101
|
Nazemi SA, Olesińska M, Pezzella C, Varriale S, Lin CW, Corvini PFX, Shahgaldian P. Immobilisation and stabilisation of glycosylated enzymes on boronic acid-functionalised silica nanoparticles. Chem Commun (Camb) 2021; 57:11960-11963. [PMID: 34705002 DOI: 10.1039/d1cc04916j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a method of glycosylated enzymes' surface immobilisation and stabilisation. The enzyme is immobilised at the surface of silica nanoparticles through the reversible covalent binding of vicinal diols of the enzyme glycans with a surface-attached boronate derivative. A soft organosilica layer of controlled thickness is grown at the silica surface, entrapping the enzyme and thus avoiding enzyme leaching. We demonstrate that this approach results not only in high and durable activity retention but also enzyme stabilisation.
Collapse
Affiliation(s)
- Seyed Amirabbas Nazemi
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| | - Magdalena Olesińska
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| | - Cinzia Pezzella
- Biopox, Viale Maria Bakunin, 12 - CAP 80125 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100 80055 Portici, NA, Italy
| | | | - Chia-Wei Lin
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, 8057 Zürich, Switzerland
| | - Philippe F-X Corvini
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| | - Patrick Shahgaldian
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasee 30, Muttenz CH-4132, Switzerland.
| |
Collapse
|
102
|
Bhogal S, Kaur K, Mohiuddin I, Kumar S, Lee J, Brown RJC, Kim KH, Malik AK. Hollow porous molecularly imprinted polymers as emerging adsorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117775. [PMID: 34329047 DOI: 10.1016/j.envpol.2021.117775] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
Hollow porous molecularly imprinted polymers (HPMIPs) are identified as promising adsorbents with many advantageous properties (e.g., large number of imprinted cavities, highly accessible binding sites, controllable pore structure, and fast mass transfer). Because of such properties, HPMIPs can exhibit improved binding capacity and kinetics to make analyte molecules readily interact with a greater number of recognition sites on the imprinted shell. This review highlights the synthesis and utility of HPMIPs as adsorbents to cover diverse targets of interest (e.g., endocrine disrupting chemicals, pharmaceuticals, pesticides, and heavy metal ions). The overall potential of HPMIPs is thus discussed in the context of analytical chemistry with particular focus on the efficient extraction of trace-level targets from complex matrices.
Collapse
Affiliation(s)
- Shikha Bhogal
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Kuldeep Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, 140406, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Sandeep Kumar
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
103
|
Li H, Guo H, Luo Q, Wu DT, Zou L, Liu Y, Li HB, Gan RY. Current extraction, purification, and identification techniques of tea polyphenols: An updated review. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34702110 DOI: 10.1080/10408398.2021.1995843] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tea, as a beverage, has been reputed for its health benefits and gained worldwide popularity. Tea polyphenols, especially catechins, as the main bioactive compounds in tea, exhibit diverse health benefits and have wide applications in the food industry. The development of tea polyphenol-incorporated products is dependent on the extraction, purification, and identification of tea polyphenols. Recent years, many green and novel extraction, purification, and identification techniques have been developed for the preparation of tea polyphenols. This review, therefore, introduces the classification of tea and summarizes the main conventional and novel techniques for the extraction of polyphenols from various tea products. The advantages and disadvantages of these techniques are also intensively discussed and compared. In addition, the purification and identification techniques are summarized. It is hoped that this updated review can provide a research basis for the green and efficient extraction, purification, and identification of tea polyphenols, which can facilitate their utilization in the production of various functional food products and nutraceuticals.
Collapse
Affiliation(s)
- Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Huan Guo
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Qiong Luo
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| |
Collapse
|
104
|
Rajan C, Seema J, Chen YW, Chen TC, Lin MH, Lin CH, Hwang DWH. A Gadolinium DO3A Amide m-Phenyl Boronic Acid MRI Probe for Targeted Imaging of Sialated Solid Tumors. Biomedicines 2021; 9:biomedicines9101459. [PMID: 34680576 PMCID: PMC8533322 DOI: 10.3390/biomedicines9101459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
We developed a new probe, Gd-DO3A-Am-PBA, for imaging tumors. Our results showed active targeting of Gd-DO3A-Am-PBA to sialic acid (SA) moieties, with increased cellular labeling in vitro and enhanced tumor accumulation and retention in vivo, compared to the commercial Gadovist. The effectiveness of our newly synthesized probe lies in its adequate retention phase, which is expected to provide a suitable time window for tumor diagnosis and a faster renal clearance, which will reduce toxicity risks when translated to clinics. Hence, this study can be extended to other tumor types that express SA on their surface. Targeting and MR imaging of any type of tumors can also be achieved by conjugating the newly synthesized contrast agent with specific antibodies. This study thus opens new avenues for drug delivery and tumor diagnosis via imaging.
Collapse
Affiliation(s)
- Christu Rajan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (C.R.); (J.S.); (T.-C.C.); (M.-H.L.); (C.-H.L.)
| | - Jaya Seema
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (C.R.); (J.S.); (T.-C.C.); (M.-H.L.); (C.-H.L.)
| | - Yu-Wen Chen
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Tsai-Chen Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (C.R.); (J.S.); (T.-C.C.); (M.-H.L.); (C.-H.L.)
| | - Ming-Huang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (C.R.); (J.S.); (T.-C.C.); (M.-H.L.); (C.-H.L.)
| | - Chia-Huei Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (C.R.); (J.S.); (T.-C.C.); (M.-H.L.); (C.-H.L.)
| | - Dennis Wen-Han Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; (C.R.); (J.S.); (T.-C.C.); (M.-H.L.); (C.-H.L.)
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan;
- Correspondence:
| |
Collapse
|
105
|
WANG F, FENG L. [Preparation of Fe 3O 4@BA-MOF magnetic solid-phase extraction material and its application to the detection of pesticide residues in tea]. Se Pu 2021; 39:1111-1117. [PMID: 34505433 PMCID: PMC9404003 DOI: 10.3724/sp.j.1123.2021.06003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Tea is one of the most popular beverages worldwide, and its quality is often affected by the excessive pesticide residues during production. During the detection of pesticide residues in tea by chromatography-mass spectrometry and other methods, a strong matrix effect attributed to tea polyphenols and pigments is observed, which seriously impacts the analysis results. In this study, Fe3O4 magnetic nanoparticles and boric acid-functionalized metal organic framework (BA-MOF) materials were combined to prepare a highly efficient adsorbent Fe3O4@BA-MOF for capturing tea polyphenols and pigments. An effective analysis method for pesticide residues in tea samples in combination with gas chromatography-mass spectrometry was established. The introduction of boronic acid ligands into the metal organic framework, as the recognition site of cis-diols, enhanced the polyphenol capture ability. Adsorption of the pigment in the matrix was achieved through π-π interactions between the MOF ligand and the pigment. This new material has significant advantages such as rapid magnetic separation, large surface area, and abundant functional sites. Fe3O4@BA-MOF was prepared by employing simple conditions and characterized by Fouriertransform infrared spectroscopy, scanning electron microscopy, and X-ray diffractometry to identify its functional groups and morphology. After investigating the adsorption effect of different doses of Fe3O4@BA-MOF adsorbents (5, 10, 30, 50, and 80 mg) on tea polyphenols, 50 mg of the adsorbent was added to the tea matrix and shaken thoroughly. The tea polyphenol content in the matrix solution was determined using an ultraviolet spectrophotometer. The polyphenols were reduced by 74.58% within 5 min. The effect of solution pH (2.0, 4.0, 6.0, and 7.0) on the adsorption efficiency was investigated, and pH 7.0 was chosen as the optimal condition. By adjusting the pH of the solution, Fe3O4@BA-MOF could be recycled, and it maintained the excellent adsorption performance after four cycles of use. The introduction of Fe3O4 magnetic nanoparticles led to rapid magnetic response characteristics during sample pretreatment and improved the pretreatment efficiency. In the actual application of tea pesticide detection, after Fe3O4@BA-MOF pretreatment, the average recovery rates of the ten pesticides were in the range of 75.8%-138.6%, and the RSD was in the range of 0.5%-18.7% (n=3). The Fe3O4@BA-MOF nanocomposite prepared by introducing the boric acid ligand into the MOF structure and incorporating Fe3O4 magnetic nanoparticles could specifically adsorb the tea polyphenol matrix. When applied to the detection of pesticide residues in tea, it purifies the matrix and improves the detection efficiency, thus being suitable for the detection and analysis of pesticides in tea.
