101
|
Rødgaard T, Skovgaard K, Moesgaard SG, Cirera S, Christoffersen BØ, Heegaard PMH. Extensive changes in innate immune gene expression in obese Göttingen minipigs do not lead to changes in concentrations of circulating cytokines and acute phase proteins. Anim Genet 2013; 45:67-73. [PMID: 24106888 DOI: 10.1111/age.12090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2013] [Indexed: 12/22/2022]
Abstract
The usefulness of Göttingen minipigs as models for obesity and obesity-related pathologies is well established. The low-grade inflammation associated with obesity involves a range of innate immune factors; however, to our knowledge, the impact of obesity on innate immune factor expression has not been studied in Göttingen minipigs. Therefore, we studied the expression of innate immune genes in liver and adipose tissues as well as serum concentrations of cytokines and acute phase proteins in obese vs. lean Göttingen minipigs. In the liver, of 35 investigated genes, the expression of nine was significantly different in obese pigs (three up-regulated, six down-regulated). Of 33 genes in adipose tissues, obesity was associated with changed expression of 12 genes in the visceral adipose tissue (VAT) (three up-regulated), 11 in the abdominal retroperitoneal adipose tissue (RPAT) (seven of these up-regulated) and eight in the subcutaneous adipose tissue (SAT) from the neck (five of which were up-regulated). Obesity-associated expression changes were observed for three genes in all adipose tissues, namely chemokine (C-C motif) ligand 3-like 1 (up-regulated), CD200 molecule (down-regulated) and interleukin 1 receptor antagonist (up-regulated) with interleukin 1 receptor antagonist being the most highly regulated gene in both VAT and RPAT. Looking at patterns of expression across the three types of adipose tissues, obesity was associated with an increased number of acute phase proteins differentially expressed between adipose tissues and a decreased tissue-specific expression of cytokines and chemokines. In contrast to obese humans, no changes in serum concentrations of haptoglobin, C-reactive protein, serum amyloid A, tumor necrosis factor-α and interleukin 6 were found in obese Göttingen minipigs.
Collapse
Affiliation(s)
- T Rødgaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, 1870, Denmark
| | | | | | | | | | | |
Collapse
|
102
|
Gonkowski S. Substance P as a neuronal factor in the enteric nervous system of the porcine descending colon in physiological conditions and during selected pathogenic processes. Biofactors 2013; 39:542-51. [PMID: 24155273 DOI: 10.1002/biof.1097] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/23/2013] [Indexed: 12/16/2022]
Abstract
The present investigation pertains to changes in substance P-like immunoreactive (SP-LI) nerve structures of the enteric nervous system (ENS) in the porcine descending colon, caused by chemically-induced inflammation and nerve injury (axotomy). The distribution pattern of SP-LI structures was studied using the double immunofluorescence technique in the myenteric (MP), outer submucous (OSP) and inner submucous (ISP) plexuses, as well as in the circular muscle and mucosal layers. Under physiological conditions, SP-LI neurons have been shown to constitute 4.13 ± 0.24%, 3.36 ± 0.26%, and 7.92 ± 0.16% in the MP, OSP, and ISP, respectively. Changes in SP-immunoreactivity depended on the pathological factor studied. The numbers of the SP-LI perikarya amounted to 7.89 ± 0.34, 5.56 ± 0.30, and 19.96 ± 0.57 in chemically-induced colitis, and 4.28 ± 0.13%, 7.18 ± 20%, and 11.62 ± 0.48% after axotomy in MP, OSP, and ISP, respectively. The both studied processes generally resulted in an increase in the number of SP-LI nerve fibers in the circular muscle and mucosal layers. The obtained results suggest that SP-LI nerve structures of the ENS may participate in various pathological processes in the porcine descending colon and exact functions of SP probably depend on the type of the pathological factor.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
103
|
Pedersen R, Andersen AD, Hermann-Bank ML, Stagsted J, Boye M. The effect of high-fat diet on the composition of the gut microbiota in cloned and non-cloned pigs of lean and obese phenotype. Gut Microbes 2013; 4:371-81. [PMID: 23974297 PMCID: PMC3839981 DOI: 10.4161/gmic.26108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to investigate the effect of high-far-high-energy diet on cloned and non-cloned domestic pigs of both lean and obese phenotype and to evaluate if the lean cloned pigs had a lower inter-individual variation as compared with non-cloned pigs. The microbiota of colon and terminal ileum was investigated in cloned and non-cloned pigs that received a high-far-high-energy diet with either restricted or ad libitum access to feed, resulting in lean and obese phenotypes, respectively. The fecal microbiota of lean pigs was investigated by terminal restriction fragment length polymorphism (T-RFLP). The intestinal microbiota of lean and obese cloned and non-cloned pigs was analyzed by quantitative real time PCR and a novel high-throughput qPCR platform (Fluidigm). Principal component analysis (PCA) of the T-RFLP profiles revealed that lean cloned and non-cloned pigs had a different overall composition of their gut microbiota. The colon of lean cloned pigs contained relatively more bacteria belonging to the phylum Firmicutes and less from the phylum Bacteroidetes than obese cloned pigs as estimated by qPCR. Fluidigm qPCR results revealed differences in specific bacterial groups in the gut microbiota of both lean and obese pigs. Our results suggest that high-far-high-energy diet is associated with changes in the gut microbiota even in the absence of obesity. Overall, the cloned pigs had a different gut microbiota from that of non-cloned pigs. To our knowledge this is the first study to investigate the gut microbiota of cloned domestic pigs of lean and obese phenotype.
