101
|
Sullivan M, Uhlmann F. A non-proteolytic function of separase links the onset of anaphase to mitotic exit. Nat Cell Biol 2003; 5:249-54. [PMID: 12598903 PMCID: PMC2610357 DOI: 10.1038/ncb940] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Revised: 11/21/2002] [Accepted: 11/29/2002] [Indexed: 11/08/2022]
Abstract
Separase is a protease that triggers chromosome segregation at anaphase onset by cleaving cohesin, the chromosomal protein complex responsible for sister chromatid cohesion. After anaphase, cells exit from mitosis; that is, they complete downregulation of cyclin-dependent kinase activity, undergo cytokinesis and enter G1 of the next cell cycle. Here we show that separase activation at the onset of anaphase is sufficient to promote release from the nucleolus and activation of the budding yeast phosphatase, Cdc14, a key step in mitotic exit. The ability of separase to activate Cdc14 is independent of its protease function but may involve promoting phosphorylation of the Cdc14 inhibitor Net1. This novel separase function is coregulated with its proteolytic activity by the separase inhibitor securin. This helps to explain the coupling of anaphase and mitotic exit--after securin degradation at anaphase onset, separase cleaves cohesin to trigger chromosome segregation and concurrently uses a non-proteolytic mechanism to initiate mitotic exit.
Collapse
Affiliation(s)
- Matt Sullivan
- Chromosome Segregation Laboratory, Cancer Research UK, Lincoln's Inn Fields Laboratories, London, WC2A 3PX, UK
| | | |
Collapse
|
102
|
Passmore LA, McCormack EA, Au SW, Paul A, Willison KR, Harper J, Barford D. Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J 2003; 22:786-96. [PMID: 12574115 PMCID: PMC145444 DOI: 10.1093/emboj/cdg084] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The anaphase-promoting complex (APC) is a multisubunit E3 ubiquitin ligase that targets specific cell cycle-related proteins for degradation, regulating progression from metaphase to anaphase and exit from mitosis. The APC is regulated by binding of the coactivator proteins Cdc20p and Cdh1p, and by phosphorylation. We have developed a purification strategy that allowed us to purify the budding yeast APC to near homogeneity and identify two novel APC-associated proteins, Swm1p and Mnd2p. Using an in vitro ubiquitylation system and a native gel binding assay, we have characterized the properties of wild-type and mutant APC. We show that both the D and KEN boxes contribute to substrate recognition and that coactivator is required for substrate binding. APC lacking Apc9p or Doc1p/Apc10 have impaired E3 ligase activities. However, whereas Apc9p is required for structural stability and the incorporation of Cdc27p into the APC complex, Doc1p/Apc10 plays a specific role in substrate recognition by APC-coactivator complexes. These results imply that Doc1p/Apc10 may play a role to regulate the binding of specific substrates, similar to that of the coactivators.
Collapse
Affiliation(s)
| | - Elizabeth A. McCormack
- Section of Structural Biology and
Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Corresponding author e-mail:
| | | | - Angela Paul
- Section of Structural Biology and
Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Corresponding author e-mail:
| | - Keith R. Willison
- Section of Structural Biology and
Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Corresponding author e-mail:
| | - J.Wade Harper
- Section of Structural Biology and
Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Corresponding author e-mail:
| | - David Barford
- Section of Structural Biology and
Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Corresponding author e-mail:
| |
Collapse
|
103
|
Abstract
Proteolytic destruction of cyclins is a fundamental process for cell division. At the end of mitosis, degradation of mitotic cyclins results in the inactivation of cyclin-dependent kinases. Cyclin proteolysis is triggered by the anaphase-promoting complex/cyclosome (APC/C), a multi-subunit complex which contains ubiquitin ligase activity. Recent data in yeast demonstrated that a partial degradation of the mitotic cyclin Clb2, mediated by APC/C and its activator protein Cdc20, is essential and sufficient for the mitotic exit. Remarkably, a complete inactivation of cyclin-dependent kinases seems to be not essential. This review discusses recent novel insights into cyclin destruction and its implications for the mitotic exit.
Collapse
Affiliation(s)
- Stefan Irniger
- Institute of Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, D-37077 Göttingen, Germany.
| |
Collapse
|
104
|
Zur A, Brandeis M. Timing of APC/C substrate degradation is determined by fzy/fzr specificity of destruction boxes. EMBO J 2002; 21:4500-10. [PMID: 12198152 PMCID: PMC126191 DOI: 10.1093/emboj/cdf452] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The anaphase promoting complex/cyclosome (APC/C), activated by fzy and fzr, degrades cell cycle proteins that carry RXXL or KEN destruction boxes (d-boxes). APC/C substrates regulate sequential events and must be degraded in the correct order during mitosis and G(1). We studied how d-boxes determine APC/C(fzy)/APC/C(fzr) specificity and degradation timing. Cyclin B1 has an RXXL box and is degraded by both APC/C(fzy) and APC/C(fzr); fzy has a KEN box and is degraded by APC/C(fzr) only. We characterized the degradation of substrates with swapped d-boxes. Cyclin B1 with KEN was degraded by APC/C(fzr) only. Fzy with RXXL could be degraded by APC/C(fzy) and APC/C(fzr). Interestingly, APC/C(fzy)- but not APC/C(fzr)-specific degradation is highly dependent on the location of RXXL. We studied degradation of tagged substrates in real time and observed that APC/C(fzr) is activated in early G(1). These observations demonstrate how d-box specificities of APC/C(fzy) and APC/C(fzr), and the successive activation of APC/C by fzy and fzr, establish the temporal degradation pattern. Our observations can explain further why some endogenous RXXL substrates are degraded by APC/C(fzy), while others are restricted to APC/C(fzr).
