: 10.1046/j.1365-2958.2003.03502.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Expression of genes located on Salmonella pathogenicity island 2 (SPI-2) is required for systemic infection in mice. This region encodes a type III secretion system, secreted effectors and the two-component regulatory system SsrA/B (also referred to as SpiR), as well as additional uncharacterized genes. In the present work, we demonstrate that phospho-OmpR (OmpR-P) functions as an activator at the spiC-ssrA/B locus. There are two promoters at spiR; one is upstream of ssrA and the other upstream of ssrB. Our results indicate that, in contrast to many two-component regulatory systems, regulation of the sensor kinase SsrA appears to be uncoupled and distinct from regulation of the response regulator SsrB. OmpR regulation of ssrA/B is one of only a few examples known in which a two-component response regulator directly regulates the expression of another two-component regulatory system.
Collapse
Affiliation(s)
- Xiuhong Feng
- Department of Molecular Microbiology and Immunology, L-220, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
127
|
Le Breton Y, Boël G, Benachour A, Prévost H, Auffray Y, Rincé A. Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses. Environ Microbiol 2003; 5:329-37. [PMID: 12713459 DOI: 10.1046/j.1462-2920.2003.00405.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A key issue in the comprehension of the Enterococcus faecalis stress response is to understand how this bacterium is able to modulate its gene expression in accordance to environmental conditions. Through bioinformatic analysis of the E. faecalis V583 genome, nine two-component systems and a single orphan response regulator were identified. A transcriptional study gave evidence of four systems whose expression is induced by at least one environmental stress. In addition, gene disruption experiments allowed the isolation of eight response regulator mutants. Insertional inactivation of the response regulator gene err 05 resulted in growth default and cell morphology alterations; and also in expression default of the sagA gene, this latter being recently shown involved in E. faecalis stress resistance toward numerous lethal treatments (Y. Le Breton, A. Mazé, A. Hartke, S. Lemarinier, Y. Auffray and A. Rincé (2002) Current Microbiol 45: 434-439). Disruption of the err 04, err 08 or err 18 genes resulted in sensitivity towards heat. Finally, the err 10 mutant was shown to be more sensitive to acid pH and NaCl whereas its growth was less affected by bile salts or heat. We also demonstrated that the heat resistance phenotype of the err 10 mutant was correlated with an increase of the heat shock proteins DnaK and GroEL level.
Collapse
Affiliation(s)
- Yoann Le Breton
- USC INRA Microbiologie de l'Environnement, EA 956, IRBA, Université de Caen, 14032 Caen cedex, France
| | | | | | | | | | | |
Collapse
|
128
|
Kurita N, Sengoku Y, Sekino H. Electronic properties of DNA binding site in transcription OmpR family: semiempirical molecular orbital calculations. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(03)00462-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
129
|
Crawford JA, Krukonis ES, DiRita VJ. Membrane localization of the ToxR winged-helix domain is required for TcpP-mediated virulence gene activation in Vibrio cholerae. Mol Microbiol 2003; 47:1459-73. [PMID: 12603748 DOI: 10.1046/j.1365-2958.2003.03398.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ToxR is a bitopic membrane protein that controls virulence gene expression in Vibrio cholerae. Its cytoplasmic domain is homologous to the winged helix-turn-helix ('winged helix') DNA-binding/transcription activation domain found in a variety of prokaryotic and eukaryotic regulators, whereas its periplasmic domain is of ill-defined function. Several genes in V. cholerae are regulated by ToxR, but by apparently different mechanisms. Whereas ToxR directly controls the transcription of genes encoding two outer membrane proteins, OmpU and OmpT, it co-operates with a second membrane-localized transcription factor called TcpP to activate transcription of the gene encoding ToxT, which regulates transcription of cholera toxin (ctxAB) and the toxin-co-regulated pilus (tcp). To determine the requirements for gene activation by ToxR, different domains of the protein were analysed for their ability to control expression of toxT, ompU and ompT. Soluble forms of the cytoplasmic winged-helix domain regulated ompU and ompT gene expression properly but did not activate toxT transcription. Membrane localization of the winged helix was sufficient for both omp gene regulation and TcpP-dependent toxT transcription, irrespective of the type of periplasmic domain or even the presence of a periplasmic domain. These results suggest that (i) the major function for membrane localization of ToxR is for its winged-helix domain to co-operate with TcpP to activate transcription; (ii) the periplasmic domain of ToxR is not required for TcpP-dependent activation of toxT transcription; and (iii) membrane localization is not a strict requirement for DNA binding and transcription activation by ToxR.
