101
|
Wang C, Wang H, Wang B, Miyata H, Wang Y, Nayeem MOG, Kim JJ, Lee S, Yokota T, Onodera H, Someya T. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. SCIENCE ADVANCES 2022; 8:eabo1396. [PMID: 35594357 PMCID: PMC9122322 DOI: 10.1126/sciadv.abo1396] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Long-term high-fidelity electroencephalogram (EEG) recordings are critical for clinical and brain science applications. Conductive liquid-like or solid-like wet interface materials have been conventionally used as reliable interfaces for EEG recording. However, because of their simplex liquid or solid phase, electrodes with them as interfaces confront inadequate dynamic adaptability to hairy scalp, which makes it challenging to maintain stable and efficient contact of electrodes with scalp for long-term EEG recording. Here, we develop an on-skin paintable conductive biogel that shows temperature-controlled reversible fluid-gel transition to address the abovementioned limitation. This phase transition endows the biogel with unique on-skin paintability and in situ gelatinization, establishing conformal contact and dynamic compliance of electrodes with hairy scalp. The biogel is demonstrated as an efficient interface for long-term high-quality EEG recording over several days and for the high-performance capture and classification of evoked potentials. The paintable biogel offers a biocompatible and long-term reliable interface for EEG-based systems.
Collapse
|
102
|
Patterning meets gels: Advances in engineering functional gels at micro/nanoscales for soft devices. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
103
|
Marion JS, Gupta N, Cheung H, Monir K, Anikeeva P, Fink Y. Thermally Drawn Highly Conductive Fibers with Controlled Elasticity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201081. [PMID: 35278246 DOI: 10.1002/adma.202201081] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Electronic fabrics necessitate both electrical conductivity and, like any textile, elastic recovery. Achieving both requirements on the scale of a single fiber remains an unmet need. Here, two approaches for achieving conductive fibers (107 S m-1 ) reaching 50% elongation while maintaining minimal change in resistance (<0.5%) in embedded metallic electrodes are introduced. The first approach involves inducing a buckling instability in a metal microwire within a cavity of a thermally drawn elastomer fiber. The second approach relies on twisting an elastomer fiber to yield helical metal electrodes embedded in a stretchable yarn. The scalability of both approaches is illustrated in apparatuses for continuous buckling and twisting that yield tens of meters of elastic conducting fibers. Through experimental and analytical methods, it is elucidated how geometric parameters, such as buckling pre-strain and helical angle, as well as materials choice, control not only the fiber's elasticity but also its Young's modulus. Links between mechanical and electrical properties are exposed. The resulting fibers are used to construct elastic fabrics that contain diodes, by weaving and knitting, thus demonstrating the scalable fabrication of conformable and stretchable antennas that support optical data transmission.
Collapse
Affiliation(s)
- Juliette S Marion
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nikhil Gupta
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Henry Cheung
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kirmina Monir
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
104
|
Mechanism of selective hydrolysis of alginates under hydrothermal conditions. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
105
|
Chen S, Wu Z, Chu C, Ni Y, Neisiany RE, You Z. Biodegradable Elastomers and Gels for Elastic Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105146. [PMID: 35212474 PMCID: PMC9069371 DOI: 10.1002/advs.202105146] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Indexed: 05/30/2023]
Abstract
Biodegradable electronics are considered as an important bio-friendly solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Elastic electronics with higher imitative mechanical characteristics of human tissues, have become crucial for human-related applications. The convergence of biodegradability and elasticity has emerged a new paradigm of next-generation electronics especially for wearable and implantable electronics. The corresponding biodegradable elastic materials are recognized as a key to drive this field toward the practical applications. The review first clarifies the relevant concepts including biodegradable and elastic electronics along with their general design principles. Subsequently, the crucial mechanisms of the degradation in polymeric materials are discussed in depth. The diverse types of biodegradable elastomers and gels for electronics are then summarized. Their molecular design, modification, processing, and device fabrication especially the structure-properties relationship as well as recent advanced are reviewed in detail. Finally, the current challenges and the future directions are proposed. The critical insights of biodegradability and elastic characteristics in the elastomers and gel allows them to be tailored and designed more effectively for electronic applications.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Zekai Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer EngineeringFaculty of EngineeringHakim Sabzevari UniversitySabzevar9617976487Iran
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| |
Collapse
|
106
|
