101
|
Rytter A, Cronberg T, Asztély F, Nemali S, Wieloch T. Mouse hippocampal organotypic tissue cultures exposed to in vitro "ischemia" show selective and delayed CA1 damage that is aggravated by glucose. J Cereb Blood Flow Metab 2003; 23:23-33. [PMID: 12500088 DOI: 10.1097/01.wcb.0000034361.37277.1b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxygen and glucose deprivation (OGD) in cell cultures is generally studied in a medium, such as artificial cerebrospinal fluid (CSF), with an ion composition similar to that of the extracellular fluid of the normal brain (2 to 4 mmol/L K+, 2 to 3 mmol/L Ca2+; pH 7.4). Because the distribution of ions across cell membranes dramatically shifts during ischemia, the authors exposed mouse organotypic hippocampal tissue cultures to OGD in a medium, an ischemic cerebrospinal fluid, with an ion composition similar to the extracellular fluid of the brain during ischemia (70 mmol/L K+, 0.3 mmol/L Ca2+; pH 6.8). In ischemic CSF, OGD induced a selective and delayed cell death in the CA1 region, as assessed by propidium iodide uptake. Cell death was glutamate receptor dependent since blockade of the N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors mitigated cell damage. Hyperglycemia aggravates ischemic brain damage whereas glucose in artificial CSF prevents oxygen deprivation-induced damage. The authors demonstrate that glucose in ischemic CSF significantly exacerbates cell damage after oxygen deprivation. This new model of "ischemia" can be useful in future studies of the mechanisms and treatment of ischemic cell death, including studies using genetically modified mice.
Collapse
Affiliation(s)
- Anna Rytter
- Department of Clinical Neuroscience, Lund University, Sweden
| | | | | | | | | |
Collapse
|
102
|
Xu GP, Dave KR, Vivero R, Schmidt-Kastner R, Sick TJ, Pérez-Pinzón MA. Improvement in neuronal survival after ischemic preconditioning in hippocampal slice cultures. Brain Res 2002; 952:153-8. [PMID: 12376175 DOI: 10.1016/s0006-8993(02)02988-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The main goals of the current study were to assess: (a) whether a sublethal ischemic insult could protect the CA1 subregion of the hippocampus in organotypic slices against a lethal ischemic insult; and (b) whether this protection is long lasting as determined with an accurate immunohistochemical neuronal marker, NeuN. Hippocampal slice cultures were grown for 12-14 days in vitro. Slices were exposed either to oxygen/glucose deprivation (OGD) for 45 min (ischemia), or OGD for 15 min (ischemic preconditioning), 48 h prior to 45 min OGD, or were untreated (sham). Cell death was estimated by propidium iodide fluorescence 1 day after OGD and by NeuN immunohistochemistry 7 days after OGD. Image analysis was employed to measure the relative optical density of the NeuN-signal in all groups. After ischemia, damaged neurons were shrunken or lost and NeuN immunoreactivity was reduced. Relative optical density of NeuN (ROD [NeuN]) was 0.193+/-0.015 in control (sham) (n=9). In slices that underwent ischemia, ROD [NeuN] declined to 0.108+/-0.018 (n=5) in CA1 (*P<0.05 ROD [NeuN] in preconditioned slice cultures was 0.190+/-0.037 (76% higher than the ischemia group). Similar results were found after measuring PI fluorescence. In the CA1 sub-region, PI fluorescence was about 13, 47 and 17% in the sham, ischemic and IPC groups, respectively. We suggest that the immunohistochemical approach validates the dye uptake method used in slice cultures and yields quantitative data specific for neurons. We also conclude that the organotypic hippocampal slice model is useful for studying delayed ischemic preconditioning that is maintained for hours or days after the preconditioning event.
Collapse
Affiliation(s)
- Guang-Ping Xu
- Department of Neurology (D4-5), P.O. Box 016960, School of Medicine, University of Miami, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
103
|
Baskys A, Segal J, Fang L. Neuroprotective properties of topiramate in organotypic hippocampal cultures: implications for treatment of vascular and other dementias. Drug Dev Res 2002. [DOI: 10.1002/ddr.10091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
104
|
Vincent VAM, Robinson CC, Simsek D, Murphy GM. Macrophage colony stimulating factor prevents NMDA-induced neuronal death in hippocampal organotypic cultures. J Neurochem 2002; 82:1388-97. [PMID: 12354286 DOI: 10.1046/j.1471-4159.2002.01087.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Macrophage colony stimulating factor (M-CSF) and its receptor are up-regulated in the brain in Alzheimer's disease (AD), in transgenic mouse models for AD, and experimental models for traumatic and ischemic brain injury. M-CSF induces activation and proliferation of microglial cells and expression of proinflammatory cytokines. We examined the role of M-CSF in excitotoxic neuronal cell death in organotypic hippocampal cultures. NMDA treatment induced neuronal apoptosis and caspase-3 activation in organotypic hippocampal cultures, whereas treatment with M-CSF protected hippocampal neurons from NMDA-induced apoptosis. Caspase-3 activation was inhibited by M-CSF treatment to the same degree as with the caspase inhibitor Z-VAD-FMK. These results suggest that M-CSF has neuroprotective properties through inhibition of caspase-3 that could promote neuronal survival after excitotoxic insult. The role of M-CSF in neurological disease should be reevaluated as a microglial activator with potentially neuroprotective effects.