Collapse
Affiliation(s)
| | - Michael Brandeis
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Corresponding author e-mail:
| |
Collapse
|
105
|
Cid VCJ, Jiménez J, Molina MA, Sánchez M, Nombela C, Thorner JW. Orchestrating the cell cycle in yeast: sequential localization of key mitotic regulators at the spindle pole and the bud neck. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2647-2659. [PMID: 12213912 DOI: 10.1099/00221287-148-9-2647] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Vı Ctor J Cid
- Departamento de Microbiologı́a II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain1
| | - Javier Jiménez
- Departamento de Microbiologı́a y Genética, Instituto de Microbiologı́a-Bioquı́mica, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca/CSIC, 37007 Salamanca, Spain2
| | - Marı A Molina
- Departamento de Microbiologı́a II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain1
| | - Miguel Sánchez
- Departamento de Microbiologı́a y Genética, Instituto de Microbiologı́a-Bioquı́mica, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca/CSIC, 37007 Salamanca, Spain2
| | - César Nombela
- Departamento de Microbiologı́a II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain1
| | - Jeremy W Thorner
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720, USA3
| |
Collapse
|
106
|
Harper JW, Burton JL, Solomon MJ. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 2002; 16:2179-206. [PMID: 12208841 DOI: 10.1101/gad.1013102] [Citation(s) in RCA: 368] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J Wade Harper
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
107
|
Wäsch R, Cross FR. APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature 2002; 418:556-62. [PMID: 12152084 DOI: 10.1038/nature00856] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclin degradation is central to regulation of the cell cycle. Mitotic exit was proposed to require degradation of the S phase cyclin Clb5 by the anaphase-promoting complex activated by Cdc20 (APC(Cdc20)). Furthermore, Clb5 degradation was thought to be necessary for effective dephosphorylation and activation of the APC regulatory subunit Cdh1 (also known as Hct1) and the cyclin-dependent kinase inhibitor Sic1 by the phosphatase Cdc14, allowing mitotic kinase inactivation and mitotic exit. Here we show, however, that spindle disassembly and cell division occur without significant APC(Cdc20)-mediated Clb5 degradation, as well as in the absence of both Cdh1 and Sic1. We find instead that destruction-box-dependent degradation of the mitotic cyclin Clb2 is essential for mitotic exit. APC(Cdc20) may be required for an essential early phase of Clb2 degradation, and this phase may be sufficient for most aspects of mitotic exit. Cdh1 and Sic1 may be required for further inactivation of Clb2-Cdk1, regulating cell size and the length of G1.
Collapse
Affiliation(s)
- Ralph Wäsch
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
108
|
|
109
|
Huang JY, Raff JW. The dynamic localisation of the Drosophila APC/C: evidence for the existence of multiple complexes that perform distinct functions and are differentially localised. J Cell Sci 2002; 115:2847-56. [PMID: 12082146 DOI: 10.1242/jcs.115.14.2847] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila cells, the destruction of cyclin B is spatially regulated. In cellularised embryos, cyclin B is initially degraded on the mitotic spindle and is then degraded in the cytoplasm. In syncytial embryos,only the spindle-associated cyclin B is degraded at the end of mitosis. The anaphase promoting complex/cyclosome (APC/C) targets cyclin B for destruction,but its subcellular localisation remains controversial. We constructed GFP fusions of two core APC/C subunits, Cdc16 and Cdc27. These fusion proteins were incorporated into the endogenous APC/C and were largely localised in the cytoplasm during interphase in living syncytial embryos. Both fusion proteins rapidly accumulated in the nucleus prior to nuclear envelope breakdown but only weakly associated with mitotic spindles throughout mitosis. Thus, the global activation of a spatially restricted APC/C cannot explain the spatially regulated destruction of cyclin B. Instead, different subpopulations of the APC/C must be activated at different times to degrade cyclin B. Surprisingly,we noticed that GFP-Cdc27 associated with mitotic chromosomes, whereas GFP-Cdc16 did not. Moreover, reducing the levels of Cdc16 or Cdc27 by >90%in tissue culture cells led to a transient mitotic arrest that was both biochemically and morphologically distinct. Taken together, our results raise the intriguing possibility that there could be multiple forms of the APC/C that are differentially localised and perform distinct functions.
Collapse
Affiliation(s)
- Jun-yong Huang
- Wellcome Trust/Cancer Research UK Institute and Department of Genetics, University of Cambridge, UK
| | | |
Collapse
|
110
|
Yeong FM, Lim HH, Surana U. MEN, destruction and separation: mechanistic links between mitotic exit and cytokinesis in budding yeast. Bioessays 2002; 24:659-66. [PMID: 12111726 DOI: 10.1002/bies.10106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cellular events must be executed in a certain sequence during the cell division in order to maintain genome integrity and hence ensure a cell's survival. In M phase, for instance, chromosome segregation always precedes mitotic exit (characterized by mitotic kinase inactivation via cyclin destruction); this is then followed by cytokinesis. How do cells impose this strict order? Recent findings in budding yeast have suggested a mechanism whereby partitioning of chromosomes into the daughter cell is a prerequisite for the activation of mitotic exit network (MEN). So far, however, a regulatory scheme that would temporally link the initiation of cytokinesis to the execution of mitotic exit has not been determined. We propose that the requirement of MEN components for cytokinesis, their translocation to the mother-daughter neck and triggering of this translocation by inactivation of the mitotic kinase may be the three crucial elements that render initiation of cytokinesis dependent on mitotic exit.
Collapse
Affiliation(s)
- Foong May Yeong
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609. [corrected]
| | | | | |
Collapse
|
111
|
Hagting A, Den Elzen N, Vodermaier HC, Waizenegger IC, Peters JM, Pines J. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J Cell Biol 2002; 157:1125-37. [PMID: 12070128 PMCID: PMC2173548 DOI: 10.1083/jcb.200111001] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Progress through mitosis is controlled by the sequential destruction of key regulators including the mitotic cyclins and securin, an inhibitor of anaphase whose destruction is required for sister chromatid separation. Here we have used live cell imaging to determine the exact time when human securin is degraded in mitosis. We show that the timing of securin destruction is set by the spindle checkpoint; securin destruction begins at metaphase once the checkpoint is satisfied. Furthermore, reimposing the checkpoint rapidly inactivates securin destruction. Thus, securin and cyclin B1 destruction have very similar properties. Moreover, we find that both cyclin B1 and securin have to be degraded before sister chromatids can separate. A mutant form of securin that lacks its destruction box (D-box) is still degraded in mitosis, but now this is in anaphase. This destruction requires a KEN box in the NH2 terminus of securin and may indicate the time in mitosis when ubiquitination switches from APCCdc20 to APCCdh1. Lastly, a D-box mutant of securin that cannot be degraded in metaphase inhibits sister chromatid separation, generating a cut phenotype where one cell can inherit both copies of the genome. Thus, defects in securin destruction alter chromosome segregation and may be relevant to the development of aneuploidy in cancer.