Collapse
Affiliation(s)
- J Adam Crawford
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
130
|
Walthers D, Tran VK, Kenney LJ. Interdomain linkers of homologous response regulators determine their mechanism of action. J Bacteriol 2003; 185:317-24. [PMID: 12486069 PMCID: PMC141822 DOI: 10.1128/jb.185.1.317-324.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OmpR and PhoB are response regulators that contain an N-terminal phosphorylation domain and a C-terminal DNA binding effector domain connected by a flexible interdomain linker. Phosphorylation of the N terminus results in an increase in affinity for specific DNA and the subsequent regulation of gene expression. Despite their sequence and structural similarity, OmpR and PhoB employ different mechanisms to regulate their effector domains. Phosphorylation of OmpR in the N terminus stimulates the DNA binding affinity of the C terminus, whereas phosphorylation of the PhoB N terminus relieves inhibition of the C terminus, enabling it to bind to DNA. Chimeras between OmpR and PhoB containing either interdomain linker were constructed to explore the basis of the differences in their activation mechanisms. Our results indicate that effector domain regulation by either N terminus requires its cognate interdomain linker. In addition, our findings suggest that the isolated C terminus of OmpR is not sufficient for a productive interaction with RNA polymerase.
Collapse
Affiliation(s)
- Don Walthers
- Department of Molecular Microbiology & Immunology L220, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | | | | |
Collapse
|
131
|
Chen Y, Birck C, Samama JP, Hulett FM. Residue R113 is essential for PhoP dimerization and function: a residue buried in the asymmetric PhoP dimer interface determined in the PhoPN three-dimensional crystal structure. J Bacteriol 2003; 185:262-73. [PMID: 12486063 PMCID: PMC141829 DOI: 10.1128/jb.185.1.262-273.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis PhoP is a member of the OmpR/PhoB family of response regulators that is directly required for transcriptional activation or repression of Pho regulon genes in conditions under which P(i) is growth limiting. Characterization of the PhoP protein has established that phosphorylation of the protein is not essential for PhoP dimerization or DNA binding but is essential for transcriptional regulation of Pho regulon genes. DNA footprinting studies of PhoP-regulated promoters showed that there was cooperative binding between PhoP dimers at PhoP-activated promoters and/or extensive PhoP oligomerization 3' of PhoP-binding consensus repeats in PhoP-repressed promoters. The crystal structure of PhoPN described in the accompanying paper revealed that the dimer interface between two PhoP monomers involves nonidentical surfaces such that each monomer in a dimer retains a second surface that is available for further oligomerization. A salt bridge between R113 on one monomer and D60 on another monomer was judged to be of major importance in the protein-protein interaction. We describe the consequences of mutation of the PhoP R113 codon to a glutamate or alanine codon and mutation of the PhoP D60 codon to a lysine codon. In vivo expression of either PhoP(R113E), PhoP(R113A), or PhoP(D60K) resulted in a Pho-negative phenotype. In vitro analysis showed that PhoP(R113E) was phosphorylated by PhoR (the cognate histidine kinase) but was unable to dimerize. Monomeric PhoP(R113E) approximately P was deficient in DNA binding, contributing to the PhoP(R113E) in vivo Pho-negative phenotype. While previous studies emphasized that phosphorylation was essential for PhoP function, data reported here indicate that phosphorylation is not sufficient as PhoP dimerization or oligomerization is also essential. Our data support the physiological relevance of the residues of the asymmetric dimer interface in PhoP dimerization and function.
