101
|
Wang B, Queenan BN, Wang S, Nilsson KPR, Bazan GC. Precisely Defined Conjugated Oligoelectrolytes for Biosensing and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806701. [PMID: 30698856 DOI: 10.1002/adma.201806701] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Conjugated oligoelectrolytes (COEs) are a relatively new class of synthetic organic molecules with, as of yet, untapped potential for use in organic optoelectronic devices and bioelectronic systems. COEs also offer a novel molecular approach to biosensing, bioimaging, and disease therapy. Substantial progress has been made in the past decade at the intersection of chemistry, materials science, and the biological sciences developing COEs and their polymer analogues, namely, conjugated polyelectrolytes (CPEs), into synthetic systems with biological and biomedical utility. CPEs have traditionally attracted more attention in arenas of sensing, imaging, and therapy. However, the precisely defined molecular structures and interactions of COEs offer potential key advantages over CPEs, including higher reliability and fluorescence quantum efficiency, larger diversity of subcellular targeting strategies, and improved selectivity to biomolecules. Here, the unique-and sometimes overlooked-properties of COEs are discussed and the noticeable progress in their use for biological sensing, imaging, and therapy is reviewed.
Collapse
Affiliation(s)
- Bing Wang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Bridget N Queenan
- Department of Mechanical Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - K Peter R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE, -581 83, Sweden
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
102
|
Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane. NANOMATERIALS 2019; 9:nano9040563. [PMID: 30959952 PMCID: PMC6523719 DOI: 10.3390/nano9040563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 11/20/2022]
Abstract
An opto-thermally excited optical fiber Fabry-Perot (F-P) resonant probe with suspended clamped circular graphene diaphragm is presented in this paper. Then, the dependence of resonance frequency behaviors of graphene diaphragm upon opto-mechanical factors including membrane properties, laser excitation parameters and film boundary conditions are investigated via COMSOL Multiphysics simulation. The results show that the radius and thickness of membrane will linearly affect the optical fiber light-induced temperature distribution, thus resulting in rapidly decreasing resonance frequency changes with the radius-to-thickness ratio. Moreover, the prestress can be regulated in the range of 108 Pa to 109 Pa by altering the environmental temperature with a scale factor of 14.2 MPa/K. It is important to note that the availability of F-P resonant probe with a defective clamped circular graphene membrane can be improved notably by fabricating the defected circular membrane to a double-end clamped beam, which gives a broader perspective to characterize the resonance performance of opto-thermally excited F-P resonators.
Collapse
|
103
|
Ultrasensitive DNA biosensor based on electrochemical atom transfer radical polymerization. Biosens Bioelectron 2019; 131:193-199. [DOI: 10.1016/j.bios.2018.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/31/2018] [Accepted: 11/18/2018] [Indexed: 02/04/2023]
|
104
|
Smirnova TD, Shtykov SN, Zhelobitskaya EA. Energy transfer in liquid and solid nanoobjects: application in luminescent analysis. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-9981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Radiationless resonance electronic excitation energy transfer (ET) is a fundamental physical phenomenon in luminescence spectroscopy playing an important role in natural processes, especially in photosynthesis and biochemistry. Besides, it is widely used in photooptics, optoelectronics, and protein chemistry, coordination chemistry of transition metals and lanthanides as well as in luminescent analysis. ET involves the transfer of electronic energy from a donor (D) (molecules or particles) which is initially excited, to an acceptor (A) at the ground state to emit it later. Fluorescence or phosphorescence of the acceptor that occurs during ET is known as sensitized. There do many kinds of ET exist but in all cases along with other factors the rate and efficiency of ET in common solvents depends to a large extent on the distance between the donor and the acceptor. This dependency greatly limits the efficiency of ET and, correspondingly, does not allow the determination of analytes in highly diluted (10–9–10–15 M) solutions. To solve the problem of distance-effect, the effects of concentrating and bring close together the donor and acceptor in surfactant micelles (liquid nanosystems) or sorption on solid nanoparticles are used. Various approaches to promote the efficiency of ET for improvement determination selectivity and sensitivity using liquid and solid nanoobjects is reviewed and analyzed.
Collapse
|
105
|
Chen T, He B, Tao J, He Y, Deng H, Wang X, Zheng Y. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Adv Drug Deliv Rev 2019; 143:177-205. [PMID: 31201837 DOI: 10.1016/j.addr.2019.04.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
Extensive studies on nanomedicines have been conducted for drug delivery and disease diagnosis (especially for cancer therapy). However, the intracellular and in vivo biofate of nanomedicines, which is significantly associated with their clinical therapeutic effect, is poorly understood at present. This is because of the technical challenges to quantify the disassembly and behaviour of nanomedicines. As a fluorescence- and distance-based approach, the Förster Resonance Energy Transfer (FRET) technique is very successful to study the interaction of nanomedicines with biological systems. In this review, principles on how to select a FRET pair and construct FRET-based nanomedicines have been described first, followed by their application to study structural integrity, biodistribution, disassembly kinetics, and elimination of nanomedicines at intracellular and in vivo levels, especially with drug nanocarriers including polymeric micelles, polymeric nanoparticles, and lipid-based nanoparticles. FRET is a powerful tool to reveal changes and interaction of nanoparticles after delivery, which will be very useful to guide future developments of nanomedicine.
Collapse
Affiliation(s)
- Tongkai Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jingsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuan He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
106
|
Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev 2019; 48:1390-1419. [PMID: 30707214 DOI: 10.1039/c8cs00880a] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleic acid aptamers are single stranded DNA or RNA sequences that specifically bind a cognate ligand. In addition to their widespread use as stand-alone affinity binding reagents in analytical chemistry, aptamers have been engineered into a variety of ligand-specific biosensors, termed aptasensors. One of the most common aptasensor formats is the duplexed aptamer (DA). As defined herein, DAs are aptasensors containing two nucleic acid elements coupled via Watson-Crick base pairing: (i) an aptamer sequence, which serves as a ligand-specific receptor, and (ii) an aptamer-complementary element (ACE), such as a short DNA oligonucleotide, which is designed to hybridize to the aptamer. The ACE competes with ligand binding, such that DAs generate a signal upon ligand-dependent ACE-aptamer dehybridization. DAs possess intrinsic advantages over other aptasensor designs. For example, DA biosensing designs generalize across DNA and RNA aptamers, DAs are compatible with many readout methods, and DAs are inherently tunable on the basis of nucleic acid hybridization. However, despite their utility and popularity, DAs have not been well defined in the literature, leading to confusion over the differences between DAs and other aptasensor formats. In this review, we introduce a framework for DAs based on ACEs, and use this framework to distinguish DAs from other aptasensor formats and to categorize cis- and trans-DA designs. We then explore the ligand binding dynamics and chemical properties that underpin DA systems, which fall under conformational selection and induced fit models, and which mirror classical SN1 and SN2 models of nucleophilic substitution reactions. We further review a variety of in vitro and in vivo applications of DAs in the chemical and biological sciences, including riboswitches and riboregulators. Finally, we present future directions of DAs as ligand-responsive nucleic acids. Owing to their tractability, versatility and ease of engineering, DA biosensors bear a great potential for the development of new applications and technologies in fields ranging from analytical chemistry and mechanistic modeling to medicine and synthetic biology.
Collapse
Affiliation(s)
- Jeffrey D Munzar
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
107
|
A FRET assay for the quantitation of inhibitors of exonuclease EcoRV by using parchment paper inkjet-printed with graphene oxide and FAM-labelled DNA. Mikrochim Acta 2019; 186:211. [DOI: 10.1007/s00604-019-3317-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
|
108
|
Hanif A, Farooq R, Rehman MU, Khan R, Majid S, Ganaie MA. Aptamer based nanobiosensors: Promising healthcare devices. Saudi Pharm J 2019; 27:312-319. [PMID: 30976173 PMCID: PMC6438676 DOI: 10.1016/j.jsps.2018.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Nanobiosensors based on aptamer are extensively being studied as potent analytical tools in clinical analysis. These biosensors provide high sensitivity, fast response, specificity and desired portability in addition to simplicity and decreased cost compared to conventional methods. The purpose of this manuscript is to provide readers with an overview of current advances about electrochemical, electrochemiluminescent and photoelectrochemical aptasensors from the sea of available literature. These are mainly used for determination of protein-based biomarkers, especially for cancer diagnosis. Here in we have given special emphasis on nanosize-based aptasensors which have been reported to show considerable improvement in the analytical performance.