Collapse
Affiliation(s)
- Anja Hagting
- Wellcome/Cancer Research UK Institute, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | | | |
Collapse
|
112
|
Raff JW, Jeffers K, Huang JY. The roles of Fzy/Cdc20 and Fzr/Cdh1 in regulating the destruction of cyclin B in space and time. J Cell Biol 2002; 157:1139-49. [PMID: 12082076 PMCID: PMC2173543 DOI: 10.1083/jcb.200203035] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Drosophila cells cyclin B is normally degraded in two phases: (a) destruction of the spindle-associated cyclin B initiates at centrosomes and spreads to the spindle equator; and (b) any remaining cytoplasmic cyclin B is degraded slightly later in mitosis. We show that the APC/C regulators Fizzy (Fzy)/Cdc20 and Fzy-related (Fzr)/Cdh1 bind to microtubules in vitro and associate with spindles in vivo. Fzy/Cdc20 is concentrated at kinetochores and centrosomes early in mitosis, whereas Fzr/Cdh1 is concentrated at centrosomes throughout the cell cycle. In syncytial embryos, only Fzy/Cdc20 is present, and only the spindle-associated cyclin B is degraded at the end of mitosis. A destruction box-mutated form of cyclin B (cyclin B triple-point mutant [CBTPM]-GFP) that cannot be targeted for destruction by Fzy/Cdc20, is no longer degraded on spindles in syncytial embryos. However, CBTPM-GFP can be targeted for destruction by Fzr/Cdh1. In cellularized embryos, which normally express Fzr/Cdh1, CBTPM-GFP is degraded throughout the cell but with slowed kinetics. These findings suggest that Fzy/Cdc20 is responsible for catalyzing the first phase of cyclin B destruction that occurs on the mitotic spindle, whereas Fzr/Cdh1 is responsible for catalyzing the second phase of cyclin B destruction that occurs throughout the cell. These observations have important implications for the mechanisms of the spindle checkpoint.
Collapse
Affiliation(s)
- Jordan W Raff
- Department of Genetics, Wellcome/Cancer Research UK Institute, Cambridge CB2 1QR, UK.
| | | | | |
Collapse
|
113
|
Calzada A, Bueno A. Genes involved in the initiation of DNA replication in yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:133-207. [PMID: 11804036 DOI: 10.1016/s0074-7696(01)12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Replication and segregation of the information contained in genomic DNA are strictly regulated processes that eukaryotic cells alternate to divide successfully. Experimental work on yeast has suggested that this alternation is achieved through oscillations in the activity of a serine/threonine kinase complex, CDK, which ensures the timely activation of DNA synthesis. At the same time, this CDK-mediated activation sets up the basis of the mechanism that ensures ploidy maintenance in eukaryotes. DNA synthesis is initiated at discrete sites of the genome called origins of replication on which a prereplicative complex (pre-RC) of different protein subunits is formed during the G1 phase of the cell division cycle. Only after pre-RCs are formed is the genome competent to be replicated. Several lines of evidence suggest that CDK activity prevents the assembly of pre-RCs ensuring single rounds of genome replication during each cell division cycle. This review offers a descriptive discussion of the main molecular events that a unicellular eukaryote such as the budding yeast Saccharomyces cerevisiae undergoes to initiate DNA replication.
Collapse
Affiliation(s)
- Arturo Calzada
- Instituto de Microbiología--Bioquímica/Centro de Investigación del Cancer, Departamento de Microbiología y Genética, Edificio Departamental, CSIC/Universidad de Salamanca, Spain
| | | |
Collapse
|
114
|
Abstract
Key events in mitosis such as sister chromatid separation and subsequent inactivation of cyclin-dependent kinase 1 are regulated by ubiquitin-dependent proteolysis. These events are mediated by the anaphase-promoting complex (APC), a cell cycle-regulated ubiquitin ligase that assembles multiubiquitin chains on regulatory proteins such as securin and cyclins and thereby targets them for destruction by the 26S proteasome.
Collapse
Affiliation(s)
- Jan-Michael Peters
- Research Institute of Molecular Pathology, Dr.-Bohr Gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
115
|
Bolte M, Steigemann P, Braus GH, Irniger S. Inhibition of APC-mediated proteolysis by the meiosis-specific protein kinase Ime2. Proc Natl Acad Sci U S A 2002; 99:4385-90. [PMID: 11917129 PMCID: PMC123657 DOI: 10.1073/pnas.072385099] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteolysis triggered by the anaphase-promoting complex (APC) is needed for sister chromatid separation and the exit from mitosis. APC is a ubiquitin ligase whose activity is tightly controlled during the cell cycle. To identify factors involved in the regulation of APC-mediated proteolysis, a Saccharomyces cerevisiae GAL-cDNA library was screened for genes whose overexpression prevented degradation of an APC target protein, the mitotic cyclin Clb2. Genes encoding G1, S, and mitotic cyclins were identified, consistent with previous data showing that the cyclin-dependent kinase Cdk1 associated with different cyclins is a key factor for inhibiting APC(Cdh1) activity from late-G1 phase until mitosis. In addition, the meiosis-specific protein kinase Ime2 was identified as a negative regulator of APC-mediated proteolysis. Ectopic expression of IME2 in G1 arrested cells inhibited the degradation of mitotic cyclins and of other APC substrates. IME2 expression resulted in the phosphorylation of Cdh1 in G1 cells, indicating that Ime2 and Cdk1 regulate APC(Cdh1) in a similar manner. The expression of IME2 in cycling cells inhibited bud formation and caused cells to arrest in mitosis. We show further that Ime2 itself is an unstable protein whose proteolysis occurs independently of the APC and SCF (Skp1/Cdc53/F-box) ubiquitin ligases. Our findings suggest that Ime2 represents an unstable, meiosis-specific regulator of APC(Cdh1).
