101
|
Shriver-Lake LC, Liu JL, Zabetakis D, Sugiharto VA, Lee CR, Defang GN, Wu SJL, Anderson GP, Goldman ER. Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Sci Rep 2018; 8:18086. [PMID: 30591706 PMCID: PMC6308234 DOI: 10.1038/s41598-018-35923-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 01/13/2023] Open
Abstract
Reliable detection and diagnosis of dengue virus (DENV) is important for both patient care and epidemiological control. Starting with a llama immunized with a mixture of recombinant nonstructural protein 1 (NS1) antigen from the four DENV serotypes, a phage display immune library of single domain antibodies was constructed and binders selected which exhibited specificity and affinity for DENV NS1. Each of these single domain antibodies was evaluated for its binding affinity to NS1 from the four serotypes, and incorporated into a sandwich format for NS1 detection. An optimal pair was chosen that provided the best combination of sensitivity for all four DENV NS1 antigens spiked into 50% human serum while showing no cross reactivity to NS1 from Zika virus, yellow fever virus, tick-borne encephalitis virus, and minimal binding to NS1 from Japanese encephalitis virus and West Nile virus. These rugged and robust recombinant binding molecules offer attractive alternatives to conventional antibodies for implementation into immunoassays destined for resource limited locals.
Collapse
Affiliation(s)
- Lisa C Shriver-Lake
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Jinny L Liu
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Dan Zabetakis
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Victor A Sugiharto
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Cheng-Rei Lee
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gabriel N Defang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Shuenn-Jue L Wu
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - George P Anderson
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Ellen R Goldman
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA.
| |
Collapse
|
102
|
Rong Z, Wang Q, Sun N, Jia X, Wang K, Xiao R, Wang S. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal Chim Acta 2018; 1055:140-147. [PMID: 30782365 DOI: 10.1016/j.aca.2018.12.043] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023]
Abstract
Simple, inexpensive, and rapid diagnostic tests in low-resource settings with limited laboratory equipment and technical expertise are instrumental in reducing morbidity and mortality from epidemic infectious diseases. We developed a smartphone-based fluorescent lateral flow immunoassay (LFIA) platform for the highly sensitive point-of-care detection of Zika virus nonstructural protein 1 (ZIKV NS1). An attachment was designed and 3D-printed to integrate the smartphone with external optical and electrical components, enabling the miniaturization of the instrument and reduction in cost and complexity. Quantum dot microspheres were utilized as probes in fluorescent LFIA because of their extremely bright fluorescence signal. This approach can achieve quantitative point-of-care detection of ZIKV NS1 within 20 min. Limits of detection (LODs) in buffer and serum were 0.045 and 0.15 ng mL-1, respectively. Despite the high structural similarity, a high-level Dengue virus NS1 as interferent showed limited cross-reactivity. Furthermore, this assay was successfully applied to detecte ZIKV NS1 and virions spiked in complex biological samples, indicating its practical application capability. Given its low cost, compact size, and excellent analytical performance, the proposed smartphone-based fluorescent LFIA platform holds considerable potential in rapid and accurate point-of-care detection of ZIKV NS1 and provides new insight into the design and application of molecular diagnostic methods in low-resource settings.
Collapse
Affiliation(s)
- Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Qiong Wang
- Beijing Meiling Biotechnology Corporation, Beijing, 102600, PR China
| | - Nanxi Sun
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xiaofei Jia
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; College of Life Sciences & Bio-Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Keli Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China.
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China.