Long L, Che X, Yao P, Zhang X, Wang J, Li M, Li C. Interfacial Electrochemical Polymerization for Spinning Liquid Metals into Core-Shell Wires. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18690-18696. [PMID: 35420779 DOI: 10.1021/acsami.2c02247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal wires are of great significance in applications such as three-dimensional (3D) printing, soft electronics, optics, and metamaterials. Ga-based liquid metals (e.g., EGaIn), though uniquely combining metallic conductivity, fluidity, and biocompatibility, remain challenging to be spun due to their low viscosity, high surface tension, and Rayleigh-Plateau instability. In this work, we showed that EGaIn as a working electrode could induce the oxidization of EGaIn and interfacial electrochemical polymerization of electroactive monomers (e.g., acrylic acid, dopamine, and pyrrole), thus spinning itself from an opening of a blunt needle. During the spinning process, the high surface tension of EGaIn was reduced by electrowetting and electrocapillarity and stabilized by polymer shells (tunable thickness of ∼0.6-30 μm on wires with a diameter of 90-300 μm), which were chelated with metal ions. The polymeric shells offered EGaIn wires with an enhanced endurance to mechanical force and acidity. By further encapsulating into elastomers through a facile impregnation process, the resultant elastic EGaIn wires showed a combination of high stretchability (up to 800%) and metallic conductivity (1.5 × 106 S m-1). When serving as wearable sensors, they were capable of sensing facial expressions, body movements, voice recognition, and spatial pressure distributions with high sensitivity, good repeatability, and satisfactory durability. Machine-learning algorithms further assisted to detect gestures with high accuracy.
Collapse
Affiliation(s)
- Lifen Long
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, P. R. China
| | - Xinpeng Che
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Peifan Yao
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, P. R. China
| | - Xihua Zhang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, P. R. China
| | - Jingwei Wang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, P. R. China
| | - Mingjie Li
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chaoxu Li
- Group of Biomimetic Smart Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences & Shandong Energy Institute, Songling Road 189, Qingdao 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
107
|
Wang W, Chen F, Fang L, Li Z, Xie Z. Reversibly Stretchable Organohydrogel-Based Soft Electronics with Robust and Redox-Active Interfaces Enabled by Polyphenol-Incorporated Double Networks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12583-12595. [PMID: 35230799 DOI: 10.1021/acsami.1c21273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogel electrolytes as soft ionic conductors have been extensively exploited to establish skinlike and biocompatible devices. However, in many common hydrogels, there exists irreversible elongation upon prolonged stretching cycles and poor interfacial contact, which have significantly hindered their practical applications where long-term operation at large deformations is needed. Herein, multifunctional soft electronic devices with reversible stretchability and improved electrode/electrolyte interfaces are demonstrated by employing polyacrylamide-based double-network organohydrogel electrolytes soaked with a high content of tannic acid (TA) that affords multiple noncovalent interactions and redox activity. Performances of the TA-rich gels are evaluated for the first time in realizing shape-recoverable stretchable devices against repeated deformations to 500% strain, with superior gel-electrode interfaces exhibiting both intimate adhesion and boosted electrochemical capacitance of >200 mF·cm-2. A maximal 4-fold higher capacitance can be achieved by introducing TA and ethylene glycol (EG) into hydrogels. Moreover, a soft electronic system consisting of stretchable supercapacitors and gel-based microsensors was demonstrated, in which the electronic performance of these devices can be well preserved after >1000 repeated cycles at strains of up to 200%, without obvious residual strain or electrode delamination. This could pave a route to the design of multifunctional gel networks tackling both the mechanical and interfacial issues in soft and biocompatible devices.
Collapse
Affiliation(s)
- Wenjin Wang
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fubin Chen
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lvye Fang
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhaoxian Li
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuang Xie
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
108
|
Liang C, Liu Y, Lu W, Tian G, Zhao Q, Yang D, Sun J, Qi D. Strategies for interface issues and challenges of neural electrodes. NANOSCALE 2022; 14:3346-3366. [PMID: 35179152 DOI: 10.1039/d1nr07226a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neural electrodes, as a bridge for bidirectional communication between the body and external devices, are crucial means for detecting and controlling nerve activity. The electrodes play a vital role in monitoring the state of neural systems or influencing it to treat disease or restore functions. To achieve high-resolution, safe and long-term stable nerve recording and stimulation, a neural electrode with excellent electrochemical performance (e.g., impedance, charge storage capacity, charge injection limit), and good biocompatibility and stability is required. Here, the charge transfer process in the tissues, the electrode-tissue interfaces and the electrode materials are discussed respectively. Subsequently, the latest research methods and strategies for improving the electrochemical performance and biocompatibility of neural electrodes are reviewed. Finally, the challenges in the development of neural electrodes are proposed. It is expected that the development of neural electrodes will offer new opportunities for the evolution of neural prosthesis, bioelectronic medicine, brain science, and so on.