Collapse
Affiliation(s)
- Melanie Bolte
- Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
116
|
Burns CG, Ohi R, Mehta S, O'Toole ET, Winey M, Clark TA, Sugnet CW, Ares M, Gould KL. Removal of a single alpha-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:801-15. [PMID: 11784857 PMCID: PMC133559 DOI: 10.1128/mcb.22.3.801-815.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2001] [Accepted: 11/01/2001] [Indexed: 11/20/2022] Open
Abstract
Genetic and biochemical studies of Schizosaccharomyces pombe and Saccharomyces cerevisiae have identified gene products that play essential functions in both pre-mRNA splicing and cell cycle control. Among these are the conserved, Myb-related CDC5 (also known as Cef1p in S. cerevisiae) proteins. The mechanism by which loss of CDC5/Cef1p function causes both splicing and cell cycle defects has been unclear. Here we provide evidence that cell cycle arrest in a new temperature-sensitive CEF1 mutant, cef1-13, is an indirect consequence of defects in pre-mRNA splicing. Although cef1-13 cells harbor global defects in pre-mRNA splicing discovered through intron microarray analysis, inefficient splicing of the alpha-tubulin-encoding TUB1 mRNA was considered as a potential cause of the cef1-13 cell cycle arrest because cef1-13 cells arrest uniformly at G(2)/M with many hallmarks of a defective microtubule cytoskeleton. Consistent with this possibility, cef1-13 cells possess reduced levels of total TUB1 mRNA and alpha-tubulin protein. Removing the intron from TUB1 in cef1-13 cells boosts TUB1 mRNA and alpha-tubulin expression to near wild-type levels and restores microtubule stability in the cef1-13 mutant. As a result, cef1-13 tub1Deltai cells progress through mitosis and their cell cycle arrest phenotype is alleviated. Removing the TUB1 intron from two other splicing mutants that arrest at G(2)/M, prp17Delta and prp22-1 strains, permits nuclear division, but suppression of the cell cycle block is less efficient. Our data raise the possibility that although cell cycle arrest phenotypes in prp mutants can be explained by defects in pre-mRNA splicing, the transcript(s) whose inefficient splicing contributes to cell cycle arrest is likely to be prp mutant dependent.
Collapse
Affiliation(s)
- C Geoffrey Burns
- Howard Hughes Medical Institute, Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Cross FR, Archambault V, Miller M, Klovstad M. Testing a mathematical model of the yeast cell cycle. Mol Biol Cell 2002; 13:52-70. [PMID: 11809822 PMCID: PMC65072 DOI: 10.1091/mbc.01-05-0265] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We derived novel, testable predictions from a mathematical model of the budding yeast cell cycle. A key qualitative prediction of bistability was confirmed in a strain simultaneously lacking cdc14 and G1 cyclins. The model correctly predicted quantitative dependence of cell size on gene dosage of the G1 cyclin CLN3, but it incorrectly predicted strong genetic interactions between G1 cyclins and the anaphase-promoting complex specificity factor Cdh1. To provide constraints on model generation, we determined accurate concentrations for the abundance of all nine cyclins as well as the inhibitor Sic1 and the catalytic subunit Cdc28. For many of these we determined abundance throughout the cell cycle by centrifugal elutriation, in the presence or absence of Cdh1. In addition, perturbations to the Clb-kinase oscillator were introduced, and the effects on cyclin and Sic1 levels were compared between model and experiment. Reasonable agreement was obtained in many of these experiments, but significant experimental discrepancies from the model predictions were also observed. Thus, the model is a strong but incomplete attempt at a realistic representation of cell cycle control. Constraints of the sort developed here will be important in development of a truly predictive model.
Collapse
|
118
|
Sudo T, Ota Y, Kotani S, Nakao M, Takami Y, Takeda S, Saya H. Activation of Cdh1-dependent APC is required for G1 cell cycle arrest and DNA damage-induced G2 checkpoint in vertebrate cells. EMBO J 2001; 20:6499-508. [PMID: 11707420 PMCID: PMC125730 DOI: 10.1093/emboj/20.22.6499] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Anaphase-promoting complex (APC) is activated by two regulatory proteins, Cdc20 and Cdh1. In yeast and Drosophila, Cdh1-dependent APC (Cdh1-APC) activity targets mitotic cyclins from the end of mitosis to the G1 phase. To investigate the function of Cdh1 in vertebrate cells, we generated clones of chicken DT40 cells disrupted in their Cdh1 loci. Cdh1 was dispensable for viability and cell cycle progression. However, similarly to yeast and Drosophila, loss of Cdh1 induced unscheduled accumulation of mitotic cyclins in G1, resulting in abrogation of G1 arrest caused by treatment with rapamycin, an inducer of p27(Kip1). Further more, we found that Cdh1(-/-) cells fail to maintain DNA damage-induced G2 arrest and that Cdh1-APC is activated by X-irradiation-induced DNA damage. Thus, activation of Cdh1-APC plays a crucial role in both cdk inhibitor-dependent G1 arrest and DNA damage-induced G2 arrest.