| |
Collapse
|
103
|
Tran V, Walkenfort B, König M, Salehi M, Schlücker S. Schnelle, quantitative und hochempfindliche patientennahe Labordiagnostik: ein tragbares Raman-Lesegerät für seitliche Flusstests in der klinischen Chemie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vi Tran
- Fakultät für Chemie; Center for Nanointegration Duisburg-Essen (CENIDE); Zentrum für Medizinische Biotechnologie (ZMB); Universität Duisburg-Essen; Universitätsstraße 5 45141 Essen Deutschland
| | - Bernd Walkenfort
- Fakultät für Chemie; Center for Nanointegration Duisburg-Essen (CENIDE); Zentrum für Medizinische Biotechnologie (ZMB); Universität Duisburg-Essen; Universitätsstraße 5 45141 Essen Deutschland
| | - Matthias König
- Fakultät für Chemie; Center for Nanointegration Duisburg-Essen (CENIDE); Zentrum für Medizinische Biotechnologie (ZMB); Universität Duisburg-Essen; Universitätsstraße 5 45141 Essen Deutschland
| | - Mohammad Salehi
- Fakultät für Chemie; Center for Nanointegration Duisburg-Essen (CENIDE); Zentrum für Medizinische Biotechnologie (ZMB); Universität Duisburg-Essen; Universitätsstraße 5 45141 Essen Deutschland
| | - Sebastian Schlücker
- Fakultät für Chemie; Center for Nanointegration Duisburg-Essen (CENIDE); Zentrum für Medizinische Biotechnologie (ZMB); Universität Duisburg-Essen; Universitätsstraße 5 45141 Essen Deutschland
| |
Collapse
|
104
|
Sánchez-Purrà M, Roig-Solvas B, Rodriguez-Quijada C, Leonardo BM, Hamad-Schifferli K. Reporter Selection for Nanotags in Multiplexed Surface Enhanced Raman Spectroscopy Assays. ACS OMEGA 2018; 3:10733-10742. [PMID: 30320250 PMCID: PMC6173495 DOI: 10.1021/acsomega.8b01499] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/24/2018] [Indexed: 05/18/2023]
Abstract
We report a quantitative evaluation of the choice of reporters for multiplexed surface-enhanced Raman spectroscopy (SERS). An initial library consisted of 15 reporter molecules that included commonly used Raman dyes, thiolated reporters, and other small molecules. We used a correlation matrix to downselect Raman reporters from the library to choose five candidates: 1,2-bis(4-pyridyl)ethylene, 4-mercaptobenzoic acid, 3,5-dichlorobenzenthiol, pentachlorothiophenol, and 5,5'-dithiobis(2-nitrobenzoic acid). We evaluated the ability to distinguish the five SERS reporters in a dipstick immunoassay for the biomarker human IgG. Raman nanotags, or gold nanostars conjugated to the five reporters and anti-human IgG polyclonal antibodies were constructed. A linear discriminant analysis approach was used to evaluate the separation of the nanotag spectra in mixtures of fixed ratios.
Collapse
Affiliation(s)
- Maria Sánchez-Purrà
- Department
of Engineering and Department of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Biel Roig-Solvas
- Department
of Electrical and Computer Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Cristina Rodriguez-Quijada
- Department
of Engineering and Department of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Brianna M. Leonardo
- Department
of Engineering and Department of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Kimberly Hamad-Schifferli
- Department
of Engineering and Department of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
- E-mail: (K.H.-S.)
| |
Collapse
|
105
|
Jia M, Li S, Zang L, Lu X, Zhang H. Analysis of Biomolecules Based on the Surface Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E730. [PMID: 30223597 PMCID: PMC6165412 DOI: 10.3390/nano8090730] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022]
Abstract
Analyzing biomolecules is essential for disease diagnostics, food safety inspection, environmental monitoring and pharmaceutical development. Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for detecting biomolecules due to its high sensitivity, rapidness and specificity in identifying molecular structures. This review focuses on the SERS analysis of biomolecules originated from humans, animals, plants and microorganisms, combined with nanomaterials as SERS substrates and nanotags. Recent advances in SERS detection of target molecules were summarized with different detection strategies including label-free and label-mediated types. This comprehensive and critical summary of SERS analysis of biomolecules might help researchers from different scientific backgrounds spark new ideas and proposals.
Collapse
Affiliation(s)
- Min Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Shenmiao Li
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Liguo Zang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
106
|
Šubr M, Procházka M. Polarization- and Angular-Resolved Optical Response of Molecules on Anisotropic Plasmonic Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E418. [PMID: 29890758 PMCID: PMC6027211 DOI: 10.3390/nano8060418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 11/17/2022]
Abstract
A sometimes overlooked degree of freedom in the design of many spectroscopic (mainly Raman) experiments involve the choice of experimental geometry and polarization arrangement used. Although these aspects usually play a rather minor role, their neglect may result in a misinterpretation of the experimental results. It is well known that polarization- and/or angular- resolved spectroscopic experiments allow one to classify the symmetry of the vibrations involved or the molecular orientation with respect to a smooth surface. However, very low detection limits in surface-enhancing spectroscopic techniques are often accompanied by a complete or partial loss of this detailed information. In this review, we will try to elucidate the extent to which this approach can be generalized for molecules adsorbed on plasmonic nanostructures. We will provide a detailed summary of the state-of-the-art experimental findings for a range of plasmonic platforms used in the last ~ 15 years. Possible implications on the design of plasmon-based molecular sensors for maximum signal enhancement will also be discussed.
