101
|
Stimuli-Responsive Boron-Based Materials in Drug Delivery. Int J Mol Sci 2023; 24:ijms24032757. [PMID: 36769081 PMCID: PMC9917063 DOI: 10.3390/ijms24032757] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Drug delivery systems, which use components at the nanoscale level as diagnostic tools or to release therapeutic drugs to particular target areas in a regulated manner, are a fast-evolving field of science. The active pharmaceutical substance can be released via the drug delivery system to produce the desired therapeutic effect. The poor bioavailability and irregular plasma drug levels of conventional drug delivery systems (tablets, capsules, syrups, etc.) prevent them from achieving sustained delivery. The entire therapy process may be ineffective without a reliable delivery system. To achieve optimal safety and effectiveness, the drug must also be administered at a precision-controlled rate and the targeted spot. The issues with traditional drug delivery are overcome by the development of stimuli-responsive controlled drug release. Over the past decades, regulated drug delivery has evolved considerably, progressing from large- and nanoscale to smart-controlled drug delivery for several diseases. The current review provides an updated overview of recent developments in the field of stimuli-responsive boron-based materials in drug delivery for various diseases. Boron-containing compounds such as boron nitride, boronic acid, and boron dipyrromethene have been developed as a moving field of research in drug delivery. Due to their ability to achieve precise control over drug release through the response to particular stimuli (pH, light, glutathione, glucose or temperature), stimuli-responsive nanoscale drug delivery systems are attracting a lot of attention. The potential of developing their capabilities to a wide range of nanoscale systems, such as nanoparticles, nanosheets/nanospheres, nanotubes, nanocarriers, microneedles, nanocapsules, hydrogel, nanoassembly, etc., is also addressed and examined. This review also provides overall design principles to include stimuli-responsive boron nanomaterial-based drug delivery systems, which might inspire new concepts and applications.
Collapse
|
102
|
Proniewicz E, Gralec B, Ozaki Y. Homogeneous Pt nanostructures surface functionalized with phenylboronic acid phosphonic acid derivatives as potential biochemical nanosensors and drugs: SERS and TERS studies. J Biomed Mater Res B Appl Biomater 2023; 111:1197-1206. [PMID: 36715221 DOI: 10.1002/jbm.b.35225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023]
Abstract
Here, surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) were used to characterize the selective adsorption of N-substituted 4-[(NH-R)(phosphono)-S-methyl]phenylboronic acids on the surface of platinum nanoparticles (PtNPs) from an aqueous solution and from air. The nature of the interaction of the studied compounds with the PtNPs/H2 O and PtNPs/air interfaces was discussed and compared. For this purpose, 4-[(N-anilino)(phosphono)-S-methyl]phenylboronic acid (1-PBA-PA) and its two analogs (2-PBA-PA and bis{1-PBA-PA}) as well as the PtNPs were synthesized in surfactant/ion-free solution via a synthetic route that allows control of the size and morphology of the NPs. The positively charged PtNPs with a size of ~12 nm were characterized by ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD).
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty of Foundry Engineering, AGH University of Science and Technology, Krakow, Poland.,School of Biological and Environmental Sciences, Kwansei Gakuin University 1, Sanda, Hyogo, Japan
| | - Barbara Gralec
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University 1, Sanda, Hyogo, Japan
| |
Collapse
|
103
|
Liu Q, Zhao Y, Zhou H, Chen C. Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater 2023; 10:rbad004. [PMID: 36817975 PMCID: PMC9926950 DOI: 10.1093/rb/rbad004] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Abstract
Ferroptosis, a completely new form of regulated cell death, is mainly caused by an imbalance between oxidative damage and reductive protection and has shown great anti-cancer potential. However, existing small-molecule ferroptosis inducers have various limitations, such as poor water solubility, drug resistance and low targeting ability, hindering their clinical applications. Nanotechnology provides new opportunities for ferroptosis-driven tumor therapy. Especially, stimuli-responsive nanomaterials stand out among others and have been widely researched because of their unique spatiotemporal control advantages. Therefore, it's necessary to summarize the application of those stimuli-responsive nanomaterials in ferroptosis. Here, we describe the physiological feature of ferroptosis and illustrate the current challenges to induce ferroptosis for cancer therapy. Then, nanomaterials that induce ferroptosis are classified and elaborated according to the external and internal stimuli. Finally, the future perspectives in the field are proposed. We hope this review facilitates paving the way for the design of intelligent nano-ferroptosis inducers.
Collapse
Affiliation(s)
- Qiaolin Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| |
Collapse
|
104
|
Lou J, Qualls ML, Best MD. Sticking the Landing: Enhancing Liposomal Cell Delivery using Reversible Covalent Chemistry and Caged Targeting Groups. Chembiochem 2023; 24:e202200436. [PMID: 36164720 PMCID: PMC9985139 DOI: 10.1002/cbic.202200436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Liposomes are highly effective nanocarriers for encapsulating and delivering a wide range of therapeutic cargo. While advancements in liposome design have improved several pharmacological characteristics, an important area that would benefit from further progress involves cellular targeting and entry. In this concept article, we will focus on recent progress utilizing strategies including reversible covalent bonding and caging groups to activate liposomal cell entry. These approaches take advantage of advancements that have been made in complementary fields including molecular sensing and chemical biology and direct this technology toward controlling liposome cell delivery properties. The decoration of liposomes with groups including boronic acids and cyclic disulfides is presented as a means for driving delivery through reaction with functional groups on cell surfaces. Additionally, caging groups can be exploited to activate cell delivery only upon encountering a target stimulus. These approaches provide promising new avenues for controlling cell delivery in the development of next-generation liposomal therapeutic nanocarriers.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, 37996, Knoxville, TN, USA
| | - Megan L Qualls
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, 37996, Knoxville, TN, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, 37996, Knoxville, TN, USA
| |
Collapse
|
105
|
Dhiraj HS, Ishizuka F, Elshaer A, Zetterlund PB, Aldabbagh F. Lactate and glucose induced self‐assembly of hydrophobic boronic acid‐substituted polymers. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Harpal S. Dhiraj
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales Australia
| | - Amr Elshaer
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales Australia
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| |
Collapse
|
106
|
Dhiraj HS, Ishizuka F, Saeed M, Elshaer A, Zetterlund PB, Aldabbagh F. Lactate and glucose responsive boronic acid-substituted amphiphilic block copolymer nanoparticles of high aspect ratio. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
107
|
Huang C, Wang X, Yang P, Shi S, Duan G, Liu X, Li Y. Size Regulation of Polydopamine Nanoparticles by Boronic Acid and Lewis Base. Macromol Rapid Commun 2023; 44:e2100916. [PMID: 35080287 DOI: 10.1002/marc.202100916] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/13/2022] [Indexed: 01/11/2023]
Abstract
Size regulation of polydopamine nanoparticles (PDA NPs) is vital to melanin-inspired materials. The general strategy usually focuses on tuning of the reaction parameters which could affect the dopamine (DA) monomer polymerization process, such as pH, temperature, monomer concentration, etc. The reaction between boronic acids and catechols to form boronic esters has been widely applied in many fields, but little attention has been paid in the size regulation of PDA NPs. Here, it is speculated that the fine size regulation of PDA NPs can be directly achieved by using boronic acids and Lewis base molecules. It is found that these issues could indeed significantly affect the stability of the boronic esters formed by boronic acids and DA, which may further inhibit the monomer polymerization kinetics and tune the particle size of the resulting PDA NPs. It is also found that the several intrinsic properties of PDA NPs such as the free radical scavenging ability, UV spectral absorption, photothermal behavior, and structural color all change with the particle size. It is believed that this work can provide new opportunities for fabricating melanin-inspired PDA NPs with well controlled size and properties.