Collapse
Affiliation(s)
- Aamir Hanif
- City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Rabia Farooq
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Muneeb U. Rehman
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Rehan Khan
- Nanotherapeutics, Institute of Nanoscience & Technology (DST-INST), Habitat Centre Phase 10, Mohali, Punjab, India
| | - Sabhiya Majid
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
109
|
Functionalized nanographene oxide in biomedicine applications: bioinspired surface modifications, multidrug shielding, and site-specific trafficking. Drug Discov Today 2019; 24:749-762. [DOI: 10.1016/j.drudis.2019.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/16/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
|
110
|
An aptamer-based four-color fluorometic method for simultaneous determination and imaging of alpha-fetoprotein, vascular endothelial growth factor-165, carcinoembryonic antigen and human epidermal growth factor receptor 2 in living cells. Mikrochim Acta 2019; 186:204. [PMID: 30796534 DOI: 10.1007/s00604-019-3312-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
The extraordinary fluorescence quenching capability of graphene oxide (GO) was coupled to the specific recognition capability of aptamers to design a four-color fluorescent nanoprobe for multiplexed detection and imaging of tumor-associated proteins in living cells. Specifically, alpha-fetoprotein (AFP), vascular endothelial growth factor-165 (VEGF165), carcinoembryonic antigen (CEA), and human epidermal growth factor receptor 2 (HER2) were detected. Due to strong π interaction, the fluorescence of labeled aptamers is quenched by GO. Four fluorophore-labeled aptamers that bind the tumor-associated proteins were adsorbed on GO to form the four-color nanoprobe with quenched fluorescence. The nanoprobes were internalized into cells via endocytosis, where the aptamer/GO nanoprobes bind the intracellular tumor-associated proteins. The aptamer-protein complexes thus formed detach from GO, and fluorescence recovers. Each analyte has its typical color (AFP: blue; VEGF165: green; CEA: yellow; HER2: red). As a result, simultaneous detection and imaging of multiple tumor-associated proteins in living cells were achieved. This nanoprobe has a fast response and is highly specific and biocompatible. The linear ranges for AFP, VEGF165, CEA, and HER2 are 0.8 nM-160 nM, 0.5 nM-100 nM, 1.0 nM-200 nM, and 1.2 nM-240 nM, respectively. Detection limits were 0.45 nM for AFP, 0.30 nM for VEGF165, 0.62 nM for CEA, and 0.96 nM for HER2. The probe allows for a fast distinction between tumor cells and normal cells via imaging. Graphical abstract Schematic presentation of the development of a four-color fluorometic method based on aptamer and graphene oxide for simultaneous detection and imaging of alpha-fetoprotein, vascular endothelial growth factor-165, carcinoembryonic antigen and human epidermal growth factor receptor 2 in living cells.
Collapse
|
111
|
Zong H, Wang X, Mu X, Wang J, Sun M. Plasmon-Enhanced Fluorescence Resonance Energy Transfer. CHEM REC 2019; 19:818-842. [PMID: 30716206 DOI: 10.1002/tcr.201800181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/07/2019] [Indexed: 11/12/2022]
Abstract
In this review, we firstly introduce physical mechanism of fluorescence resonance energy transfer (FRET), the methods to measure FRET efficiency, and the applications of FRET. Secondly, we introduce the principle and applications of plasmon-enhanced fluorescence (PEF). Thirdly, we focused on the principle and applications of plasmon-enhanced FRET. This review can promote further understanding of FRET and PE-FRET.
Collapse
Affiliation(s)
- Huan Zong
- Computational Center for Property and Modification on Nanomaterials, College of Science, Liaoning Shihua University, Fushun, 113001, People's Republic of China.,School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xinxin Wang
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xijiao Mu
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Jingang Wang
- Computational Center for Property and Modification on Nanomaterials, College of Science, Liaoning Shihua University, Fushun, 113001, People's Republic of China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| |
Collapse
|
112
|
Han J, Wu J, Du J. Fluorescent DNA Biosensor for Single-Base Mismatch Detection Assisted by Cationic Comb-Type Copolymer. Molecules 2019; 24:E575. [PMID: 30764576 PMCID: PMC6384784 DOI: 10.3390/molecules24030575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 11/16/2022] Open
Abstract
Simple and rapid detection of DNA single base mismatch or point mutation is of great significance for the diagnosis, treatment, and detection of single nucleotide polymorphism (SNP) in genetic diseases. Homogeneous mutation assays with fast hybridization kinetics and amplified discrimination signals facilitate the automatic detection. Herein we report a quick and cost-effective assay for SNP analysis with a fluorescent single-labeled DNA probe. This convenient strategy is based on the efficient quenching effect and the preferential binding of graphene oxide (GO) to ssDNA over dsDNA. Further, a cationic comb-type copolymer (CCC), poly(l-lysine)-graft-dextran (PLL-g-Dex), significantly accelerates DNA hybridization and strand-exchange reaction, amplifying the effective distinction of the kinetic barrier between a perfect matched DNA and a mismatched DNA. Moreover, in vitro experiments indicate that RAW 264.7 cells cultured on PLL-g-Dex exhibits excellent survival and proliferation ability, which makes this mismatch detection strategy highly sensitive and practical.
Collapse
Affiliation(s)
- Jialun Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of materials and chemical engineering, Hainan University, Haikou 570228, China.
| | - Jincai Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of materials and chemical engineering, Hainan University, Haikou 570228, China.
| | - Jie Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of materials and chemical engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
113
|
Zhang J, Chen L, Chen J, Zhang Q, Feng J. Stability, Cellular Uptake, and in Vivo Tracking of Zwitterion Modified Graphene Oxide as a Drug Carrier. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1495-1502. [PMID: 30089359 DOI: 10.1021/acs.langmuir.8b01995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a novel kind of zwitterion modified graphene oxide (GO) for promoting stability and reducing aggregation of GO as a drug carrier was proposed and demonstrated. Specifically, the GO was functionalized with a kind of zwitterion based silane, 3-(dimethyl(3-(trimethoxysilyl)propyl)-ammonio)propane-1-sulfonate (SBS). After zwitterion modification, the SBS functionalized GO (GO-SB) shows significantly enhanced stability in both serum-free and serum-containing solution, especially after loading doxorubicin hydrochloride (DOX). According to drug release profiles, the drug-loaded GO-SB exhibits thermosensitive and sustained release behavior. Meanwhile, in vitro studies show that the DOX loaded GO-SB could be easily internalized by HepG2 cells and exhibit obvious cytotoxicity on the cells. And, in vivo studies demonstrate that the GO-SB drug carrier is capable of being taken by the larvae of zebrafish and can be eliminated from the body within several days.
Collapse
|
114
|
|
115
|
Campbell E, Hasan MT, Pho C, Callaghan K, Akkaraju GR, Naumov AV. Graphene Oxide as a Multifunctional Platform for Intracellular Delivery, Imaging, and Cancer Sensing. Sci Rep 2019; 9:416. [PMID: 30674914 PMCID: PMC6344482 DOI: 10.1038/s41598-018-36617-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023] Open
Abstract
Graphene oxide (GO), the most common derivative of graphene, is an exceptional nanomaterial that possesses multiple physical properties critical for biomedical applications. GO exhibits pH-dependent fluorescence emission in the visible/near-infrared, providing a possibility of molecular imaging and pH-sensing. It is also water soluble and has a substantial platform for functionalization, allowing for the delivery of multiple therapeutics. GO physical properties are modified to enhance cellular internalization, producing fluorescent nanoflakes with low (<15%) cytotoxicity at the imaging concentrations of 15 μg/mL. As a result, at lower flake sizes GO rapidly internalizes into HeLa cells with the following 70% fluorescence based clearance at 24 h, assessed by its characteristic emission in red/near-IR. pH-dependence of GO emission is utilized to provide the sensing of acidic extracellular environments of cancer cells. The results demonstrate diminishing green/red (550/630 nm) fluorescence intensity ratios for HeLa and MCF-7 cancer cells in comparison to HEK-293 healthy cells suggesting a potential use of GO as a non-invasive optical sensor for cancer microenvironments. The results of this work demonstrate the potential of GO as a novel multifunctional platform for therapeutic delivery, biological imaging and cancer sensing.