Collapse
|
106
|
Liu B, Liu J, Huang D, Pei D, Wei J, Di D. Synthesis of boric acid-functionalized microspheres and their adsorption properties for flavonoids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
107
|
Kim DM, Go MJ, Lee J, Na D, Yoo SM. Recent Advances in Micro/Nanomaterial-Based Aptamer Selection Strategies. Molecules 2021; 26:5187. [PMID: 34500620 PMCID: PMC8434002 DOI: 10.3390/molecules26175187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are artificial nucleic acid ligands that have been employed in various fundamental studies and applications, such as biological analyses, disease diagnostics, targeted therapeutics, and environmental pollutant detection. This review focuses on the recent advances in aptamer discovery strategies that have been used to detect various chemicals and biomolecules. Recent examples of the strategies discussed here are based on the classification of these micro/nanomaterial-mediated systematic evolution of ligands by exponential enrichment (SELEX) platforms into three categories: bead-mediated, carbon-based nanomaterial-mediated, and other nanoparticle-mediated strategies. In addition to describing the advantages and limitations of the aforementioned strategies, this review discusses potential strategies to develop high-performance aptamers.
Collapse
Affiliation(s)
- Dong-Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon 34158, Korea;
| | - Myeong-June Go
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (M.-J.G.); (J.L.)
| | - Jingyu Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (M.-J.G.); (J.L.)
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (M.-J.G.); (J.L.)
| | - Seung-Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (M.-J.G.); (J.L.)
| |
Collapse
|
108
|
Zhang X, Wang W, Zare RN, Min Q. Peptide and protein assays using customizable bio-affinity arrays combined with ambient ionization mass spectrometry. Chem Sci 2021; 12:10810-10816. [PMID: 34476062 PMCID: PMC8372322 DOI: 10.1039/d1sc02311j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
High-throughput identification and quantification of protein/peptide biomarkers from biofluids in a label-free manner is achieved by interfacing bio-affinity arrays (BAAs) with nano-electrospray desorption electrospray ionization mass spectrometry (nano-DESI-MS). A wide spectrum of proteins and peptides ranging from phosphopeptides to cis-diol biomolecules as well as thrombin can be rapidly extracted via arbitrarily predefined affinity interactions including coordination chemistry, covalent bonding, and biological recognition. An integrated MS platform allows continuous interrogation. Profiling and quantitation of dysregulated phosphopeptides from small-volume (∼5 μL) serum samples has been successfully demonstrated. As a front-end device adapted to any mass spectrometer, this MS platform might hold much promise in protein/peptide analysis in point-of-care (POC) diagnostics and clinical applications. Customizable bio-affinity arrays were interfaced with ambient ionization mass spectrometry for high-throughput assays of protein/peptide biomarkers in biofluids.![]()
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
109
|
Wang B, Duan A, Xie S, Zhang J, Yuan L, Cao Q. The molecular imprinting of magnetic nanoparticles with boric acid affinity for the selective recognition and isolation of glycoproteins. RSC Adv 2021; 11:25524-25529. [PMID: 35478904 PMCID: PMC9036988 DOI: 10.1039/d1ra00716e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/18/2021] [Indexed: 11/21/2022] Open
Abstract
A strategy was designed for the molecular imprinting of magnetic nanoparticles with boric acid affinity (MNPs@MIP) which were then used for the selective recognition and isolation of glycoproteins. Fe3O4 nanoparticles were prepared by a solvothermal method and direct silanization by the condensation polymerization of aminopropyltriethoxysilane (APTES). Subsequently, phenylboric acid was functionalized by reductive amination between 2,3-difluoro-4-formyl phenylboric acid (DFFPBA) and the amido group. The resultant Fe3O4@SiO2–DFFPBA was then used for the selective adsorption of a glycoprotein template. Finally, a molecularly imprinted layer was covered on the surface nanoparticles by the condensation polymerization of tetraethyl orthosilicate (TEOS). The adsorption capacities of the resultant MNPs@MIP–HRP and MNPs@MIP–OVA to horseradish peroxidase (HRP) or ovalbumin (OVA) were significantly higher than non-imprinted particles (MNPs@NIP). Moreover, the adsorption capacities of MNPs@MIP–HRP and MNPs@MIP–OVA on non-template protein and non-glycoprotein bovine serum albumin (BSA) were significantly lower than those of their respective template proteins, thus indicating that both of the prepared MNPs@MIP exhibited excellent selectivity. A strategy was designed for the preparation of molecular imprinting of magnetic nanoparticles with boric acid affinity (MNPs@MIP), and the resultant MNPs@MIP exhibited excellent selectivity for template glycoproteins.![]()
Collapse
Affiliation(s)
- Bangjin Wang
- Department of Chemistry, Yunnan Normal University Kunming 650500 China
| | - Aihong Duan
- Department of Chemistry, Yunnan Normal University Kunming 650500 China
| | - Shengming Xie
- Department of Chemistry, Yunnan Normal University Kunming 650500 China
| | - Junhui Zhang
- Department of Chemistry, Yunnan Normal University Kunming 650500 China
| | - Liming Yuan
- Department of Chemistry, Yunnan Normal University Kunming 650500 China
| | - Qiue Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| |
Collapse
|
110
|
Kubo T, Watanabe N, Ikari S, Liu C, Kanao E, Naito T, Sano T, Otsuka K. Fluorescent detection of target proteins via a molecularly imprinted hydrogel. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3086-3091. [PMID: 34151917 DOI: 10.1039/d0ay02341h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteins are typically separated by an immune reaction, such as an enzyme-linked immunosorbent assay, and are detected by selective fluorescent labeling. This has potential for complicated procedures and the denaturation of proteins by labeling, and is cost consuming. In this study, we propose a technique for the selective separation and detection of a target protein using a molecularly imprinted hydrogel (PI gel) with fluorescent monomers. We focused on 8-anilino-1-naphthalenesulfonic acid (ANS), where the fluorescence intensity is easily changed by the interaction with proteins, and successfully synthesized the ANS monomer and a poly(ethylene glycol) (PEG) conjugated ANS monomer. The PI gel with the ANS monomers using bovine serum albumin (BSA) as a template showed the selective adsorption of BSA and the fluorescence intensity increased due to the adsorption of BSA.
Collapse
Affiliation(s)
- Takuya Kubo
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Naoki Watanabe
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Seiji Ikari
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Chenchen Liu
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan and Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Osaka 567-0085, Japan
| | - Toyohiro Naito
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Koji Otsuka
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
111
|
Li H, He H, Liu Z. Recent progress and application of boronate affinity materials in bioanalysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
112
|
|
113
|
Huang H, Zheng Q, He Y, Zhong C, Tian W, Zhang S, Lin J, Lin Z. Facile synthesis of bifunctional polymer monolithic column for tunable and specific capture of glycoproteins and phosphoproteins. J Chromatogr A 2021; 1651:462329. [PMID: 34157477 DOI: 10.1016/j.chroma.2021.462329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Efficiently tunable capture of the glycosylated/phosphorylated proteins is critical to meet the need of in-depth glycoproteome and phosphoproteome studies. Reported here is a new bifunctional polymer monolithic column by introducing benzeneboronic acid and phosphonic acid onto monolithic column (denoted as poly (EDMA-co-VPBA-co-VPA) monolith) for tunable and specific enrichment of glycoproteins and phosphoproteins via switching different mobile phases. Based on boronate affinity and immobilized metal affinity, the as-prepared poly (EDMA-co-VPBA-co-VPA) monolith exhibited superior performance in selective separation of small molecules and biomacromolecules containing cis-diol/phosphate groups or not. And the frontal chromatography analysis showed that the binding capacity of the poly (EDMA-co-VPBA-co-VPA) monolith towards horseradish peroxidase (HRP, glycoprotein) or β-casein (phosphoprotein) is four-fold higher than that of bovine serum albumin (BSA, non-glycosylated/phosphorylated protein). Furthermore, combined with mass spectrometry identification, the successful application in specific enrichment of glycopeptides/phosphopeptides from tryptic digests of HRP/β-casein and direct capture of low abundant endogenous phosphopeptides from human serum proved great practicability in complex samples. This study provides a novel insight for fabricating the monolithic columns with multifunctionalization to facilitate further post-translational modification (PTM)-proteomics development.