Collapse
Affiliation(s)
- Cuiyuan Liang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yan Liu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Gongwei Tian
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Qinyi Zhao
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dan Yang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Jing Sun
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dianpeng Qi
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| |
Collapse
|
109
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
110
|
Abstract
Natural biological materials provide a rich source of inspiration for building high-performance materials with extensive applications. By mimicking their chemical compositions and hierarchical architectures, the past decades have witnessed the rapid development of bioinspired materials. As a very promising biosourced raw material, silk is drawing increasing attention due to excellent mechanical properties, favorable versatility, and good biocompatibility. In this review, we provide an overview of the recent progress in silk-based bioinspired structural and functional materials. We first give a brief introduction of silk, covering its sources, features, extraction, and forms. We then summarize the preparation and application of silk-based materials mimicking four typical biological materials including bone, nacre, skin, and polar bear hair. Finally, we discuss the current challenges and future prospects of this field.
Collapse
Affiliation(s)
- Zongpu Xu
- Institute of Applied Bioresources, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| |
Collapse
|
111
|
Qian L, Zhang K, Guo X, Zhou J, Yu M. Single-Chain Mechanical Properties of Gelatin: A Single-Molecule Study. Polymers (Basel) 2022; 14:869. [PMID: 35267692 PMCID: PMC8912665 DOI: 10.3390/polym14050869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Gelatin is an important natural biological resource with a wide range of applications in the pharmaceutical, industrial and food industries. We investigated the single-chain behaviors of gelatin by atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS), and found that gelatin exists as long chains by fitting with the M-FJC model. By comparing the single-chain elasticity in a nonpolar organic solvent (nonane) and DI water, it was surprising to find that there was almost no difference in the single-chain elasticity of gelatin in nonane and DI water. Considering the specificity of gelatin solubility and the solvent size effect of nonane molecules, when a single gelatin chain is pulled into loose nonane, dehydration does not occur due to strong binding water interactions. Gelatin chains can only interact with water molecules at high temperatures; therefore, no further interaction of single gelatin chains with water molecules occurred at the experimental temperature. This eventually led to almost no difference in the single-chain F-E curves under the two conditions. It is expected that our study will enable the deep exploration of the interaction between water molecules and gelatin and provide a theoretical basis and experimental foundation for the design of gelatin-based materials with more functionalities.
Collapse
Affiliation(s)
- Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510000, China;
| | - Kai Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (K.Z.); (X.G.); (J.Z.)
| | - Xin Guo
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (K.Z.); (X.G.); (J.Z.)
| | - Junyu Zhou
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (K.Z.); (X.G.); (J.Z.)
| | - Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (K.Z.); (X.G.); (J.Z.)