Collapse
Affiliation(s)
- E Campbell
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Md Tanvir Hasan
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Christine Pho
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, 76129, USA
| | - K Callaghan
- Department of Biology, Texas Christian University, Fort Worth, TX, 76129, USA
| | - G R Akkaraju
- Department of Biology, Texas Christian University, Fort Worth, TX, 76129, USA
| | - A V Naumov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, 76129, USA.
| |
Collapse
|
116
|
Xiong Y, Liang M, Cheng Y, Zou J, Li Y. An "off-on" phosphorescent aptasensor for the detection of thrombin based on PRET. Analyst 2019; 144:161-171. [PMID: 30371694 DOI: 10.1039/c8an01571f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thrombin plays an important role in the blood coagulation cascade and it stimulates the process of platelet aggregation. Herein, we developed a highly efficient and sensitive phosphorescent aptasensor system for the quantitative analysis of thrombin. The phosphorescence of 3-mercaptopropionic acid capped Mn-doped ZnS quantum dots (MPA-Mn:ZnS QDs) was gradually quenched with the addition of thrombin binding aptamers-BHQ2 (TBA-BHQ2) based on phosphorescence resonance energy transfer (PRET). With the addition of the target analyte thrombin into the system, TBA-BHQ2 could change its spatial structure from a random coil to an antiparallel G-quadruplex which resulted from the combination of thrombin and TBA-BHQ2, leading to the phosphorescence recovery. Finally, the concentration of thrombin could be accurately determined by means of measuring the phosphorescence intensity change value (ΔP). The limit of detection (LOD) was obtained as low as 15.26 pM with wide linear ranges both from 60 to 2000 pM and from 2 to 900 nM. The proposed strategy was also successfully applied for thrombin detection in human serum samples and plasma samples with satisfactory recoveries from 96% to 99% and 95% to 104%, respectively. The long lifetime of phosphorescent QDs possessed a suitable time delay to eliminate autofluorescence and scattered light interference from biological matrices effectively. Thus, the signal to noise ratio of the phosphorescent aptasensor was improved visibly for the analysis of target analytes.
Collapse
Affiliation(s)
- Yan Xiong
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P.R. China.
| | - Meiyu Liang
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P.R. China.
| | - Yue Cheng
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P.R. China.
| | - Jiarui Zou
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P.R. China.
| | - Yan Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P.R. China.
| |
Collapse
|
117
|
Wang L, Wu A, Wei G. Graphene-based aptasensors: from molecule-interface interactions to sensor design and biomedical diagnostics. Analyst 2019. [PMID: 29528071 DOI: 10.1039/c8an00081f] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graphene-based nanomaterials have been widely utilized to fabricate various biosensors for environmental monitoring, food safety, and biomedical diagnostics. The combination of aptamers with graphene for creating biofunctional nanocomposites improved the sensitivity and selectivity of fabricated biosensors due to the unique molecular recognition and biocompatibility of aptamers. In this review, we highlight recent advances in the design, fabrication, and biomedical sensing application of graphene-based aptasensors within the last five years (2013-current). The typical studies on the biomedical fluorescence, colorimetric, electrochemical, electrochemiluminescence, photoelectrochemical, electronic, and force-based sensing of DNA, proteins, enzymes, small molecules, ions, and others are demonstrated and discussed in detail. More attention is paid to a few key points such as the conjugation of aptamers with graphene materials, the fabrication strategies of sensor architectures, and the importance of aptamers on improving the sensing performances. It is expected that this work will provide preliminary and useful guidance for readers to understand the fabrication of graphene-based biosensors and the corresponding sensing mechanisms in one way, and in another way will be helpful to develop novel high performance aptasensors for biological analysis and detection.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, P. R. China.
| | | | | |
Collapse
|
118
|
Akhila AK, Renuka NK. Coumarin–graphene turn-on fluorescent probe for femtomolar level detection of copper(ii). NEW J CHEM 2019. [DOI: 10.1039/c8nj04732d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel coumarin–graphene moiety was suggested as an excellent optical sensor for Cu2+ ions.
Collapse
Affiliation(s)
- A. K. Akhila
- Department of Chemistry
- University of Calicut
- India
| | - N. K. Renuka
- Department of Chemistry
- University of Calicut
- India
| |
Collapse
|
119
|
Liu C, Hu YL, Deng WJ, Pan QS, Yi JT, Chen TT, Chu X. A graphene oxide nanosensor enables the co-delivery of aptamer and peptide probes for fluorescence imaging of a cascade reaction in apoptotic signaling. Analyst 2018; 143:208-214. [PMID: 29188239 DOI: 10.1039/c7an01515a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochrome c (Cyt c) and caspase-3 are the key mediators in apoptotic signaling. As is known to all, the release of Cyt c from mitochondria is a vital caspase activation pathway and defines the point of no-return in cell apoptosis. However, it has not been reported that any fluorescence imaging tools could allow simultaneous visualization of Cyt c translocation and caspase-3 activation in apoptotic cells. Here, we develop a sensitive nanosensor that holds the capability of imaging of the released Cyt c from the mitochondria and a caspase-3 activation cascade reaction in apoptotic signaling. The nanosensor is constructed by the assembly of a fluorophore (Cy5)-tagged DNA aptamer on graphene nanosheets that have been covalently immobilized with a FAM-labeled peptide. After a spatially selective delivery into the cytoplasm, the Cy5-tagged DNA aptamer assembled on the nanosensor can bind with Cyt c released from the mitochondria to the cytoplasm and dissociate from graphene, triggering a red fluorescence signal. In addition, the caspase-3 activated by the Cyt c released to the cytoplasm can cleave the FAM-labeled peptide and result in a green fluorescence output. The nanosensor exhibits rapid response, high sensitivity and selectivity for in vitro assays, and high contrast imaging of Cyt c and caspase-3 in living cells. It also provides the method for the study of the kinetic relationship between the Cyt c translocation and caspase-3 activation through simultaneous imaging of Cyt c and caspase-3. The developed nanosensor described here will be an efficient and potential platform for apoptosis research.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
120
|
A split aptamer-labeled ratiometric fluorescent biosensor for specific detection of adenosine in human urine. Mikrochim Acta 2018; 186:43. [PMID: 30569231 DOI: 10.1007/s00604-018-3162-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
A dual-emission ratiometric fluorometric aptasensor is presented for highly specific detection of adenosine. An adenosine binding aptamer (ABA) was split into two halves (termed as ABA1 and ABA2). ABA1 was covalently bound to blue-emitting carbon dots (with excitation/emission maxima at 365/440 nm) as responsive fluorophore (referred to as ABA1-CDs). ABA2 was linked to red-emitting silica-coated CdTe quantum dots (with excitation/emission maxima at 365/613 nm) acting as internal reference and referred to as ABA2-QDs@SiO2. Upon addition of graphene oxide, the fluorescence of ABA1-CDs is quenched. After subsequent addition of ABA2-QDs@SiO2 and different amounts of adenosine, the blue fluorescence is recovered and causes a color change from red to royal blue. The method represents a ratiometric turn-on assay for visual, colorimetric and fluorometric determination of adenosine. The limit of detection is as low as 2.4 nM in case of ratiometric fluorometry. The method was successfully applied to the determination of adenosine in (spiked) human urine. Recoveries range from 98.8% to 102%. Graphical abstract Adenosine binding aptamer1-carbon dots (ABA1-CDs) can absorb on graphene oxide (GO) via π stacking. This causes fluorescence to be quenched by fluorescence resonance energy transfer (FRET). After addition of ABA2-silica-coated quantum dots (ABA2-QDs@SiO2) and adenosine, binding of adenosine to two pieces of aptamers forms a complex (ABA1-CD/adenosine/ABA2-QD@SiO2) which dissociates from GO. As a result, fluorescence is recovered.