Collapse
Affiliation(s)
- Huan Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qiong Zheng
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yanting He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenchang Tian
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Juan Lin
- Department of Cardiology, Fujian Provincial Governmental Hospital, Fuzhou 350003, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
114
|
Xing Y, Li J, Chen M, Wang X, Hou X. Tannic acid-directed synthesis of magnetic and boronic acid-functionalized metal-organic frameworks for selective extraction and quantification of catecholamines in human urine. Mikrochim Acta 2021; 188:225. [PMID: 34104996 DOI: 10.1007/s00604-021-04852-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
A novel magnetic borate-functionalized metal-organic framework nanocomposite was designed and fabricated for selective enrichment of catecholamines from human urine. Firstly, the polytannic acid (PTA) layer with natural low-cost and ecofriendly polyphenol tannic acid as the organic ligand and Fe3+ as the cross-linker was coated onto the surface of Fe3O4. Then, the borate-functionalized metal-organic framework (MIL-100(Fe)-B) with 5-boronobenzene-1,3-dicarboxylic acid as a ligand fragment was modified onto the PTA-coated Fe3O4 through a metal-ligand-fragment coassembly strategy. The obtained smart porous adsorbent Fe3O4@PTA@MIL-100(Fe)-B was confirmed by means of several characterization methods and then applied as an effective magnetic solid phase extraction (MSPE) sorbent for specific extraction of trace catecholamines in human urine. The Plackett-Burman design was used for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were further investigated by the Box-Behnken design to determine the optimal extraction conditions. Under the optimal conditions, a method for selective MSPE combined with high-performance liquid chromatography with a fluorescence detector for the quantitation of catecholamines in human urine was developed and validated. With the proposed method, the linearity range was from 0.500 to 500 ng mL-1 for norepinephrine and epinephrine and from 1.00 to 500 ng mL-1 for dopamine. The detection limits were 0.050, 0.11, and 0.20 ng mL-1 for norepinephrine, epinephrine, and dopamine, respectively. The recoveries from spiking experiments varied from 91.5 to 108% with relative standard deviations (RSDs) of 0.80-4.8%. The established method is rapid, sensitive, accurate, inexpensive, and ecofriendly and was successfully applied to the determination of the target catecholamines in human urine samples.
Collapse
Affiliation(s)
- Yanyan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Jianshu Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Meiling Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Xiangting Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, People's Republic of China.
| |
Collapse
|
115
|
|
116
|
Protein-imprinted polymer films prepared via cavity-selective multi-step post-imprinting modifications for highly selective protein recognition. Anal Bioanal Chem 2021; 413:6183-6189. [PMID: 34002274 DOI: 10.1007/s00216-021-03386-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
The use of molecularly imprinted polymers (MIPs) for achieving synthetic receptors capable of selective molecular recognition is promising; however, these polymers exhibit low selectivity derived from the heterogeneity of their created, imprinted cavities. To achieve highly selective protein recognition, we herein report the cavity-selective, multi-step, post-imprinting modification of MIPs. An MIP film for lysozyme was prepared by the copolymerization of {[2-(2-methacrylamido)ethyldithio]ethylcarbamoyl}methoxy acetic acid, a functional monomer possessing a modifiable disulfide bond, with acrylamide and N,N'-methylenebisacrylamide in the presence of lysozyme. After the removal of lysozyme, the disulfide bonds were cleaved by treatment with a reductant. A low concentration of lysozyme was then added to occupy the high-affinity cavities of the polymer and sterically protect the thiol groups within them. A poly(ethylene glycol)-based capping agent was reacted with the thiol groups residing in low-affinity cavities to hinder them. After the regeneration of the high-affinity cavities by washing out the bound lysozyme, the remaining thiol groups were reacted with 3-(2-pyridyldithio)propionic acid to introduce interacting groups, which produced capped MIPs. Comparing the capped and uncapped MIPs revealed that off-target protein binding was effectively suppressed by the capping treatment without any reduction in binding affinity (1.1 × 109 M-1). Further investigation revealed that the lysozyme concentration during the capping process is critical for the selectivity of the capped MIP. In this case, highly selective MIPs were achieved when the lowest lysozyme concentration (100 nM) was used. This facile process for creating highly selective, synthetic polymer receptors is a powerful approach for achieving plastic antibodies.
Collapse
|
117
|
Mavliutova L, Verduci E, Shinde SA, Sellergren B. Combinatorial Design of a Sialic Acid-Imprinted Binding Site. ACS OMEGA 2021; 6:12229-12237. [PMID: 34056377 PMCID: PMC8154165 DOI: 10.1021/acsomega.1c01111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Aberrant glycosylation has been proven to correlate with various diseases including cancer. An important alteration in cancer progression is an increased level of sialylation, making sialic acid one of the key constituents in tumor-specific glycans and an interesting biomarker for a diversity of cancer types. Developing molecularly imprinted polymers (MIPs) with high affinity toward sialic acids is an important task that can help in early cancer diagnosis. In this work, the glycospecific MIPs are produced using cooperative covalent/noncovalent imprinting. We report here on the fundamental investigation of this termolecular imprinting approach. This comprises studies of the relative contribution of orthogonally interacting functional monomers and their synergetic behavior and the choice of different counterions on the molecular recognition properties for the sialylated targets. Combining three functional monomers targeting different functionalities on the template led to enhanced imprinting factors (IFs) and selectivities. This apparent cooperative effect was supported by 1H NMR and fluorescence titrations of monomers with templates or template analogs. Moreover, highlighting the role of the template counterion use of tetrabutylammonium (TBA) salt of sialic acid resulted in better imprinting than that of sodium salts supported by both in solution interaction studies and in MIP rebinding experiments. The glycospecific MIPs display high affinity for sialylated targets, with an overall low binding of other nontarget saccharides.
Collapse
|
118
|
Fu X, Li Y, Gao S, Lv Y. Selective recognition of tumor cells by molecularly imprinted polymers. J Sep Sci 2021; 44:2483-2495. [PMID: 33835702 DOI: 10.1002/jssc.202100137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022]
Abstract
Molecularly imprinted polymers, developed 50 years ago, have garnered enormous attention as receptor-like materials. Lately, molecularly imprinted polymers have been employed as a specific target tool in favor of cancer diagnosis and therapy by the selective recognition of tumor cells. Although the molecular imprinting technology has been well-innovated recently, the cell still remains the most challenging target for imprinting. In this review, we summarize the advances in the synthesis of molecularly imprinted polymers suitable for the selective recognition of tumor cells. Through a sustained effort, three strategies have been developed including peptide-imprinting, polysaccharide-imprinting, and whole-cell imprinting, which have resulted in inspiring applications in effective cancer diagnosis and therapy. The major challenges and perspectives on the further directions related to the synthesis of molecularly imprinted polymers were also outlined.