Collapse
Affiliation(s)
- Valerie A M Vincent
- Neuroscience Research Laboratories, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
105
|
Rundén-Pran E, Haug FM, Storm JF, Ottersen OP. BK channel activity determines the extent of cell degeneration after oxygen and glucose deprivation: a study in organotypical hippocampal slice cultures. Neuroscience 2002; 112:277-88. [PMID: 12044446 DOI: 10.1016/s0306-4522(02)00092-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BK channels are voltage- and calcium-dependent potassium channels whose activation tends to reduce cellular excitability. In hippocampal pyramidal cells, BK channels repolarize somatic action potentials, and recent immunogold and electrophysiological analyses have revealed a presynaptic pool of BK channels that can regulate glutamate release. Agents that modulate BK channel activity would therefore be expected to affect cell excitability and neurotransmitter release also under pathological conditions. We have investigated the role of BK potassium channels in a model of ischemia-induced nerve cell degeneration. Organotypical slice cultures of rat hippocampus were exposed to oxygen and glucose deprivation (OGD), and cell death was assessed by the fluorescent dye propidium iodide. OGD induced cell death in the CA1 region and to a lesser extent in CA3. Treatment with the BK channel blockers, paxilline and iberiotoxin, during and after OGD induced increased cell death in CA1 and CA3. Both BK channel blockers also sensitized the relatively resistant granule cells in fascia dentata to OGD. The effect of paxilline and iberiotoxin was evident from 3 h after OGD, indicating a role of BK channels early in the post-ischemic phase or during OGD itself. The BK channel opener, NS1619, turned out to be gliotoxic, and this effect was not counteracted by paxilline and iberiotoxin. Our data show that blockade of BK channels aggravates OGD-induced cell damage and suggest that BK channels act as a kind of 'emergency brake' during and/or after ischemia. Accordingly, the BK channel is a potential molecular target for neuroprotective therapy in stroke.
Collapse
Affiliation(s)
- E Rundén-Pran
- Department of Anatomy, Medicine and Health Group on Neuronal Communication, Institute of Basic Medical Sciences, University of Oslo, Norway
| | | | | | | |
Collapse
|
106
|
Graulich J, Hoffmann U, Maier RF, Ruscher K, Pomper JK, Ko HK, Gabriel S, Obladen M, Heinemann U. Acute neuronal injury after hypoxia is influenced by the reoxygenation mode in juvenile hippocampal slice cultures. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 137:35-42. [PMID: 12128252 DOI: 10.1016/s0165-3806(02)00365-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In neonates asphyxia is usually followed by hyperoxia due to resuscitation procedures. In order to study whether hyperoxic reoxygenation might cause additional cell injury we subjected organotypic hippocampal slice cultures of juvenile rats to normoxic or hyperoxic reoxygenation (19 or 85% oxygen, respectively) following hypoxia (3% oxygen) for 30, 60, and 120 min. Cell injury was quantified by lactate dehydrogenase (LDH) release and propidium iodide (PI) fluorescence 1 h after end of the reoxygenation period. In both experimental groups, LDH activity was significantly enhanced by hypoxia as compared to normoxic controls. However, hyperoxic reoxygenation caused a larger increase in LDH activity than normoxic reoxygenation (e.g., by a factor of 1.60 vs. 1.29 following 120 min hypoxia). PI fluorescence increased after hypoxia in all principal cell layers of the hippocampus but again showed a larger enhancement after hyperoxic reoxygenation as compared to normoxic reoxygenation (e.g., by a factor of 3.9 vs. 1.7 for CA1 and 120 min of hypoxia). After normoxic reoxygenation, PI fluorescence intensity was lower in the dentate gyrus as compared to CA1 and CA3, while it reached similar values like CA1 after high oxygen supply. In conclusion, juvenile hippocampal slice cultures subjected to hyperoxic reoxygenation display a greater amount of acute neuronal injury than slice cultures undergoing normoxic reoxygenation.