Collapse
Affiliation(s)
- Martin Šubr
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, 121 16 Prague 2, Czech Republic.
| | - Marek Procházka
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, 121 16 Prague 2, Czech Republic.
| |
Collapse
|
107
|
Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. NANO RESEARCH 2018; 11:5439-5473. [PMID: 32218913 PMCID: PMC7091255 DOI: 10.1007/s12274-018-2094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/15/2023]
Abstract
Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resourcelimited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| |
Collapse
|
108
|
Xiao X, Kuang Z, Slocik JM, Tadepalli S, Brothers M, Kim S, Mirau PA, Butkus C, Farmer BL, Singamaneni S, Hall CK, Naik RR. Advancing Peptide-Based Biorecognition Elements for Biosensors Using in-Silico Evolution. ACS Sens 2018; 3:1024-1031. [PMID: 29741092 DOI: 10.1021/acssensors.8b00159] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sensors for human health and performance monitoring require biological recognition elements (BREs) at device interfaces for the detection of key molecular biomarkers that are measurable biological state indicators. BREs, including peptides, antibodies, and nucleic acids, bind to biomarkers in the vicinity of the sensor surface to create a signal proportional to the biomarker concentration. The discovery of BREs with the required sensitivity and selectivity to bind biomarkers at low concentrations remains a fundamental challenge. In this study, we describe an in-silico approach to evolve higher sensitivity peptide-based BREs for the detection of cardiac event marker protein troponin I (cTnI) from a previously identified BRE as the parental affinity peptide. The P2 affinity peptide, evolved using our in-silico method, was found to have ∼16-fold higher affinity compared to the parent BRE and ∼10 fM (0.23 pg/mL) limit of detection. The approach described here can be applied towards designing BREs for other biomarkers for human health monitoring.
Collapse
Affiliation(s)
- Xingqing Xiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | | | - Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | | | | | | | | | | | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Carol K. Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | |
Collapse
|
109
|
Moore TJ, Moody AS, Payne TD, Sarabia GM, Daniel AR, Sharma B. In Vitro and In Vivo SERS Biosensing for Disease Diagnosis. BIOSENSORS 2018; 8:E46. [PMID: 29751641 PMCID: PMC6022968 DOI: 10.3390/bios8020046] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 01/24/2023]
Abstract
For many disease states, positive outcomes are directly linked to early diagnosis, where therapeutic intervention would be most effective. Recently, trends in disease diagnosis have focused on the development of label-free sensing techniques that are sensitive to low analyte concentrations found in the physiological environment. Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy that allows for label-free, highly sensitive, and selective detection of analytes through the amplification of localized electric fields on the surface of a plasmonic material when excited with monochromatic light. This results in enhancement of the Raman scattering signal, which allows for the detection of low concentration analytes, giving rise to the use of SERS as a diagnostic tool for disease. Here, we present a review of recent developments in the field of in vivo and in vitro SERS biosensing for a range of disease states including neurological disease, diabetes, cardiovascular disease, cancer, and viral disease.
Collapse
Affiliation(s)
- T Joshua Moore
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Amber S Moody
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Taylor D Payne
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Grace M Sarabia
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Alyssa R Daniel
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Bhavya Sharma
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
110
|
Kumar S, Bhushan P, Krishna V, Bhattacharya S. Tapered lateral flow immunoassay based point-of-care diagnostic device for ultrasensitive colorimetric detection of dengue NS1. BIOMICROFLUIDICS 2018; 12:034104. [PMID: 29805724 PMCID: PMC5951788 DOI: 10.1063/1.5035113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/30/2018] [Indexed: 05/04/2023]
Abstract
Dengue virus, a Flaviviridae family member, has emerged as a major worldwide health concern, making its early diagnosis imperative. Lateral flow immunoassays have been widely employed for point-of-care diagnosis of dengue because of their rapid naked eye readouts, ease of use, and cost-effectiveness. However, they entail a drawback of low sensitivity, limiting their usage in clinical applications. Herein, we report a novel lateral flow immunoassay for detection of dengue leveraging on the benefits of gold decorated graphene oxide sheets as detection labels and a tapered nitrocellulose membrane. The developed assay allows for rapid (10 min) and sensitive detection of dengue NS1 with a detection limit of 4.9 ng mL-1, ∼11-fold improvement over the previously reported values. Additionally, the clinical application of the developed assay has been demonstrated by testing it for dengue virus spiked in human serum. The reported lateral flow immunoassay shows significant promise for early and rapid detection of several target diseases.