Collapse
|
121
|
Urbanová V, Jayaramulu K, Schneemann A, Kment Š, Fischer RA, Zbořil R. Hierarchical Porous Fluorinated Graphene Oxide@Metal-Organic Gel Composite: Label-Free Electrochemical Aptasensor for Selective Detection of Thrombin. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41089-41097. [PMID: 30412371 DOI: 10.1021/acsami.8b14344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Current research effort aims at developing and designing new sensing platform architectures for effectively assaying biological targets that are significantly important for human healthcare and medical diagnosis. Here, we proposed a novel nanostructured sensor based on the combination of fluorinated graphene oxide and iron-based metal-organic gel (FGO@Fe-MOG). The unique properties including hierarchical porosity along with excellent electron transfer behavior make it an ideal candidate for electrochemical sensing of thrombin with superior detection limits compared to other (electrochemical, fluorescence, and colorimetric) strategies. Specifically, thrombin-binding aptamer was immobilized onto FGO@Fe-MOG through strong electrostatic interaction without any special modification or labeling, and the electrochemical impedance spectroscopy was used as the analyzing tool. The introduced aptasensor revealed high selectivity and reproducibility toward thrombin with the detection limit of 58 pM. The effectiveness, reliability, and real applicability of the proposed FGO@Fe-MOG nanohybrid were also confirmed by the determination of thrombin in a complex biological matrix represented by human serum. Taking into account the superior detection limit, high selectivity, reproducibility, and precision, the developed scalable and label-free aptasensor meets the essential requirements for clinical diagnosis of thrombin.
Collapse
Affiliation(s)
- Veronika Urbanová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
| | - Kolleboyina Jayaramulu
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
- Department of Chemistry and Catalysis Research Centre , Technical University of Munich , Ernst-Otto-Fischer-Straße 1 , 85748 Garching , Germany
| | - Andreas Schneemann
- Department of Chemistry and Catalysis Research Centre , Technical University of Munich , Ernst-Otto-Fischer-Straße 1 , 85748 Garching , Germany
| | - Štěpán Kment
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
| | - Roland A Fischer
- Department of Chemistry and Catalysis Research Centre , Technical University of Munich , Ernst-Otto-Fischer-Straße 1 , 85748 Garching , Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
| |
Collapse
|
122
|
Tikum A, Ko JW, Kim S, Kim J. Reduced Graphene Oxide-Oligonucleotide Interfaces: Understanding Based on Electrochemical Oxidation of Guanines. ACS OMEGA 2018; 3:15464-15470. [PMID: 31458202 PMCID: PMC6643540 DOI: 10.1021/acsomega.8b02063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/23/2018] [Indexed: 06/10/2023]
Abstract
Investigation into the interactions between biomolecules DNA/RNA and carbon nanomaterials is very important for applications in bioassays and bioanalysis. Graphene and graphene oxide (GO) have been successfully adopted by exploiting the binding affinity difference between single-stranded oligonucleotides (ssDNA) and double-stranded oligonucleotides (dsDNA) to graphene sheets. In this work, we describe the electrochemical DNA oxidation with [Ru(bpy)3]2+ to understand the interaction between dsDNA (and corresponding ssDNA) and reduced graphene oxide (rGO). The electrochemical oxidation rate of guanine bases of ssDNA bound to rGO by electrochemically generated [Ru(bpy)3]3+ was much slower than those unbound to rGO. Our study revealed that ssDNA constrained on rGO was significantly protected from the electron transfer to [Ru(bpy)3]3+ because of π,π-stacking interaction between nucleobases and rGO. On the other hand, the oxidation rates of 11-, 20-, and 27-mer dsDNA bound to rGO increased relative to those of dsDNA alone, demonstrating that the guanine bases of dsDNA on the interaction with rGO became more accessible to [Ru(bpy)3]3+. Our electrochemical data illustrated that dsDNA could be totally or partially dehybridized and bind to rGO to form ssDNA/rGO. Furthermore, absorption, circular dichroism spectra, and fluorescence measurements of ethidium bromide using ssDNA and dsDNA with rGO supported the dehybridization of dsDNA in the presence of rGO.
Collapse
Affiliation(s)
| | | | | | - Jinheung Kim
- E-mail: . Tel: +82-2-3277-4453. Fax: +82-2-3277-3419
| |
Collapse
|
123
|
Quenched Stochastic Optical Reconstruction Microscopy (qSTORM) with Graphene Oxide. Sci Rep 2018; 8:16928. [PMID: 30446745 PMCID: PMC6240082 DOI: 10.1038/s41598-018-35297-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/22/2018] [Indexed: 01/20/2023] Open
Abstract
Quenched Stochastic Optical Reconstruction Microscopy (qSTORM) was demonstrated with graphene oxide sheets, peptides and bacteria; a method of contrast enhancement with super-resolution fluorescence microscopy. Individual sheets of graphene oxide (GO) were imaged with a resolution of 16 nm using the quenching of fluorescence emission by GO via its large Resonant Energy Transfer (RET) efficiency. The method was then extended to image self-assembled peptide aggregates (resolution 19 nm) and live bacterial cells (resolution 55 nm, the capsular structure of E. coli from urinary tract infections) with extremely low backgrounds and high contrasts (between one and two orders of magnitude contrast factor improvements that depended on the thickness of the graphene oxide layer used). Graphene oxide films combined with STORM imaging thus provide an extremely convenient method to image samples with large backgrounds due to non-specifically bound fluorophores (either due to excess labelling or autofluorescent molecules), which is a common occurrence in studies of both biological cells and soft-condensed matter. The GO quenches the fluorescence across a thin layer at distances of less than 15 nm. Graphene oxide films coated with thin layers (≤15 nm) of polystyrene, polymethylmethacrylate and polylysine are shown to be effective in producing high contrast qSTORM images, providing a convenient modulation of sample/substrate interactions. The GO coatings can also provide an increased image resolution and a factor of 2.3 improvement was observed with the peptide fibres using a feature of interest metric,when there was a large non-specifically bound background.
Collapse
|
124
|
Wang Y, Wei Z, Luo X, Wan Q, Qiu R, Wang S. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Talanta 2018; 195:33-39. [PMID: 30625551 DOI: 10.1016/j.talanta.2018.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/28/2018] [Accepted: 11/04/2018] [Indexed: 11/29/2022]
Abstract
Carcinoembryonic antigen (CEA) has been recognized as one of the most important tumor markers. Herein, we reported an ultrasensitive homogeneous aptasensor based on fluorescence resonance energy transfer (FRET) between upconversion nanoparticles (UCNPs) and graphene oxide (GO) for CEA detection. The CEA aptamer modified UCNPs can bind to the surface of GO through π-π stacking interaction, resulting in fluorescence quenching due to the energy transfer from UCNPs to GO. After the introduction of CEA, the CEA aptamer preferentially combined with CEA to form three-dimensional structure which made UCNPs-aptamer dissociate from the GO, blocking the energy transfer process. The fluorescence of UCNPs was accordingly restored in a CEA concentration-dependent manner both aqueous solution and human serum samples. The aptasensor could monitor CEA level directly in human serum and the results were strongly correlated with commercial chemiluminescence kits. The excellent detection performance suggested promising prospect of the aptasensor in practical application.