Collapse
Affiliation(s)
- Johannes Graulich
- Charité, Humboldt University Berlin, Department of Neonatology, Augustenburger Platz 1, D-13353 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Noer H, Kristensen BW, Noraberg J, Zimmer J, Gramsbergen JB. 3-Nitropropionic acid neurotoxicity in hippocampal slice cultures: developmental and regional vulnerability and dependency on glucose. Exp Neurol 2002; 176:237-46. [PMID: 12093101 DOI: 10.1006/exnr.2002.7934] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether neurotoxic effects of the mitochondrial toxin 3-nitropropionic acid (3-NP) in hippocampal slice cultures are dependent on glucose levels in the culture medium and whether such effects occur via apoptosis or necrosis. In addition, 3-NP toxicity was investigated at two developmental stages of the cultures, prepared from rat brain at postnatal day 5-7 and grown in Neurobasal medium for 1 or 3 weeks. Cultures were exposed to 3-NP in the presence of high (25 mM), normal (5 mM), or low (3 mM) glucose for 48 h, followed by 48 h incubation in medium without 3-NP. Cellular propidium iodide (PI) uptake and lactate dehydrogenase (LDH) efflux into the medium revealed time- and dose-dependent cell death by 3-NP, with EC(50) values of about 60 microM in high or normal glucose. Regional vulnerability, as assessed by PI uptake and MAP2 immunostaining, in 3-week-old cultures was as follows: CA1 > CA3 > fascia dentata. In low glucose much lower concentrations of 3-NP (25 microM) triggered neurotoxicity. One-week-old cultures were less susceptible to 3-NP toxicity than 3-week-old cultures, but the dentate granule cells were relatively more affected in the immature cultures. We found no evidence for apoptotic cell death by 3-NP in 3-week-old cultures, but in 1-week-old cultures the putative apoptotic marker c-JUN/AP1 and nuclear fragmentation (Hoechst) were significantly increased in the dentate granule cells.
Collapse
Affiliation(s)
- Helle Noer
- Anatomy and Neurobiology, SDU-Odense University, Denmark
| | | | | | | | | |
Collapse
|
108
|
Abstract
Cerebral ischemia is a major cause of brain dysfunction. Using a model of delayed death induced by a brief, transient oxygen and glucose deprivation, we studied here how this affected the structural organization of hippocampal synaptic networks. We report that brief anoxic-hypoglycemic episodes rapidly modified the structure of synapses. This was characterized, at the electron microscopic level, by a transient increase in the proportion of perforated synapses, followed after 2 hr by an increase in images of multiple synapse boutons. These changes were considerable because 10-20% of all synapses were affected. This structural remodeling was correlated by three kinds of modifications observed using two-photon confocal microscopy: the growth of filopodia, occurring shortly (5-20 min) after anoxia-hypoglycemia, enlargements of existing spines, and formation of new spines, both seen mainly 20-60 min after the insult. All of these structural changes were calcium and NMDA receptor dependent and thus reproduced, to a larger scale, those associated with synaptic plasticity. Concomitantly and related to the severity of anoxia-hypoglycemia, we could also observe spine loss and images of spine, dendrite, or presynaptic terminal swellings that evolved up to membrane disruption. These changes were also calcium dependent and reduced by NMDA receptor antagonists. Thus, short anoxic-hypoglycemic episodes, through NMDA receptor activation and calcium influx, resulted in a profound structural remodeling of synaptic networks, through growth, formation, and elimination of spines and synapses.
Collapse
|
109
|
Robert F, Bert L, Stoppini L. Blockade of NMDA-receptors or calcium-channels attenuates the ischaemia-evoked efflux of glutamate and phosphoethanolamine and depression of neuronal activity in rat organotypic hippocampal slice cultures. C R Biol 2002; 325:495-504. [PMID: 12161929 DOI: 10.1016/s1631-0691(02)01451-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated the effects of various insults on extracellular glutamate and phosphoethanolamine levels as well as electrical activity alterations in the early period following these insults in organotypic hippocampal slice cultures. Cultures prepared from 7-day-old rats were maintained in vitro for 7-14 days and then metabolic inhibition was induced: cultures were briefly exposed to potassium cyanide to induce chemical anoxia, 2-deoxyglucose with glucose removal to produce hypoglycaemia, or a combination of both to simulate ischaemia. Chemical anoxia induced a small increase in glutamate and a reversible decrease in evoked field potentials and these were greatly potentiated following simulated ischaemia: high, biphasic glutamate efflux and irreversible field potential abolition as well as increase in phosphoethanolamine levels were observed. We have characterised the effects of treatments using NMDA-receptor antagonists and the L-type calcium channel blocker diltiazem. Anoxia-induced glutamate accumulation was prevented by MK-801 and diltiazem D-AP5. Following simulated ischaemia, diltiazem totally prevented glutamate and phosphoethanolamine accumulations, whereas MK-801 did not block the first phase of glutamate accumulation and D-AP5 prevented none. We demonstrated that glutamate and phosphoethanolamine ischaemic-evoked efflux as well as the recovery of electrical activity in organotypic hippocampal slice cultures are sensitive to both NMDA-receptor and calcium-channel blockade. This model thus represents a useful in vitro system for the study of ischaemic neurodegeneration paralleling results reported using in vivo models.