Collapse
Affiliation(s)
- Yinghua Chen
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
132
|
Birck C, Chen Y, Hulett FM, Samama JP. The crystal structure of the phosphorylation domain in PhoP reveals a functional tandem association mediated by an asymmetric interface. J Bacteriol 2003; 185:254-61. [PMID: 12486062 PMCID: PMC141828 DOI: 10.1128/jb.185.1.254-261.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PhoP from Bacillus subtilis belongs to the OmpR subfamily of response regulators. It regulates the transcription of several operons and participates in a signal transduction network that controls adaptation of the bacteria to phosphate deficiency. The receiver domains of two members of this subfamily, PhoB from Escherichia coli and DrrD from Thermotoga maritima, have been structurally characterized. These modules have similar overall folds but display remarkable differences in the conformation of the beta4-alpha4 and alpha4 regions. The crystal structure of the receiver domain of PhoP (PhoPN) described in this paper illustrates yet another geometry in this region. Another major issue of the structure determination is the dimeric state of the protein and the novel mode of association between receiver domains. The protein-protein interface is provided by two different surfaces from each protomer, and the tandem unit formed through this asymmetric interface leaves free interaction surfaces. This design is well suited for further association of PhoP dimers to form oligomeric structures. The interprotein interface buries 970 A(2) from solvent and mostly involves interactions between charged residues. As described in the accompanying paper, mutations of a single residue in one salt bridge shielded from solvent prevented dimerization of the unphosphorylated and phosphorylated response regulator and had drastic functional consequences. The three structurally documented members of the OmpR family (PhoB, DrrD, and PhoP) provide a framework to consider possible relationships between structural features and sequence signatures in critical regions of the receiver domains.
Collapse
Affiliation(s)
- Catherine Birck
- Groupe de Cristallographie Biologique, IPBS-CNRS, 31077 Toulouse, France
| | | | | | | |
Collapse
|
133
|
Yoshida T, Qin L, Inouye M. Formation of the stoichiometric complex of EnvZ, a histidine kinase, with its response regulator, OmpR. Mol Microbiol 2002; 46:1273-82. [PMID: 12453214 DOI: 10.1046/j.1365-2958.2002.03239.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
EnvZ, a histidine kinase, and its cognate response regulator OmpR of Escherichia coli are responsible for adaptation to external osmotic changes by regulating the levels of the outer membrane porin proteins, OmpF and OmpC. The osmosensor, EnvZ, has dual enzymatic functions with OmpR kinase and OmpR-P phosphatase. Here, we demonstrate that the cytoplasmic kinase domain of EnvZ (EnvZc) and OmpR are able to form a 1:1 complex detected by native PAGE. This indicates that two OmpR molecules can bind to one EnvZc dimer. As this 1:1 EnvZc/OmpR complex is formed even in the presence of a large excess of EnvZc, OmpR binding to EnvZc is co-operative. The complex formation is also observed between EnvZc and phosphorylated OmpR for the phosphatase reaction. OmpR-P bound to EnvZc was readily released upon the addition of OmpR, indicating that OmpR and OmpR-P can compete for the binding to EnvZ. On the basis of these results, a model is discussed to explain how cellular OmpR-P concentrations are regulated in response to medium osmolarity.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
134
|
Rodriguez CR, Schechter LM, Lee CA. Detection and characterization of the S. typhimurium HilA protein. BMC Microbiol 2002; 2:31. [PMID: 12396235 PMCID: PMC134461 DOI: 10.1186/1471-2180-2-31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Accepted: 10/23/2002] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Virulence genes on Salmonella pathogenicity island 1 (SPI1) are coordinately regulated by HilA, a member of the OmpR/ToxR family of transcription factors. Although a great deal is known about the complex regulation of hilA gene expression, very little is known about the HilA protein. RESULTS In order to detect and localize the HilA protein in S. typhimurium, we raised polyclonal antiserum against purified His-tagged HilA. This allowed us to study the effect of environmental conditions on the production of HilA. We also used the antiserum to examine the fractionation properties and SDS-PAGE mobility of native HilA. Our results indicate that S. typhimurium initiates translation of HilA from the first AUG codon in the hilA open-reading frame (ORF), producing a soluble 553 amino acid (63 kDa) protein product. CONCLUSION Materials and methods are now available to study the environmental regulation of the HilA protein in S. typhimurium. Our results also indicate that future in vitro studies of the interaction between HilA and DNA should utilize soluble preparations of HilA. Previous analyses used preparations of HilA in which the protein fractionated with the membrane, greatly limiting the types of experiments that could be conducted.