Collapse
Affiliation(s)
- Rebecca Pedersen
- National Veterinary Institute; Technical University of Denmark; Frederiksberg, Denmark,Correspondence to: Rebecca Pedersen, and
| | | | | | - Jan Stagsted
- Institute of Food Chemistry and Technology; University of Aarhus; Tjele, Denmark
| | - Mette Boye
- National Veterinary Institute; Technical University of Denmark; Frederiksberg, Denmark
| |
Collapse
|
104
|
Higher body fatness in intrauterine growth retarded juvenile pigs is associated with lower fat and higher carbohydrate oxidation during ad libitum and restricted feeding. Eur J Nutr 2013; 53:583-97. [PMID: 23907209 PMCID: PMC3925302 DOI: 10.1007/s00394-013-0567-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/18/2013] [Indexed: 01/29/2023]
Abstract
Purpose
A thrifty energy metabolism has been suggested in intrauterine growth restricted (IUGR) offspring. We characterized energy metabolism and substrate oxidation patterns in IUGR pigs in response to food restriction (FR) and refeeding (RFD). Methods Female pigs with low (L; 1.1 kg; n = 20) or normal birth weight (N; 1.5 kg; n = 24) were fed ad libitum after weaning. Half of L and N pigs were food restricted (R; LR, NR) from days 80 to 100 (57 % of ad libitum) and refeed from days 101 to 131, while the remaining pigs were fed ad libitum (control, C). Using indirect calorimetry, carbohydrate and fat oxidation (COX, FOX), energy expenditure (EE) and balance (EB), resting metabolic rate (RMR) [all related to kg body weight0.62 (BW)] and RQ were determined at 4 days before (day 76) and after (day 83) beginning of FR, 4 days before (day 97) and after (day 104) end of FR and 25 days after beginning of RFD (day 125). Body fat and muscle weights were determined at day 131. Results In spite of higher relative food intake (FI), BW was lower in L pigs. In L pigs, physical activity was lower at age 76 and 83 days compared to N pigs. IUGR did not affect EE or RMR, but resulted in higher COX and lower FOX, causing greater and earlier onset of fat deposition. During FR, EE and RMR of R pigs dropped below that of C pigs, and BW gain was delayed by 30 % irrespective of birth weight. In response to FR, COX decreased and FOX increased. During FR, in LR pigs FOX was ~50 % of that in NR pigs. After 4 days, but not 25 days of RFD, EB and fat synthesis were higher in pigs previously subjected to FR, indicating early catch-up fat. In R pigs, BW and the abdominal fat proportion were lower at 131 days. Conclusions Differences in food intake and substrate oxidation pattern, but not in EE and RMR, between L and N pigs were reflected in higher body fat proportions but lower body and muscle weights in L pigs. Refeeding following FR was initially associated with increased FI, a more positive EB and a more intense stimulation of fat synthesis which did not persist after 25 days of refeeding. Electronic supplementary material The online version of this article (doi:10.1007/s00394-013-0567-x) contains supplementary material, which is available to authorized users.
Collapse
|
105
|
Perruchot MH, Lefaucheur L, Barreau C, Casteilla L, Louveau I. Age-related changes in the features of porcine adult stem cells isolated from adipose tissue and skeletal muscle. Am J Physiol Cell Physiol 2013; 305:C728-38. [PMID: 23864607 DOI: 10.1152/ajpcell.00151.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A better understanding of the control of body fat distribution and muscle development is of the upmost importance for both human and animal physiology. This requires a better knowledge of the features and physiology of adult stem cells in adipose tissue and skeletal muscle. Thus the objective of the current study was to determine the type and proportion of these cells in growing and adult pigs. The different cell subsets of stromal vascular cells isolated from these tissues were characterized by flow cytometry using cell surface markers (CD11b, CD14, CD31, CD34, CD45, CD56, and CD90). Adipose and muscle cells were predominantly positive for the CD34, CD56, and CD90 markers. The proportion of positive cells changed with age especially in intermuscular adipose tissue and skeletal muscle where the percentage of CD90(+) cells markedly increased in adult animals. Further analysis using coimmunostaining indicates that eight populations with proportions ranging from 12 to 30% were identified in at least one tissue at 7 days of age, i.e., CD90(+)/CD34(+), CD90(+)/CD34(-), CD90(+)/CD56(+), CD90(+)/CD56(-), CD90(-)/CD56(+), CD56(+)/CD34(+), CD56(+)/CD34(-), and CD56(-)/CD34(+). Adipose tissues appeared to be a less heterogeneous tissue than skeletal muscle with two main populations (CD90(+)/CD34(-) and CD90(+)/CD56(-)) compared with five or more in muscle during the studied period. In culture, cells from adipose tissue and muscle differentiated into mature adipocytes in adipogenic medium. In myogenic conditions, only cells from muscle could form mature myofibers. Further studies are now needed to better understand the plasticity of those cell populations throughout life.