| |
Collapse
|
112
|
Wang Y, Zhang Y, Zhang Z, Li T, Jiang J, Zhang X, Liu T, Qiao J, Huang J, Dong W. Pistachio-Inspired Bulk Graphene Oxide-Based Materials with Shapeability and Recyclability. ACS NANO 2022; 16:3394-3403. [PMID: 35129948 DOI: 10.1021/acsnano.2c00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nowadays, despite the fact that recent progress has been reported to mimic natural structural materials (especially nacre), designing bioinspired ultrastrong composites in a universal, viable, and scalable manner still remains a long-standing challenge. In particular, pistachio shells show high tissue strength attributed to the cellulose sheet laminated microstructures. Compared with nacre, pistachio shells own interlocking mortise-tenon joints in their structure, which offer higher energy dissipation and deformability. Here we present a strategy to produce nanocomposites with pistachio-mimetic structures through repeated kneading of graphene oxide (GO) in a dynamic covalent and supramolecular poly(sodium thioctic) (pST) system. The dynamic nature of the polymeric backbones endows the resultant GO-based composite with full recyclability and three-dimensional shapeability. The superior mechanical properties of the pistachio-mimetic composite can be attributed to the mortise-tenon joints design in the structure, which has not been achieved in the nacre-mimetic composite. The resulting composite also exhibits high thermal conductivity (15.6 W/(m·K)), yielding an alternative approach to design in engineered and thermal management materials.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ting Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jie Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xuhui Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jinliang Qiao
- SINOPEC, Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Jing Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
113
|
Marzana M, Morsada Z, Faruk MO, Ahmed A, Khan MMA, Jalil MA, Hossain MM, Rahman MM. Nanostructured Carbons: towards Soft-Bioelectronics, Biosensing and Theraputic Applications. CHEM REC 2022; 22:e202100319. [PMID: 35189015 DOI: 10.1002/tcr.202100319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
Recently, nanostructured carbon-based soft bioelectronics and biosensors have received tremendous attention due to their outstanding physical and chemical properties. The ultrahigh specific surface area, high flexibility, lightweight, high electrical conductivity, and biocompatibility of 1D and 2D nanocarbons, such as carbon nanotubes (CNT) and graphene, are advantageous for bioelectronics applications. These materials improve human life by delivering therapeutic advancements in gene, tumor, chemo, photothermal, immune, radio, and precision therapies. They are also utilized in biosensing platforms, including optical and electrochemical biosensors to detect cholesterol, glucose, pathogenic bacteria (e. g., coronavirus), and avian leucosis virus. This review summarizes the most recent advancements in bioelectronics and biosensors by exploiting the outstanding characteristics of nanocarbon materials. The synthesis and biocompatibility of nanocarbon materials are briefly discussed. In the following sections, applications of graphene and CNTs for different therapies and biosensing are elaborated. Finally, the key challenges and future perspectives of nanocarbon materials for biomedical applications are highlighted.
Collapse
Affiliation(s)
- Maliha Marzana
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79403, USA
| | - Zinnat Morsada
- Department of Textile Engineering, University of South Asia, Dhaka, 1213, Bangladesh
| | - Md Omar Faruk
- Department of Materials Science and Engineering, Binghamton University, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Abbas Ahmed
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Md Manirul Alam Khan
- Department of Electrical and Computer Engineering, University of Memphis, Tennessee, 38152, USA
| | - Mohammad Abdul Jalil
- Department of Textile Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Md Milon Hossain
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, North Carolina, 27606, USA
| | - Mohammed Muzibur Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
114
|
Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare-A Review. NANOMATERIALS 2022; 12:nano12030334. [PMID: 35159679 PMCID: PMC8838083 DOI: 10.3390/nano12030334] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
Abstract
Currently, old-style personal Medicare techniques rely mostly on traditional methods, such as cumbersome tools and complicated processes, which can be time consuming and inconvenient in some circumstances. Furthermore, such old methods need the use of heavy equipment, blood draws, and traditional bench-top testing procedures. Invasive ways of acquiring test samples can potentially cause patient discomfort and anguish. Wearable sensors, on the other hand, may be attached to numerous body areas to capture diverse biochemical and physiological characteristics as a developing analytical tool. Physical, chemical, and biological data transferred via the skin are used to monitor health in various circumstances. Wearable sensors can assess the aberrant conditions of the physical or chemical components of the human body in real time, exposing the body state in time, thanks to unintrusive sampling and high accuracy. Most commercially available wearable gadgets are mechanically hard components attached to bands and worn on the wrist, with form factors ultimately constrained by the size and weight of the batteries required for the power supply. Basic physiological signals comprise a lot of health-related data. The estimation of critical physiological characteristics, such as pulse inconstancy or variability using photoplethysmography (PPG) and oxygen saturation in arterial blood using pulse oximetry, is possible by utilizing an analysis of the pulsatile component of the bloodstream. Wearable gadgets with “skin-like” qualities are a new type of automation that is only starting to make its way out of research labs and into pre-commercial prototypes. Flexible skin-like sensing devices have accomplished several functionalities previously inaccessible for typical sensing devices due to their deformability, lightness, portability, and flexibility. In this paper, we studied the recent advancement in battery-powered wearable sensors established on optical phenomena and skin-like battery-free sensors, which brings a breakthrough in wearable sensing automation.