Collapse
Affiliation(s)
- Chuhao Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianheng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shun Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
108
|
Zeng Y, Quan Q, Wen P, Zhang Z, Chen M. Organocatalyzed Controlled Radical Copolymerization toward Hybrid Functional Fluoropolymers Driven by Light. Angew Chem Int Ed Engl 2022; 61:e202215628. [PMID: 36329621 DOI: 10.1002/anie.202215628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Photo-controlled polymerizations are attractive to tailor macromolecules of complex compositions with spatiotemporal regulation. In this work, with a convenient synthesis for trifluorovinyl boronic ester (TFVB), we report a light-driven organocatalyzed copolymerization of vinyl monomers and TFVB for the first time, which enabled the controlled synthesis of a variety of hybrid fluorine/boron polymers with low dispersities and good chain-end fidelity. The good behaviors of "ON/OFF" switch, chain-extension polymerizations and post-modifications further highlight the versatility and reliability of this copolymerization. Furthermore, we demonstrate that the combination of fluorine and boron could furnish copolymer electrolytes of high lithium-ion transference number (up to 0.83), bringing new opportunities of engineering high-performance materials for energy storage purposes.
Collapse
Affiliation(s)
- Yang Zeng
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Qinzhi Quan
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Peng Wen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
109
|
Synthesis of Chain-End Functional Polydienes Using Diene Comonomer Bearing Boronic Acid Masked with Diaminonaphthalene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249007. [PMID: 36558140 PMCID: PMC9780943 DOI: 10.3390/molecules27249007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Diene comonomers bearing boronic acid masked with 1,8-diaminonaphthalene (dan) were applied to copolymerization with isoprene or butadiene using neodymium borohydride complex as a catalyst. The comonomers were tolerant to excess modified methylaluminoxane (MMAO) and thus were applicable to the polymerization system using MMAO. On the other hand, the corresponding pinacol borate was highly reactive toward MMAO, and no incorporation into the obtained polymer was observed. A 13C NMR microstructural analysis of the hydrogenated copolymer revealed that all of the comonomers were located at the chain end. Further functionalization using the boron moiety at the polymer chain end was also investigated.
Collapse
|
110
|
Zhang V, Kang B, Accardo JV, Kalow JA. Structure-Reactivity-Property Relationships in Covalent Adaptable Networks. J Am Chem Soc 2022; 144:22358-22377. [PMID: 36445040 PMCID: PMC9812368 DOI: 10.1021/jacs.2c08104] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer networks built out of dynamic covalent bonds offer the potential to translate the control and tunability of chemical reactions to macroscopic physical properties. Under conditions at which these reactions occur, the topology of covalent adaptable networks (CANs) can rearrange, meaning that they can flow, self-heal, be remolded, and respond to stimuli. Materials with these properties are necessary to fields ranging from sustainability to tissue engineering; thus the conditions and time scale of network rearrangement must be compatible with the intended use. The mechanical properties of CANs are based on the thermodynamics and kinetics of their constituent bonds. Therefore, strategies are needed that connect the molecular and macroscopic worlds. In this Perspective, we analyze structure-reactivity-property relationships for several classes of CANs, illustrating both general design principles and the predictive potential of linear free energy relationships (LFERs) applied to CANs. We discuss opportunities in the field to develop quantitative structure-reactivity-property relationships and open challenges.
Collapse
Affiliation(s)
| | | | | | - Julia A. Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
111
|
Tao Y, Liang X, Zhang J, Lei IM, Liu J. Polyurethane vitrimers: Chemistry, properties and applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yue Tao
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
| | - Xiangyu Liang
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
- Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen China
- Institute of Bast Fiber Crops and Center of Southern Economic Crops Chinese Academy of Agricultural Sciences Changsha China
| | - Jun Zhang
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
| | - Iek Man Lei
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
- Department of Electromechanical Engineering, Faculty of Science and Technology University of Macau Macau China
| | - Ji Liu
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
| |
Collapse
|
112
|
Lara-Cruz GA, Jaramillo-Botero A. Molecular Level Sucrose Quantification: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:9511. [PMID: 36502213 PMCID: PMC9740140 DOI: 10.3390/s22239511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Sucrose is a primary metabolite in plants, a source of energy, a source of carbon atoms for growth and development, and a regulator of biochemical processes. Most of the traditional analytical chemistry methods for sucrose quantification in plants require sample treatment (with consequent tissue destruction) and complex facilities, that do not allow real-time sucrose quantification at ultra-low concentrations (nM to pM range) under in vivo conditions, limiting our understanding of sucrose roles in plant physiology across different plant tissues and cellular compartments. Some of the above-mentioned problems may be circumvented with the use of bio-compatible ligands for molecular recognition of sucrose. Nevertheless, problems such as the signal-noise ratio, stability, and selectivity are some of the main challenges limiting the use of molecular recognition methods for the in vivo quantification of sucrose. In this review, we provide a critical analysis of the existing analytical chemistry tools, biosensors, and synthetic ligands, for sucrose quantification and discuss the most promising paths to improve upon its limits of detection. Our goal is to highlight the criteria design need for real-time, in vivo, highly sensitive and selective sucrose sensing capabilities to enable further our understanding of living organisms, the development of new plant breeding strategies for increased crop productivity and sustainability, and ultimately to contribute to the overarching need for food security.