Collapse
Affiliation(s)
- Marie-Hélène Perruchot
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche (UMR) 1348 Pegase, Saint-Gilles, France
| | | | | | | | | |
Collapse
|
106
|
Mompart F, Robelin D, Delcros C, Yerle-Bouissou M. 3D organization of telomeres in porcine neutrophils and analysis of LPS-activation effect. BMC Cell Biol 2013; 14:30. [PMID: 23803152 PMCID: PMC3701612 DOI: 10.1186/1471-2121-14-30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/12/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND While the essential role of 3D nuclear architecture on nuclear functions has been demonstrated for various cell types, information available for neutrophils, essential components of the immune system, remains limited. In this study, we analysed the spatial arrangements of telomeres which play a central role in cell fate. Our studies were carried out in swine, which is an excellent model organism for both biomedical research and agronomic applications. We isolated bacterial artificial chromosome (BAC)-containing subtelomeric p and q sequences specific to each porcine chromosome. This allowed us to study the behaviour of p and q telomeres of homologous chromosomes for seven pairs chosen for their difference in length and morphology. This was performed using 3D-FISH on structurally preserved neutrophils, and confocal microscopy. Resting and lipopolysaccharide (LPS)-activated states were investigated to ascertain whether a response to a pathogen aggression modifies this organization. RESULTS The positions of the p and q telomeres relative to the nuclear outer border were determined in the two states. All p telomeres changed their position significantly during the activation process, although the effect was less pronounced for the q telomeres. The patterns of telomeric associations between homologs and their frequencies were analysed for 7 pairs of chromosomes. This analysis revealed that the distribution of pp, qq and pq associations differs significantly among the 7 chromosomes. This distribution does not fit with the theoretical distribution for each chromosome, suggesting that preferential associations occur between subtelomeres. CONCLUSIONS The percentage of nuclei harbouring at least one telomeric association between homologs varies significantly among the chromosomes, the smallest metacentric chromosome SSC12, which is also the richest in gene-density, harbouring the highest value. The distribution of types of telomeric associations is highly dependent on the chromosomes and is not affected by the activation process. The frequencies of telomeric associations are also highly dependent on the type of association and the type of chromosome. Overall, the LPS-activation process induces only minor changes in these patterns of associations. When telomeric associations occur, the associations of p and q arms from the same chromosome are the most frequent, suggesting that "chromosome bending" occurs in neutrophils as previously observed in gametes.
Collapse
Affiliation(s)
- Florence Mompart
- INRA, UMR 444, Génétique Cellulaire, F-31326 Castanet, Tolosan, France
| | | | | | | |
Collapse
|
107
|
Klymiuk N, Blutke A, Graf A, Krause S, Burkhardt K, Wuensch A, Krebs S, Kessler B, Zakhartchenko V, Kurome M, Kemter E, Nagashima H, Schoser B, Herbach N, Blum H, Wanke R, Aartsma-Rus A, Thirion C, Lochmüller H, Walter MC, Wolf E. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet 2013; 22:4368-82. [PMID: 23784375 DOI: 10.1093/hmg/ddt287] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked dystrophin (DMD) gene. The absence of dystrophin protein leads to progressive muscle weakness and wasting, disability and death. To establish a tailored large animal model of DMD, we deleted DMD exon 52 in male pig cells by gene targeting and generated offspring by nuclear transfer. DMD pigs exhibit absence of dystrophin in skeletal muscles, increased serum creatine kinase levels, progressive dystrophic changes of skeletal muscles, impaired mobility, muscle weakness and a maximum life span of 3 months due to respiratory impairment. Unlike human DMD patients, some DMD pigs die shortly after birth. To address the accelerated development of muscular dystrophy in DMD pigs when compared with human patients, we performed a genome-wide transcriptome study of biceps femoris muscle specimens from 2-day-old and 3-month-old DMD and age-matched wild-type pigs. The transcriptome changes in 3-month-old DMD pigs were in good concordance with gene expression profiles in human DMD, reflecting the processes of degeneration, regeneration, inflammation, fibrosis and impaired metabolic activity. In contrast, the transcriptome profile of 2-day-old DMD pigs showed similarities with transcriptome changes induced by acute exercise muscle injury. Our studies provide new insights into early changes associated with dystrophin deficiency in a clinically severe animal model of DMD.
Collapse
|
108
|
Rødgaard T, Skovgaard K, Stagsted J, Heegaard PMH. Cloning changes the response to obesity of innate immune factors in blood, liver, and adipose tissues in domestic pigs. Cell Reprogram 2013; 15:185-94. [PMID: 23668862 DOI: 10.1089/cell.2012.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity.