Collapse
Affiliation(s)
- Frédéric Robert
- Département de pharmacologie/APSIC, centre médical universitaire, rue Michel-Servet 1, 1211 Genève 4, Switzerland
| | | | | |
Collapse
|
110
|
Ullrich O, Diestel A, Eyüpoglu IY, Nitsch R. Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1. Nat Cell Biol 2001; 3:1035-42. [PMID: 11781564 DOI: 10.1038/ncb1201-1035] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excitotoxic brain lesions initially result in the primary destruction of brain parenchyma, after which microglial cells migrate towards the sites of injury. At these sites, the cells produce large quantities of oxygen radicals and cause secondary damage that accounts for most of the loss of brain function. Here we show that this microglial migration is strongly controlled in living brain tissue by expression of the integrin CD11a, regulated by the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) through the formation of a nuclear PARP-NF-kappaB-protein complex. Downregulation of PARP or CD11a by transfection with antisense DNA abrogated microglial migration almost completely and prevented neurons from secondary damage.
Collapse
Affiliation(s)
- O Ullrich
- Department of Cell- and Neurobiology, Institute of Anatomy. Medical Faculty (Charité), Humboldt-University Berlin, Schumannstrasse 20/21, 10098 Berlin, Germany.
| | | | | | | |
Collapse
|
111
|
Cimarosti H, Rodnight R, Tavares A, Paiva R, Valentim L, Rocha E, Salbego C. An investigation of the neuroprotective effect of lithium in organotypic slice cultures of rat hippocampus exposed to oxygen and glucose deprivation. Neurosci Lett 2001; 315:33-6. [PMID: 11711208 DOI: 10.1016/s0304-3940(01)02310-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Brain ischemia results in cellular degeneration and loss of function. Here we investigated the neuroprotective effect of lithium in an in vitro model of ischemia. Organotypic hippocampal slice cultures were exposed to oxygen and glucose deprivation. Cellular death was quantified by measuring uptake of propidium iodide (PI). Lithium chloride (0.2-1.2 mM) was added to the medium before, during and after lesion induction. A decrease in incorporation of PI was observed, indicating a neuroprotective effect in all doses tested. We also studied the effect of lithium on the phosphorylation of HSP27, a heat shock protein involved in cellular protection in its dephosphorylated state. In the lesioned hippocampus, 0.4 mM lithium chloride decreased the proportion of phosphorylated HSP27 to total HSP27. These results suggest that lithium may be useful in the treatment of brain ischemia.
Collapse
Affiliation(s)
- H Cimarosti
- Departamento de BioquImica, Instituto de Ciências Básicas da Saúde, UFRGS, 90035-003, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
112
|
Kuriyama H, Nakagawa M, Tsuda M. Intracellular Ca(2+) changes induced by in vitro ischemia in rat retinal slices. Exp Eye Res 2001; 73:365-74. [PMID: 11520111 DOI: 10.1006/exer.2001.1047] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of ischemia on intracellular Ca(2+)concentration [[Ca(2+)](i)] in retinal slices was investigated. [Ca(2+)](i)in each layer of the retina was determined from fluorescence images in rat retinal slices loaded with fura2-AM. Ischemic like conditions were imposed on the retinal slice in vitro by perfusion with an oxygen/glucose deprived solution. All measurements were taken at 25 degrees C except when temperature dependence was examined. In response to 100 m M K(+)or 0.2 m M glutamate under normoxic conditions, the [Ca(2+)](i)increase was higher in the inner retinal layers. Fifteen min ischemia evoked an increase in Ca(2+)levels in all layers of the retina, and the rates of increase were especially high in the outer/inner segment layer and the outer nuclear layer. Ischemia in the absence of extracellular Ca(2+)also induced a Ca(2+)rise, but at lower rates than with standard ischemia. Intermittent ischemia, composed of three 15 min bursts of ischemia at 10 min intervals, promoted the Ca(2+)rise. There was a more marked rise in [Ca(2+)](i)when the temperature was increased to 29 or 33 degrees C. Thus, in the rat retinal slice, in vitro ischemia evoked a more marked Ca(2+)rise in the outer retina, which was in contrast to the Ca(2+)responses to glutamate or high K(+). The rates of increase in [Ca(2+)](i)with ischemia were larger at higher temperatures, and intermittent ischemia also promoted the Ca(2+)rise. These increases appear to be derived from predominant influx of extracellular Ca(2+)rather than release of intracellular Ca(2+)stores.