Collapse
Affiliation(s)
- Yujie Wang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zikai Wei
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xianda Luo
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Quan Wan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
125
|
Ling Y, Fu XB, Li NB, Luo HQ. A Label-free Resonance Rayleigh Scattering Sensor for Detection of Thrombin Based on Aptamer Recognizing. ANAL SCI 2018; 34:881-886. [PMID: 30101881 DOI: 10.2116/analsci.17p498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interaction between thrombin binding aptamer (TBA) and thrombin (TB) was studied by resonance Rayleigh scattering (RRS). In neutral medium, TBA is present in a balanced form between a G-quadruplex structure and a random coil structure, and the TBA can be induced by metal ions to form a G-quadruplex structure. Upon addition of thrombin, the G-quadruplex selectively bound to TB, which resulted in enhanced resonance Rayleigh scattering. The scattering intensities increased proportionally with the concentration of TB from 10 to 50 nM. The method had very high sensitivity and good selectivity, and the detection limit (3δ/s) was 1 nM. In this work, the spectral characteristics of RRS, the optimum conditions of the reaction, and influencing factors for the RRS intensities were investigated. Furthermore, the structure of the TBA-TB complex and the sensing mechanism were explored. The TB sensor was applied to a diluted human serum sample with satisfactory results, indicating the potential of this method to be applied to biological samples. A selective and simple RRS sensor for the detection of trace amounts of TB is proposed based on conformational change of TBA.
Collapse
Affiliation(s)
- Yu Ling
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University
| | - Xiao Bei Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University
| | - Nian Bing Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University
| | - Hong Qun Luo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University
| |
Collapse
|
126
|
Shirai A, Nakashima K, Sueyoshi K, Endo T, Hisamoto H. Development of a single-step immunoassay microdevice based on a graphene oxide-containing hydrogel possessing fluorescence quenching and size separation functions. Analyst 2018; 142:472-477. [PMID: 28091627 DOI: 10.1039/c6an02485h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An immunoassay, which is an indispensable analytical method both in biological research and in medical fields was successfully integrated into a "single-step" by developing a microdevice composed of a graphene oxide (GO)-containing hydrogel and a poly (dimethylsiloxane) (PDMS) microchannel array with a polyethylene glycol (PEG) coating containing a fluorescently-labelled antibody. Here we used 2-hydroxyethylmethacrylate (HEMA) as a monomer that is easily, and homogeneously, mixed with GO to synthesize the hydrogel. The fluorescence quenching and size separation functions were then optimized by controlling the ratios of HEMA and GO. Free fluorescently-labelled antibody was successfully separated from the immunoreaction mixture by the hydrogel network structure, and the fluorescence was subsequently quenched by GO. In comparison to the previously reported immunoassay system using GO, the present system achieved a very high fluorescence resonance energy transfer (FRET) efficiency (∼90%), due to the use of direct adsorption of the fluorescently-labelled antibody to the GO surface; in contrast, the former reported method relied on indirect adsorption of the fluorescently-labelled antibody via immunocomplex formation at the GO surface. Finally, the single-step immunoassay microdevice was made by combining the developed hydrogel and the PDMS microchannel with a coating containing the fluorescently-labelled antibody, and successfully applied for the single-step analysis of IgM levels in diluted human serum by simple introduction of the sample via capillary action.
Collapse
Affiliation(s)
- Akihiro Shirai
- Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho Nakaku, Sakai City, Osaka, 599-8531, Japan.
| | - Kaho Nakashima
- Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho Nakaku, Sakai City, Osaka, 599-8531, Japan.
| | - Kenji Sueyoshi
- Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho Nakaku, Sakai City, Osaka, 599-8531, Japan.
| | - Tatsuro Endo
- Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho Nakaku, Sakai City, Osaka, 599-8531, Japan.
| | - Hideaki Hisamoto
- Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho Nakaku, Sakai City, Osaka, 599-8531, Japan.
| |
Collapse
|
127
|
Lu N, Wang L, Lv M, Tang Z, Fan C. Graphene-based nanomaterials in biosystems. NANO RESEARCH 2018; 12:247-264. [PMID: 32218914 PMCID: PMC7090610 DOI: 10.1007/s12274-018-2209-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 05/23/2023]
Abstract
Graphene-based nanomaterials have emerged as a novel type of materials with exceptional physicochemical properties and numerous applications in various areas. In this review, we summarize recent advances in studying interactions between graphene and biosystems. We first provide a brief introduction on graphene and its derivatives, and then discuss on the toxicology and biocompatibility of graphene, including the extracellular interactions between graphene and biomacromolecules, cellular studies of graphene, and in vivo toxicological effects. Next, we focus on various graphene-based practical applications in antibacterial materials, wound addressing, drug delivery, and water purification. We finally present perspectives on challenges and future developments in these exciting fields.
Collapse
Affiliation(s)
- Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China
| | - Liqian Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Min Lv
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
- National Clinical Research Center of Oral Diseases, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
128
|
Zhang Q, Wang F, Zhang H, Zhang Y, Liu M, Liu Y. Universal Ti 3C 2 MXenes Based Self-Standard Ratiometric Fluorescence Resonance Energy Transfer Platform for Highly Sensitive Detection of Exosomes. Anal Chem 2018; 90:12737-12744. [PMID: 30350604 DOI: 10.1021/acs.analchem.8b03083] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exosomes, as novel noninvasive biomarkers for disease prediction and diagnosis, have shown fascinating prospects in monitoring cancer-linked public health issues. Herein, a unique Cy3 labeled CD63 aptamer (Cy3-CD63 aptamer)/Ti3C2 MXenes nanocomplex was constructed as a self-standard ratiometric fluorescence resonance energy transfer (FRET) nanoprobe for quantitative detection of exosomes. The Cy3-CD63 aptamer can be selectively adsorbed onto the Ti3C2 MXene nanosheets by hydrogen bond and metal chelate interaction between the aptamer and MXenes, and the fluorescence signal from Cy3-CD63 aptamer was quenched quickly owing to the FRET between the Cy3 and MXenes. The fluorescence of Cy3 greatly recovered after the addition of the exosomes which can specifically combine with the aptamer and release from the surface of Ti3C2 MXenes due to the high affinity between the aptamer and CD63 protein on exosome surface. Meanwhile, the self-fluorescence signal of MXenes in the whole process showed little change, which can be used as a standard reference. Based on the self-standard turn-on FRET biosensing platform the detection limit of exosome was determined as 1.4 × 103 particles mL-1, which was over 1000× lower than that of conventional ELISA method. This fluorescence sensor can also be used for the identification of multiple biomarkers on the exosome surface and different kinds of exosomes, combining with the fluorescent confocal scanning microscope image. The proposed strategy not only provides a universal nanoplatform for exosomes, but also can be extensively expanded to multiple biomarkers detection, which may promise the prospect of MXenes as robust candidates in biological fields.
Collapse
Affiliation(s)
- Qiuxia Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , People's Republic of China.,Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Feng Wang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Huixin Zhang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , People's Republic of China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , People's Republic of China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
129
|
A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification. Mikrochim Acta 2018; 185:487. [PMID: 30276550 DOI: 10.1007/s00604-018-3023-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
A fluorometric patulin (PAT) assay is presented that is based on the use of magnetic reduced graphene oxide (rGO) and DNase I. The fluorescence of the PAT aptamer labelled with 6-carboxyfluorescein (FAM) is quenched by magnetized reduced graphene oxide (rGO-Fe3O4) due to fluorescence resonance energy transfer (FRET). However, in the presence of PAT, the labelled aptamer is stripped off from rGO-Fe3O4. The rGO-Fe3O4 is then magnetically separated so that the fluorescence of free labelled PAT aptamer is restored. DNase I cannot hydrolyze the aptamer on rGO-Fe3O4, but it can cleave the free aptamer-PAT complex. This will release FAM and PAT which can undergo a number of additional cycles to trigger the cleavage of abundant aptamer. Recycling of DNase I-assisted target therefore leads to a strong amplification of fluorescence and consequently to an assay with low limit of detection. The detection limit for PAT is as low as 0.28 μg L-1 which is about 13 times lower than that without using DNase I. The method offers a new approach towards rapid, sensitive and selective detection based on an aptamer. Conceivably, it has a wide scope in that it may be applied to numerous other analytes if appropriate aptamers are available. Abstract Schematic of a fluorometric assay based on the use of magnetic graphene oxide and DNase I. It was applied to the determination of patulin. DNase I was introduced for recycling amplification. The detection limit is about 13 times lower than that without using DNase I. Figure a contains poor quality of text in image. Otherwise, please provide replacement figure file.Thank you. I will provide the figure file.