Collapse
|
115
|
Yoong WC, Loke CF, Juan JC, Yusoff K, Mohtarrudin N, Tatsuma T, Xu Y, Lim TH. Alginate-enabled green synthesis of S/Ag 1.93S nanoparticles, their photothermal property and in-vitro assessment of their anti-skin-cancer effects augmented by a NIR laser. Int J Biol Macromol 2022; 201:516-527. [PMID: 35041888 DOI: 10.1016/j.ijbiomac.2022.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 12/09/2022]
Abstract
We report herein the design and synthesis of colloidally-stable S/Ag1.93S nanoparticles, their photothermal conversion properties and in vitro cytotoxicity toward A431 skin cancer cells under the excitation of a minimally-invasive 980 nm near-infrared (NIR) laser. Micron-sized S particles were first synthesized via acidifying Na2S2O3 using biocompatible sodium alginate as a surfactant. In the presence of AgNO3 and under rapid microwave-induced heating, alginate reduced AgNO3 to nascent Ag which reacted with molten S in situ to S/Ag1.93S nanoparticles. The nanoparticles were characterized using a combination of X-ray diffraction, electron microscopies, elemental analysis, zeta-potential analysis and UV-VIS-NIR spectroscopy. The average particles size was controlled between 40 and 60 nm by fixing the mole ratio of Ag+:S2O32-. When excited by a 980 nm laser, S/Ag1.93S nanoparticles (~40 nm) produced with the least amount of AgNO3 exhibited a respectable photothermal conversion efficiency of circa 62% with the test aqueous solution heated to a hyperthermia-inducing 52 °C in 15 min. At 0.7 W/cm2, the viability of A431 skin cancer cells incubated with 7.0 ± 0.2 μg/mL of S/Ag1.93S nanoparticles reduced to 14 ± 0.6%, while an A431 cell control maintained an 80% cell viability. These results suggested that S/Ag1.93S nanoparticles may have good potential in reducing metastatic skin carcinoma.
Collapse
Affiliation(s)
- Wei Chuen Yoong
- Faculty of Applied Sciences, Tunku Abdul Rahman University College, 53300 Kuala Lumpur, Malaysia
| | - Chui Fung Loke
- Faculty of Applied Sciences, Tunku Abdul Rahman University College, 53300 Kuala Lumpur, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khatijah Yusoff
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norhafizah Mohtarrudin
- Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Tetsu Tatsuma
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Ying Xu
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
| | - Teck Hock Lim
- Faculty of Applied Sciences, Tunku Abdul Rahman University College, 53300 Kuala Lumpur, Malaysia.
| |
Collapse
|
116
|
Brooks AK, Chakravarty S, Yadavalli VK. Flexible Sensing Systems for Cancer Diagnostics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:275-306. [DOI: 10.1007/978-3-031-04039-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
117
|
Turner B, Ramesh S, Menegatti S, Daniele M. Resorbable elastomers for implantable medical devices: highlights and applications. POLYM INT 2021. [DOI: 10.1002/pi.6349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Brendan Turner
- Joint Department of Biomedical Engineering North Carolina State University and University of Chapel Hill Raleigh NC USA
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering North Carolina State University and University of Chapel Hill Raleigh NC USA
- Department of Electrical and Computer Engineering North Carolina State University Raleigh NC USA
| |
Collapse
|
118
|
Raghavan A, Ghosh S. Recent Advancements on Biopolymer‐ Based Flexible Electrolytes for Next‐Gen Supercaps and Batteries: A Brief Sketch. ChemistrySelect 2021. [DOI: 10.1002/slct.202103291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Akshaya Raghavan
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sutapa Ghosh
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
119
|
Liu X, Li Y, He L, Feng Y, Tan H, Chen X, Yang W. Simultaneous detection of multiple neuroendocrine tumor markers in patient serum with an ultrasensitive and antifouling electrochemical immunosensor. Biosens Bioelectron 2021; 194:113603. [PMID: 34474281 DOI: 10.1016/j.bios.2021.113603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022]
Abstract
Neuroendocrine tumors (NETs) are rare heterogeneous tumors that are often misdiagnosed and mistreated. Most NETs patients are diagnosed as advanced. Early on-time detection of NETs is significant for precision therapy. Here, an ultrasensitive and antifouling label-free electrochemical immunosensor was constructed for simultaneous analysis of NETs biomarkers chromogranin A (CgA) and chromogranin B (CgB). The metal ion functionalized porous magnesium silicate/gold nanoparticles/polyethylene glycol/chitosan (PMS-M2+/AuNPs/PEG/CS) composites were employed as the sensing platforms. By combining PEG and CS with good hydrophilicity, the sensing interface exhibited outstanding antifouling ability in complex biological systems. PMS with high surface area and the porous structure can efficiently load Cu2+ and Pb2+, which could directly generate independent electrochemical peak currents that reflected the concentrations of CgA and CgB. Under optimal conditions, this immunosensor can detect CgA and CgB with good linearity from 0.1 pg mL-1 to 100 ng mL-1 as low as 5.3 and 2.1 fg mL-1, respectively. Moreover, this immunosensor can accurately detect CgA and CgB levels in clinical serum, which were well consistent with the enzyme-linked immunosorbent assay (ELISA). This strategy provided a sensitive, simple and low-cost platform for clinical screening and point-of-care diagnosis of NETs.