Collapse
Affiliation(s)
- Xiaopeng Fu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yan Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Shuang Gao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
119
|
Zheng H, Lin H, Chen X, Sui J, Ullah Khan M, Ramesh Pavase T, Han X, Cao L. Tailor-made magnetic nanocomposite with pH and thermo-dual responsive copolymer brush for bacterial separation. Food Chem 2021; 358:129907. [PMID: 33930712 DOI: 10.1016/j.foodchem.2021.129907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022]
Abstract
Rapid detection of pathogenic bacteria particularly in food samples demands efficient separation and enrichment strategies. Here, hydrophilic temperature-responsive boronate affinity magnetic nanocomposites were established for selective enrichment of bacteria. The thermo-responsive polymer brushes were developed by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide (NIPAm) and allyl glycidyl ether (AGE), followed by a reaction of epoxy groups, and incorporation of fluorophenylboronic acid. The physical and chemical characteristics of the magnetic nanocomposites were analyzed systematically. After optimization, S. aureus and Salmonella spp. showed high binding capacities of 32.14 × 106 CFU/mg and 50.98 × 106 CFU/mg in 0.01 M PBS (pH 7.4) without bacteria death. Bacterial bindings can be controlled by altering temperature and the application of competing monosaccharides. The nanocomposite was then utilized to enrich S. aureus and Salmonella spp. from the spiked tap water, 25% milk, and turbot extraction samples followed by multiplex polymerase chain reaction (mPCR), which resulted in high bacteria enrichment, and demonstrated great potential in separation of bacteria from food samples.
Collapse
Affiliation(s)
- Hongwei Zheng
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiangfeng Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Centre, Jinan, Shandong 250014, China
| | - Jianxin Sui
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Mati Ullah Khan
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Tushar Ramesh Pavase
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiangning Han
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
120
|
Nadim AH, Abd El-Aal MA, Al-Ghobashy MA, El-Saharty YS. Facile imprinted polymer for label-free highly selective potentiometric sensing of proteins: case of recombinant human erythropoietin. Anal Bioanal Chem 2021; 413:3611-3623. [PMID: 33866391 DOI: 10.1007/s00216-021-03325-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
In the current study, a molecularly imprinted polymer (MIP)-based potentiometric sensor was fabricated for a label-free determination of recombinant human erythropoietin (rhEPO). The MIP sensor was operated under zero current conditions using tetra-butyl ammonium bromide as a marker ion. A highly ordered rhEPO surface imprinted layer was prepared using 3-aminopropyl triethoxysilane and tetraethoxysilane as a monomer and cross-linker, respectively, under mild reaction conditions. A two-fold increase in the signal output was obtained by polymeric surface minimization (0.5 mm) that allowed more pronounced molecular recognition (imprinting factor = 20.1). The proportion of cross-reactivity was examined using different interfering biomolecules. Results confirmed sensor specificity for both structurally related and unrelated proteins. An ~40% decrease in the response was obtained for rhEPO-β compared to rhEPO-α. The imprinted polymeric surface was evaluated using scanning electron microscopy and Fourier transform infrared spectroscopy. Under the optimal measurement conditions, a linear range of 10.00-1000.00 ng mL-1 (10-10 - 10-8 M) was obtained. The sensor was employed for the determination of rhEPO in different biopharmaceutical formulations. Results were validated against standard immunoassay. Spiked human serum samples were analyzed and the assay was validated. The presence of non-specific proteins did not significantly affect (~8%) the results of our assay. A concentration-dependent linear response was produced in an identical range with detection limit as low as 6.50 ng mL-1 (2.14 × 10-10 M). The facile fabricated MIP sensor offers a cost-effective, portable, and easy to use alternative for biosimilarity assessment and clinical application.
Collapse
Affiliation(s)
- Ahmed H Nadim
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - May A Abd El-Aal
- National Organization for Research and Control of Biologicals, 51 Wezaret El-Zeraa St., Dokki, Giza, 354, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt. .,Bioanalysis Research Group, School of Pharmacy, New Giza University, Km 22 Cairo-Alex road, Giza, 12563, Egypt.
| | - Yasser S El-Saharty
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| |
Collapse
|
121
|
Zhao N, Xing J, Zheng Z, Pi Z, Song F, Liu Z, Liu S. Boronate Affinity-Based Oriented and Double-Shelled Surface Molecularly Imprinted Polymers on 96-Well Microplates for a High-Throughput Pharmacokinetic Study of Rutin and Its Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3972-3981. [PMID: 33755461 DOI: 10.1021/acs.jafc.0c07431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The boronate affinity-based oriented and double-shelled surface molecularly imprinted polymers on 96-well microplates (BDMIPs) were designed and applied to high-specific and high-throughput pharmacokinetic (PK) study of rutin and its metabolites from rat plasma without concentration and redissolution. It integrated the advantages of covalent effects-based boronate affinity, noncovalent effects of ethylene imine polymer (PEI) dendrimer, multiple cavities-based double-shelled layers, and multiparallel wells-based 96-well microplates. Furthermore, ultrahigh-performance liquid chromatography triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) was used to accurately quantify targets. It showed lower limits of detection (LODs) up to 100-fold than the conventional method. And PKs of rutin and trace isoquercetin (IQC) were first reported at the same time. The platform can provide a fast, simple, low-cost, high-selective, high-effective, and high-throughput methodological reference for analysis of large-scale samples in the fields of agriculture and food.
Collapse
Affiliation(s)
- Ningning Zhao
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Junpeng Xing
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhong Zheng
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zifeng Pi
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Zhiqiang Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
122
|
Wei T, Xu Q, Zou C, He Z, Tang Y, Gao T, Han M, Dai Z. A boronate-modified renewable nanointerface for ultrasensitive electrochemical assay of cellulase activity. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
123
|
Isolation and purification of oleuropein from olive leaves using boric acid affinity resin and a novel solvent system. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
124
|
Ali MM, Hussain D, Tang Y, Sun X, Shen Z, Zhang F, Du Z. Boronoisophthalic acid as a novel affinity ligand for the selective capture and release of glycoproteins near physiological pH. Talanta 2021; 225:121896. [PMID: 33592691 DOI: 10.1016/j.talanta.2020.121896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022]
Abstract
Boronic acid-based affinity materials have gained tremendous attention for the selective separation and recognition of cis-diol containing biomolecules. But often, these boronate affinity materials are stuck to some serious issues like high binding pH and weak affinity, especially in the case of glycoproteins. Here in this study, we used 5-boronoisophthlic acid as a novel affinity ligand for the selective capture and release of glycoproteins. The pKa value of 5-boronoisophthalic acid is investigated to be 7.8 which is just closed to physiological pH and is ideally suitable for the fast binding and elution kinetics of glycoproteins to avoid their degradation and deactivation. The affinity ligand is attached to the surface of polymer support using branched polyethyleneimine (PEI) which enhances the binding strength as it has multiple amine groups available for the attachment of 5-boronoisophthalic for synergistic interactions. The resulting affinity material is characterized and packed in a micropipette-tip using hydrophilic melamine foam as a frit to make the separation process smooth, simple, reliable, and robust. This boronic acid-based affinity tip exhibits binding constants for model glycoproteins in the range of 10-6-10-7 M, binding capacities in the range of 0.662 μM/g, and selectivity up to 1:1000 (HRP to BSA) under optimized extraction conditions. Finally, the boronic-based affinity tip is successfully applied to selectively capture the glycoproteins from the human milk sample, especially lactoferrin which is highly important in dairy manufacture.
Collapse
Affiliation(s)
- Muhammad Mujahid Ali
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Yan Tang
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuechun Sun
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhengchao Shen
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fengxia Zhang
- Corporate Laboratory, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
| | - Zhenxia Du
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
125
|
Xue X, Gong H, Zheng H, Ye L. Boronic Acid Functionalized Nanosilica for Binding Guest Molecules. ACS APPLIED NANO MATERIALS 2021; 4:2866-2875. [PMID: 33842857 PMCID: PMC8029584 DOI: 10.1021/acsanm.1c00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/10/2021] [Indexed: 05/14/2023]
Abstract
Dendritic fibrous nanosilica (DFNS) has very high surface area and well-defined nanochannels; therefore, it is very useful as supporting material for numerous applications including catalysis, sensing, and bioseparation. Due to the highly restricted space, addition of molecular ligands to DFNS is very challenging. This work studies how ligand conjugation in nanoscale pores in DFNS can be achieved through copper-catalyzed click reaction, using an optional, in situ synthesized, temperature-responsive polymer intermediate. A clickable boronic acid is used as a model to investigate the ligand immobilization and the molecular binding characteristics of the functionalized DFNS. The morphology, composition, nanoscale pores, and specific surface area of the boronic acid functionalized nanosilica were characterized by electron microscopy, thermogravimetric and elemental analysis, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption measurements. The numbers of boronic acid molecules on the modified DFNS with and without the polymer were determined to be 0.08 and 0.68 mmol of ligand/g of DFNS, respectively. We also studied the binding of small cis-diol molecules in the nanoscale pores of DFNS. The boronic acid modified DFNS with the polymer intermediate exhibits higher binding capacity for Alizarin Red S and nicotinamide adenine dinucleotide than the polymer-free DFNS. The two types of boronic acid modified DFNS can bind small cis-diol molecules in the presence of large glycoproteins, due in large part to the effect of size exclusion provided by the nanochannels in the DFNS.