Collapse
Affiliation(s)
- Tamotsu Sudo
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto 860-0811, Bioinformatic Group, Genomic Science Center, Riken, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Department of Biochemistry, Miyazaki Medical College, Kihara, Kiyotake, Miyazaki 889-1692 and Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Corresponding author e-mail:
| | - Yosuke Ota
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto 860-0811, Bioinformatic Group, Genomic Science Center, Riken, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Department of Biochemistry, Miyazaki Medical College, Kihara, Kiyotake, Miyazaki 889-1692 and Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Corresponding author e-mail:
| | - Shuji Kotani
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto 860-0811, Bioinformatic Group, Genomic Science Center, Riken, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Department of Biochemistry, Miyazaki Medical College, Kihara, Kiyotake, Miyazaki 889-1692 and Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Corresponding author e-mail:
| | - Mitsuyoshi Nakao
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto 860-0811, Bioinformatic Group, Genomic Science Center, Riken, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Department of Biochemistry, Miyazaki Medical College, Kihara, Kiyotake, Miyazaki 889-1692 and Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Corresponding author e-mail:
| | - Yasunari Takami
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto 860-0811, Bioinformatic Group, Genomic Science Center, Riken, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Department of Biochemistry, Miyazaki Medical College, Kihara, Kiyotake, Miyazaki 889-1692 and Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Corresponding author e-mail:
| | - Shunichi Takeda
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto 860-0811, Bioinformatic Group, Genomic Science Center, Riken, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Department of Biochemistry, Miyazaki Medical College, Kihara, Kiyotake, Miyazaki 889-1692 and Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Corresponding author e-mail:
| | - Hideyuki Saya
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto 860-0811, Bioinformatic Group, Genomic Science Center, Riken, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Department of Biochemistry, Miyazaki Medical College, Kihara, Kiyotake, Miyazaki 889-1692 and Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Corresponding author e-mail:
| |
Collapse
|
119
|
Hildebrandt ER, Hoyt MA. Cell cycle-dependent degradation of the Saccharomyces cerevisiae spindle motor Cin8p requires APC(Cdh1) and a bipartite destruction sequence. Mol Biol Cell 2001; 12:3402-16. [PMID: 11694576 PMCID: PMC60263 DOI: 10.1091/mbc.12.11.3402] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae Cin8p belongs to the BimC family of kinesin-related motor proteins that are essential for spindle assembly. Cin8p levels were found to oscillate in the cell cycle due in part to a high rate of degradation imposed from the end of mitosis through the G1 phase. Cin8p degradation required the anaphase-promoting complex ubiquitin ligase and its late mitosis regulator Cdh1p but not the early mitosis regulator Cdc20p. Cin8p lacks a functional destruction box sequence that is found in the majority of anaphase-promoting complex substrates. We carried out an extensive mutagenesis study to define the cis-acting sequence required for Cin8p degradation in vivo. The C terminus of Cin8p contains two elements required for its degradation: 1) a bipartite destruction sequence composed of a KEN-box plus essential residues within the downstream 22 amino acids and 2) a nuclear localization signal. The bipartite destruction sequence appears in other BimC kinesins as well. Expression of nondegradable Cin8p showed very mild phenotypic effects, with an increase in the fraction of mitotic cells with broken spindles.
Collapse
Affiliation(s)
- E R Hildebrandt
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
120
|
Gordon DM, Roof DM. Degradation of the kinesin Kip1p at anaphase onset is mediated by the anaphase-promoting complex and Cdc20p. Proc Natl Acad Sci U S A 2001; 98:12515-20. [PMID: 11606759 PMCID: PMC60085 DOI: 10.1073/pnas.231212498] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2001] [Indexed: 11/18/2022] Open
Abstract
Kip1p of Saccharomyces cerevisiae is a bipolar kinesin in the conserved bimC kinesin subfamily that mediates mitotic spindle-pole separation. Here, we show that Kip1p is regulated immediately after anaphase initiation by its rapid degradation. Degradation required the ubiquitin protein ligase called the anaphase-promoting complex, the anaphase-promoting complex activating protein Cdc20, and a unique 43-aa sequence in Kip1p. Degradation also required import of Kip1p into the nucleus, but occurred independently of spindle association. A mutation that stabilized Kip1p impaired anaphase progression. The timing of degradation suggests that Kip1p functions primarily during spindle assembly and metaphase, and that Kip1p degradation facilitates structural changes in the mitotic spindle as anaphase progresses.
Collapse
Affiliation(s)
- D M Gordon
- Program in Cell and Molecular Biology, Department of Animal Biology, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6046, USA
| | | |
Collapse
|
121
|
Schwab M, Neutzner M, Möcker D, Seufert W. Yeast Hct1 recognizes the mitotic cyclin Clb2 and other substrates of the ubiquitin ligase APC. EMBO J 2001; 20:5165-75. [PMID: 11566880 PMCID: PMC125620 DOI: 10.1093/emboj/20.18.5165] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-mediated proteolysis has emerged as a key mechanism of regulation in eukaryotic cells. During cell division, a multi-subunit ubiquitin ligase termed the anaphase promoting complex (APC) targets critical regulatory proteins such as securin and mitotic cyclins, and thereby triggers chromosome separation and exit from mitosis. Previous studies in the yeast Saccharomyces cerevisiae identified the conserved WD40 proteins Cdc20 and Hct1 (Cdh1) as substrate-specific activators of the APC, but their precise mechanism of action has remained unclear. This study provides evidence that Hct1 functions as a substrate receptor that recognizes target proteins and recruits them to the APC for ubiquitylation and subsequent proteolysis. By co-immunoprecipitation, we found that Hct1 interacted with the mitotic cyclins Clb2 and Clb3 and the polo-related kinase Cdc5, whereas Cdc20 interacted with the securin Pds1. Failure to interact with Hct1 resulted in stabilization of Clb2. Analysis of Hct1 derivatives identified the C-box, a motif required for APC association of Hct1 and conserved among Cdc20-related proteins. We propose that proteins of the Cdc20 family are substrate recognition subunits of the ubiquitin ligase APC.