Collapse
Affiliation(s)
- Christine R Rodriguez
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115 USA
- Present address : Science Center, SC4186, Harvard University, Cambridge, MA 02138 USA
| | - Lisa M Schechter
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115 USA
- Present address : Department of Plant Pathology, Cornell University, Ithaca, NY 14853 USA
| | - Catherine A Lee
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
135
|
McGowan S, Lucet IS, Cheung JK, Awad MM, Whisstock JC, Rood JI. The FxRxHrS motif: a conserved region essential for DNA binding of the VirR response regulator from Clostridium perfringens. J Mol Biol 2002; 322:997-1011. [PMID: 12367524 DOI: 10.1016/s0022-2836(02)00850-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The VirSR two-component signal transduction pathway regulates virulence and toxin production in Clostridium perfringens, the causative agent of gas gangrene. The response regulator, VirR, binds to repeat sequences located upstream of the promoter and is directly responsible for the transcriptional activation of pfoA, the structural gene for the cholesterol-dependent cytolysin, perfringolysin O. Comparative sequence analysis of the 236 amino acid residue VirR protein revealed a two-domain structure: a typical N-terminal response regulator domain and an uncharacterised C-terminal domain. Database searching revealed that over 40 other proteins, many of which appeared to be response regulators or transcriptional activators, had homology with the VirR C-terminal domain (VirRc). Multiple sequence alignment of this VirRc family revealed a highly conserved region that was designated the FxRxHrS motif. By deletion analysis this motif was shown to be essential for the functional integrity of the VirR protein. Alanine scanning mutagenesis and subsequent phenotypic analysis indicated that conserved residues located within the motif were required for activity. These residues extended from L179 to N194. More detailed site-directed mutagenesis showed that amino acid residues R186, H188 and S190 were essential for activity since even conservative substitutions in these positions resulted in non-functional proteins. Three of the mutant proteins, R186K, S190A and S190C, were purified and shown by in vitro gel shift analysis to be unable to bind to the specific target DNA with the same efficiency as the wild-type protein. These data reveal for the first time that VirRc functions as a DNA binding domain in which the highly conserved FxRxHrS motif has a functional role. These studies have important implications for this new family of transcriptional factors since they imply that the conserved FxRxHrS motif may be involved in DNA binding in all of these proteins, irrespective of their biological role.
Collapse
Affiliation(s)
- Sheena McGowan
- Bacterial Pathogenesis Research Group, Department of Microbiology, Monash University, 3800 Australia
| | | | | | | | | | | |
Collapse
|
136
|
Mattison K, Oropeza R, Kenney LJ. The linker region plays an important role in the interdomain communication of the response regulator OmpR. J Biol Chem 2002; 277:32714-21. [PMID: 12077136 DOI: 10.1074/jbc.m204122200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OmpR is the response regulator of a two-component regulatory system that controls the expression of the porin genes ompF and ompC in Escherichia coli. This regulator consists of two domains joined by a flexible linker region. The amino-terminal domain is phosphorylated by the sensor kinase EnvZ, and the carboxyl-terminal domain binds DNA via a winged helix-turn-helix motif. In vitro studies have shown that amino-terminal phosphorylation enhances the DNA binding affinity of OmpR and, conversely, that DNA binding by the carboxyl terminus increases OmpR phosphorylation. In the present work, we demonstrate that the linker region contributes to this communication between the two domains of OmpR. Changing the specific amino acid composition of the linker alters OmpR function, as does increasing or decreasing its length. Three linker mutants give rise to an OmpF(+) OmpC(-) phenotype, but the defects are not due to a shared molecular mechanism. Currently, functional homology between response regulators is predicted based on similarities in the amino and carboxyl-terminal domains. The results presented here indicate that linker length and composition should also be considered. Furthermore, classification of response regulators in the same subfamily does not necessarily imply that they share a common response mechanism.