Collapse
|
126
|
Selective analysis of interferon-alpha in human serum with boronate affinity oriented imprinting based plastic antibody. Talanta 2021; 230:122338. [PMID: 33934790 DOI: 10.1016/j.talanta.2021.122338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Interferons are important biomolecules in human immune system. Cytokine interferon alpha (IFN-α), a type I interferon, is one of the major components of the innate immune response involved in autoimmune diseases. Thus, the analysis of interferons is of great importance for both biological and pharmaceutical purposes. In this work, an IFN-α specific plastic antibody is prepared via boronate affinity oriented surface imprinting. By combing with the magnetic nanoparticles, the imprinted material exhibits several advantages, including strong affinity (Kd: 75.2 nM), high specificity (cross reactivity<25%), excellent efficiency (imprinting efficiency: 44.1%), tolerance to interferences, and easy manipulation. By employing the prepared imprinted material as sorbent for selective enrichment of IFN-α, a good linearity is achieved in the range of 50 ng/mL-10 μg/mL, and the detection and quantifcation limits are 10 ng/mL and 50 ng/mL respectively. The recoveries of this approach are found within 75.8%-82.2% with relative standard deviations of 6.4-9.7%. Furthermore, the IFN-α in spiked human serum is analyzed with acceptable reliability (recovery: 77.3%, RSD: 7.9%). Because of these highly desirable properties, the IFN-α specific plastic antibody can find more applications in medical and pharmaceutical industry.
Collapse
|
127
|
Zhong H, Li Y, Huang Y, Zhao R. Metal-organic frameworks as advanced materials for sample preparation of bioactive peptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:862-873. [PMID: 33543184 DOI: 10.1039/d0ay02193h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of novel affinity materials and separation techniques is crucial for the progress of modern proteomics and peptidomics. Detection of peptides and proteins from complex matrices still remains a challenging task due to the highly complicated biological composition, low abundance of target molecules, and large dynamic range of proteins. As an emerging area of analytical science, metal-organic framework (MOF)-based separation of proteins and peptides is attracting growing interest. This minireview summarizes the recent advances in MOF-based affinity materials for the sample preparation of proteins and peptides. Some newly emerging MOF nanoreactors for the degradation of peptides and proteins are introduced. An update of MOF-based affinity materials for the isolation of glycopeptides, phosphopeptides and low-abundance endogenous peptides in the last two years is focused on. The separation mechanism is discussed along with the chemical structures of MOFs. Finally, the remaining challenges and future development of MOFs in analyzing peptides and proteins in complicated biological samples are discussed.
Collapse
Affiliation(s)
- Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
128
|
Xu S, Wang L, Liu Z. Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angew Chem Int Ed Engl 2021; 60:3858-3869. [PMID: 32789971 PMCID: PMC7894159 DOI: 10.1002/anie.202005309] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/08/2020] [Indexed: 12/29/2022]
Abstract
Molecularly imprinted polymers (MIPs) are chemically synthesized affinity materials with tailor-made binding cavities complementary to the template molecules in shape, size, and functionality. Recently, engineering MIP-based nanomedicines to improve cancer therapy has become a rapidly growing field and future research direction. Because of the unique properties and functions of MIPs, MIP-based nanoparticles (nanoMIPs) are not only alternatives to current nanomaterials for cancer therapy, but also hold the potential to fill gaps associated with biological ligand-based nanomedicines, such as immunogenicity, stability, applicability, and economic viability. Here, we survey recent advances in the design and fabrication of nanoMIPs for cancer therapy and highlight their distinct features. In addition, how to use these features to achieve desired performance, including extended circulation, active targeting, controlled drug release and anti-tumor efficacy, is discussed and summarized. We expect that this minireview will inspire more advanced studies in MIP-based nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University163 Xianlin AvenueNanjing210023China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of Ottawa451 Smyth RoadOttawaOntarioK1H 8M5Canada
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University163 Xianlin AvenueNanjing210023China
| |
Collapse
|
129
|
Xu S, Wang L, Liu Z. Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202005309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| |
Collapse
|
130
|
Tsutsumi K, Sunayama H, Kitayama Y, Takano E, Nakamachi Y, Sasaki R, Takeuchi T. Fluorescent Signaling of Molecularly Imprinted Nanogels Prepared via Postimprinting Modifications for Specific Protein Detection. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Katsuki Tsutsumi
- Graduate School of Engineering Kobe University 1-1, Rokkodai-cho Nada-ku Kobe 657-8501 Japan
| | - Hirobumi Sunayama
- Graduate School of Engineering Kobe University 1-1, Rokkodai-cho Nada-ku Kobe 657-8501 Japan
| | - Yukiya Kitayama
- Graduate School of Engineering Kobe University 1-1, Rokkodai-cho Nada-ku Kobe 657-8501 Japan
| | - Eri Takano
- Graduate School of Engineering Kobe University 1-1, Rokkodai-cho Nada-ku Kobe 657-8501 Japan
| | - Yuji Nakamachi
- Department of Clinical Laboratory Kobe University Hospital 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology Kobe University Hospital 7-5-2 Kusunoki-cho Chuo-ku Kobe 650-0017 Japan
- Center for Advanced Medical Engineering Research & Development (CAMED) Kobe University 1-5-1 Minatojimaminami‐machi Chuo‐ku Kobe 650-0047 Japan
| | - Toshifumi Takeuchi
- Graduate School of Engineering Kobe University 1-1, Rokkodai-cho Nada-ku Kobe 657-8501 Japan
- Center for Advanced Medical Engineering Research & Development (CAMED) Kobe University 1-5-1 Minatojimaminami‐machi Chuo‐ku Kobe 650-0047 Japan
| |
Collapse
|
131
|
Preparation of glycan-oriented imprinted polymer coating Gd-doped silicon nanoparticles for targeting cancer Tn antigens and dual-modal cell imaging via boronate-affinity surface imprinting. Talanta 2021; 223:121706. [DOI: 10.1016/j.talanta.2020.121706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
|
132
|
Gu Z, Dong Y, Xu S, Wang L, Liu Z. Molecularly Imprinted Polymer-Based Smart Prodrug Delivery System for Specific Targeting, Prolonged Retention, and Tumor Microenvironment-Triggered Release. Angew Chem Int Ed Engl 2021; 60:2663-2667. [PMID: 33078504 PMCID: PMC7898932 DOI: 10.1002/anie.202012956] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 12/17/2022]
Abstract
Prodrug and drug delivery systems are two effective strategies for improving the selectivity of chemotherapeutics. Molecularly imprinted polymers (MIPs) have emerged as promising carriers in targeted drug delivery for cancer treatment, but they have not yet been integrated with the prodrug strategy. Reported here is an MIP-based smart prodrug delivery system for specific targeting, prolonged retention time, and tumor microenvironment-triggered release. 5'-Deoxy-5-fluorocytidine (DFCR) and sialic acid (SA) were used as a prodrug and a marker for tumor targeting, respectively. Their co-imprinted nanoparticles were prepared as a smart carrier. Prodrug-loaded MIP specifically and sustainably accumulated at the tumor site and then gradually released. Unlike conventional prodrug designs, which often require in-liver bioconversion, this MIP-based prodrug delivery is liver-independent but tumor-dependent. Thus, this study opens new access to the development of smart prodrug delivery nanoplatforms.