Collapse
Affiliation(s)
- Xuejiao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yuanliang Li
- Medical School, Beijing University of Chinese Medicine, Beijing, 100029, PR China; Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Li He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Huangying Tan
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Xu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| |
Collapse
|
120
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
121
|
Maity C, Das N. Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives. Top Curr Chem (Cham) 2021; 380:3. [PMID: 34812965 DOI: 10.1007/s41061-021-00360-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Nature produces materials using available molecular building blocks following a bottom-up approach. These materials are formed with great precision and flexibility in a controlled manner. This approach offers the inspiration for manufacturing new artificial materials and devices. Synthetic artificial materials can find many important applications ranging from personalized therapeutics to solutions for environmental problems. Among these materials, responsive synthetic materials are capable of changing their structure and/or properties in response to external stimuli, and hence are termed "smart" materials. Herein, this review focuses on alginate-based smart materials and their stimuli-responsive preparation, fragmentation, and applications in diverse fields from drug delivery and tissue engineering to water purification and environmental remediation. In the first part of this report, we review stimuli-induced preparation of alginate-based materials. Stimuli-triggered decomposition of alginate materials in a controlled fashion is documented in the second part, followed by the application of smart alginate materials in diverse fields. Because of their biocompatibility, easy accessibility, and simple techniques of material formation, alginates can provide solutions for several present and future problems of humankind. However, new research is needed for novel alginate-based materials with new functionalities and well-defined properties for targeted applications.
Collapse
Affiliation(s)
- Chandan Maity
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Nikita Das
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
122
|
A Collagen-Conducting Polymer Composite with Enhanced Chondrogenic Potential. Cell Mol Bioeng 2021; 14:501-512. [PMID: 34777607 DOI: 10.1007/s12195-021-00702-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022] Open
Abstract
Introduction Conducting polymers (CPs) have demonstrated promise for promoting tissue repair, yet their ability to facilitate cartilage regeneration has yet to be thoroughly investigated. Integrating CPs into common scaffolds for tissue regeneration, such as collagen, would enable mechanistic studies on the potential for CPs to promote cartilage repair. Here, we combine absorbable collagen sponges (ACS) with the CP PEDOT-S and show that the PEDOT-S-collagen composite (PEDOT-ACS) has enhanced chondrogenic potential compared to the collagen sponge alone. Methods PEDOT-S was incorporated through a simple incubation process. Changes to scaffold topography, elastic modulus, swelling ratio, and surface charge were measured to analyze how PEDOT-S affected the material properties of the scaffold. Changes in rat bone marrow mesenchymal stem cell (rBMSC) functionality were assessed with cell viability and glycosaminoglycan production assays. Results Macrostructure and microstructure of the scaffold remained largely unaffected by PEDOT-S modification, as observed through SEM images and quantification of scaffold porosity. Zeta potential, swelling ratio, and dry elastic modulus of the collagen scaffold were significantly changed by the incorporation of PEDOT-S. Seeding cells on PEDOT-ACS improved cell viability and enhanced glycosaminoglycan production. Conclusion We demonstrate a practical approach to generate PEDOT-S composites with comparable physical properties to pristine collagen scaffolds. We show that PEDOT-ACS can influence cell functionality and serve as a promising model system for mechanistic investigations on the roles of bioelectronic signaling in the repair of cartilage and other tissue types.