Collapse
Affiliation(s)
- M Schwab
- Institute of Industrial Genetics, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
122
|
Hilioti Z, Chung YS, Mochizuki Y, Hardy CF, Cohen-Fix O. The anaphase inhibitor Pds1 binds to the APC/C-associated protein Cdc20 in a destruction box-dependent manner. Curr Biol 2001; 11:1347-52. [PMID: 11553328 DOI: 10.1016/s0960-9822(01)00399-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An essential aspect of progression through mitosis is the sequential degradation of key mitotic regulators in a process that is mediated by the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase [1]. In mitotic cells, two forms of the APC/C exist, APC/C(Cdc20) and APC/C(Cdh1), which differ in their associated WD-repeat proteins (Cdc20 and Cdh1, respectively), time of activation, and substrate specificity [2, 3]. How the WD-repeat proteins contribute to APC/C's activation and substrate specificity is not clear. Many APC/C substrates contain a destruction box element that is necessary for their ubiquitination [4-6]. One such APC/C substrate, the budding yeast anaphase inhibitor Pds1 (securin), is degraded prior to anaphase initiation in a destruction box and APC/C(Cdc20)-dependent manner [3, 7]. Here we find that Pds1 interacts directly with Cdc20 and that this interaction requires Pds1's destruction box. Our results suggest that Cdc20 provides a link between the substrate and the core APC/C and that the destruction box is essential for efficient Cdc20-substrate interaction. We also find that Pds1 does not interact with Cdh1. Finally, the effect of spindle assembly checkpoint activation, known to inhibit APC/C function [8], on the Pds1-Cdc20 interaction is examined.
Collapse
Affiliation(s)
- Z Hilioti
- The Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
123
|
Yeong FM, Lim HH, Wang Y, Surana U. Early expressed Clb proteins allow accumulation of mitotic cyclin by inactivating proteolytic machinery during S phase. Mol Cell Biol 2001; 21:5071-81. [PMID: 11438663 PMCID: PMC87233 DOI: 10.1128/mcb.21.15.5071-5081.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Periodic accumulation and destruction of mitotic cyclins are important for the initiation and termination of M phase. It is known that both APC(Cdc20) and APC(Hct1) collaborate to destroy mitotic cyclins during M phase. Here we show that this relationship between anaphase-promoting complex (APC) and Clb proteins is reversed in S phase such that the early Clb kinases (Clb3, Clb4, and Clb5 kinases) inactivate APC(Hct1) to allow Clb2 accumulation. This alternating antagonism between APC and Clb proteins during S and M phases constitutes an oscillatory system that generates undulations in the levels of mitotic cyclins.
Collapse
Affiliation(s)
- F M Yeong
- Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
124
|
Kornitzer D, Sharf R, Kleinberger T. Adenovirus E4orf4 protein induces PP2A-dependent growth arrest in Saccharomyces cerevisiae and interacts with the anaphase-promoting complex/cyclosome. J Cell Biol 2001; 154:331-44. [PMID: 11470822 PMCID: PMC2150760 DOI: 10.1083/jcb.200104104] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenovirus early region 4 open reading frame 4 (E4orf4) protein has been reported to induce p53-independent, protein phosphatase 2A (PP2A)-dependent apoptosis in transformed mammalian cells. In this report, we show that E4orf4 induces an irreversible growth arrest in Saccharomyces cerevisiae at the G2/M phase of the cell cycle. Growth inhibition requires the presence of yeast PP2A-Cdc55, and is accompanied by accumulation of reactive oxygen species. E4orf4 expression is synthetically lethal with mutants defective in mitosis, including Cdc28/Cdk1 and anaphase-promoting complex/cyclosome (APC/C) mutants. Although APC/C activity is inhibited in the presence of E4orf4, Cdc28/Cdk1 is activated and partially counteracts the E4orf4-induced cell cycle arrest. The E4orf4-PP2A complex physically interacts with the APC/C, suggesting that E4orf4 functions by directly targeting PP2A to the APC/C, thereby leading to its inactivation. Finally, we show that E4orf4 can induce G2/M arrest in mammalian cells before apoptosis, indicating that E4orf4-induced events in yeast and mammalian cells are highly conserved.
Collapse
Affiliation(s)
- D Kornitzer
- The Gonda Center of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | | | | |
Collapse
|
125
|
Calzada A, Sacristán M, Sánchez E, Bueno A. Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases. Nature 2001; 412:355-8. [PMID: 11460169 DOI: 10.1038/35085610] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinases (CDKs). In the budding yeast, Saccharomyces cerevisiae, inactivation of CDKs during late mitosis involves degradation of B-type cyclins as well as direct inhibition of cyclin-CDK complexes by the CDK-inhibitor protein Sic1 (refs 1,2,3). Several striking similarities exist between Sic1 and Cdc6, a DNA replication factor essential for the formation of pre-replicative complexes at origins of DNA replication. Transcription of both genes is activated during late mitosis by a process dependent on Swi5 (ref. 10). Like Sic1, Cdc6 binds CDK complexes in vivo and downregulates them in vitro. Here we show that Cdc6, like Sic1, also contributes to inactivation of CDKs during late mitosis in S. cerevisiae. Deletion of the CDK-interacting domain of Cdc6 does not inhibit the function of origins of DNA replication during S phase, but instead causes a delay in mitotic exit; this delay is accentuated in the absence of Sic1 or of cyclin degradation. By contributing to mitotic exit and inactivation of CDKs, Cdc6 helps to create the conditions that are required for its subsequent role in the formation of pre-replicative complexes at origins of DNA replication.
Collapse
Affiliation(s)
- A Calzada
- Instituto de Microbiología-Bioquímica, Departemento de Microbiología y Genética, Universidad de Salamanca, CSIC, Spain
| | | | | | | |
Collapse
|
126
|
Abstract
Sequences outside the 'destruction box' direct the degradation of cyclin A to completion before the metaphase-anaphase transition; cyclin A that escapes timely degradation can block the metaphase-anaphase transition, impede anaphase and telophase, and impair a cell's ability to arrest in G1 of the next cell cycle.