Collapse
Affiliation(s)
- Kirsten Mattison
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
137
|
Zhao H, Msadek T, Zapf J, Hoch JA, Varughese KI. DNA complexed structure of the key transcription factor initiating development in sporulating bacteria. Structure 2002; 10:1041-50. [PMID: 12176382 DOI: 10.1016/s0969-2126(02)00803-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sporulation in Bacillus species, the ultimate bacterial adaptive response, requires the precisely coordinated expression of a complex genetic pathway, and is initiated through the accumulation of the phosphorylated form of Spo0A, a pleiotropic response regulator transcription factor. Spo0A controls the transcription of several hundred genes in all spore-forming Bacilli including genes for sporulation and toxin regulation in pathogens such as Bacillus anthracis. The crystal structure of the effector domain of Spo0A from Bacillus subtilis in complex with its DNA target was determined. In the crystal lattice, two molecules form a tandem dimer upon binding to adjacent sites on DNA. The protein:protein and protein:DNA interfaces revealed in the crystal provide a basis for interpreting the transcription activation process and for the design of drugs to counter infections by these bacteria.
Collapse
Affiliation(s)
- Haiyan Zhao
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
138
|
Abstract
EnvZ, a histidine kinase/phosphatase in Escherichia coli, responds to the osmolarity changes in the medium by regulating the phosphorylation state of the transcription factor OmpR, which controls the expression levels of outer membrane porin proteins OmpF and OmpC. Although both ompR and envZ genes are located on the ompB locus under the control of the ompB promoter and transcribed as a single polycistronic mRNA, the expression of envZ is known to be significantly less than ompR. However, to date no accurate estimation for the amounts of EnvZ and OmpR in the cell has been carried out. Here we examined the levels of EnvZ and OmpR in the wild-type strain MC4100 by quantitative Western blot analysis using anti-OmpR and anti-EnvZc (cytoplasmic domain of EnvZ) antisera. It was observed that during exponential growth in L-broth medium there were approximately 3500 and 100 molecules per cell of OmpR and EnvZ, respectively. The levels of OmpR and EnvZ in MC4100 cells grown in a high osmolarity medium (nutrient broth with 20% sucrose) were about the same as those grown in L-broth, whereas they were 1.7-fold higher than those in a low osmolarity medium (nutrient broth). With His10-OmpR, we also determined that the K(d) value for the EnvZc-OmpR complex formation is 1.20 +/- 0.17 microm. On the basis of these results, the molecular mechanism of osmoregulation of ompF and ompC is discussed.
Collapse
Affiliation(s)
- Sheng Jian Cai
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
139
|
Yamamoto K, Ogasawara H, Fujita N, Utsumi R, Ishihama A. Novel mode of transcription regulation of divergently overlapping promoters by PhoP, the regulator of two-component system sensing external magnesium availability. Mol Microbiol 2002; 45:423-38. [PMID: 12123454 DOI: 10.1046/j.1365-2958.2002.03017.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PhoP is a response regulator of the PhoQ-PhoP two-component system controlling a set of the Mg(II)-response genes in Escherichia coli. Here we demonstrate the mode of transcription regulation by phosphorylated PhoP of divergently transcribed mgtA and treR genes, each encoding a putative Mg(II) transporter and a repressor for the trehalose utilization operon respectively. Under Mg(II)-limiting conditions in vivo, two promoters, the upstream constitutive P2 and the downstream inducible P1, were detected for the mgtA gene. Gel-shift analysis in vitro using purified PhoP indicates its binding to a single DNA target, centred between -43 and -24 of the mgtAP1 promoter. This region includes the PhoP box, which consists of a direct repeat of the heptanucleotide sequence (T)G(T)TT(AA). Site-directed mutagenesis studies indicate the critical roles for T (position 3), T (position 4) and A (position 6) for PhoP-dependent transcription from mgtAP1. DNase I footprinting assays reveal weak binding of PhoP to this PhoP box, but the binding becomes stronger in the simultaneous presence of RNA polymerase. Likewise the RNA polymerase binding to the P1 promoter becomes stronger in the presence of PhoP. For the PhoP-assisted formation of open complex at the mgtAP1 promoter, however, the carboxy-terminal domain of alpha subunit (alpha CTD) is not needed. For transcription in vivo of the treR gene, four promoters were identified. The most upstream promoter treRP4 divergently overlaps with the mgtAP1 promoter, sharing the same sequence as the respective -10 signal in the opposite direction. In vitro transcription using mutant promoters support this prediction. In the presence of PhoP, transcription from the promoter treRP3 was repressed with concomitant activation of mgtAP1 transcription. The PhoP box is located between -46 and -30 with respect to treRP3, and the alpha CTD is needed for this repression.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Amino Acid Sequence