Collapse
|
130
|
Kim AR, Ha NR, Jung IP, Kim SH, Yoon MY. Development of a ssDNA aptamer system with reduced graphene oxide (rGO) to detect nonylphenol ethoxylate in domestic detergent. J Mol Recognit 2018; 32:e2764. [PMID: 30251354 DOI: 10.1002/jmr.2764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 07/10/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022]
Abstract
Endocrine-disrupting chemicals are a major public health problem throughout the world. In the human body, these compounds functionalize the same as sexual hormones, inducing precocious puberty, gynecomastia, etc. To help prevent this occurrence, a simple detection system is needed. In this study, a nonylphenol ethoxylate (NPE)-specific aptamer was selected by reduced graphene oxide-systematic evolution of ligands by exponential enrichment. A random ssDNA library was incubated with rGO for adsorption, followed by elution with the target molecule. As a result of screening, a DNA aptamer was found that specifically bounds to the target with high binding affinity (Kd = 100.9 ± 13.2 nM) and had a low limit of detection (LOD = 696 pM). Furthermore, this NPE-binding aptamer bounds selectively to the target. Characterization of the aptamer was confirmed by measuring the fluorescence signal recovery from rGO. In addition, detection of NPE was performed with several water samples, and the detection accuracy was 100 ± 10%. From these results, we expect that this aptamer could be applied to an on-site detection system for NPE in industrial sites or domestic fields.
Collapse
Affiliation(s)
- A-Ru Kim
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Na-Reum Ha
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - In-Pil Jung
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Sang-Heon Kim
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Moon-Young Yoon
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
131
|
Shirai A, Henares TG, Sueyoshi K, Endo T, Hisamoto H. Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody. Analyst 2018; 141:3389-94. [PMID: 27127806 DOI: 10.1039/c5an02637g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single-step, easy-to-use, and fast capillary-type immunoassay device composed of a polyethylene glycol (PEG) coating containing two kinds of antibody-reagents, including an antibody-graphene oxide conjugate and fluorescently labelled antibody, was developed in this study. The working principle involved the spontaneous dissolution of the PEG coating, diffusion of reagents, and subsequent immunoreaction, triggered by the capillary action-mediated introduction of a sample solution. In a sample solution containing the target antigen, two types of antibody reagents form a sandwich-type antigen-antibody complex and fluorescence quenching takes place via fluorescence resonance energy transfer between the labelled fluorescent molecules and graphene oxide. Antigen concentration can be measured based on the decrease in fluorescence intensity. An antigen concentration-dependent response was obtained for the model target protein sample (human IgG, 0.2-10 μg mL(-1)). The present method can shorten the reaction time to within 1 min (approximately 40 s), while conventional methods using the same reagents require reaction times of approximately 20 min because of the large reaction scale. The proposed method is one of the fastest immunoassays ever reported. Finally, the present device was used to measure human IgG in diluted serum samples to demonstrate that this method can be used for fast medical diagnosis.
Collapse
Affiliation(s)
- Akihiro Shirai
- Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho Nakaku, Sakai City, Osaka 599-8531, Japan.
| | - Terence G Henares
- Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho Nakaku, Sakai City, Osaka 599-8531, Japan.
| | - Kenji Sueyoshi
- Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho Nakaku, Sakai City, Osaka 599-8531, Japan.
| | - Tatsuro Endo
- Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho Nakaku, Sakai City, Osaka 599-8531, Japan.
| | - Hideaki Hisamoto
- Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho Nakaku, Sakai City, Osaka 599-8531, Japan.
| |
Collapse
|
132
|
Roy R, Thapa R, Biswas S, Saha S, Ghorai UK, Sen D, Kumar EM, Kumar GS, Mazumder N, Roy D, Chattopadhyay KK. Resonant energy transfer in a van der Waals stacked MoS 2 - functionalized graphene quantum dot composite with ab initio validation. NANOSCALE 2018; 10:16822-16829. [PMID: 30167606 DOI: 10.1039/c8nr04412k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene-based van der Waals (vdW) heterostructures can facilitate exciting charge transfer dynamics in between structural layers with the emission of excitonic quasi-particles. However, the chemical formation of such heterostructures has been elusive thus far. In this work, a simple chemical approach is described to form such van der Waals (vdW) heterostructures using few layer MoS2 sheet embedded quantum dots (QDs) and amine-functionalized graphene quantum dots (GQDs) to probe the energy transfer mechanism for tunable photoluminescence (PL). Our findings reveal an interesting non-radiative Förster-type energy transfer with the quenching of functional GQD PL intensity after GQD/MoS2 composite formation, which validates the existing charge transfer dynamics analogous to 0D and 2D systems. The non-radiative type of energy transfer characteristic from GQD into the MoS2 layer through vdW interactions has been confirmed by photoluminescence, time decay analyses and ab initio calculations with the shifting of the Fermi level in the density of states towards the conduction band in the stacked configuration. These results are encouraging for the fundamental exploration of optical properties in other chemically prepared QD/2D based heterostructures to understand the charge transfer mechanism and fingerprint luminescence quenching for future optoelectronic device and optical sensing applications.
Collapse
Affiliation(s)
- Rajarshi Roy
- Thin Film and Nanoscience Laboratory, Dept. of Physics, Jadavpur University, Kolkata-700032, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots. Mikrochim Acta 2018; 185:430. [PMID: 30143874 DOI: 10.1007/s00604-018-2942-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
An electrochemiluminescent (ECL) aptamer based method is described for the determination of thrombin. Three-dimensional nitrogen-doped graphene oxide (3D-NGO) was placed on a glassy carbon electrode (GCE) to provide an electrode surface that displays excellent electrical conductivity and acts as a strong emitter of ECL. The modified electrode was further coated with chitosan via electrodeposition. Finally, the amino-modified aptamer was immobilized on the modified GCE. The interaction between thrombin and aptamer results in a decrease in ECL. The assay has a linear response in the 1 fM to 1 nM thrombin concentration range and a 0.25 fM lower detection limit (at an S/N ratio of 3). The method was applied to the determination of thrombin in spiked human plasma samples, and recoveries ranged between 94 and 105% (with RSDs of <3.6%). The calibration plot was recorded at potential and wavelength of fluorescence emission (wavelength: 445 nm; potential: 0 to -2 V). Graphical abstract A bare glassy carbon electrode (GCE) does not display electrochemiluminescence (ECL). If, however, nitrogen-doped graphene quantum dots, chitosan, and three-dimensional nitrogen-doped graphene oxide (NGQD-chitosan/3D-NGO) are electrodeposited on the GCE, strong ECL can be observed. The ECL intensity decreased after aptamer and bovine serum albumin (BSA) were dropped onto the electrode (curve a). However, the ECL further decreases after addition of thrombin (TB; curve b).
Collapse
|
134
|
Zhang Y, Xia J, Zhang F, Wang Z, Liu Q. A dual-channel homogeneous aptasensor combining colorimetric with electrochemical strategy for thrombin. Biosens Bioelectron 2018; 120:15-21. [PMID: 30142478 DOI: 10.1016/j.bios.2018.08.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 02/02/2023]
Abstract
In this protocol, a dual-channel homogeneous aptasenor was proposed for protein molecule determination, employing thrombin as target analyte. The colorimetric and electrochemical transducers were combined in a single analytical system for signal readout. In this dual-channel sensing strategy, the G-quadruplex sequence was released and incorporated with hemin to form DNAzyme for naked-eye colorimetric detection. Meanwhile, the hydroxyapatite nanoparticle as signal probe was combined with magnetic nanoparticles to construct sandwich-type structure for generating the electrochemical current when thrombin was present in solution. By introducing two kinds of reporter probes and transducers, this dual-channel sensor produced two different kinds of signal to improve the analytical accuracy and diversity. The results revealed that the dual-channel sensor achieved the quantatitive determination of thrombin with low limit of detection (0.40 fM) and wide range (0.1 fM to 1 nM), which offer a promise for rapid and accurate detection of biomolecule.