Collapse
Affiliation(s)
- T Tin Su
- MCD Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| |
Collapse
|
127
|
Roy L, Coullin P, Vitrat N, Hellio R, Debili N, Weinstein J, Bernheim A, Vainchenker W. Asymmetrical segregation of chromosomes with a normal metaphase/anaphase checkpoint in polyploid megakaryocytes. Blood 2001; 97:2238-47. [PMID: 11290584 DOI: 10.1182/blood.v97.8.2238] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During differentiation, megakaryocytes increase ploidy through a process called endomitosis, whose mechanisms remain unknown. As it corresponds to abortive mitosis at anaphase and is associated with a multipolar spindle, investigation of chromosome segregation may help to better understand this cell-cycle abnormality. To examine this variation, a new method was developed to combine primed in situ labeling to label centromeres of one chromosome category and immunostaining of tubulin. Human megakaryocytes were obtained from normal bone marrow culture. By confocal microscopy, this study demonstrates an asymmetrical distribution of chromosomes (1 or 7) either between the spindle poles at anaphase stage of endomitosis and between the different lobes of interphase megakaryocyte nuclei. The metaphase/anaphase checkpoint appears normal on the evidence that under nocodazole treatment megakaryocytes progressively accumulate in pseudo-metaphase, without spontaneous escape from this blockage. Immunostaining of p55CDC/hCDC20 with similar kinetochore localization and dynamics as during normal mitosis confirms this result. HCdh1 was also expressed in megakaryocytes, and its main target, cyclin B1, was normally degraded at anaphase, suggesting that the hCdh1-anaphase-promoting complex checkpoint was also functional. This study found the explanation for these unexpected results of an asymmetrical segregation coupled to normal checkpoints by careful analysis of multipolar endomitotic spindles: whereas each aster is connected to more than one other aster, one chromosome may segregate symmetrically between 2 spindle poles and still show asymmetrical segregation when the entire complex spindle is considered.
Collapse
Affiliation(s)
- L Roy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U362, France
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Tanaka K, Petersen J, MacIver F, Mulvihill DP, Glover DM, Hagan IM. The role of Plo1 kinase in mitotic commitment and septation in Schizosaccharomyces pombe. EMBO J 2001; 20:1259-70. [PMID: 11250892 PMCID: PMC145531 DOI: 10.1093/emboj/20.6.1259] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plo1-associated casein kinase activity peaked during mitosis before septation. Phosphatase treatment abolished this activity. Mitotic Plo1 activation had a requirement for prior activation of M-phase promoting factor (MPF), suggesting that Plo1 does not act as a mitotic trigger kinase to initiate MPF activation during mitotic commitment. A link between Plo1 and the septum initiating network (SIN) has been suggested by the inability of plo1 Delta cells to septate and the prolific septation following plo1(+) overexpression. Interphase activation of Spg1, the G protein that modulates SIN activity, induced septation but did not stimulate Plo1-associated kinase activity. Conversely, SIN inactivation did not affect the mitotic stimulation of Plo1-associated kinase activity. plo1.ts4 cells formed a misshapen actin ring, but rarely septated at 36 degrees C. Forced activation of Spg1 enabled plo1.ts4 mutant cells, but not cells with defects in the SIN component Sid2, to convert the actin ring to a septum. The ability of plo1(+) overexpression to induce septation was severely compromised by SIN inactivation. We propose that Plo1 acts before the SIN to control septation.
Collapse
Affiliation(s)
- Kayoko Tanaka
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT and Department of Genetics, Downing Street, Cambridge CB2 3EH, UK Present address: Department of Biology, University College London, Gower Street, London WC1E 6BT, UK Corresponding author e-mail:
| | - Janni Petersen
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT and Department of Genetics, Downing Street, Cambridge CB2 3EH, UK Present address: Department of Biology, University College London, Gower Street, London WC1E 6BT, UK Corresponding author e-mail:
| | - Fiona MacIver
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT and Department of Genetics, Downing Street, Cambridge CB2 3EH, UK Present address: Department of Biology, University College London, Gower Street, London WC1E 6BT, UK Corresponding author e-mail:
| | - Daniel P. Mulvihill
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT and Department of Genetics, Downing Street, Cambridge CB2 3EH, UK Present address: Department of Biology, University College London, Gower Street, London WC1E 6BT, UK Corresponding author e-mail:
| | - David M. Glover
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT and Department of Genetics, Downing Street, Cambridge CB2 3EH, UK Present address: Department of Biology, University College London, Gower Street, London WC1E 6BT, UK Corresponding author e-mail:
| | - Iain M. Hagan
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT and Department of Genetics, Downing Street, Cambridge CB2 3EH, UK Present address: Department of Biology, University College London, Gower Street, London WC1E 6BT, UK Corresponding author e-mail:
| |
Collapse
|
129
|
Abstract
Separation of chromosomes during mitosis is monitored by a checkpoint that leads to cell-cycle arrest if the chromosomes are not properly attached to the mitotic spindle. Molecular mechanisms controlling this checkpoint have been identified. In addition, loss of this checkpoint has been shown to result in chromosome missegregation in higher eukaryotes and may contribute to the genomic instability observed in human cancers.
Collapse
Affiliation(s)
- K Wassmann
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center and the Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, Box 241, 1275 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
130
|
Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 2000; 103:375-86. [PMID: 11081625 DOI: 10.1016/s0092-8674(00)00130-6] [Citation(s) in RCA: 631] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In eukaryotic cells, replicated DNA strands remain physically connected until their segregation to opposite poles of the cell during anaphase. This "sister chromatid cohesion" is essential for the alignment of chromosomes on the mitotic spindle during metaphase. Cohesion depends on the multisubunit cohesin complex, which possibly forms the physical bridges connecting sisters. Proteolytic cleavage of cohesin's Sccl subunit at the metaphase to anaphase transition is essential for sister chromatid separation and depends on a conserved protein called separin. We show here that separin is a cysteine protease related to caspases that alone can cleave Sccl in vitro. Cleavage of Sccl in metaphase arrested cells is sufficient to trigger the separation of sister chromatids and their segregation to opposite cell poles.