Collapse
Affiliation(s)
| | - Andres Jaramillo-Botero
- Omicas Alliance, Pontificia Universidad Javeriana, Cali 760031, Colombia
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
113
|
Wang S, Ren Y, Wang Z, Jiang X, Xu S, Zhang X, Zhao S, Zalloum WA, Liu X, Zhan P. The current progress in the use of boron as a platform for novel antiviral drug design. Expert Opin Drug Discov 2022; 17:1329-1340. [PMID: 36448326 DOI: 10.1080/17460441.2023.2153829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Boron has attracted extensive interest due to several FDA-approved boron-containing drugs and other pharmacological agents in clinical trials. As a semimetal, it has peculiar biochemical characteristics which could be utilized in designing novel drugs against drug-resistant viruses. Emerging and reemerging viral pandemics are major threats to human health. Accordingly, we aim to comprehensively review the current status of antiviral boron-containing compounds. AREAS COVERED This review focuses on the utilization of boron to design molecules against viruses from two perspectives: (i) single boron atom-containing compounds acting on miscellaneous viral targets and (ii) boron clusters. The peculiar properties of antiviral boron-containing compounds and their diverse binding modes with viral targets are described in detail in this review. EXPERT OPINION Compounds bearing boronic acid can interact with viral targets by forming covalent or robust hydrogen bonds. This feature is valuable for combating resistant viruses. Furthermore, boron clusters can form dihydrogen bonds and bear features such as three-dimensional aromaticity, hydrophobicity, and biological stability. All these features demonstrated boron as a probable essential element with immense potential for drug design.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882 11821, Amman, Jordan
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| |
Collapse
|
114
|
Shen D, Yu H, Wang L, Feng J, Zhang Q, Pan J, Han Y, Ni Z, Liang R, Uddin MA. Glucose-responsive nanoparticles designed via a molecular-docking-driven method for insulin delivery. J Control Release 2022; 352:527-539. [PMID: 36341933 DOI: 10.1016/j.jconrel.2022.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Nocturnal blood glucose regulation was one of the key challenges in diabetic treatments. However, development of the smart insulin complexes with mild and glucose-responsive delivering performances was mostly relied on experience of the senior researchers and numerous confirmation experiments. In this work, a series of bioinspired fatty-acid-modified glucose-responsive insulin-delivering polymeric nanoparticles were designed. The molecular docking technique was utilized to efficiently screen the fatty-acid-derived functional groups. The results provided the basis for polymer functionalization and simplified the optimization experiments. For the optimized formulation (C10MS), insulin-loaded C10MS successfully fulfilled the nocturnal-glycemic-controlling requirement of the diabetic rats with lower occurrence of hypoglycemia than the conventional insulin injection schemes. Such formulation also possessed good biocompatibility with the moderate elimination kinetics in vivo, which matched the demand of bio-safety in the daily treatments. Overall, this work opened up a new path for efficient design of functional polymeric materials.
Collapse
Affiliation(s)
- Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jingyi Feng
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Qian Zhang
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Jin Pan
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Yin Han
- Zhejiang Institute of Medical Device Testing, Hangzhou 310018, PR China
| | - Zhipeng Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Ruixue Liang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
115
|
Valenzuela SA, Howard JR, Park HM, Darbha S, Anslyn EV. 11B NMR Spectroscopy: Structural Analysis of the Acidity and Reactivity of Phenyl Boronic Acid-Diol Condensations. J Org Chem 2022; 87:15071-15076. [PMID: 36318490 DOI: 10.1021/acs.joc.2c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Phenyl boronic acids are valuable for medical diagnostics and biochemistry studies due to their ability to readily bind with carbohydrates in water. Incorporated in carbohydrates are 1,2-diols, which react with boronic acids through a reversible covalent condensation pathway. A wide variety of boronic acids have been employed for diol binding with differing substitution of the phenyl ring, with the goals of simplifying their synthesis and altering their thermodynamics of complexation. One method for monitoring their pKa's and binding is 11B NMR spectroscopy. Herein, we report a comprehensive study employing 11B NMR spectroscopy to determine the pKa of the most commonly used phenyl boronic acids and their binding with catechol or d,l-hydrobenzoin as prototypical diols. The chemical shift of the boronic acid transforming into the boronate ester was monitored at pHs ranging from 2 to 10. With each boronic acid, the results confirm (1) the necessity to use pHs above their pKa's to induce complexation, (2) that the pKa's change in the presence of diols, and (3) that 11B NMR spectroscopy is a particularly convenient tool for monitoring these interconnected acidity and binding phenomena.
Collapse
Affiliation(s)
- Stephanie A Valenzuela
- Department of Chemistry, University of Texas at Austin, 100 E 24th Street, Norman Hackerman Building (Room 114A), Austin, Texas78712, United States
| | - James R Howard
- Department of Chemistry, University of Texas at Austin, 100 E 24th Street, Norman Hackerman Building (Room 114A), Austin, Texas78712, United States
| | - Hyun Meen Park
- Department of Chemistry, University of Texas at Austin, 100 E 24th Street, Norman Hackerman Building (Room 114A), Austin, Texas78712, United States
| | - Sriranjani Darbha
- Department of Chemistry, University of Texas at Austin, 100 E 24th Street, Norman Hackerman Building (Room 114A), Austin, Texas78712, United States
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, 100 E 24th Street, Norman Hackerman Building (Room 114A), Austin, Texas78712, United States
| |
Collapse
|
116
|
Hoque J, Zeng Y, Newman H, Gonzales G, Lee C, Varghese S. Microgel-Assisted Delivery of Adenosine to Accelerate Fracture Healing. ACS Biomater Sci Eng 2022; 8:4863-4872. [PMID: 36266245 PMCID: PMC11188841 DOI: 10.1021/acsbiomaterials.2c00977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular adenosine plays a key role in promoting bone tissue formation. Local delivery of adenosine could be an effective therapeutic strategy to harness the beneficial effect of extracellular adenosine on bone tissue formation following injury. Herein, we describe the development of an injectable in situ curing scaffold containing microgel-based adenosine delivery units. The two-component scaffold includes adenosine-loaded microgels and functionalized hyaluronic acid (HA) molecules. The microgels were generated upon copolymerization of 3-acrylamidophenylboronic acid (3-APBA)- and 2-aminoethylmethacrylamide (2-AEMA)-conjugated HA (HA-AEMA) in an emulsion suspension. The PBA functional groups were used to load the adenosine molecules. Mixing of the microgels with the HA polymers containing clickable groups, dibenzocyclooctyne (DBCO) and azide (HA-DBCO and HA-Azide), resulted in a 3D scaffold embedded with adenosine delivery units. Application of the in situ curing scaffolds containing adenosine-loaded microgels following tibial fracture injury showed improved bone tissue healing in a mouse model as demonstrated by the reduced callus size, higher bone volume, and increased tissue mineral density compared to those treated with the scaffold without adenosine. Overall, our results suggest that local delivery of adenosine could potentially be an effective strategy to promote bone tissue repair.
Collapse
Affiliation(s)
- Jiaul Hoque
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - Yuze Zeng
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
| | - Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
| | - Gavin Gonzales
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| | - Cheryl Lee
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| | - Shyni Varghese
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
117
|
Jiang M, Chattopadhyay AN, Li CH, Geng Y, Luther DC, Huang R, Rotello VM. Direct discrimination of cell surface glycosylation signatures using a single pH-responsive boronic acid-functionalized polymer. Chem Sci 2022; 13:12899-12905. [PMID: 36519060 PMCID: PMC9645398 DOI: 10.1039/d2sc02116a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/05/2022] [Indexed: 08/05/2023] Open
Abstract
Cell surface glycans serve fundamental roles in many biological processes, including cell-cell interaction, pathogen infection, and cancer metastasis. Cancer cell surface have alternative glycosylation to healthy cells, making these changes useful hallmarks of cancer. However, the diversity of glycan structures makes glycosylation profiling very challenging, with glycan 'fingerprints' providing an important tool for assessing cell state. In this work, we utilized the pH-responsive differential binding of boronic acid (BA) moieties with cell surface glycans to generate a high-content six-channel BA-based sensor array that uses a single polymer to distinguish mammalian cell types. This sensing platform provided efficient discrimination of cancer cells and readily discriminated between Chinese hamster ovary (CHO) glycomutants, providing evidence that discrimination is glycan-driven. The BA-functionalized polymer sensor array is readily scalable, providing access to new diagnostic and therapeutic strategies for cell surface glycosylation-associated diseases.