- Bacterial Proteins
- Base Sequence
- Carrier Proteins/genetics
- DNA-Directed RNA Polymerases/physiology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/physiology
- Gene Expression Regulation, Bacterial/drug effects
- Gene Expression Regulation, Bacterial/physiology
- Magnesium/metabolism
- Magnesium/pharmacology
- Membrane Transport Proteins
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphorylation
- Promoter Regions, Genetic
- Protein Conformation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein Subunits
- Regulatory Sequences, Nucleic Acid
- Repetitive Sequences, Nucleic Acid
- Repressor Proteins/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Kaneyoshi Yamamoto
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
140
|
Blanco AG, Sola M, Gomis-Rüth FX, Coll M. Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator. Structure 2002; 10:701-13. [PMID: 12015152 DOI: 10.1016/s0969-2126(02)00761-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PhoB is a signal transduction response regulator that activates nearly 40 genes in phosphate depletion conditions in E. coli and closely related bacteria. The structure of the PhoB effector domain in complex with its target DNA sequence, or pho box, reveals a novel tandem arrangement in which several monomers bind head to tail to successive 11-base pair direct-repeat sequences, coating one face of a smoothly bent double helix. The protein has a winged helix fold in which the DNA recognition elements comprise helix alpha 3, penetrating the major groove, and a beta hairpin wing interacting with a compressed minor groove via Arg219, tightly sandwiched between the DNA sugar backbones. The transactivation loops protrude laterally in an appropriate orientation to interact with the RNA polymerase sigma(70) subunit, which triggers transcription initiation.
Collapse
Affiliation(s)
- Alexandre G Blanco
- Institut de Biologia Molecular de Barcelona, CSIC, Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | | | | | | |
Collapse
|
141
|
Sheldon PJ, Busarow SB, Hutchinson CR. Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 2002; 44:449-60. [PMID: 11972782 DOI: 10.1046/j.1365-2958.2002.02886.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces antibiotic regulatory proteins (SARPs) constitute a novel family of transcriptional activators that control the expression of several diverse anti-biotic biosynthetic gene clusters. The Streptomyces peucetius DnrI protein, one of only a handful of these proteins yet discovered, controls the biosynthesis of the polyketide antitumour antibiotics daunorubicin and doxorubicin. Recently, comparative analyses have revealed significant similarities among the predicted DNA-binding domains of the SARPs and the C-terminal DNA-binding domain of the OmpR family of regulatory proteins. Using the crystal structure of the OmpR-binding domain as a template, DnrI was mapped by truncation and site-directed mutagenesis. Several highly conserved residues within the N-terminus are crucial for DNA binding and protein function. Tandemly arranged heptameric imperfect repeat sequences are found within the -35 promoter regions of target genes. Substitutions for each nucleotide within the repeats of the dnrG-dpsABCD promoter were performed by site-directed mutagenesis. The mutant promoter fragments were found to have modified binding characteristics in gel mobility shift assays. The spacing between the repeat target sequences is also critical for successful occupation by DnrI and, therefore, competent transcriptional activation of the dnrG-dpsABCD operon.
Collapse
Affiliation(s)
- Paul J Sheldon
- School of Pharmacy, University of Wisconsin, 425 N. Charter Street, Madison 53706, USA
| | | | | |
Collapse
|
142
|
Federle MJ, Scott JR. Identification of binding sites for the group A streptococcal global regulator CovR. Mol Microbiol 2002; 43:1161-72. [PMID: 11918804 DOI: 10.1046/j.1365-2958.2002.02810.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CovRS two-component system (also called CsrRS) of the group A streptococcus (GAS) acts as a global regulator, influencing the transcription of at least six virulence factors. The synthesis of the hyaluronic acid capsule, a virulence factor encoded by the hasABC operon, is negatively regulated by CovRS. We confirmed that phosphorylation of CovR increases its binding to a DNA fragment containing the hasA promoter. Using DNase I footprinting, we identified five binding sites surrounding the hasA promoter from bases -79 to +73 (where +1 is the start of transcription). One pair of thymines within each binding site appears to be necessary for CovR binding in vitro, as shown by uracil interference analysis. When each of these thymine pairs was altered by site-directed mutagenesis, CovR binding was reduced in vitro, confirming the role of each thymine pair in binding. Using a transcriptional reporter system with a single chromosomal copy of PhasA-gusA, we demonstrated the importance of each of four of these binding sites for CovR repression of the hasA promoter. Based on this information, we propose a consensus sequence for CovR binding to DNA.