Collapse
Affiliation(s)
- F Uhlmann
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | | | |
Collapse
|
131
|
Yamaguchi S, Okayama H, Nurse P. Fission yeast Fizzy-related protein srw1p is a G(1)-specific promoter of mitotic cyclin B degradation. EMBO J 2000; 19:3968-77. [PMID: 10921878 PMCID: PMC306604 DOI: 10.1093/emboj/19.15.3968] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Downregulation of cyclin-dependent kinase (Cdk)-mitotic cyclin complexes is important during cell cycle progression and in G(1) arrested cells undergoing differentiation. srw1p, a member of the Fizzy-related protein family in fission yeast, is required for the degradation of cdc13p mitotic cyclin B during G(1) arrest. Here we show that srw1p is not required for the degradation of cdc13p during mitotic exit demonstrating that there are two systems operative at different stages of the cell cycle for cdc13p degradation, and that srw1p is phosphorylated by Cdk-cdc13p only becoming dephosphorylated during G(1) arrest. We propose that this phosphorylation targets srw1p for proteolysis and inhibits its activity to promote cdc13p turnover.
Collapse
Affiliation(s)
- S Yamaguchi
- Cell Cycle Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
132
|
Blanco MA, Sánchez-Díaz A, de Prada JM, Moreno S. APC(ste9/srw1) promotes degradation of mitotic cyclins in G(1) and is inhibited by cdc2 phosphorylation. EMBO J 2000; 19:3945-55. [PMID: 10921876 PMCID: PMC306614 DOI: 10.1093/emboj/19.15.3945] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fission yeast ste9/srw1 is a WD-repeat protein highly homologous to budding yeast Hct1/Cdh1 and Drosophila Fizzy-related that are involved in activating APC/C (anaphase-promoting complex/cyclosome). We show that APC(ste9/srw1) specifically promotes the degradation of mitotic cyclins cdc13 and cig1 but not the S-phase cyclin cig2. APC(ste9/srw1) is not necessary for the proteolysis of cdc13 and cig1 that occurs at the metaphase-anaphase transition but it is absolutely required for their degradation in G(1). Therefore, we propose that the main role of APC(ste9/srw1) is to promote degradation of mitotic cyclins when cells need to delay or arrest the cell cycle in G(1). We also show that ste9/srw1 is negatively regulated by cdc2-dependent protein phosphorylation. In G(1), when cdc2-cyclin kinase activity is low, unphosphorylated ste9/srw1 interacts with APC/C. In the rest of the cell cycle, phosphorylation of ste9/srw1 by cdc2-cyclin complexes both triggers proteolysis of ste9/srw1 and causes its dissociation from the APC/C. This mechanism provides a molecular switch to prevent inactivation of cdc2 in G(2) and early mitosis and to allow its inactivation in G(1).
Collapse
Affiliation(s)
- M A Blanco
- Instituto de Microbiología Bioquímica, Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
133
|
Rudner AD, Hardwick KG, Murray AW. Cdc28 activates exit from mitosis in budding yeast. J Cell Biol 2000; 149:1361-76. [PMID: 10871278 PMCID: PMC2175138 DOI: 10.1083/jcb.149.7.1361] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2000] [Accepted: 05/17/2000] [Indexed: 11/30/2022] Open
Abstract
The activity of the cyclin-dependent kinase 1 (Cdk1), Cdc28, inhibits the transition from anaphase to G1 in budding yeast. CDC28-T18V, Y19F (CDC28-VF), a mutant that lacks inhibitory phosphorylation sites, delays the exit from mitosis and is hypersensitive to perturbations that arrest cells in mitosis. Surprisingly, this behavior is not due to a lack of inhibitory phosphorylation or increased kinase activity, but reflects reduced activity of the anaphase-promoting complex (APC), a defect shared with other mutants that lower Cdc28/Clb activity in mitosis. CDC28-VF has reduced Cdc20- dependent APC activity in mitosis, but normal Hct1- dependent APC activity in the G1 phase of the cell cycle. The defect in Cdc20-dependent APC activity in CDC28-VF correlates with reduced association of Cdc20 with the APC. The defects of CDC28-VF suggest that Cdc28 activity is required to induce the metaphase to anaphase transition and initiate the transition from anaphase to G1 in budding yeast.
Collapse
Affiliation(s)
- Adam D. Rudner
- Department of Physiology, University of California, San Francisco, California 94143-0444
- Department of Biochemistry, University of California, San Francisco, California 94143-0444
| | - Kevin G. Hardwick
- Department of Physiology, University of California, San Francisco, California 94143-0444
| | - Andrew W. Murray
- Department of Physiology, University of California, San Francisco, California 94143-0444
- Department of Biochemistry, University of California, San Francisco, California 94143-0444
| |
Collapse
|
134
|
Rudner AD, Murray AW. Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J Cell Biol 2000; 149:1377-90. [PMID: 10871279 PMCID: PMC2175139 DOI: 10.1083/jcb.149.7.1377] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Budding yeast initiates anaphase by activating the Cdc20-dependent anaphase-promoting complex (APC). The mitotic activity of Cdc28 (Cdk1) is required to activate this form of the APC, and mutants that are impaired in mitotic Cdc28 function have difficulty leaving mitosis. This defect can be explained by a defect in APC phosphorylation, which depends on mitotic Cdc28 activity in vivo and can be catalyzed by purified Cdc28 in vitro. Mutating putative Cdc28 phosphorylation sites in three components of the APC, Cdc16, Cdc23, and Cdc27, makes the APC resistant to phosphorylation both in vivo and in vitro. The nonphosphorylatable APC has normal activity in G1, but its mitotic, Cdc20-dependent activity is compromised. These results show that Cdc28 activates the APC in budding yeast to trigger anaphase. Previous reports have shown that the budding yeast Cdc5 homologue, Plk, can also phosphorylate and activate the APC in vitro. We show that, like cdc28 mutants, cdc5 mutants affect APC phosphorylation in vivo. However, although Cdc5 can phosphorylate Cdc16 and Cdc27 in vitro, this in vitro phosphorylation does not occur on in vivo sites of phosphorylation.
Collapse
Affiliation(s)
- Adam D. Rudner
- Department of Physiology, University of California, San Francisco, California 94143-0444
- Department of Biochemistry, University of California, San Francisco, California 94143-0444
| | - Andrew W. Murray
- Department of Physiology, University of California, San Francisco, California 94143-0444
- Department of Biochemistry, University of California, San Francisco, California 94143-0444
| |
Collapse
|