Collapse
Affiliation(s)
- Tina Rødgaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
109
|
Axotomy-induced changes in the chemical coding pattern of colon projecting calbindin-positive neurons in the inferior mesenteric ganglia of the pig. J Mol Neurosci 2013; 51:99-108. [PMID: 23546647 PMCID: PMC3739864 DOI: 10.1007/s12031-013-0007-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/18/2013] [Indexed: 02/06/2023]
Abstract
The present study examines the response of colon-projecting neurons localized in the inferior mesenteric ganglia (IMG) to axotomy in the pig animal model. In all animals (n = 8), a median laparotomy was performed under anesthesia and the retrograde tracer Fast Blue was injected into the descending colon wall. In experimental animals (n = 4), the descending colon was exposed and the bilateral caudal colonic nerves were identified and severed. All animals were euthanized and the inferior mesenteric ganglia were harvested and processed for double-labeling immunofluorescence for calbindin-D28k (CB) in combination with either tyrosine hydroxylase (TH), neuropeptide Y (NPY), somatostatin (SOM), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), Leu-enkephalin (LENK), substance P, vesicular acetylcholine transporter, or galanin. Immunohistochemistry revealed significant changes in the chemical coding pattern of injured inferior mesenteric ganglion neurons. In control animals, Fast Blue-positive neurons were immunoreactive to TH, NPY, SOM, VIP, NOS, LENK, and CB. In the experimental group, the numbers of TH-, NPY-, and SOM-expressing neurons were reduced, whereas the number of neurons immunoreactive to LENK was increased. Our data indicate that the colon-projecting neurons of the porcine IMG react to the axotomy in a similar, but not an identical manner in a comparison to other species, especially rodents. Further studies are needed to elucidate the detailed factors/mechanisms involved in the response to nerve injury.
Collapse
|
110
|
Pedersen R, Ingerslev HC, Sturek M, Alloosh M, Cirera S, Christoffersen BØ, Moesgaard SG, Larsen N, Boye M. Characterisation of gut microbiota in Ossabaw and Göttingen minipigs as models of obesity and metabolic syndrome. PLoS One 2013; 8:e56612. [PMID: 23437186 PMCID: PMC3577853 DOI: 10.1371/journal.pone.0056612] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/11/2013] [Indexed: 01/10/2023] Open
Abstract
Background Recent evidence suggests that the gut microbiota is an important contributing factor to obesity and obesity related metabolic disorders, known as the metabolic syndrome. The aim of this study was to characterise the intestinal microbiota in two pig models of obesity namely Göttingen minipigs and the Ossabaw minipigs. Methods and Findings The cecal, ileal and colonic microbiota from lean and obese Osabaw and Göttingen minipigs were investigated by Illumina-based sequencing and by high throughput qPCR, targeting the 16S rRNA gene in different phylogenetic groups of bacteria. The weight gain through the study was significant in obese Göttingen and Ossabaw minipigs. The lean Göttingen minipigs’ cecal microbiota contained significantly higher abundance of Firmicutes (P<0.006), Akkermensia (P<0.01) and Methanovibribacter (P<0.01) than obese Göttingen minipigs. The obese Göttingen cecum had higher abundances of the phyla Spirochaetes (P<0.03), Tenericutes (P<0.004), Verrucomicrobia (P<0.005) and the genus Bacteroides (P<0.001) compared to lean minipigs. The relative proportion of Clostridium cluster XIV was 7.6-fold higher in cecal microbiota of obese Göttingen minipigs as compared to lean. Obese Ossabaw minipigs had a higher abundance of Firmicutes in terminal ileum and lower abundance of Bacteroidetes in colon than lean Ossabaw minipigs (P<0.01). Obese Ossabaws had significantly lower abundances of the genera Prevotella and Lactobacillus and higher abundance of Clostridium in their colon than the lean Ossabaws. Overall, the Göttingen and Ossabaw minipigs displayed different microbial communities in response to diet-induced obesity in the different sections of their intestine. Conclusion Obesity-related changes in the composition of the gut microbiota were found in lean versus obese Göttingen and Ossabaw minipigs. In both pig models diet seems to be the defining factor that shapes the gut microbiota as observed by changes in different bacteria divisions between lean and obese minipigs.