Collapse
Affiliation(s)
- H Kuriyama
- Research Laboratory, Senju Pharmaceutical Co. Ltd, Hyogo 651-2241, Japan
| | | | | |
Collapse
|
113
|
Moroni F, Meli E, Peruginelli F, Chiarugi A, Cozzi A, Picca R, Romagnoli P, Pellicciari R, Pellegrini-Giampietro DE. Poly(ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia. Cell Death Differ 2001; 8:921-32. [PMID: 11526447 DOI: 10.1038/sj.cdd.4400884] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Revised: 03/08/2001] [Accepted: 03/30/2001] [Indexed: 11/08/2022] Open
Abstract
An excessive activation of poly(ADP-ribose) polymerase (PARP) has been proposed to play a key role in post-ischemic neuronal death. We examined the neuroprotective effects of the PARP inhibitors benzamide, 6(5H)-phenanthridinone, and 3,4-dihydro-5-[4-1(1-piperidinyl)buthoxy]-1(2H)-isoquinolinone in three rodent models of cerebral ischemia. Increasing concentrations of the three PARP inhibitors attenuated neuronal injury induced by 60 min oxygen-glucose deprivation (OGD) in mixed cortical cell cultures, but were unable to reduce CA1 pyramidal cell loss in organotypic hippocampal slices exposed to 30 min OGD or in gerbils following 5 min bilateral carotid occlusion. We then examined the necrotic and apoptotic features of OGD-induced neurodegeneration in cortical cells and hippocampal slices using biochemical and morphological approaches. Cortical cells exposed to OGD released lactate dehydrogenase into the medium and displayed ultrastructural features of necrotic cell death, whereas no caspase-3 activation nor morphological characteristics of apoptosis were observed at any time point after OGD. In contrast, a marked increase in caspase-3 activity was observed in organotypic hippocampal slices after OGD, together with fluorescence and electron microscope evidence of apoptotic neuronal death in the CA1 subregion. Moreover, the caspase inhibitor Z-VAD-FMK reduced OGD-induced CA1 pyramidal cell loss. These findings suggest that PARP overactivation may be an important mechanism leading to post-ischemic neurodegeneration of the necrotic but not of the apoptotic type.
Collapse
Affiliation(s)
- F Moroni
- Dipartimento di Farmacologia Preclinica e Clinica, Università di Firenze, Viale G. Pieraccini 6, I-50139 Florence, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Victorov IV, Lyjin AA, Aleksandrova OP. A modified roller method for organotypic brain cultures: free-floating slices of postnatal rat hippocampus. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 7:30-7. [PMID: 11275521 DOI: 10.1016/s1385-299x(00)00059-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe a novel procedure for organotypic cultivation of free-floating brain sections of postnatal rats with a modified roller technique. Three hundred to 350-microm-thick sections of hippocampus are cultured for 13-15 days at 35.5 degrees C in 10-15 ml of feeding medium in 50-100 ml bottles under constant rotation on a horizontal high-speed mini-roller (60 rpm). Histological analysis (paraffin sections, Nissl Cresyl Violet and Hematoxylin/Eosin staining) demonstrates good survival of neuronal and glial cells and complete preservation of the neuronal organization of cultivated hippocampus with minimal central necrosis. This novel protocol permits not only survival and development of long-term three-dimensional organotypic postnatal brain tissue but also allows simultaneous cultivation of any number of brain sections in one bottle (up to 50 and even more) and therefore is useful for high throughput study of neurocytotoxic and hypoxic/ischemic neuronal damage with subsequent histological, immunocytochemical, biochemical, and molecular analysis.
Collapse
Affiliation(s)
- I V Victorov
- Laboratory of Experimental Neurocytology, Brain Research Institute, Pereulok Obukha 5, 103064, Moscow, Russia.
| | | | | |
Collapse
|