Collapse
Affiliation(s)
- Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Cheng Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Yingying Geng
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - David C Luther
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| |
Collapse
|
118
|
Xu L, Dong Z, Zhang Q, Deng N, Li SY, Xu HJ. Protoboration of Alkynes and Miyaura Borylation Catalyzed by Low Loadings of Palladium. J Org Chem 2022; 87:14879-14888. [PMID: 36223839 DOI: 10.1021/acs.joc.2c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The versions of Miyaura borylation and protoboration of alkynes catalyzed by low loadings of palladium (400 mol ppm = 0.04 mol %) have been developed. These transformations have a broad substrate scope, good functional-group compatibility, and gram-scale synthetic ability.
Collapse
|
119
|
Dong F, Yang X, Guo L, Qian Y, Sun P, Huang Z, Xu X, Liu H. A tough, healable, and recyclable conductive polyurethane/carbon nanotube composite. J Colloid Interface Sci 2022; 631:239-248. [DOI: 10.1016/j.jcis.2022.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
120
|
Sarkar S, Wagulde S, Jia X, Gevorgyan V. General and Selective Metal-Free Radical α-C-H Borylation of Aliphatic Amines. Chem 2022; 8:3096-3108. [PMID: 36571075 PMCID: PMC9784107 DOI: 10.1016/j.chempr.2022.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite recent developments, selective C(sp3)-H borylation of feedstock amines remains a formidable challenge. Herein, we have developed a general, mild, and photoinduced transition metal- and strong base-free method for α-C(sp3)-H borylation of amines. This protocol features a regioselective 1,5-hydrogen atom transfer process to access key α-aminoalkyl radical intermediate using commercially available easy-to-install/remove iodobenzoyl radical translocating group. Remarkably, this general, efficient, and operationally simple method allows activation of primary and secondary α-C-H sites of a broad range of acyclic and cyclic amines toward highly regio- and diastereoselective synthesis of valuable α-aminoboronates. Utility of this protocol has been demonstrated by its employment in late-stage borylation of structurally complex amines and formal C-H arylation reaction of amines. Thus, it is expected that this operationally simple, general, and practical method will find broad application in organic synthesis and drug discovery.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, Texas, 75080 (USA)
| | - Sidhant Wagulde
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, Texas, 75080 (USA)
| | - Xiangqing Jia
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, Texas, 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, Texas, 75080 (USA)
- Lead contact
| |
Collapse
|
121
|
Duan M, Wang Y, Zhu S. Nickel-catalyzed asymmetric 1,2-alkynylboration of vinylarenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
122
|
He C, Dong J, Xu C, Pan X. N-Coordinated Organoboron in Polymer Synthesis and Material Science. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
123
|
Afgan S, Yadav P, Jaiswal S, Pal K, Kumar R, Singh V, Biplob koch. Development of chitosan towards the self-healing and mechanically stronger biocompatible hydrogel. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
124
|
Ligand cooperativity enables highly enantioselective C–C σ-bond hydroboration of cyclopropanes. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
125
|
Ye Z, Xiang Y, Monroe T, Yu S, Dong P, Xian S, Webber MJ. Polymeric Microneedle Arrays with Glucose-Sensing Dynamic-Covalent Bonding for Insulin Delivery. Biomacromolecules 2022; 23:4401-4411. [PMID: 36173091 DOI: 10.1021/acs.biomac.2c00878] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ongoing rise in diabetes incidence necessitates improved therapeutic strategies to enable precise blood glucose control with convenient device form factors. Microneedle patches are one such device platform capable of achieving therapeutic delivery through the skin. In recent years, polymeric microneedle arrays have been reported using methods of in situ polymerization and covalent crosslinking in microneedle molds. In spite of promising results, in situ polymerization carries a risk of exposure to toxic unreacted precursors remaining in the device. Here, a polymeric microneedle patch is demonstrated that uses dynamic-covalent phenylboronic acid (PBA)-diol bonds in a dual role affording both network crosslinking and glucose sensing. By this approach, a pre-synthesized and purified polymer bearing pendant PBA motifs is combined with a multivalent diol crosslinker to prepare dynamic-covalent hydrogel networks. The ability of these dynamic hydrogels to shear-thin and self-heal enables their loading to a microneedle mold by centrifugation. Subsequent drying then yields a patch of uniformly shaped microneedles with the requisite mechanical properties to penetrate skin. Insulin release from these materials is accelerated in the presence of glucose. Moreover, short-term blood glucose control in a diabetic rat model following application of the device to the skin confirms insulin activity and bioavailability. Accordingly, dynamic-covalent crosslinking facilitates a route for fabricating microneedle arrays circumventing the toxicity concerns of in situ polymerization, offering a convenient device form factor for therapeutic insulin delivery.
Collapse
Affiliation(s)
- Zhou Ye
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Yuanhui Xiang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Thomas Monroe
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Sihan Yu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Ping Dong
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Sijie Xian
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| |
Collapse
|
126
|
Deng L, Mo J, Zhang Y, Peng K, Li H, Ouyang S, Feng Z, Fang W, Wei J, Rong D, Zhang X, Wang Y. Boronic Acid: A Novel Pharmacophore Targeting Src Homology 2 (SH2) Domain of STAT3. J Med Chem 2022; 65:13094-13111. [PMID: 36170649 DOI: 10.1021/acs.jmedchem.2c00940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SH2 domains have been recognized as promising targets for various human diseases. However, targeting SH2 domains with phosphopeptides or small-molecule inhibitors derived from bioisosteres of the phosphate group is still challenging. Identifying novel bioisosteres of the phosphate group to achieve favorable in vivo potency is urgently needed. Here, we report the feasibility of targeting the STAT3-SH2 domain with a boronic acid group and the identification of a highly potent inhibitor compound 7 by replacing the carboxylic acid of compound 4 with a boronic acid. Compound 7 shows higher binding affinity, better cellular potency, more favorable PK profiles, and higher in vivo antitumor activity than 4. The stronger anticancer effect of 7 partially stems from its covalent binding mode with the SH2 domain, verified by the washout experiments. The relatively high level of sequence conservation among SH2 domains makes the results presented here of general significance.
Collapse
Affiliation(s)
- Lin Deng
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianshan Mo
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Zhang
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Keren Peng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huaxuan Li
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shumin Ouyang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zongbo Feng
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wei Fang
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianwei Wei
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deqin Rong
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.,National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
127
|
Unger K, Coclite AM. Glucose-Responsive Boronic Acid Hydrogel Thin Films Obtained via Initiated Chemical Vapor Deposition. Biomacromolecules 2022; 23:4289-4295. [PMID: 36053563 PMCID: PMC9554909 DOI: 10.1021/acs.biomac.2c00762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Glucose-responsive materials are of great importance
in the field
of monitoring the physiological glucose level or smart insulin management.
