101
|
Ahmed RM, Landin-Romero R, Collet TH, van der Klaauw AA, Devenney E, Henning E, Kiernan MC, Piguet O, Farooqi IS, Hodges JR. Energy expenditure in frontotemporal dementia: a behavioural and imaging study. Brain 2017; 140:171-183. [PMID: 27789521 PMCID: PMC5379863 DOI: 10.1093/brain/aww263] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/22/2016] [Accepted: 09/04/2016] [Indexed: 02/02/2023] Open
Abstract
SEE FINGER DOI101093/AWW312 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Abnormal eating behaviour and metabolic parameters including insulin resistance, dyslipidaemia and body mass index are increasingly recognized as important components of neurodegenerative disease and may contribute to survival. It has previously been established that behavioural variant frontotemporal dementia is associated with abnormal eating behaviour characterized by increased sweet preference. In this study, it was hypothesized that behavioural variant frontotemporal dementia might also be associated with altered energy expenditure. A cohort of 19 patients with behavioural variant frontotemporal dementia, 13 with Alzheimer's disease and 16 (age- and sex-matched) healthy control subjects were studied using Actiheart devices (CamNtech) to assess resting and stressed heart rate. Actiheart devices were fitted for 7 days to measure sleeping heart rate, activity levels, and resting, active and total energy expenditure. Using high resolution structural magnetic resonance imaging the neural correlates of increased resting heart rate were investigated including cortical thickness and region of interest analyses. In behavioural variant frontotemporal dementia, resting (P = 0.001), stressed (P = 0.037) and sleeping heart rate (P = 0.038) were increased compared to control subjects, and resting heart rate (P = 0.020) compared to Alzheimer disease patients. Behavioural variant frontotemporal dementia was associated with decreased activity levels compared to controls (P = 0.002) and increased resting energy expenditure (P = 0.045) and total energy expenditure (P = 0.035). Increased resting heart rate correlated with behavioural (Cambridge Behavioural Inventory) and cognitive measures (Addenbrooke's Cognitive Examination). Increased resting heart rate in behavioural variant frontotemporal dementia correlated with atrophy involving the mesial temporal cortex, insula, and amygdala, regions previously suggested to be involved exclusively in social and emotion processing in frontotemporal dementia. These neural correlates overlap the network involved in eating behaviour in frontotemporal dementia, suggesting a complex interaction between eating behaviour, autonomic function and energy homeostasis. As such the present study suggests that increased heart rate and autonomic changes are prevalent in behavioural variant frontotemporal dementia, and are associated with changes in energy expenditure. An understanding of these changes and neural correlates may have potential relevance to disease progression and prognosis.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- 1 Neuroscience Research Australia, Sydney, Australia,2 University of New South Wales, Sydney, Australia,3 ARC Centre of Excellence in Cognition and its Disorders, University of New South Wales, Sydney, 2031 Australia,4 Brain and Mind Centre, Sydney Medical School, University of Sydney, Australia,Correspondence to: Dr Rebekah Ahmed, Brain and Mind Centre, University of Sydney 94 Mallett St Camperdown 2050, Australia E-mail:
| | - Ramon Landin-Romero
- 1 Neuroscience Research Australia, Sydney, Australia,2 University of New South Wales, Sydney, Australia,3 ARC Centre of Excellence in Cognition and its Disorders, University of New South Wales, Sydney, 2031 Australia
| | - Tinh-Hai Collet
- 5 University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Agatha A van der Klaauw
- 5 University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Emma Devenney
- 1 Neuroscience Research Australia, Sydney, Australia,2 University of New South Wales, Sydney, Australia,3 ARC Centre of Excellence in Cognition and its Disorders, University of New South Wales, Sydney, 2031 Australia,4 Brain and Mind Centre, Sydney Medical School, University of Sydney, Australia
| | - Elana Henning
- 5 University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Matthew C Kiernan
- 4 Brain and Mind Centre, Sydney Medical School, University of Sydney, Australia
| | - Olivier Piguet
- 1 Neuroscience Research Australia, Sydney, Australia,2 University of New South Wales, Sydney, Australia,3 ARC Centre of Excellence in Cognition and its Disorders, University of New South Wales, Sydney, 2031 Australia
| | - I Sadaf Farooqi
- 5 University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - John R Hodges
- 1 Neuroscience Research Australia, Sydney, Australia,2 University of New South Wales, Sydney, Australia,3 ARC Centre of Excellence in Cognition and its Disorders, University of New South Wales, Sydney, 2031 Australia,Correspondence may also be addressed to: Professor John Hodges, e-mail:
| |
Collapse
|
102
|
Ioannides ZA, Ngo ST, Henderson RD, McCombe PA, Steyn FJ. Altered Metabolic Homeostasis in Amyotrophic Lateral Sclerosis: Mechanisms of Energy Imbalance and Contribution to Disease Progression. NEURODEGENER DIS 2016; 16:382-97. [PMID: 27400276 DOI: 10.1159/000446502] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/27/2016] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the death of motor neurones, which leads to paralysis and death in an average of 3 years following diagnosis. The cause of ALS is unknown, but there is substantial evidence that metabolic factors, including nutritional state and body weight, affect disease progression and survival. This review provides an overview of the characteristics of metabolic dysregulation in ALS focusing on mechanisms that lead to disrupted energy supply (at a whole-body and cellular level) and altered energy expenditure. We discuss how a decrease in energy supply occurs in parallel with an increase in energy demand and leads to a state of chronic energy deficit which has a negative impact on disease outcome in ALS. We conclude by presenting potential and tested strategies to compensate for, or correct this energy imbalance, and speculate on promising areas for further research.