Collapse
Affiliation(s)
- Rebecca Pedersen
- Department of Bacteriology Pathology and Parasitology, National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Hans-Christian Ingerslev
- Department of Bacteriology Pathology and Parasitology, National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Michael Sturek
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mouhamad Alloosh
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Susanna Cirera
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | | | - Mette Boye
- Department of Bacteriology Pathology and Parasitology, National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
111
|
Orosomucoid expression profiles in liver, adipose tissues and serum of lean and obese domestic pigs, Göttingen minipigs and Ossabaw minipigs. Vet Immunol Immunopathol 2013; 151:325-30. [DOI: 10.1016/j.vetimm.2012.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 11/24/2022]
|
112
|
Nagaraja T, Chen L, Balasubramanian A, Groopman JE, Ghoshal K, Jacob ST, Leask A, Brigstock DR, Anand AR, Ganju RK. Activation of the connective tissue growth factor (CTGF)-transforming growth factor β 1 (TGF-β 1) axis in hepatitis C virus-expressing hepatocytes. PLoS One 2012; 7:e46526. [PMID: 23056332 PMCID: PMC3464290 DOI: 10.1371/journal.pone.0046526] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The pro-fibrogenic cytokine connective tissue growth factor (CTGF) plays an important role in the development and progression of fibrosis in many organ systems, including liver. However, its role in the pathogenesis of hepatitis C virus (HCV)-induced liver fibrosis remains unclear. METHODS In the present study, we assessed CTGF expression in HCV-infected hepatocytes using replicon cells containing full-length HCV genotype 1 and the infectious HCV clone JFH1 (HCV genotype 2) by real-time PCR, Western blot analysis and confocal microscopy. We evaluated transforming growth factor β1 (TGF-β1) as a key upstream mediator of CTGF production using neutralizing antibodies and shRNAs. We also determined the signaling molecules involved in CTGF production using various immunological techniques. RESULTS We demonstrated an enhanced expression of CTGF in two independent models of HCV infection. We also demonstrated that HCV induced CTGF expression in a TGF-β1-dependent manner. Further dissection of the molecular mechanisms revealed that CTGF production was mediated through sequential activation of MAPkinase and Smad-dependent pathways. Finally, to determine whether CTGF regulates fibrosis, we showed that shRNA-mediated knock-down of CTGF resulted in reduced expression of fibrotic markers in HCV replicon cells. CONCLUSION Our studies demonstrate a central role for CTGF expression in HCV-induced liver fibrosis and highlight the potential value of developing CTGF-based anti-fibrotic therapies to counter HCV-induced liver damage.
Collapse
Affiliation(s)
- Tirumuru Nagaraja
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Li Chen
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anuradha Balasubramanian
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jerome E. Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kalpana Ghoshal
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Samson T. Jacob
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrew Leask
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - David R. Brigstock
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Appakkudal R. Anand
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Ramesh K. Ganju
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| |
Collapse
|
113
|
Vincent A, Louveau I, Gondret F, Lebret B, Damon M. Mitochondrial function, fatty acid metabolism, and immune system are relevant features of pig adipose tissue development. Physiol Genomics 2012; 44:1116-24. [PMID: 23012395 DOI: 10.1152/physiolgenomics.00098.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms underlying the genetic control of fat development in humans and livestock species still require characterization. To gain insights on gene expression patterns associated with genetic propensity for adiposity, we compared subcutaneous adipose tissue (SCAT) transcriptomics profiles from two contrasted pig breeds for body fatness. Samples were obtained from Large White (LW; lean phenotype) and Basque pigs (B; low growth and high fat content) at 35 kg (n = 5 per breed) or 145 kg body weight (n = 10 per breed). Using a custom adipose tissue microarray, we found 271 genes to be differentially expressed between the two breeds at both stages, out of which 123 were highly expressed in LW pigs and 148 genes were highly expressed in B pigs. Functional enrichment analysis based on gene ontology (GO) terms highlighted gene groups corresponding to the mitochondrial energy metabolism in LW pigs, whereas immune response was found significantly enriched in B pigs. Genes associated with lipid metabolism, such as ELOVL6, a gene involved in fatty acid elongation, had a lower expression in B compared with LW pigs. Furthermore, despite enlarged adipocyte diameters and higher plasma leptin concentration, B pigs displayed reduced lipogenic enzyme activities compared with LW pigs at 145 kg. Altogether, our results suggest that the development of adiposity was associated with a progressive worsening of the metabolic status, leading to a low-grade inflammatory state, and may thus be of significant interest for both livestock production and human health.
Collapse
Affiliation(s)
- Annie Vincent
- INRA, Unité Mixte de Recherche 1348 Pegase, Saint-Gilles, France
| | | | | | | | | |
Collapse
|
114
|
Rødgaard T, Skovgaard K, Stagsted J, Heegaard PMH. Expression of innate immune response genes in liver and three types of adipose tissue in cloned pigs. Cell Reprogram 2012; 14:407-17. [PMID: 22928970 DOI: 10.1089/cell.2012.0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity.
Collapse
Affiliation(s)
- Tina Rødgaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
115
|
Gonkowski S, Całka J. Changes in pituitary adenylate cyclase-activating Peptide 27-like immunoreactive nervous structures in the porcine descending colon during selected pathological processes. J Mol Neurosci 2012; 48:777-87. [PMID: 22706710 DOI: 10.1007/s12031-012-9838-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 06/11/2012] [Indexed: 01/01/2023]
Abstract
This study reports on changes in the pituitary adenylate cyclase-activating peptide 27-like immunoreactive (PACAP-27-LI) nerve structures of the enteric nervous system (ENS) in the porcine descending colon, caused by chemically induced inflammation, nerve injury, and proliferative enteropathy (PE), which is a "natural" inflammation of the porcine digestive tract. The distribution pattern of PACAP-27-LI structures was studied using the immunofluorescence technique in the circular muscle layer, enteric plexuses (i.e., myenteric plexus (MP), outer submucous plexus (OSP), and inner submucous plexus (ISP)), and in the mucosal layer. Under physiological conditions, PACAP-27-LI perikarya have been shown to constitute 4.04 ± 0.66, 6.66 ± 0.77, and 11.19 ± 0.74 % in the MP, OSP, and ISP, respectively. Changes in PACAP-27 immunoreactivity depended on the pathological factor studied. The numbers of the PACAP-27-LI perikarya amounted to 12.26 ± 1.43, 12.28 ± 0.79, and 21.13 ± 1.19 % in chemically induced colitis, 17.83 ± 0.88, 9.03 ± 1.05, and 20.72 ± 1.35 % during PE and 10.65 ± 0.82, 6.88 ± 1.04, and 14.04 ± 1.09 % after axotomy in MP, OSP, and ISP, respectively. All of the studied processes generally resulted in an increase in the number of PACAP-27-LI nerve fibers in the circular muscle and mucosal layers. The obtained results suggest that PACAP-27-LI nerve structures of ENS may participate in various pathological states within the porcine descending colon, and their functions probably depend on the type of pathological factor.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Division of Clinical Physiology, University of Warmia and Mazury, Oczapowskiego Str. 13, 10957, Olsztyn, Poland.