This study presents the first vacuum-based deposition of a glucose-responsive
hydrogel thin film. The successful vacuum-based synthesis of a glucose-responsive
hydrogel may open the door to a vast variety of new applications,
where, for example, the hydrogel thin film is applied on new possible
substrates. In addition, vacuum-deposited films are free of leachables
(e.g., plasticizers and residual solvents). Therefore, they are, in
principle, safe for in-body applications. A hydrogel made of but-3-enylboronic
acid units, a boronic acid compound, was synthesized via initiated
chemical vapor deposition. The thin film was characterized in terms
of chemical composition, surface morphology, and swelling response
toward pH and sucrose, a glucose–fructose compound. The film
was stable in aqueous solutions, consisting of polymerized boronic
acid and the initiator unit, and had an undulating texture appearance
(rms 2.1 nm). The hydrogel was in its shrunken state at pH 4–7
and swelled by increasing the pH to 9. The pKa was 8.2 ± 0.2. The response to glucose was observed
at pH 10 and resulted in thickness shrinking.
Collapse
Affiliation(s)
- Katrin Unger
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| | - Anna Maria Coclite
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
128
|
Fan Z, Ye M, Wang Y, Qiu J, Li W, Ma X, Yang K, Song Q. Enantioselective Copper-Catalyzed sp 2/sp 3 Diborylation of 1-Chloro-1-Trifluoromethylalkenes. ACS CENTRAL SCIENCE 2022; 8:1134-1144. [PMID: 36032759 PMCID: PMC9413839 DOI: 10.1021/acscentsci.2c00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 05/03/2023]
Abstract
Fluorine-containing organoboron compounds have emerged as novel building blocks in chemical synthesis; among them, fluorinated sp2/sp3 diborylated compounds are particularly appealing, since they might undergo chemoselective and diversified transformations of different C-B bonds with fluorinated functionality, thus bringing versatility and complexity to the eventual products. However, expedient, synthetic strategies for the construction of such fluorinated diborylative compounds are very sparse. Herein, we disclose enantioselective Cu-catalyzed sp2/sp3 diborylations of 1-chloro-1-trifluoromethylalkenes, leading to diborylated compounds bearing a gem-difluoroalkenyl moiety; most intriguingly, the new formed C-B bonds include one stereoselective and optically pure Csp3-B bond. Further transformations on the eventual products demonstrated the values of our presented strategy.
Collapse
Affiliation(s)
- Zhenwei Fan
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Mingxing Ye
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Yahao Wang
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Jian Qiu
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Wangyang Li
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Xingxing Ma
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Kai Yang
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
- Institute
of Next Generation Matter Transformation, College of Material Sciences
Engineering, Huaqiao University, Xiamen, Fujian 361021, China
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
129
|
Wong JHM, Tan RPT, Chang JJ, Ow V, Yew PYM, Chee PL, Kai D, Loh XJ, Xue K. Dynamic grafting of carboxylates onto poly(vinyl alcohol) polymers for supramolecularly-crosslinked hydrogel formation. Chem Asian J 2022; 17:e202200628. [PMID: 35977910 DOI: 10.1002/asia.202200628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/15/2022] [Indexed: 11/05/2022]
Abstract
Supramolecular hydrogels have attracted considerable interest due to their unique stimuli-responsive and self-healing properties. However, these hydrogel systems are usually achieved by covalent grafting of supramolecular units onto the polymer backbone, which in turn limits their reprocessability. Herein, we prepared a supramolecular hydrogel system by forming dynamic covalent crosslinks between 4-carboxyphenylboronic acid (CPBA) and polyvinyl alcohol (PVA). The system was then further crosslinked with either calcium ions or branched polyethylenimine (PEI) to generate hydrogels with distinctly different properties. Incorporation of calcium ions resulted in the formation of hydrogels with higher storage modulus of 7290 Pa but without self-healing properties. On the other hand, PEI-crosslinked hydrogel (PVA-CPBA-PEI) exhibited >2000% critical strain value, demonstrated high stability over 52 days and showed sustained antibacterial effect. A combination of supramolecular interactions and dynamic covalent crosslinks can be an alternate strategy to fabricate next generation hydrogel materials.
Collapse
Affiliation(s)
- Joey Hui Min Wong
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | | - Jun Jie Chang
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | - Valerie Ow
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | | - Pei Lin Chee
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | - Dan Kai
- Institute of Materials Research and Engineering, Strategic Research Initiative, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Soft Materials, SINGAPORE
| | | |
Collapse
|
130
|
Michael C, Apostolides DE, Patrickios CS, Sakai T. Dually-dynamic covalent tetraPEG hydrogels end-linked with boronate ester and acylhydrazone groups. SOFT MATTER 2022; 18:5966-5978. [PMID: 35916607 DOI: 10.1039/d2sm00594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Well-defined dually dynamic hydrogels were prepared by end-linking four-armed poly(ethylene glycol) stars (tetraPEG stars) through two different types of dynamic covalent cross-links, boronates and acylhydrazones, leading to robust, self-healable materials. This required the prior end-functionalization of tetraPEG stars, originally bearing four hydroxyl terminal groups, with glucoronate, acylhydrazide and benzaldehyde groups, resulting in three differently end-functional star polymers. A first type of dually dynamic hydrogel resulted from the combination of the first two differently end-functionalized tetraPEG stars, cross-linked by 4-formylphenyl boronic acid, a small molecule bearing both an aldehyde and a boronic acid group, respectively complementary to the acylhydrazide and glucoronate end-groups of the two above-mentioned tetraPEG stars. For comparison, a singly-dynamic hydrogel cross-linked with only acylhydrazone groups was also prepared, as well as a double-like hydrogel combining the constituents of both of the above-mentioned hydrogels. All three types of hydrogels were prepared at three different pH values, 8.5, 10.5 and 12.5, leading to a total number of nine samples. All nine samples were investigated for their self-healing, mechanical, viscoelastic and aqueous swelling/degradation properties. This study sets the basis for the development of well-defined polymeric dynamic covalent hydrogels where their self-healing and stability can be readily tuned.
Collapse
Affiliation(s)
- Charalambos Michael
- Department of Chemistry, University of Cyprus, 1 University Avenue, Aglanjia, 2109 Nicosia, Cyprus.
| | - Demetris E Apostolides
- Department of Chemistry, University of Cyprus, 1 University Avenue, Aglanjia, 2109 Nicosia, Cyprus.
| | - Costas S Patrickios
- Department of Chemistry, University of Cyprus, 1 University Avenue, Aglanjia, 2109 Nicosia, Cyprus.