Collapse
Affiliation(s)
- Zara A Ioannides
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Qld., Australia
| | | | | | | | | |
Collapse
|
103
|
Vernay A, Therreau L, Blot B, Risson V, Dirrig-Grosch S, Waegaert R, Lequeu T, Sellal F, Schaeffer L, Sadoul R, Loeffler JP, René F. A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet 2016; 25:3341-3360. [PMID: 27329763 DOI: 10.1093/hmg/ddw182] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Mutations in the charged multivesicular body protein 2B (CHMP2B) are associated with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and with a mixed ALS-FTD syndrome. To model this syndrome, we generated a transgenic mouse line expressing the human CHMP2Bintron5 mutant in a neuron-specific manner. These mice developed a dose-dependent disease phenotype. A longitudinal study revealed progressive gait abnormalities, reduced muscle strength and decreased motor coordination. CHMP2Bintron5 mice died due to generalized paralysis. When paralyzed, signs of denervation were present as attested by altered electromyographic profiles, by decreased number of fully innervated neuromuscular junctions, by reduction in size of motor endplates and by a decrease of sciatic nerve axons area. However, spinal motor neurons cell bodies were preserved until death. In addition to the motor dysfunctions, CHMP2Bintron5 mice progressively developed FTD-relevant behavioural modifications such as disinhibition, stereotypies, decrease in social interactions, compulsivity and change in dietary preferences. Furthermore, neurons in the affected spinal cord and brain regions showed accumulation of p62-positive cytoplasmic inclusions associated or not with ubiquitin and CHMP2Bintron5 As observed in FTD3 patients, these inclusions were negative for TDP-43 and FUS. Moreover, astrogliosis and microgliosis developed with age. Altogether, these data indicate that the neuronal expression of human CHMP2Bintron5 in areas involved in motor and cognitive functions induces progressive motor alterations associated with dementia symptoms and with histopathological hallmarks reminiscent of both ALS and FTD.
Collapse
Affiliation(s)
- Aurélia Vernay
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| | - Ludivine Therreau
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| | - Béatrice Blot
- INSERM U836, Grenoble Institut des Neurosciences, Université Joseph Fourier, F-38700 La Tronche, France
| | - Valérie Risson
- Laboratoire de Biologie Moléculaire de la Cellule, UMR5239 CNRS/ENS Lyon/UCBL/HCL Ecole normale supérieure de Lyon, F-69364 Lyon Cedex 07, France
| | - Sylvie Dirrig-Grosch
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| | - Robin Waegaert
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| | - Thiebault Lequeu
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| | - François Sellal
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Neurology department, Hôpitaux civils and CMRR, F-68000 Colmar, France
| | - Laurent Schaeffer
- Laboratoire de Biologie Moléculaire de la Cellule, UMR5239 CNRS/ENS Lyon/UCBL/HCL Ecole normale supérieure de Lyon, F-69364 Lyon Cedex 07, France
| | - Rémy Sadoul
- INSERM U836, Grenoble Institut des Neurosciences, Université Joseph Fourier, F-38700 La Tronche, France
| | - Jean-Philippe Loeffler
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| | - Frédérique René
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France .,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
104
|
Ahmed RM, Caga J, Devenney E, Hsieh S, Bartley L, Highton-Williamson E, Ramsey E, Zoing M, Halliday GM, Piguet O, Hodges JR, Kiernan MC. Cognition and eating behavior in amyotrophic lateral sclerosis: effect on survival. J Neurol 2016; 263:1593-603. [DOI: 10.1007/s00415-016-8168-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/31/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022]
|