Collapse
Affiliation(s)
- Yaxing Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, PR China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, PR China.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, PR China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, PR China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao, PR China
| |
Collapse
|
135
|
Qin B, Yang K. Voltammetric aptasensor for thrombin by using a gold microelectrode modified with graphene oxide decorated with silver nanoparticles. Mikrochim Acta 2018; 185:407. [DOI: 10.1007/s00604-018-2924-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/23/2018] [Indexed: 01/21/2023]
|
136
|
Ates M, Caliskan S, Özten E. Supercapacitor study of reduced graphene oxide/Zn nanoparticle/polycarbazole electrode active materials and equivalent circuit models. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4039-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
137
|
Li J, Zhou W, Yuan R, Xiang Y. Aptamer proximity recognition-dependent strand translocation for enzyme-free and amplified fluorescent detection of thrombin via catalytic hairpin assembly. Anal Chim Acta 2018; 1038:126-131. [PMID: 30278894 DOI: 10.1016/j.aca.2018.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 01/12/2023]
Abstract
By coupling a new aptamer proximity recognition-dependent strand translocation strategy with catalytic hairpin assembly (CHA) signal amplification, we have developed a simple and sensitive method for detecting thrombin in human serums. Simultaneous binding of two engineered aptamer probes to the thrombin target significantly increases the local concentrations of the two probes and facilitates the translocation of a ssDNA strand from one of the probes to the other through toehold mediated strand displacement. Such a strand translocation leads to the generation of a ssDNA tail in the aptamer sequence for subsequent initiation of the assembly of two fluorescently quenched hairpins into many DNA duplexes via CHA. The formation of the DNA duplexes thus results in significant fluorescence recovery for amplified detection of thrombin down to 8.3 pM. The developed method is highly selective to the thrombin target against other interference proteins due to the dual recognition mode, and can be employed to monitor thrombin in human serum samples. With the advantage of simplicity, sensitivity and selectivity, this method can be a universal non-enzymatic and nanomaterial-free amplified sensing platform for detecting different protein molecules.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenjiao Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
138
|
Wang M, Lin Z, Liu Q, Jiang S, Liu H, Su X. DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection. Anal Chim Acta 2018; 1012:66-73. [DOI: 10.1016/j.aca.2018.01.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 02/08/2023]
|
139
|
Ghosal K, Sarkar K. Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomater Sci Eng 2018; 4:2653-2703. [DOI: 10.1021/acsbiomaterials.8b00376] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Krishanu Ghosal
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| |
Collapse
|
140
|
Dai Z, Song XZ, Cao J, He Y, Wen W, Xu X, Tan Z. Dual-stimuli-responsive TiO x /DOX nanodrug system for lung cancer synergistic therapy. RSC Adv 2018; 8:21975-21984. [PMID: 35541696 PMCID: PMC9081125 DOI: 10.1039/c8ra02899k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/09/2018] [Indexed: 11/21/2022] Open
Abstract
Biological applications of nanosheets are rapidly increasing currently, which introduces new possibilities to improve the efficacy of cancer chemotherapy and radiotherapy. Herein, we designed and synthesized a novel nano-drug system, doxorubicin (DOX) loaded titanium peroxide (TiO x ) nanosheets, toward the synergistic treatment of lung cancer. The precursor of TiO2 nanosheets with high specific surface area was synthesized by a modified hydrothermal process using the polymer P123 as a soft template to control the shape. TiO x nanosheets were obtained by oxidizing TiO2 nanosheets with H2O2. The anti-cancer drug DOX was effectively loaded on the surface of TiO x nanosheets. Generation of reactive oxygen species, including H2O2, ·OH and ·O2 -, was promoted from TiO x nanosheets under X-ray irradiation, which is effective for cancer radiotherapy and drug release in cancer cells. In this way, chemotherapy and radiotherapy were combined effectively for the synergistic therapy of cancers. Our results reinforce the DOX loaded TiO x nanosheets as a pH sensitive and X-ray controlled dual-stimuli-responsive drug release system. The cytotoxicity, cellular uptake, and intracellular location of the formulations were evaluated in the A549 human non-small cell lung cancer cell line. Our results showed that TiO x /DOX complexes exhibited a greater cytotoxicity toward A549 cells than free DOX. This work demonstrates that the therapeutic efficacy of DOX-loaded TiO x nanosheets is strongly dependent on their loading mode and the chemotherapeutic and radiotherapy effect is improved under X-ray illumination, which provides a significant breakthrough for future applications of TiO x as a light activated drug carrier in cancer chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Zideng Dai
- School of Petroleum and Chemical Engineering, Dalian University of Technology Panjin 124221 P. R. China
| | - Xue-Zhi Song
- School of Petroleum and Chemical Engineering, Dalian University of Technology Panjin 124221 P. R. China
| | - Junkai Cao
- School of Petroleum and Chemical Engineering, Dalian University of Technology Panjin 124221 P. R. China
| | - Yunping He
- School of Petroleum and Chemical Engineering, Dalian University of Technology Panjin 124221 P. R. China
| | - Wen Wen
- School of Petroleum and Chemical Engineering, Dalian University of Technology Panjin 124221 P. R. China
| | - Xinyu Xu
- School of Petroleum and Chemical Engineering, Dalian University of Technology Panjin 124221 P. R. China
| | - Zhenquan Tan
- School of Petroleum and Chemical Engineering, Dalian University of Technology Panjin 124221 P. R. China
| |
Collapse
|
141
|
Ren W, Qin M, Hu X, Li F, Wang Y, Huang Y, Su M, Li W, Qian X, Tang KL, Song Y. Bioinspired Synergy Sensor Chip of Photonic Crystals-Graphene Oxide for Multiamines Recognition. Anal Chem 2018; 90:6371-6375. [DOI: 10.1021/acs.analchem.8b01549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wanjie Ren
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Qin
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
| | - Xiaotian Hu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
| | - Yuanfeng Wang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Beijing, 100088, China
| | - Yu Huang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
| | - Xin Qian
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang-lai Tang
- Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
| |
Collapse
|
142
|
Ma L, Xu B, Liu L, Tian W. A Label-free Fluorescent Aptasensor for Turn-on Monitoring Ochratoxin A Based on AIE-active Probe and Graphene Oxide. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8072-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
143
|
Zhu X, Fan L, Wang S, Lei C, Huang Y, Nie Z, Yao S. Phospholipid-Tailored Titanium Carbide Nanosheets as a Novel Fluorescent Nanoprobe for Activity Assay and Imaging of Phospholipase D. Anal Chem 2018; 90:6742-6748. [DOI: 10.1021/acs.analchem.8b00581] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaohua Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lin Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shigong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
144
|
Li J, Jiao Y, Liu Q, Chen Z. The aptamer-thrombin-aptamer sandwich complex-bridged gold nanoparticle oligomers for high-precision profiling of thrombin by dark field microscopy. Anal Chim Acta 2018; 1028:66-76. [PMID: 29884355 DOI: 10.1016/j.aca.2018.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Abstract
We present a simple and efficient colorimetric assay strategy for ultrasensitive visual detection of human α-thrombin, which is essentially based on the formation of the DNA1-thrombin-DNA2 sandwich complex-bridged gold nanoparticle (Au NP) oligomers. Unlike the traditional colorimetric sensing strategies which induced the nanoparticle aggregates with uncontrolled aggregate size. In this work, the DNA1with rich G bases was firstly conjugated on the surfaces of Au NPs fixed on the hexadecyl trimethylammonium bromide (CTAB)-coated glass slide, and thrombin was captured by the DNA1. Then, the other DNA2 with rich G bases interacted with the former DNA1-thrombin complex and formed a DNA1-thrombin-DNA2 sandwich complex. The subsequently added Au NPs can be bound to the Au NP-DNA1-thrombin-DNA2 via Au-S bond to trigger the formation of Au NP oligomers, an apparent color change of the single Au NPs from green to yellow and red was observed under dark field microscopy. By measuring the intensity change of the yellow and red Au NPs, the concentration of target thrombin could be accurately quantified. As a proof of concept experiment, the formation of Au NP oligomers resulted in significantly improved sensitivity (10 fM of limit of detection and 20 fM of limit of quantity) and wider linear dynamic range of thrombin detection (20 fM-20 nM), the relative standard deviation (RSD) was less than 5.73% (n = 5). In addition, in order to validate the potential application in clinical diagnosis, the content of thrombin in a human serum samples was also quantified.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yunfei Jiao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
145
|
Truncated aptamers for total and glycated hemoglobin, and their integration into a graphene oxide-based fluorometric method for high-throughput screening for diabetes. Mikrochim Acta 2018; 185:256. [PMID: 29675559 DOI: 10.1007/s00604-018-2789-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
The authors describe the identification of an effective binding region of aptamers against glycated (HbA1c) and total haemoglobin (tHb) by using a fluorometric assay. Truncation of the originally selected aptamers from 60 to 46 and 34 nucleotides for HbA1c and tHb, respectively, enhances the affinity for their targets. Moreover, shortening the aptamer sequences leads to a better conformational change after target binding which enabled the integration of the aptamers in a graphene oxide (GO)-based fluorometric assay. First, fluorescein-labelled truncated aptamers were physically absorbed onto the surface of GO surface via π-stacking interaction. This leads to quenching of fluorescence. Once the truncated aptamers bind the target protein, a conformational change is induced which results (a) )in the release of the aptamers from the surface of GO and (b) in the restoration of green fluorescence that is measured at 515 nm. The assay can be carried out in a microtiter plate format in homogeneous solution, this avoiding the steps of immobilization, incubation, and washing that are often necessary in immunoassays. This also reduces the time and the costs of the overall assay and allows for high throughput screening for diabetes. HbA1c can be detected in the range from 5.4 to 10.6%. The assay is selective for HbA1c over other proteins that commonly exist in blood. The results obtained by using this method compare well with those of a turbidimetric immunoassay that is typically applied in clinical laboratories. Graphical abstract Truncated aptamers for total and glycated hemoglobin were selected and integrated into a graphene oxide-based fluorescence detection assay for high-throughput screening for diabetes.