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
131
|
Zou HN, Zhao YT, Yang LL, Huang MY, Zhang JW, Huang ML, Zhu SF. Catalytic Asymmetric Synthesis of Chiral Propargylic Boron Compounds through B–H Bond Insertion Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui-Na Zou
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Tao Zhao
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang-Liang Yang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming-Yao Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jing-Wei Zhang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Meng-Lin Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
132
|
Synthesis and Photophysics Characterization of Boronic Styril and Distyryl BODIPYs for Water-Based Dye-Sensitized Solar Cells. Biomimetics (Basel) 2022; 7:biomimetics7030110. [PMID: 35997430 PMCID: PMC9397057 DOI: 10.3390/biomimetics7030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, two boronic acid BODIPYs are obtained through a microwave-assisted Knoevenagel reaction. The aim is to use them for the first time as dyes in a photosensitized solar cell (DSSC) to mimic chlorophyll photosynthesis, harvesting solar light and converting it into electricity. The microwave-assisted Knoevenagel reaction is a straightforward approach to extending the molecular conjugation of the dye and is applied for the first time to synthesize BODIPY’s boronic acid derivatives. These derivatives have proved to be very useful for covalent deposition on titania. This work studies the photo-physical and electrochemical properties. Moreover, the photovoltaic performances of these two new dyes as sensitizers for DSSC are discussed. Experimental data show that both dyes exhibit photosensitizing activities in acetonitrile and water. In particular, in all the experiments, distyryl BODIPY was more efficient than styryl BODIPY. In this study, demonstrating the use of a natural component as a water-based electrolyte for boronic BODIPY sensitizers, we open new possibilities for the development of water-based solar cells.
Collapse
|
133
|
Kaithal A, Wagener T, Bellotti P, Daniliuc CG, Schlichter L, Glorius F. Access to Unexplored 3D Chemical Space:
cis
‐Selective Arene Hydrogenation for the Synthesis of Saturated Cyclic Boronic Acids. Angew Chem Int Ed Engl 2022; 61:e202206687. [PMID: 35612895 PMCID: PMC9400866 DOI: 10.1002/anie.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/08/2022]
Abstract
A new class of saturated boron‐incorporated cyclic molecules has been synthesized employing an arene‐hydrogenation methodology. cis‐Selective hydrogenation of easily accessible, and biologically important molecules comprising benzoxaborole, benzoxaborinin, and benzoxaboripin derivatives is reported. Among the various catalysts tested, rhodium cyclic(alkyl)(amino)carbene [Rh‐CAAC] (1) pre‐catalyst revealed the best hydrogenation activity confirming turnover number up to 1400 with good to high diastereoselectivity. A broad range of functional groups was tolerated including sensitive substituents such as −F, −CF3, and −silyl groups. The utility of the synthesized products was demonstrated by the recognition of diols and sugars under physiological conditions. These motifs can have a substantial importance in medicinal chemistry as they possess a three‐dimensional structure, are highly stable, soluble in water, form hydrogen bonds, and interact with diols and sugars.
Collapse
Affiliation(s)
- Akash Kaithal
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Tobias Wagener
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Peter Bellotti
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Lisa Schlichter
- Westfälische Wilhelms-Universität Münster Westfälische Center for Soft Nanoscience (SoN) and Organisch-Chemisches Institut Busso-Peus-Str.10 48149 Münster Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
134
|
Li X, Xu K, He Y, Tao B, Li K, Lin C, Hu J, Wu J, Wu Y, Liu S, Liu P, Wang H, Cai K. ROS-responsive hydrogel coating modified titanium promotes vascularization and osteointegration of bone defects by orchestrating immunomodulation. Biomaterials 2022; 287:121683. [PMID: 35870263 DOI: 10.1016/j.biomaterials.2022.121683] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Ideal titanium implants are required to participate in bone repair actively to improve in situ osteointegration. However, the traditional surface functionalization methods of titanium implants are difficult to both achieve the active regulation and long-term stability of bioactive components. Here, a novel functionalized titanium which loaded with thymosin β4 (Tβ4) and covered by a hydrogel coating was designed and evaluated. A strong adhesion between the coating and the titanium substrate was realized by the synergistic action of borate ester bonds and surface topological structure. The hydrogel coating also achieved an in vivo adhesion between implant and tissue through hydrogen bonds and borate bonds. In addition, based on the ROS response property of borate bonds, the implant can release Tβ4 in response to the immune reaction of bone healing by regulating the polarization of macrophages, thereby reducing the fibrosis formation around the implant interface and promoting vascularization and osteointegration of bone defects.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, 27708, North Carolina, USA
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chuanchuan Lin
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jingwei Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shaopeng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Huaiyu Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
135
|
Liu C, Yu Q, Yuan Z, Guo Q, Liao X, Han F, Feng T, Liu G, Zhao R, Zhu Z, Mao H, Zhu C, Li B. Engineering the viscoelasticity of gelatin methacryloyl (GelMA) hydrogels via small “dynamic bridges” to regulate BMSC behaviors for osteochondral regeneration. Bioact Mater 2022; 25:445-459. [PMID: 37056254 PMCID: PMC10087107 DOI: 10.1016/j.bioactmat.2022.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 11/02/2022] Open
Abstract
The dynamic extracellular matrix (ECM) constantly affects the behaviors of cells. To mimic the dynamics of ECM with controllable stiffness and energy dissipation, this study proposes a strategy in which a small molecule, 3,4-dihydroxybenzaldehyde (DB), was used as fast "dynamic bridges'' to construct viscoelastic gelatin methacryloyl (GelMA)-based hydrogels. The storage modulus and loss modulus of hydrogels were independently adjusted by the covalent crosslinking density and by the number of dynamic bonds. The hydrogels exhibited self-healing property, injectability, excellent adhesion and mechanical properties. Moreover, the in vitro results revealed that the viscous dissipation of hydrogels favored the spreading, proliferation, osteogenesis and chondrogenesis of bone marrow mesenchymal stem cells (BMSCs), but suppressed their adipogenesis. RNA-sequencing and immunofluorescence suggested that the viscous dissipation of hydrogels activated Yes-associated protein (YAP) by stabilizing integrin β1, and further promoted nuclear translocation of smad2/3 and β-catenin to enhance chondrogenesis and osteogenesis. As a result, the viscoelastic GelMA hydrogels with highest loss modulus showed best effect in cartilage and subchondral bone repair. Taken together, findings from this study reveal an effective strategy to fabricate viscoelastic hydrogels for modulating the interactions between cells and dynamic ECM to promote tissue regeneration.
Collapse
|
136
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
137
|
|
138
|
Surendranath M, M R R, Parameswaran R. Recent advances in functionally modified polymers for mucoadhesive drug delivery. J Mater Chem B 2022; 10:5913-5924. [PMID: 35880449 DOI: 10.1039/d2tb00856d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel methods for the delivery of drugs other than the conventional method of oral administration have been a thrust area of research for a few decades. Mucoadhesive delivery of drugs opened up a new domain where rapid and patient-friendly delivery of drugs can be achieved. Delivery of drugs through the mucosal sites such as buccal, nasal, ocular, sublingual, rectal and vaginal facilitates bypassing the first-pass metabolism and the drug reaches the systemic circulation directly. This helps to increase the bioavailability of the drug. The study of the chemical characteristics of polymers with mucoadhesive properties and how the molecules or the pharmaceuticals are transported across the mucosa is very much needed for the advancement of research in this field. And at the same time, it is very pertinent to know about the anatomy and the physiology of the mucosal tissue and its variation in different regions of the body. In this review, we try to present a comprehensive understanding of relevant topics of mucoadhesion giving more emphasis on the mechanism of transport of drugs across mucosa, and different possible functional modifications of polymers to enhance the property of mucoadhesion.