Collapse
Affiliation(s)
- Zikuan Gu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University163 Xianlin AvenueNanjing210023China
| | - Yueru Dong
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University163 Xianlin AvenueNanjing210023China
| | - Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University163 Xianlin AvenueNanjing210023China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of Ottawa451 Smyth RoadOttawaOntarioK1H 8M5Canada
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University163 Xianlin AvenueNanjing210023China
| |
Collapse
|
133
|
Gu Z, Dong Y, Xu S, Wang L, Liu Z. Molecularly Imprinted Polymer‐Based Smart Prodrug Delivery System for Specific Targeting, Prolonged Retention, and Tumor Microenvironment‐Triggered Release. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zikuan Gu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| | - Yueru Dong
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| | - Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| |
Collapse
|
134
|
Shen D, Chen X, Luo J, Wang Y, Sun Y, Pan J. Boronate affinity imprinted Janus nanosheets for macroscopic assemblies: From amphiphilic surfactants to porous sorbents for catechol adsorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
135
|
Xu L, Hu ZS, Duan R, Wang X, Yang YS, Dong LY, Wang XH. Advances and applications of in-tube solid-phase microextraction for analysis of proteins. J Chromatogr A 2021; 1640:461962. [PMID: 33582517 DOI: 10.1016/j.chroma.2021.461962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/29/2022]
Abstract
In-tube solid-phase microextraction (IT-SPME) with capillary column as extraction device is a well-established green extraction technique with a lot of applications in the fields of biomedicine, food and environment. This article reviews the research contributions of IT-SPME for analysis of proteins. The paper first briefly describes the history of IT-SPME. Then, the development and principle of IT-SPME for analysis of proteins are introduced, in which capillary column configurations of IT-SPME and instruments for quantitative analysis of proteins are summarized. Subsequently, the synthesis strategy and recognition principle of different recognition units, including antibodies, aptamers, molecularly imprinted polymers, and boronate affinity materials, are discussed in detail. This part also introduces several rare recognition units, including lectins, restricted access materials, lysine modified with β-cyclodextrin and cell membrane. The development trend and possible future direction of IT-SPME for analysis of proteins are mentioned.
Collapse
Affiliation(s)
- Liang Xu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China; Tianjin Medical College, Tianjin, 300222, PR China.
| | - Zhan-Song Hu
- Department of pharmacy, Tianjin Chest Hospital, 300222, PR China
| | - Rui Duan
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xuan Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Yuan-Shuo Yang
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Lin-Yi Dong
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xian-Hua Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China.
| |
Collapse
|
136
|
Highly Porous, Molecularly Imprinted Core–Shell Type Boronate Affinity Sorbent with a Large Surface Area for Enrichment and Detection of Sialic Acid Isomers. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01890-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
137
|
Ishihara K, Abe M, Fukazawa K, Konno T. Control of Cell-Substrate Binding Related to Cell Proliferation Cycle Status Using a Cytocompatible Phospholipid Polymer Bearing Phenylboronic Acid Groups. Macromol Biosci 2021; 21:e2000341. [PMID: 33502108 DOI: 10.1002/mabi.202000341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/18/2020] [Indexed: 12/19/2022]
Abstract
To provide high-quality cellular raw materials for cell engineering and pharmaceutical engineering, a polymer substrate is prepared for cell separation focusing on the cell proliferation cycle. There are many types of sugar chains on cell membranes, which function as signaling molecules to control interactions with the exterior of the cell; their abundance changes during the cell-proliferation cycle. In this study, a phenylboronic acid group, which has affinity for sugar chains, is introduced into a polymer containing a phosphorylcholine group that does not induce cell activation. On the surface of this polymer, human promyelocytic leukemia cells can adhere. The adhesion rate is increased by pretreating the substrate with an alkaline solution. Moreover, cell adhesion is dependent on the sugar additive in the culture medium. Therefore, cell adhesion is governed by reactions between the sugar chain on the cell membrane and the phenylboronic acid groups on the substrate. It is revealed that the adhesion rate changes depending on the expression level of sugar chains related to the cell-proliferation cycle. Based on this, it may be proposed a cell proliferation cycle-specific separation process using the polymer substrate based on cell adhesion depending on sugar chain density.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masashi Abe
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomohiro Konno
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba-Aramaki, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
138
|
Xiong CF, Ding J, Zhu QF, Bai YL, Yin XM, Ye TT, Yu QW, Feng YQ. Boron Isotope Tag-Assisted Ultrahigh-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry for Discovery and Annotation of cis-Diol-Containing Metabolites. Anal Chem 2021; 93:3002-3009. [PMID: 33497194 DOI: 10.1021/acs.analchem.0c05037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
cis-Diol-containing metabolites are widely distributed in living organisms, and they participate in the regulation of various important biological activities. The profiling of cis-diol-containing metabolites could help us in fully understanding their functions. In this work, based on the characteristic isotope pattern of boron, we employed a boronic acid reagent as the isotope tag to establish a sensitive and selective liquid chromatography-high-resolution mass spectrometry method for the screening and annotation of cis-diol-containing metabolites in biological samples. Boronic acid reagent 2-methyl-4-phenylaminomethylphenylboronic acid was used to label the cis-diol-containing metabolites in biological samples to improve the selectivity and MS sensitivity of cis-diol-containing metabolites. Based on the characteristic 0.996 Da mass difference of precursor ions and the peak intensity ratio of 1:4 originating from 10B and 11B natural isotopes, the potential cis-diol-containing metabolites were rapidly screened from biological samples. Potential cis-diol-containing metabolites were annotated by database searching and analysis of fragmentation patterns obtained by multistage MS (MSn) via collision-induced dissociation. Importantly, the cis-diol position could be readily resolved by the MS3 spectrum. With this method, a total of 45 cis-diol-containing metabolites were discovered in rice, including monoglycerides, polyhydroxy fatty acids, fatty alcohols, and so forth. Furthermore, the established method showed superiority in avoiding false-positive results in profiling cis-diol-containing metabolites.
Collapse
Affiliation(s)
- Cai-Feng Xiong
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Jun Ding
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Quan-Fei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Ya-Li Bai
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Ming Yin
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Tian-Tian Ye
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Qiong-Wei Yu
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
139
|
Li Z, Bin Luo, Yu L, Lan F, Wu Y. Intermolecular B-N coordination and multi-interaction synergism induced selective glycoprotein adsorption by phenylboronic acid-functionalized magnetic composites under acidic and neutral conditions. J Mater Chem B 2021; 9:453-463. [PMID: 33289778 DOI: 10.1039/d0tb01901a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abnormal protein glycosylation is associated with many diseases including cardiovascular disease, diabetes, and cancer. Therefore, selective capturing of glycoproteins under physiological or weak acid conditions (tumor microenvironment) is vital for disease diagnosis and further comprehensive analysis. Here, we propose a strategy of intermolecular B-N bond-based phenylboronic acid affinity to capture glycoproteins under neutral and slightly acidic conditions. Surprisingly, the captured glycoproteins were released in alkaline solution. This is contrary to the traditional phenylboric acid affinity, and we studied this from the perspective of materials, proteins, and incubation conditions. We identified the synergistic effect of intermolecular B-N bond-based phenylboronic acid affinity, electrostatic interaction, and polymer brush structure-based glycoprotein adsorption under slightly acidic conditions. The electrostatic repulsion between Fe3O4@SiO2@poly (2-aminoethyl methacrylate hydrochloride)-4-carboxyphenylboronic acid (Fe3O4@SiO2@PAMA-CPBA) nanoparticles and transferrin (TRF) was far greater than the specific binding between phenylboric acid of CPBA and glycosylation residues of TRF resulting in the release of the captured glycoproteins in alkaline solution. Fe3O4@SiO2@PAMA-CPBA nanoparticles exhibited different selectivity capabilities toward different glycoproteins in multiprotein solutions due to protein interactions. These results may pave a new way for the design of phenylboric acid-based materials towards glycoprotein adsorption in a physiological environment.