Collapse
|
123
|
Peng S, Yu Y, Wu S, Wang CH. Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43831-43854. [PMID: 34515471 DOI: 10.1021/acsami.1c15014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure while retaining their electrical conduction properties, a feat significantly beyond traditional metals and silicon-based semiconductors. Herein, we present a review of the recent advances in stretchable conductive polymer nanocomposites with exceptional stretchability and electrical properties, which have the potential to transform a wide range of applications, including wearable sensors for biophysical signals, stretchable conductors and electrodes, and deformable energy-harvesting and -storage devices. Critical to achieving these stretching properties are the judicious selection and hybridization of nanomaterials, novel microstructure designs, and facile fabrication processes, which are the focus of this Review. To highlight the potentials of conductive nanocomposites, a summary of some recent important applications is presented, including COVID-19 remote monitoring, connected health, electronic skin for augmented intelligence, and soft robotics. Finally, perspectives on future challenges and new research opportunities are also presented and discussed.
Collapse
Affiliation(s)
- Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuyan Yu
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuying Wu
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Chun-Hui Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
124
|
Liu D, Mun J, Chen G, Schuster NJ, Wang W, Zheng Y, Nikzad S, Lai JC, Wu Y, Zhong D, Lin Y, Lei Y, Chen Y, Gam S, Chung JW, Yun Y, Tok JBH, Bao Z. A Design Strategy for Intrinsically Stretchable High-Performance Polymer Semiconductors: Incorporating Conjugated Rigid Fused-Rings with Bulky Side Groups. J Am Chem Soc 2021; 143:11679-11689. [PMID: 34284578 DOI: 10.1021/jacs.1c04984] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Strategies to improve stretchability of polymer semiconductors, such as introducing flexible conjugation-breakers or adding flexible blocks, usually result in degraded electrical properties. In this work, we propose a concept to address this limitation, by introducing conjugated rigid fused-rings with optimized bulky side groups and maintaining a conjugated polymer backbone. Specifically, we investigated two classes of rigid fused-ring systems, namely, benzene-substituted dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene (Ph-DBTTT) and indacenodithiophene (IDT) systems, and identified molecules displaying optimized electrical and mechanical properties. In the IDT system, the polymer PIDT-3T-OC12-10% showed promising electrical and mechanical properties. In fully stretchable transistors, the polymer PIDT-3T-OC12-10% showed a mobility of 0.27 cm2 V-1 s-1 at 75% strain and maintained its mobility after being subjected to hundreds of stretching-releasing cycles at 25% strain. Our results underscore the intimate correlation between chemical structures, mechanical properties, and charge carrier mobility for polymer semiconductors. Our described molecular design approach will help to expedite the next generation of intrinsically stretchable high-performance polymer semiconductors.
Collapse
Affiliation(s)
- Deyu Liu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jaewan Mun
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Gan Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Nathaniel J Schuster
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Weichen Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yu Zheng
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Shayla Nikzad
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yilei Wu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yangju Lin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yusheng Lei
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yuelang Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sangah Gam
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 16678, South Korea
| | - Jong Won Chung
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 16678, South Korea
| | - Youngjun Yun
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 16678, South Korea
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
125
|
Nandi R, Agam Y, Amdursky N. A Protein-Based Free-Standing Proton-Conducting Transparent Elastomer for Large-Scale Sensing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101208. [PMID: 34219263 DOI: 10.1002/adma.202101208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/20/2021] [Indexed: 05/26/2023]
Abstract
A most important endeavor in modern materials' research is the current shift toward green environmental and sustainable materials. Natural resources are one of the attractive building blocks for making environmentally friendly materials. In most cases, however, the performance of nature-derived materials is inferior to the performance of carefully designed synthetic materials. This is especially true for conductive polymers, which is the topic here. Inspired by the natural role of proteins in mediating protons, their utilization in the creation of a free-standing transparent polymer with a highly elastic nature and proton conductivity comparable to that of synthetic polymers, is demonstrated. Importantly, the polymerization process relies on natural protein crosslinkers and is spontaneous and energy-efficient. The protein used, bovine serum albumin, is one of the most affordable proteins, resulting in the ability to create large-scale materials at a low cost. Due to the inherent biodegradability and biocompatibility of the elastomer, it is promising for biomedical applications. Here, its immediate utilization as a solid-state interface for sensing of electrophysiological signals, is shown.