Collapse
Affiliation(s)
- Michael J Federle
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
143
|
Rajewsky N, Socci ND, Zapotocky M, Siggia ED. The evolution of DNA regulatory regions for proteo-gamma bacteria by interspecies comparisons. Genome Res 2002; 12:298-308. [PMID: 11827949 PMCID: PMC155268 DOI: 10.1101/gr.207502] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The comparison of homologous noncoding DNA for organisms a suitable evolutionary distance apart is a powerful tool for the identification of cis regulatory elements for transcription and translation and for the study of how they assemble into functional modules. We have fit the three parameters of an affine global probabilistic alignment algorithm to establish the background mutation rate of noncoding sequence between E. coli and a series of gamma proteobacteria ranging from Salmonella to Vibrio. The lower bound we find to the neutral mutation rate is sufficiently high, even for Salmonella, that most of the conservation of noncoding sequence is indicative of selective pressures rather than of insufficient time to evolve. We then use a local version of the alignment algorithm combined with our inferred background mutation rate to assign a significance to the degree of local sequence conservation between orthologous genes, and thereby deduce a probability profile for the upstream regulatory region of all E. coli protein-coding genes. We recover 75%-85% (depending on significance level) of all regulatory sites from a standard compilation for E. coli, and 66%-85% of sigma sites. We also trace the evolution of known regulatory sites and the groups associated with a given transcription factor. Furthermore, we find that approximately one-third of paralogous gene pairs in E. coli have a significant degree of correlation in their regulatory sequence. Finally, we demonstrate an inverse correlation between the rate of evolution of transcription factors and the number of genes they regulate. Our predictions are available at http://www.physics.rockefeller.edu/([tilde-see text])siggia.
Collapse
Affiliation(s)
- Nikolaus Rajewsky
- Center for Studies in Physics and Biology, Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
144
|
Buckler DR, Zhou Y, Stock AM. Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima. Structure 2002; 10:153-64. [PMID: 11839301 DOI: 10.1016/s0969-2126(01)00706-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two-component systems, the predominant signal transduction strategy used by prokaryotes, involve phosphorelay from a sensor histidine kinase (HK) to an intracellular response regulator protein (RR) that typically acts as a transcription regulator. RRs are modular proteins, usually composed of a conserved regulatory domain, which functions as a phosphorylation-activated switch, and an attached DNA binding effector domain. The crystal structure of a Thermotoga maritima transcription factor, DrrD, has been determined at 1.5 A resolution, providing the first structural information for a full-length member of the OmpR/PhoB subfamily of RRs. A small interdomain interface occurs between alpha 5 of the regulatory domain and an antiparallel sheet of the effector domain. The lack of an extensive interface in the unphosphorylated protein distinguishes DrrD from other structurally characterized multidomain RRs and suggests a different mode of interdomain regulation.
Collapse
Affiliation(s)
- David R Buckler
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
145
|
Mattison K, Oropeza R, Byers N, Kenney LJ. A phosphorylation site mutant of OmpR reveals different binding conformations at ompF and ompC. J Mol Biol 2002; 315:497-511. [PMID: 11812125 DOI: 10.1006/jmbi.2001.5222] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Escherichia coli, the two-component regulatory system that controls the expression of outer membrane porins in response to environmental osmolarity consists of the sensor kinase EnvZ and the response regulator OmpR. Phosphorylated OmpR activates expression of the OmpF porin at low osmolarity, and at high osmolarity represses ompF transcription and activates expression of OmpC. We have characterized a substitution in the amino-terminal phosphorylation domain of OmpR, T83I, its phenotype is OmpF(-) OmpC(-). The mutant protein is not phosphorylated by small molecule phosphodonors such as acetyl phosphate and phosphoramidate, but it is phosphorylated by the cognate kinase EnvZ. Interestingly, the active site T83I substitution alters the DNA binding properties of the carboxyl-terminal effector domain. DNase I protection assays indicate that DNA binding by the mutant protein is similar to wild-type OmpR at the ompF promoter, but at ompC, the pattern of protection is different from OmpR. Our results indicate that all three of the OmpR binding sites at the ompC promoter must be filled in order to activate gene expression. Furthermore, it appears that OmpR-phosphate must adopt different conformations when bound at ompF and ompC. A model is presented to account for the reciprocal regulation of OmpF and OmpC porin expression.