| | | |
Collapse
|
116
|
Christensen KL, Hedemann MS, Jørgensen H, Stagsted J, Knudsen KEB. Liquid Chromatography–Mass Spectrometry Based Metabolomics Study of Cloned versus Normal Pigs Fed Either Restricted or Ad Libitum High-Energy Diets. J Proteome Res 2012; 11:3573-80. [DOI: 10.1021/pr201253h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Mette S. Hedemann
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830
Tjele, Denmark
| | - Henry Jørgensen
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830
Tjele, Denmark
| | - Jan Stagsted
- Department
of Food Science, Aarhus University, Blichers
Allé 20, DK-8830
Tjele, Denmark
| | - Knud Erik B. Knudsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830
Tjele, Denmark
| |
Collapse
|
117
|
The influence of maternal protein nutrition on offspring development and metabolism: the role of glucocorticoids. Proc Nutr Soc 2011; 71:198-203. [PMID: 22123495 DOI: 10.1017/s0029665111003363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The consequences of sub-optimal nutrition through alterations in the macronutrient content of the maternal diet will not simply be reflected in altered neonatal body composition and increased mortality, but are likely to continue into adulthood and confer greater risk of metabolic disease. One mechanism linking manipulations of the maternal environment to an increased risk of later disease is enhanced fetal exposure to glucocorticoids (GC). Tissue sensitivity to cortisol is regulated, in part, by the GC receptor and 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2. Several studies have shown the effects of maternal undernutrition, particularly low-protein diets, on the programming of GC action in the offspring; however, dietary excess is far more characteristic of the diets consumed by contemporary pregnant women. This study investigated the programming effects of moderate protein supplementation in pigs throughout pregnancy. We have demonstrated an up-regulation of genes involved in GC sensitivity, such as GC receptor and 11β-HSD, in the liver, but have yet to detect any other significant changes in these piglets, with no differences observed in body weight or composition. This increase in GC sensitivity was similar to the programming effects observed following maternal protein restriction or global undernutrition during pregnancy.
Collapse
|
118
|
van der Meulen J, Hulst MM, Smits MA, Schuurman T. Small intestinal segment perfusion test in piglets: future applications in studying probiotics-gut crosstalk in infectious diarrhoea? Benef Microbes 2011; 1:439-45. [PMID: 21831782 DOI: 10.3920/bm2010.0025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Worldwide infectious diarrhoea, mainly caused by rotavirus and enterotoxigenic Escherichia coli (ETEC), accounts for a large part of deaths in children. ETEC is also the main cause of traveller's diarrhoea. Probiotics are promising for prevention and treatment of diarrhoea, but there is insufficient evidence to support the use of any specific probiotic or probiotics in general. Because of the sensitivity of suckling and weaned piglets for ETEC, piglets are a good model for infectious diarrhoea in infants and traveller's diarrhoea. Just as in human the efficacy of probiotics in diminishing diarrhoea and improving growth in suckling and weaned piglets is not uniform. A piglet model of infectious diarrhoea provides access to intestinal compartments that are not easily accessible in infants. In an in situ piglet model of secretory diarrhoea, the functional physiological response to ETEC and the concomitant host genome response to ETEC and probiotics may be tested. This will provide new insights in the complex crosstalk between ETEC, probiotics and the gut in the future.
Collapse
Affiliation(s)
- J van der Meulen
- BioMedical Research of Wageningen UR, P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
119
|
Clausen MR, Christensen KL, Hedemann MS, Liu Y, Purup S, Schmidt M, Callesen H, Stagsted J, Bertram HC. Metabolomic phenotyping of a cloned pig model. BMC PHYSIOLOGY 2011; 11:14. [PMID: 21859467 PMCID: PMC3174869 DOI: 10.1186/1472-6793-11-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/22/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pigs are widely used as models for human physiological changes in intervention studies, because of the close resemblance between human and porcine physiology and the high degree of experimental control when using an animal model. Cloned animals have, in principle, identical genotypes and possibly also phenotypes and this offer an extra level of experimental control which could possibly make them a desirable tool for intervention studies. Therefore, in the present study, we address how phenotype and phenotypic variation is affected by cloning, through comparison of cloned pigs and normal outbred pigs. RESULTS The metabolic phenotype of cloned pigs (n = 5) was for the first time elucidated by nuclear magnetic resonance (NMR)-based metabolomic analysis of multiple bio-fluids including plasma, bile and urine. The metabolic phenotype of the cloned pigs was compared with normal outbred pigs (n = 6) by multivariate data analysis, which revealed differences in the metabolic phenotypes. Plasma lactate was higher for cloned vs control pigs, while multiple metabolites were altered in the bile. However a lower inter-individual variability for cloned pigs compared with control pigs could not be established. CONCLUSIONS From the present study we conclude that cloned and normal outbred pigs are phenotypically different. However, it cannot be concluded that the use of cloned animals will reduce the inter-individual variation in intervention studies, though this is based on a limited number of animals.