Collapse
Affiliation(s)
- Medha Surendranath
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| | - Rekha M R
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
139
|
Fast, strong, and reversible adhesives with dynamic covalent bonds for potential use in wound dressing. Proc Natl Acad Sci U S A 2022; 119:e2203074119. [PMID: 35858303 PMCID: PMC9304023 DOI: 10.1073/pnas.2203074119] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Adhesives typically fall into two categories: those that have high but irreversible adhesion strength due to the formation of covalent bonds at the interface and are slow to deploy, and others that are fast to deploy and the adhesion is reversible but weak in strength due to formation of noncovalent bonds. Synergizing the advantages from both categories remains challenging but pivotal for the development of the next generation of wound dressing adhesives. Here, we report a fast and reversible adhesive consisting of dynamic boronic ester covalent bonds, formed between poly(vinyl alcohol) (PVA) and boric acid (BA) for potential use as a wound dressing adhesive. Mechanical testing shows that the adhesive film has strength in shear of 61 N/cm2 and transcutaneous adhesive strength of 511 N/cm2, generated within 2 min of application. Yet the film can be effortlessly debonded when exposed to excess water. The mechanical properties of PVA/BA adhesives are tunable by varying the cross-linking density. Within seconds of activation by water, the surface boronic ester bonds in the PVA/BA film undergo fast debonding and instant softening, leading to conformal contact with the adherends and reformation of the boronic ester bonds at the interface. Meanwhile, the bulk film remains dehydrated to offer efficient load transmission, which is important to achieve strong adhesion without delamination at the interface. Whether the substrate surface is smooth (e.g., glass) or rough (e.g., hairy mouse skin), PVA/BA adhesives demonstrate superior adhesion compared to the most widely used topical skin adhesive in clinical medicine, Dermabond.
Collapse
|
140
|
Hu Q, Hu S, Li S, Liu S, Liang Y, Cao X, Luo Y, Xu W, Wang H, Wan J, Feng W, Niu L. Boronate Affinity-Based Electrochemical Aptasensor for Point-of-Care Glycoprotein Detection. Anal Chem 2022; 94:10206-10212. [DOI: 10.1021/acs.analchem.2c01699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiong Hu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shuhan Hu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiqi Li
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Sijie Liu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yiyi Liang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiaojing Cao
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yilin Luo
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wanjing Xu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Haocheng Wang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jianwen Wan
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wenxing Feng
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
141
|
3-Thienylboronic Acid as a Receptor for Diol-Containing Compounds: A Study by Isothermal Titration Calorimetry. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The electrochemical activity of 3-thienylboronic acid and its feature to form polymer films makes it a perspective receptor material for sensor applications. The affinity properties of this compound were studied here by isothermal titration calorimetry. A number of different analytes were tested, and the highest binding enthalpy was observed for sorbitol and fructose. An increase of pH in the range of 5.5–10.6 results in the rise of the binding enthalpy with an increase of the binding constant to ~8400 L/mol for sorbitol or ~3400 L/mol for fructose. The dependence of the binding constant on pH has an inflection point at pH 7.6 with a slope that is a ten-fold binding constant per one pH unit. The binding properties of 3-thienylboronic acid were evaluated to be very close to that of the phenylboronic acid, but the electrochemical activity of 3-thienylboronic acid provides a possibility of external electrical control: dependence of the affinity of 3-thienylboronic acid on its redox state defined by the presence of ferro/ferricyanide in different ratios was demonstrated. The results show that 3-thienylboronic acid can be applied in smart chemical sensors with electrochemically controllable receptor affinity.
Collapse
|
142
|
Wang Y, Zhang L, Hsu YI, Asoh TA, Uyama H. Facile Fabrication of Hierarchically Porous Boronic Acid Group-Functionalized Monoliths With Optical Activity for Recognizing Glucose With Different Conformation. Front Chem 2022; 10:939368. [PMID: 35755261 PMCID: PMC9213758 DOI: 10.3389/fchem.2022.939368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
At present, various materials based on helical polymers are nanoparticle or microsphere, which is not ease of use in practical application. Accordingly, facile preparation hierarchically porous monolith based on helical polymer needs to be developed. Herein, hierarchically porous boronic acid group-functionalized monoliths that exhibited optical activity were fabricated with a facile method based on crosslinking and polymerization-induced phase separation (CPIPS). Chiral substituted acetylene and achiral substituted acetylene with a boronic acid group were used as monomers. By regulating the composition of the pre-polymerization solution, the permeability and macropore size of the porous structure could be controlled. The hierarchically porous structure and large surface area were confirmed by scanning electron microscopy and nitrogen gas adsorption/desorption isotherms. In particular, the boronic acid functional group that can interact with a cis-diol group was successfully introduced on the skeleton surface of the monoliths. Further, the main chain of the copolymer that constituted the monoliths exhibited a high cis content and tacticity, and the monoliths showed good optical activity. Thus, the present study established a facile method to synthesize hierarchically porous boronic acid group-functionalized monoliths with optical activity via CPIPS, and the monoliths showed potential in recognition, separation, and adsorption of compound with chirality and cis-diol groups.
Collapse
Affiliation(s)
- Yan Wang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Luwei Zhang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| |
Collapse
|
143
|
Yang LM, Zeng HH, Liu XL, Ma AJ, Peng JB. Copper catalyzed borocarbonylation of benzylidenecyclopropanes through selective proximal C-C bond cleavage: synthesis of γ-boryl-γ,δ-unsaturated carbonyl compounds. Chem Sci 2022; 13:7304-7309. [PMID: 35799816 PMCID: PMC9214919 DOI: 10.1039/d2sc01992b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
A copper catalyzed borocarbonylation of BCPs via proximal C-C bond cleavage for the synthesis of γ-boryl-γ,δ-unsaturated carbonyl compounds has been developed. Using substituted benzylidenecyclopropanes (BCPs) and chloroformates as starting material, a broad range of γ-boryl-γ,δ-unsaturated esters were prepared in moderate to excellent yields with excellent regio- and stereoselectivity. Besides, when aliphatic acid chlorides were used in this reaction, γ-boryl-γ,δ-unsaturated ketones could be produced in excellent yields. When substituted BCPs were used as substrates, the borocarbonylation occurred predominantly at the proximal C-C bond trans to the phenyl group in a regio- and stereoselective manner, which leads to the Z-isomers as the products. This efficient methodology involves the cleavage of a C-C bond and the formation of a C-C bond as well as a C-B bond, and provides a new method for the proximal C-C bond difunctionalization of BCPs.