Collapse
Affiliation(s)
- Ramesh Nandi
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuval Agam
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
126
|
Liu X, Wei Y, Qiu Y. Advanced Flexible Skin-Like Pressure and Strain Sensors for Human Health Monitoring. MICROMACHINES 2021; 12:695. [PMID: 34198673 PMCID: PMC8232132 DOI: 10.3390/mi12060695] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
Recently, owing to their excellent flexibility and adaptability, skin-like pressure and strain sensors integrated with the human body have the potential for great prospects in healthcare. This review mainly focuses on the representative advances of the flexible pressure and strain sensors for health monitoring in recent years. The review consists of five sections. Firstly, we give a brief introduction of flexible skin-like sensors and their primary demands, and we comprehensively outline the two categories of design strategies for flexible sensors. Secondly, combining the typical sensor structures and their applications in human body monitoring, we summarize the recent development of flexible pressure sensors based on perceptual mechanism, the sensing component, elastic substrate, sensitivity and detection range. Thirdly, the main structure principles and performance characteristic parameters of noteworthy flexible strain sensors are summed up, namely the sensing mechanism, sensitive element, substrate, gauge factor, stretchability, and representative applications for human monitoring. Furthermore, the representations of flexible sensors with the favorable biocompatibility and self-driven properties are introduced. Finally, in conclusion, besides continuously researching how to enhance the flexibility and sensitivity of flexible sensors, their biocompatibility, versatility and durability should also be given sufficient attention, especially for implantable bioelectronics. In addition, the discussion emphasizes the challenges and opportunities of the above highlighted characteristics of novel flexible skin-like sensors.
Collapse
Affiliation(s)
- Xu Liu
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
- School of Mechanical Engineering, Xi’an Aeronautical University, Xi’an 710077, China
| | - Yuan Wei
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Yuanying Qiu
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| |
Collapse
|
127
|
Jia M, Kim J, Nguyen T, Duong T, Rolandi M. Natural biopolymers as proton conductors in bioelectronics. Biopolymers 2021; 112:e23433. [PMID: 34022064 DOI: 10.1002/bip.23433] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Bioelectronic devices sense or deliver information at the interface between living systems and electronics by converting biological signals into electronic signals and vice-versa. Biological signals are typically carried by ions and small molecules. As such, ion conducting materials are ideal candidates in bioelectronics for an optimal interface. Among these materials, ion conducting polymers that are able to uptake water are particularly interesting because, in addition to ionic conductivity, their mechanical properties can closely match the ones of living tissue. In this review, we focus on a specific subset of ion-conducting polymers: proton (H+ ) conductors that are naturally derived. We first provide a brief introduction of the proton conduction mechanism, and then outline the chemical structure and properties of representative proton-conducting natural biopolymers: polysaccharides (chitosan and glycosaminoglycans), peptides and proteins, and melanin. We then highlight examples of using these biopolymers in bioelectronic devices. We conclude with current challenges and future prospects for broader use of natural biopolymers as proton conductors in bioelectronics and potential translational applications.
Collapse
Affiliation(s)
- Manping Jia
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Jinhwan Kim
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Tiffany Nguyen
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA.,Department of Biomedical Engineering, California State University Long Beach, Long Beach, California, USA
| | - Thi Duong
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA.,Department of Mechanical and Aerospace Engineering, The Henry Samueli School of Engineering, University of California, Irvine, California, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
128
|
Ji W, Zhu J, Wu W, Wang N, Wang J, Wu J, Wu Q, Wang X, Yu C, Wei G, Li L, Huo F. Wearable Sweat Biosensors Refresh Personalized Health/Medical Diagnostics. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9757126. [PMID: 34778790 PMCID: PMC8557357 DOI: 10.34133/2021/9757126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/18/2021] [Indexed: 04/14/2023]
Abstract
Sweat contains a broad range of critical biomarkers including ions, small molecules, and macromolecules that may indirectly or directly reflect the health status of the human body and thereby help track disease progression. Wearable sweat biosensors enable the collection and analysis of sweat in situ, achieving real-time, continuous, and noninvasive monitoring of human biochemical parameters at the molecular level. This review summarizes the physiological/pathological information of sweat and wearable sweat biosensors. First, the production of sweat pertaining to various electrolytes, metabolites, and proteins is described. Then, the compositions of the wearable sweat biosensors are summarized, and the design of each subsystem is introduced in detail. The latest applications of wearable sweat biosensors for outdoor, hospital, and family monitoring are highlighted. Finally, the review provides a summary and an outlook on the future developments and challenges of wearable sweat biosensors with the aim of advancing the field of wearable sweat monitoring technology.
Collapse
Affiliation(s)
- Wenhui Ji
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jingyu Zhu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Wanxia Wu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Nanxiang Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jiqing Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jiansheng Wu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Gaofeng Wei
- Naval Medical Department, Naval Medical University, Shanghai 200433, China
| | - Lin Li
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|