Collapse
Affiliation(s)
- Morten R Clausen
- Department of Food Science, Science and Technology, Aarhus University, Aarslev, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Transcriptomic and nuclear architecture of immune cells after LPS activation. Chromosoma 2011; 120:501-20. [DOI: 10.1007/s00412-011-0328-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 01/06/2023]
|
121
|
Koopmans SJ, VanderMeulen J, Wijdenes J, Corbijn H, Dekker R. The existence of an insulin-stimulated glucose and non-essential but not essential amino acid substrate interaction in diabetic pigs. BMC BIOCHEMISTRY 2011; 12:25. [PMID: 21605349 PMCID: PMC3129298 DOI: 10.1186/1471-2091-12-25] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/23/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The generation of energy from glucose is impaired in diabetes and can be compensated by other substrates like fatty acids (Randle cycle). Little information is available on amino acids (AA) as alternative energy-source in diabetes. To study the interaction between insulin-stimulated glucose and AA utilization in normal and diabetic subjects, intraportal hyperinsulinaemic euglycaemic euaminoacidaemic clamp studies were performed in normal (n=8) and streptozotocin (120 mg/kg) induced diabetic (n=7) pigs of ~40-45 kg. RESULTS Diabetic vs normal pigs showed basal hyperglycaemia (19.0±2.0 vs 4.7±0.1 mmol/L, P<.001) and at the level of individual AA, basal concentrations of valine and histidine were increased (P<.05) whereas tyrosine, alanine, asparagine, glutamine, glutamate, glycine and serine were decreased (P<.05). During the clamp, diabetic vs normal pigs showed reduced insulin-stimulated glucose clearance (4.4±1.6 vs 16.0±3.0 mL/kg·min, P<.001) but increased AA clearance (166±22 vs 110±13 mL/kg· min, P<.05) at matched arterial euglycaemia (5-7 mmol/L) and euaminoacidaemia (2.8-3.5 mmol/L). The increase in AA clearance was mainly caused by an increase in non-essential AA clearance (93.6±13.8 vs 46.6±5.4 mL/kg·min, P<.01), in particular alanine (14.2±2.4 vs 3.2±0.4 mL/kg·min, P<.001). Essential AA clearance was largely unchanged (72.9±8.5 vs 63.3±8.5 mL/kg· min), however clearances of threonine (P<.05) and tyrosine (P<.01) were increased in diabetic vs normal pigs (8.1±1.3 vs 5.2±0.5, and 14.3±2.5 vs 6.4±0.7 mL/kg· min, respectively). CONCLUSIONS The ratio of insulin-stimulated glucose versus AA clearance was decreased 5.4-fold in diabetic pigs, which was caused by a 3.6-fold decrease in glucose clearance and a 2.0-fold increase in non-essential AA clearance. In parallel with the Randle concept (glucose-fatty acid cycle), the present data suggest the existence of a glucose and non-essential AA substrate interaction in diabetic pigs whereby reduced insulin-stimulated glucose clearance seems to be partly compensated by an increase in non-essential AA clearance whereas essential AA are preferentially spared from an increase in clearance.
Collapse
Affiliation(s)
- Sietse J Koopmans
- BioMedical Research of Wageningen University and Research Center, Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
122
|
He Q, Ren P, Kong X, Wu Y, Wu G, Li P, Hao F, Tang H, Blachier F, Yin Y. Comparison of serum metabolite compositions between obese and lean growing pigs using an NMR-based metabonomic approach. J Nutr Biochem 2011; 23:133-9. [PMID: 21429726 DOI: 10.1016/j.jnutbio.2010.11.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 11/06/2010] [Accepted: 11/09/2010] [Indexed: 02/02/2023]
Abstract
Childhood obesity has become a prevalent risk to health of children and teenagers. To develop biomarkers in serum for altered lipid metabolism, genetically obese (Ningxiang strain) and lean (Duroc×Landrace×Large Yorkshire strain) growing pigs were used as models to identify potential differences in the serum metabonome between the two strains of pigs after consuming the same diet for 46 days. At the end of the study, pigs were euthanized for analysis of the serum metabonome and determination of body composition. Obese pigs had higher fat mass (42.3±8.8% vs. 21.9±4.5%) and lower muscle mass (35.4±4.5% vs. 58.9±2.5%) than lean pigs (P<.01). Serum concentrations of insulin and glucagon were higher (P<.02) in obese than in lean pigs. With the use of an NMR-based metabonomic technology, orthogonal projection to latent structure with discriminant analysis showed that serum HDL, VLDL, lipids, unsaturated lipids, glycoprotein, myo-inositol, pyruvate, threonine, tyrosine and creatine were higher in obese than in lean pigs (P<.05), while serum glucose and urea were lower in obese pigs (P<.05). In addition, changes in gut microbiota-related metabolites, including trimethylamine-N-oxide and choline, were observed in sera of obese pigs relatively to lean pigs (P<.05). These novel findings indicate that obese pigs have distinct metabolism, including lipogenesis, lipid oxidation, energy utilization and partition, protein and amino acid metabolism, and fermentation of gastrointestinal microbes, compared with lean pigs. The obese Ningxiang pig may be a useful model for childhood obesity research.