Collapse
Affiliation(s)
- Li-Miao Yang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Hui-Hui Zeng
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Xin-Lian Liu
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 People's Republic of China
| |
Collapse
|
144
|
Hu Q, Wan J, Wang H, Cao X, Li S, Liang Y, Luo Y, Wang W, Niu L. Boronate-Affinity Cross-Linking-Based Ratiometric Electrochemical Detection of Glycoconjugates. Anal Chem 2022; 94:9481-9486. [PMID: 35727688 DOI: 10.1021/acs.analchem.2c01959] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite the widespread application of the boronate-affinity cross-linking (BAC) in the separation, enrichment, and sensing of glycoconjugates, it remains a huge challenge to integrate the BAC into the selective electrochemical detection of glycoconjugates due to the poor selectivity of the BAC. Herein, we demonstrate a BAC-based ratiometric electrochemical method for the simple, low-cost, and highly sensitive and selective detection of glycoconjugates. Briefly, the methylene blue (MB)-tagged nucleic acid aptamer is exploited as the recognition element to selectively capture target glycoconjugate, to which a large number of ferrocene (Fc) tags are subsequently labeled via the BAC between the phenylboronic acid (PBA) group and the cis-diol site of the oligosaccharide chains on the captured targets. Using the MB tag as the internal reference and the Fc tag as the reporter of the target capture, the dual-signal output enables the ratiometric detection. Due to the presence of a high density of the cis-diol sites on a glycoconjugate, sufficiently high sensitivity can be obtained even without using any amplification strategies. Using glycoprotein mucin 1 (MUC1) as the model target, the signal ratio (IFc/IMB) exhibits good linearity over the range from 0.05 to 50 U/mL, with a detection limit of 0.021 U/mL. In addition to the high sensitivity and selectivity, the results of the analysis of MUC1 in serum samples are acceptable. By virtue of its simplicity, cost-effectiveness, and high robustness and reproducibility, this BAC-based ratiometric electrochemical method holds great promise in the highly sensitive and selective detection of glycoconjugates.
Collapse
Affiliation(s)
- Qiong Hu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jianwen Wan
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Haocheng Wang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiaojing Cao
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiqi Li
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yiyi Liang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yilin Luo
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wei Wang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
145
|
Diboronate crosslinking: Introducing glucose specificity in glucose-responsive dynamic-covalent networks. J Control Release 2022; 348:601-611. [PMID: 35714732 DOI: 10.1016/j.jconrel.2022.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022]
Abstract
Dynamic-covalent motifs are increasingly used for hydrogel crosslinking, leveraging equilibrium-governed reversible bonds to prepare viscoelastic materials with dynamic properties and self-healing character. The bonding between aryl boronates and diols is one dynamic-covalent chemistry of interest. The extent of network crosslinking using this motif may be subject to competition from ambient diols such as glucose; this approach has long been explored for glucose-directed release of insulin to control diabetes. However, the majority of such work has used phenylboronic acids (PBAs) that suffer from low-affinity glucose binding, limiting material responsiveness. Moreover, many PBA chemistries also bind with higher affinity to certain non-glucose analytes like fructose and lactate than they do to glucose, limiting their specificity of sensing and therapeutic deployment. Here, dynamic-covalent hydrogels are prepared that, for the first time, use a new diboronate motif with enhanced glucose binding-and importantly improved glucose specificity-leveraging the ability of rigid diboronates to simultaneously bind two sites on a single glucose molecule. Compared to long-used PBA-based approaches, diboronate hydrogels offer more glucose-responsive insulin release that is minimally impacted by non-glucose analytes. Improved responsiveness translates to more rapid blood glucose correction in a rodent diabetes model. Accordingly, this new dynamic-covalent crosslinking chemistry is useful in realizing more sensitive and specific glucose-responsive materials.
Collapse
|
146
|
Debiais M, Vasseur JJ, Smietana M. Applications of the Reversible Boronic Acids/Boronate Switch to Nucleic Acids. CHEM REC 2022; 22:e202200085. [PMID: 35641415 DOI: 10.1002/tcr.202200085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Indexed: 11/09/2022]
Abstract
Over the last decades, boron and nucleic acids chemistries have gained a lot of attention for biological, medicinal and analytical applications. Our laboratory has a long-standing interest in both chemistries and owing to the ability of boronic acids to react with cis-diol function in aqueous media we developed over the years a variety of applications ranging from molecular recognition and sensing to the development of reversible dynamic systems in which the natural phosphodiester linkage was replaced by a boronate. In this account, we summarize research results from our group from our preliminary studies on molecular recognition of ribonucleosides to the dynamic assembly of functional DNAzymes. In particular, the various parameters influencing the dynamic nature of these reversible covalent bonds able to respond to external stimuli are discussed. Finally, current challenges and opportunities for boron-based nucleic acids are also addressed.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095, Montpellier, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095, Montpellier, France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095, Montpellier, France
| |
Collapse
|
147
|
Kaithal A, Wagener T, Bellotti P, Daniliuc CG, Schlichter L, Glorius F. Access to Unexplored 3D Chemical Space: cis‐Selective Arene Hydrogenation for the Synthesis of Saturated Cyclic Boronic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akash Kaithal
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry Münster GERMANY
| | - Tobias Wagener
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Peter Bellotti
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Lisa Schlichter
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut Corrensstrasse 40 48149 Münster GERMANY
| |
Collapse
|
148
|
Chen L, Wang S, Guo Z, Hu Y. Double dynamic bonds tough hydrogel with high self‐healing properties based on acylhydrazone bonds and borate bonds. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| |
Collapse
|
149
|
Jo H, Sim S. Programmable Living Materials Constructed with the Dynamic Covalent Interface between Synthetic Polymers and Engineered B. subtilis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20729-20738. [PMID: 35485836 DOI: 10.1021/acsami.2c03111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we report the first example of programmable living materials constructed with a dynamic covalent interface between designed synthetic polymers and engineered B. subtilis cells. We identified a molecular motif that forms reversible dynamic covalent bonds on the B. subtilis cell surface. Combining block copolymers bearing this motif with genetically engineered B. subtilis yields programmable living materials that can be equipped with functionalities such as biosensing and on-demand elution of recombinant proteins. Encapsulated cells in these living materials could be reversibly retrieved and subjected to biological analyses. Further, the block copolymer in these living materials could be recycled to produce a new batch of living materials. This work advances the current capabilities in engineered living materials, establishes the groundwork for building a myriad of synthetic polymeric materials integrating engineered living cells, and provides a platform for understanding the biology of cells confined within materials.
Collapse
Affiliation(s)
- Hyuna Jo
- Department of Chemistry, School of Physical Sciences, University of California Irvine, Irvine, California 92697, United States
| | - Seunghyun Sim
- Department of Chemistry, School of Physical Sciences, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
150
|
Zhang Y, Liao Y, Liu P, Ran Y, Liu X. Radical borylation of vinyl azides with NHC-boranes: divergent synthesis of α-boryl ketones and borylated triazoles. Org Biomol Chem 2022; 20:3550-3557. [PMID: 35411904 DOI: 10.1039/d2ob00076h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A divergent radical borylation of vinyl azides with N-heterocyclic carbene (NHC) boranes in the presence of tBuSH is described. The protocol enables the divergent synthesis of α-boryl ketones and borylated triazoles with excellent functional group tolerance and a broad substrate scope. Remarkably, this work shows that vinyl azides can serve as unprecedented five-atom synthons for the construction of 1,2,3-triazoles without N2 extrusion.
Collapse
Affiliation(s)
- Yifei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Yangzhen Liao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yu Ran
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|