Collapse
Affiliation(s)
- Zhiyu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Lingzhu Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
140
|
Kip C, Hamaloğlu KÖ, Demir C, Tuncel A. Recent trends in sorbents for bioaffinity chromatography. J Sep Sci 2021; 44:1273-1291. [PMID: 33370505 DOI: 10.1002/jssc.202001117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
Isolation or enrichment of biological molecules from complex biological samples is mostly a prerequisite in proteomics, genomics, and glycomics. Different techniques have been used to advance the efficiency of the purification of biological molecules. Bioaffinity chromatography is one of the most powerful technique that plays an important role in the isolation of target biological molecules by the specific interactions with ligands that are immobilized on different support materials. This review examines the recent developments in bioaffinity chromatography particularly over the past 5 years in the literature. Also properties of supports, immobilization techniques, types of binding agents, and methods used in bioaffinity chromatography applications are summarized.
Collapse
Affiliation(s)
- Cigdem Kip
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| | | | - Cihan Demir
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey.,Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Turkey
| | - Ali Tuncel
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
141
|
Zheng H, Hajizadeh S, Gong H, Lin H, Ye L. Preparation of Boronic Acid-Functionalized Cryogels Using Modular and Clickable Building Blocks for Bacterial Separation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:135-145. [PMID: 33371673 PMCID: PMC7871328 DOI: 10.1021/acs.jafc.0c06052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Composite cryogels containing boronic acid ligands are synthesized for effective separation and isolation of bacteria. The large and interconnected pores in cryogels enable fast binding and release of microbial cells. To control bacterial binding, an alkyne-tagged boronic acid ligand is conjugated to azide-functionalized cryogel via the Cu(I)-catalyzed azide-alkyne cycloaddition reaction. The boronic acid-functionalized cryogel binds Gram-positive and Gram-negative bacteria through reversible boronate ester bonds, which can be controlled by pH and simple monosaccharides. To increase the capacity of affinity separation, a new approach is used to couple the alkyne-tagged phenylboronic acid to cryogel via an intermediate polymer layer that provides multiple immobilization sites. The morphology and chemical composition of the composite cryogel are characterized systematically. The capability of the composite cryogel for the separation of Gram-positive and Gram-negative bacteria is investigated. The binding capacities of the composite cryogel for Escherichia coli and Staphylococcus epidermidis are 2.15 × 109 and 3.36 × 109 cfu/g, respectively. The bacterial binding of the composite cryogel can be controlled by adjusting pH. The results suggest that the composite cryogel may be used as affinity medium for rapid separation and isolation of bacteria from complex samples.
Collapse
Affiliation(s)
- Hongwei Zheng
- Division
of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
- Food
Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
| | - Solmaz Hajizadeh
- Division
of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Haiyue Gong
- Division
of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Hong Lin
- Food
Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
| | - Lei Ye
- Division
of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
142
|
He S, Zhang L, Bai S, Yang H, Cui Z, Zhang X, Li Y. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110179] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
143
|
Zhang X, Gao L, Niu L, Bi X. Microwave-assisted preparation of a molecularly imprinted monolith combining an imidazolium ionic liquid and POSS for enhanced extraction of baicalin-like compounds in Scutellaria baicalensis by means of in-capillary SPME followed by on-line LC and off-line LC-MS/MS. NEW J CHEM 2021. [DOI: 10.1039/d0nj06254e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An imidazolium-type ionic liquid and polyhedral oligomeric silsesquioxane were combined to produce an imprinted monolith in capillary endowed with wide selectivity to enrich baicalin and its analogues for analysis by multidimensional LC systems.
Collapse
Affiliation(s)
- Xiaohan Zhang
- School of Materia Medica
- Hebei University of Chinese Medicine
- Hebei
- China
| | - Le Gao
- Department of Experiment Center
- Hebei University of Chinese Medicine
- Hebei
- China
- Hebei Traditional Chinese Medicine Formula Granule Technology Innovation Center
| | - Liying Niu
- School of Materia Medica
- Hebei University of Chinese Medicine
- Hebei
- China
- Hebei Traditional Chinese Medicine Formula Granule Technology Innovation Center
| | - Xiaodong Bi
- School of Materia Medica
- Hebei University of Chinese Medicine
- Hebei
- China
- Hebei Traditional Chinese Medicine Formula Granule Technology Innovation Center
| |
Collapse
|
144
|
Kalecki J, Iskierko Z, Cieplak M, Sharma PS. Oriented Immobilization of Protein Templates: A New Trend in Surface Imprinting. ACS Sens 2020; 5:3710-3720. [PMID: 33225686 PMCID: PMC7771019 DOI: 10.1021/acssensors.0c01634] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
In this Review, we have summarized recent trends in protein template imprinting. We emphasized a new trend in surface imprinting, namely, oriented protein immobilization. Site-directed proteins were assembled through specially selected functionalities. These efforts resulted in a preferably oriented homogeneous protein construct with decreased protein conformation changes during imprinting. Moreover, the maximum functionality for protein recognition was utilized. Various strategies were exploited for oriented protein immobilization, including covalent immobilization through a boronic acid group, metal coordinating center, and aptamer-based immobilization. Moreover, we have discussed the involvement of semicovalent as well as covalent imprinting. Interestingly, these approaches provided additional recognition sites in the molecular cavities imprinted. Therefore, these molecular cavities were highly selective, and the binding kinetics was improved.
Collapse
Affiliation(s)
- Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush S. Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
145
|
Murtaza G, Rizvi AS, Irfan M, Li L, Qu F. Determination of glycated albumin in serum and saliva by capillary electrophoresis utilizing affinity of 3-acrylamido phenylboronic acid selected by virtual screening and molecular docking. J Chromatogr A 2020; 1636:461793. [PMID: 33340745 DOI: 10.1016/j.chroma.2020.461793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
The glycated albumin (G-alb) is a potential marker of hyperglycemia in diabetes and other neurodegenerative disorders in humans. G-alb's presence in the total human serum albumin (tHSA) is an important indicator in the timely diagnosis of disease. To identify G-alb content, it needs to be isolated from non-glycated albumin (NG-alb). Here, we present Capillary electrophoresis (CE) methods with 3-acrylamido phenylboronic acid (3-APBA) as an entrapped ligand in the agarose gel to develop agarose-3-APBA functional capillary and as an affinity ligand added to the buffer without agarose. 3-APBA was selected by computational virtual screening of several phenylboronic acid (PBA) compounds and other ligands to bind G-alb and separate from NG-alb selectively. The agarose-3-APBA functional capillary method involved agarose gel dilution approach coupled with injection pressure to obtain reduced viscosity and sufficient injection volume of protein samples. The method delivered separation in 9.7 min, with a resolution of 3.4, G-alb recovery up to 65%, and took 25 min to complete the entire process. The second method involved 3-APBA as an affinity ligand in the buffer and delivered separation in 4.2 min, with a resolution of 6.4, G-alb recovery up to 102% recovery, with relatively easy procedures. Therefore, it was further applied to determine G-alb content from tHSA in human serum and saliva. The G-alb found content in serum samples was in the range of 21. 1 ± ± 1.4% to 40.5 ± 1.6% out of tHSA and 25.1 ± 1.6% to 33.3 1.4% in saliva. The binding mechanisms were investigated by molecular dockings, which revealed hydrogen bonding, π-π, and van der walls interactions between 3-APBA and G-alb. The affinity was validated by affinity capillary electrophoresis (ACE), which revealed relatively strong interactions between 3-APBA and G-alb with the binding constant (Kb) of 4.53 × 109M - 1 to the 3.41 × 108M - 1 of 3-APBA and NG-alb. The affinity of 3-APBA toward G-alb was increased at pH 9.0 of the borax-borate (BB) buffer as background electrolyte (BGE). The limit of detection (LOD) was 10 nM, repeatability (RSD, n = 3) ≤ 1.4%, and recovery rate was 87.8 ± 1.6 to 100 ± 1.4% in serum and 97.3 ± 1.3 to 102.6 ± 1.1% in saliva. The sensitivity and reproducibility of the method met the detection requirements.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Aysha Sarfraz Rizvi
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Muhammad Irfan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
146
|
Rodriguez EL, Poddar S, Iftekhar S, Suh K, Woolfork AG, Ovbude S, Pekarek A, Walters M, Lott S, Hage DS. Affinity chromatography: A review of trends and developments over the past 50 years. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1157:122332. [PMID: 32871378 PMCID: PMC7584770 DOI: 10.1016/j.jchromb.2020.122332] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
The field of affinity chromatography, which employs a biologically-related agent as the stationary phase, has seen significant growth since the modern era of this method began in 1968. This review examines the major developments and trends that have occurred in this technique over the past five decades. The basic principles and history of this area are first discussed. This is followed by an overview of the various supports, immobilization strategies, and types of binding agents that have been used in this field. The general types of applications and fields of use that have appeared for affinity chromatography are also considered. A survey of the literature is used to identify major trends in these topics and important areas of use for affinity chromatography in the separation, analysis, or characterization of chemicals and biochemicals.