Collapse
Affiliation(s)
- Qinghua He
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, 410125 Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Sarr O, Gondret F, Jamin A, Le Huërou-Luron I, Louveau I. A high-protein neonatal formula induces a temporary reduction of adiposity and changes later adipocyte physiology. Am J Physiol Regul Integr Comp Physiol 2011; 300:R387-97. [DOI: 10.1152/ajpregu.00459.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The high-protein content of formula offered to low-birth weight babies is suspected to increase the risk of obesity later in life. This study assesses the immediate and subsequent effects of a protein intake in excess during suckling on hormonal and metabolic status and adipose tissue features in a porcine model of intrauterine growth restriction. Piglets were fed milk replacers formulated to provide an adequate (AP) or a high (HP) protein supply from day 2 to day 28. A subset of piglets was killed at day 28. After weaning, the remaining piglets had free access to the same solid high-fat diet until day 160. From day 2 to day 28, HP piglets had a greater daily weight gain ( P < 0.05). Relative weight of perirenal adipose tissue (PAT), adipocyte mean diameters, activities of lipogenic enzymes in PAT and subcutaneous adipose tissue (SCAT), and leptinemia were lower ( P < 0.05) in HP piglets than in AP piglets. Genes related to glucose utilization and lipid anabolism in PAT and SCAT were ( P < 0.05) or tended ( P < 0.1) to be downregulated in HP piglets. At day 160, adipocytes were enlarged, whereas lipogenic rates in adipocytes were reduced ( P < 0.05) in SCAT of HP compared with AP pigs. Percent body fat, mRNA levels of genes controlling lipid metabolism, and plasma concentrations of hormones and metabolites were similar in HP and AP pigs. In conclusion, a HP neonatal formula induced a temporary reduction of adiposity and changed adipocyte physiology at peripubertal age.
Collapse
Affiliation(s)
- Ousseynou Sarr
- Institut National de la Recherche Agronomique, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Saint-Gilles, France; and
- Agrocampus Ouest, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Rennes, France
| | - Florence Gondret
- Institut National de la Recherche Agronomique, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Saint-Gilles, France; and
- Agrocampus Ouest, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Rennes, France
| | - Agnès Jamin
- Institut National de la Recherche Agronomique, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Saint-Gilles, France; and
- Agrocampus Ouest, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Rennes, France
| | - Isabelle Le Huërou-Luron
- Institut National de la Recherche Agronomique, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Saint-Gilles, France; and
- Agrocampus Ouest, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Rennes, France
| | - Isabelle Louveau
- Institut National de la Recherche Agronomique, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Saint-Gilles, France; and
- Agrocampus Ouest, UMR 1079 Systèmes d'Elevage Nutrition Animale et Humaine, Rennes, France
| |
Collapse
|
124
|
Growth, body composition and hormonal status of growing pigs exhibiting a normal or small weight at birth and exposed to a neonatal diet enriched in proteins. Br J Nutr 2011; 105:1471-9. [DOI: 10.1017/s0007114510005386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small birth weight and excess of early protein intake are suspected to enhance later obesity risk. The present study was undertaken to determine the impact of neonatal diets differing in protein content on growth, body composition and hormonal status of 70-d-old pigs born with normal weight (NW) or small weight (SW). At 7 d of age, male and female suckled piglets were assigned to the NW (approximately 1·4 kg at birth) or SW (approximately 0·99 kg at birth) groups. They were fed milk replacers formulated to provide an adequate protein (AP) or a high protein (HP) supply for 3 weeks. From weaning to 70 d of age, all animals received ad libitum the same standard diet. Growth rates were higher (P < 0·05) in HP piglets than in AP piglets during formula feeding and remained higher (P < 0·05) only in HP male pigs thereafter. No difference in feed consumption was detected between groups during the periods examined. Carcass lipid content and the relative weight of perirenal adipose tissue did not differ between the AP and HP pigs. Whereas plasma leptin concentration was higher (P < 0·05) in HP pigs than in AP pigs with a marked difference in SW pigs, plasma insulin-like growth factor (IGF)-I concentration and expression of IGF system genes were not affected by the diets. In summary, a HP intake during the suckling period induced an increase in growth rate that persisted only in male pigs during the post-weaning period. This response was not associated with any difference in adiposity parameters in this period.
Collapse
|