Collapse
Affiliation(s)
- Kirsten Mattison
- Department of Molecular Microbiology and Immunology L-220, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | | | |
Collapse
|
146
|
Bate N, Stratigopoulos G, Cundliffe E. Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis. Mol Microbiol 2002; 43:449-58. [PMID: 11985721 DOI: 10.1046/j.1365-2958.2002.02756.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tylosin biosynthetic gene cluster of Streptomyces fradiae is remarkable in harbouring at least five regulatory genes, two of which (tylS and tylT) encode proteins of the Streptomyces antibiotic regulatory protein (SARP) family. The aim of the present work was to assess the respective contributions of TylS and TylT to tylosin production. A combination of targeted gene disruption, fermentation studies and gene expression analysis via reverse transcriptase-polymerase chain reaction (RT-PCR) suggests that tylS is essential for tylosin production and controls the expression of tylR (previously shown to be a global activator of the biosynthetic pathway) plus at least one other gene involved in polyketide metabolism or regulation thereof. This is the first demonstration of a SARP acting to control another regulatory gene during antibiotic biosynthesis. In contrast, tylT is not essential for tylosin production.
Collapse
Affiliation(s)
- Neil Bate
- Department of Biochemistry, University of Leicester, UK
| | | | | |
Collapse
|
147
|
Delihas N, Forst S. MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol 2001; 313:1-12. [PMID: 11601842 DOI: 10.1006/jmbi.2001.5029] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The micF gene is a stress response gene found in Escherichia coli and related bacteria that post-transcriptionally controls expression of the outer membrane porin gene ompF. The micF gene encodes a non-translated 93 nt antisense RNA that binds its target ompF mRNA and regulates ompF expression by inhibiting translation and inducing degradation of the message. In addition, other factors, such as the RNA chaperone protein StpA also play a role in this regulatory system. Expression of micF is controlled by both environmental and internal stress factors. Four transcriptional regulators are known to bind the micF promoter region and activate micF expression. The crystal structure of one these transcriptional activators, Rob, complexed with the micF promoter has been reported. Here, we review new developments in the micF regulatory network.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Pairing
- Base Sequence
- Crystallography, X-Ray
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Escherichia coli/genetics
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Molecular Chaperones
- Mutation/genetics
- Oxidative Stress
- Phylogeny
- Porins/genetics
- Promoter Regions, Genetic/genetics
- Protein Biosynthesis
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA-Binding Proteins/metabolism
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- N Delihas
- Department of Molecular Genetics and Microbiology School of Medicine, SUNY, Stony Brook, NY 11794-5222, USA.
| | | |
Collapse
|
148
|
Affiliation(s)
- J A Hoch
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
149
|
Affiliation(s)
- H Saito
- Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.
| |
Collapse
|
150
|
Barnett MJ, Hung DY, Reisenauer A, Shapiro L, Long SR. A homolog of the CtrA cell cycle regulator is present and essential in Sinorhizobium meliloti. J Bacteriol 2001; 183:3204-10. [PMID: 11325950 PMCID: PMC95222 DOI: 10.1128/jb.183.10.3204-3210.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During development of the symbiotic soil bacterium Sinorhizobium meliloti into nitrogen-fixing bacteroids, DNA replication and cell division cease and the cells undergo profound metabolic and morphological changes. Regulatory genes controlling the early stages of this process have not been identified. As a first step in the search for regulators of these events, we report the isolation and characterization of a ctrA gene from S. meliloti. We show that the S. meliloti CtrA belongs to the CtrA-like family of response regulators found in several alpha-proteobacteria. In Caulobacter crescentus, CtrA is essential and is a global regulator of multiple cell cycle functions. ctrA is also an essential gene in S. meliloti, and it is expressed similarly to the autoregulated C. crescentus ctrA in that both genes have complex promoter regions which bind phosphorylated CtrA.
Collapse
Affiliation(s)
- M J Barnett
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|