Collapse
|
146
|
Optoelectronics Based Dynamic Advancement of Graphene: Characteristics and Applications. CRYSTALS 2018. [DOI: 10.3390/cryst8040171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
147
|
Liu Y, Jiang X, Cao W, Sun J, Gao F. Detection of Thrombin Based on Fluorescence Energy Transfer between Semiconducting Polymer Dots and BHQ-Labelled Aptamers. SENSORS (BASEL, SWITZERLAND) 2018; 18:E589. [PMID: 29443917 PMCID: PMC5855441 DOI: 10.3390/s18020589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Carboxyl-functionalized semiconducting polymer dots (Pdots) were synthesized as an energy donor by the nanoprecipitation method. A black hole quenching dye (BHQ-labelled thrombin aptamers) was used as the energy acceptor, and fluorescence resonance energy transfer between the aptamers and Pdots was used for fluorescence quenching of the Pdots. The addition of thrombin restored the fluorescence intensity. Under the optimized experimental conditions, the fluorescence of the system was restored to the maximum when the concentration of thrombin reached 130 nM, with a linear range of 0-50 nM (R² = 0.990) and a detection limit of 0.33 nM. This sensor was less disturbed by impurities, showing good specificity and signal response to thrombin, with good application in actual samples. The detection of human serum showed good linearity in the range of 0-30 nM (R² = 0.997), with a detection limit of 0.56 nM and a recovery rate of 96.2-104.1%, indicating that this fluorescence sensor can be used for the detection of thrombin content in human serum.
Collapse
Affiliation(s)
- Yizhang Liu
- Department of Food and Environmental Engineering, Vocational and Technical College, Chuzhou 239001, China.
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Xuekai Jiang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Wenfeng Cao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
148
|
Sadeghi AS, Mohsenzadeh M, Abnous K, Taghdisi SM, Ramezani M. Development and characterization of DNA aptamers against florfenicol: Fabrication of a sensitive fluorescent aptasensor for specific detection of florfenicol in milk. Talanta 2018; 182:193-201. [PMID: 29501140 DOI: 10.1016/j.talanta.2018.01.083] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 01/05/2023]
Abstract
Specific ssDNA aptamers for the antibiotic florfenicol (FF) were developed from an enriched nucleotide library using magnetic beads-based SELEX (Systematic Evolution of Ligands by EXponential enrichment) technique with high-binding affinity. After 12 rounds of selection, thirty-six sequences were obtained that were then divided into five major families, according to the primary sequence similarity. Binding affinity analyses of three fluorescently tagged aptamers belonging to different families demonstrated that the dissociation constants (Kd) were in the low nanomolar range (Kd = 52.78-211.4 nmol L-1). Furthermore, to verify the potential application of the aptamers, a fluorescent aptasensor was fabricated for detecting the FF residue in raw milk samples based on the energy transfer between graphene oxide as the acceptor and fluorescently tagged FF-specific aptamer as the donor. Under optimal conditions, the aptasensor displayed a wide linear range from 5 to 1200 nmol L-1 and a detection limit of 5.75 nmol L-1 with excellent selectivity in milk. The recovery rate in the milk was between 101% ± 0.14% and 110% ± 2.8%, indicating high accuracy. This fluorescent aptasensor possessed considerable potential for rapid analysis of FF in raw milk because of its simplicity of detection. Moreover, the interaction between the aptamer and FF was studied using molecular modeling.
Collapse
Affiliation(s)
- Atefeh Sarafan Sadeghi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mohsenzadeh
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
149
|
Li K, Wang C, Yan J, Zhang Q, Dang B, Wang Z, Yao Y, Lin K, Guo Z, Bi L, Han Y. Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Sci Rep 2018; 8:1843. [PMID: 29382859 PMCID: PMC5790016 DOI: 10.1038/s41598-018-19742-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to investigate whether a surface coating with graphene could enhance the surface bioactivation of titanium alloys (Ti6Al4V) to further accelerate in vivo osteogenesis and osseointegration at the implant surface. In this study, a New Zealand white rabbit femoral condyle defect model was established. After 4, 12 and 24 weeks, biomechanical testing, micro-computed tomography (Micro-CT) analyses and histological observations were performed. At the highest push-out forces during the test, microstructure parameters, such as the bone volume/total volume fraction (BV/TV) and mineral apposition rate (MAR), of the new bone were significantly higher in the graphene-coated Ti6Al4V group (G-Ti6Al4V) than in the Ti6Al4V group (P < 0.05). Van Gieson (VG) staining showed that the G-Ti6Al4V group had more new bone formation than the Ti6Al4V group, and the G-Ti6Al4V group showed a closer fit between the bone and implant. In conclusion, graphene might be a novel type of nano-coating material for enhancing the surface biological activity of Ti-based alloy materials and may further promote in vivo osteogenesis and osseointegration.
Collapse
Affiliation(s)
- Kewen Li
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China.
- Department of Orthopedics, Qinghai University Affiliated Hospital, Xining, 810001, P.R. China.
| | - Chunhui Wang
- Military Frontier Defence Medical Service Tranning Group, Army Medical University, Hutubi, Xinjiang, 831200, P.R. China
| | - Jinhong Yan
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Qi Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Baoping Dang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Zhuo Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Yun Yao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Kaifeng Lin
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Zhongshang Guo
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Yisheng Han
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China.
| |
Collapse
|
150
|
Zuo X, Dai H, Zhang H, Liu J, Ma S, Chen X. A peptide–WS2 nanosheet based biosensing platform for determination of β-secretase and screening of its inhibitors. Analyst 2018; 143:4585-4591. [DOI: 10.1039/c8an00132d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
β-Secretase (BACE1) is an important drug target in the treatment of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Xianwei Zuo
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- Department of Chemistry
| | - Hongxia Dai
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- Department of Chemistry
| | - Huige Zhang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- Department of Chemistry
| | - Juanjuan Liu
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- Department of Chemistry
| | - Sudai Ma
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- Department of Chemistry
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- Department of Chemistry
| |
Collapse
|