Collapse
Affiliation(s)
| | - Saumen Poddar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Sazia Iftekhar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Ashley G Woolfork
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Susan Ovbude
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Allegra Pekarek
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Morgan Walters
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Shae Lott
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
147
|
Silva MS, Tavares APM, de Faria HD, Sales MGF, Figueiredo EC. Molecularly Imprinted Solid Phase Extraction Aiding the Analysis of Disease Biomarkers. Crit Rev Anal Chem 2020; 52:933-948. [DOI: 10.1080/10408347.2020.1843131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matheus Siqueira Silva
- Laboratory of Toxicant and Drug Analyses, Federal University of Alfenas, Alfenas, Brazil
| | - Ana P. M. Tavares
- BioMark/ISEP, School of Engineering of the Polytechnic School of Porto, Porto, Portugal
- BioMark/UC, Department of Chemical Engineering, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal
| | - Henrique Dipe de Faria
- Laboratory of Toxicant and Drug Analyses, Federal University of Alfenas, Alfenas, Brazil
| | - Maria Goreti Ferreira Sales
- BioMark/ISEP, School of Engineering of the Polytechnic School of Porto, Porto, Portugal
- BioMark/UC, Department of Chemical Engineering, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
148
|
Zheng H, Gong H, Cao L, Lin H, Ye L. Photoconjugation of temperature- and pH-responsive polymer with silica nanoparticles for separation and enrichment of bacteria. Colloids Surf B Biointerfaces 2020; 197:111433. [PMID: 33171436 DOI: 10.1016/j.colsurfb.2020.111433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 10/17/2020] [Indexed: 02/08/2023]
Abstract
A new photoconjugation approach was developed to prepare nanoparticle-supported boronic acid polymer for effective separation and enrichment of bacteria. The photo-activated polymer immobilization was demonstrated by coupling an azide-modified copolymer of N-isopropylacrylamide and glycidyl methacrylate to a perfluorophenyl azide-modified silica surface. The thermoresponsive polymer was synthesized using reversible addition fragmentation chain transfer polymerization followed by conversion of the pendant epoxides into azide groups. The perfluorophenyl azide-modified silica nanoparticles were synthesized by an amidation reaction between amino-functionalized silica and pentafluorobenzoyl chloride, and a subsequent treatment with sodium azide. Bacteria-capturing boronic acid was conjugated to the silica-supported polymer chains via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. The particle size, morphology and organic content of the composite nanoparticles were characterized systematically. The capability of the nanocomposite to bind Gram-positive and Gram-negative bacteria was investigated. The nanocomposite exhibited high binding capacities for E. coli (13.4 × 107 CFU/mg) and S. epidermidis (7.66 × 107 CFU/mg) in phosphate buffered saline. The new photoconjugation strategy enables fast and straightforward grafting of functional polymers on surface, which opens many new opportunities for designing functional materials for bioseparation and biosensing.
Collapse
Affiliation(s)
- Hongwei Zheng
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden; Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, 266003, China
| | - Haiyue Gong
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Limin Cao
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, 266003, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
149
|
Chen J, Li H, Xie H, Xu D. A novel method combining aptamer-Ag 10NPs based microfluidic biochip with bright field imaging for detection of KPC-2-expressing bacteria. Anal Chim Acta 2020; 1132:20-27. [PMID: 32980107 DOI: 10.1016/j.aca.2020.07.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/04/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022]
Abstract
The β-lactam drugs resistance poses a serious threat to human health throughout the world. Klebsiella pneumoniae carbapenemase 2 (KPC-2) is a carbapenemase that produced in bacteria can hydrolyze carbapenems, which typically considered as the antibiotics of last resort. Therefore, there is an urgent need to quickly and accurately detect whether bacteria express KPC-2. In this paper, a PDMS/glass microfluidic biochip integrated with aptamer-modified Ag10NPs nano-biosensors was developed for rapid, simple and specific pathogenic bacteria detection, more importantly, the biochip was combined with bright field imaging, then the captured bacteria could be observed and counted directly without using extra chemical labeling. KPC-2-expressing Escherichia coli (KPC-2 E.coli) was used as the target bacterium with a detected limit of 102 CFU and capture efficiency exceeded 90%. This method is remarkably specific towards KPC-2 E.coli over other non-resistant bacteria, and pathogen assay only takes ∼1 h to complete in a ready-to-use microfluidic biochip. Furthermore, the effective capture and fast counting of microfluidic biochip system demonstrates its potential for the rapid detection of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China.
| |
Collapse
|
150
|
Andreozzi P, Tamberi L, Tasca E, Giacomazzo GE, Martinez M, Severi M, Marradi M, Cicchi S, Moya S, Biagiotti G, Richichi B. The B & B approach: Ball-milling conjugation of dextran with phenylboronic acid (PBA)-functionalized BODIPY. Beilstein J Org Chem 2020; 16:2272-2281. [PMID: 32983271 PMCID: PMC7492696 DOI: 10.3762/bjoc.16.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023] Open
Abstract
Mechanochemistry is an emerging and reliable alternative to conventional solution (batch) synthesis of complex molecules under green and solvent-free conditions. In this regard, we report here on the conjugation of a dextran polysaccharide with a fluorescent probe, a phenylboronic acid (PBA)-functionalized boron dipyrromethene (BODIPY) applying the ball milling approach. The ball milling formation of boron esters between PBA BODIPY and dextran proved to be more efficient in terms of reaction time, amount of reactants, and labelling degree compared to the corresponding solution-based synthetic route. PBA-BODIPY dextran assembles into nanoparticles of around 200 nm by hydrophobic interactions. The resulting PBA-BODIPY dextran nanoparticles retain an apolar interior as proved by pyrene fluorescence, suitable for the encapsulation of hydrophobic drugs with high biocompatibility while remaining fluorescent.
Collapse
Affiliation(s)
- Patrizia Andreozzi
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3/13, 50019 Sesto Fiorentino, FI, Italy
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182 C, 20014 San Sebastián, Guipúzcoa, Spain
| | - Lorenza Tamberi
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182 C, 20014 San Sebastián, Guipúzcoa, Spain
| | - Elisamaria Tasca
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182 C, 20014 San Sebastián, Guipúzcoa, Spain
- Chemistry Department, University “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Gina Elena Giacomazzo
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3/13, 50019 Sesto Fiorentino, FI, Italy
| | - Marta Martinez
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182 C, 20014 San Sebastián, Guipúzcoa, Spain
| | - Mirko Severi
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3/13, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Marradi
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3/13, 50019 Sesto Fiorentino, FI, Italy
| | - Stefano Cicchi
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3/13, 50019 Sesto Fiorentino, FI, Italy
| | - Sergio Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182 C, 20014 San Sebastián, Guipúzcoa, Spain
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Giacomo Biagiotti
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3/13, 50019 Sesto Fiorentino, FI, Italy
| | - Barbara Richichi
- Department of Chemistry ‘Ugo Schiff’, University of Florence, Via della Lastruccia 3/13, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|