Collapse
Affiliation(s)
- Sanjay Kumar
- Microsystems Fabrication Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Pulak Bhushan
- Microsystems Fabrication Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vinay Krishna
- Department of Cardiology, LPS Institute of Cardiology, G.S.V.M. Medical College, Kanpur, Uttar Pradesh 208016, India
| | | |
Collapse
|
111
|
Camacho SA, Sobral-Filho RG, Aoki PHB, Constantino CJL, Brolo AG. Zika Immunoassay Based on Surface-Enhanced Raman Scattering Nanoprobes. ACS Sens 2018; 3:587-594. [PMID: 29411598 DOI: 10.1021/acssensors.7b00639] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zika virus (ZIKV) was considered a public health emergency of international concern after the 2015 outbreak. Serological tests based on immunoassay platforms is one of the methods applied on the diagnosis of ZIKV and Dengue virus (DENV). However, the high limits of detection (LOD) and the cross-reactivity between ZIKV and DENV are still limitations in immunological tests. In order to tackle these issues, we have designed an immune-specific assay based on surface-enhanced Raman scattering (SERS) nanoprobes. Gold shell-isolated nanoparticles (Au-SHINs) were synthesized with 100 nm Au nanoparticles and 4 nm silica shell thickness coated with Nile Blue (Raman reporter). Then, the SERS nanoprobes were wrapped in a final silica shell and functionalized with monoclonal anti-ZIKV NS1 antibodies. Concentrations of ZIKV NS1 down to 10 ng/mL were probed free of cross-reactivity with DENV NS1 antigens.
Collapse
Affiliation(s)
- Sabrina A. Camacho
- School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente, SP Brazil, 19060-900
- Department of Chemistry and Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria (UVic), Victoria, BC Canada, V8P 5C2
| | - Regivaldo Gomes Sobral-Filho
- Department of Chemistry and Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria (UVic), Victoria, BC Canada, V8P 5C2
| | - Pedro Henrique B. Aoki
- Department of Chemistry and Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria (UVic), Victoria, BC Canada, V8P 5C2
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP Brazil, 19806-900
| | - Carlos José L. Constantino
- School of Technology and Applied Sciences, São Paulo State University (UNESP), Presidente Prudente, SP Brazil, 19060-900
| | - Alexandre G. Brolo
- Department of Chemistry and Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria (UVic), Victoria, BC Canada, V8P 5C2
| |
Collapse
|
112
|
Rodriguez-Quijada C, Sánchez-Purrà M, de Puig H, Hamad-Schifferli K. Physical Properties of Biomolecules at the Nanomaterial Interface. J Phys Chem B 2018; 122:2827-2840. [DOI: 10.1021/acs.jpcb.8b00168] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Maria Sánchez-Purrà
- Department of Engineering, University of Massachusetts, Boston, Massachusetts 02125, United States
| | - Helena de Puig
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts, Boston, Massachusetts 02125, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
113
|
Singh RK, Dhama K, Karthik K, Tiwari R, Khandia R, Munjal A, Iqbal HMN, Malik YS, Bueno-Marí R. Advances in Diagnosis, Surveillance, and Monitoring of Zika Virus: An Update. Front Microbiol 2018; 8:2677. [PMID: 29403448 PMCID: PMC5780406 DOI: 10.3389/fmicb.2017.02677] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/22/2017] [Indexed: 02/05/2023] Open
Abstract
Zika virus (ZIKV) is associated with numerous human health-related disorders, including fetal microcephaly, neurological signs, and autoimmune disorders such as Guillain-Barré syndrome (GBS). Perceiving the ZIKA associated losses, in 2016, the World Health Organization (WHO) declared it as a global public health emergency. In consequence, an upsurge in the research on ZIKV was seen around the globe, with significant attainments over developing several effective diagnostics, drugs, therapies, and vaccines countering this life-threatening virus at an early step. State-of-art tools developed led the researchers to explore virus at the molecular level, and in-depth epidemiological investigations to understand the reason for increased pathogenicity and different clinical manifestations. These days, ZIKV infection is diagnosed based on clinical manifestations, along with serological and molecular detection tools. As, isolation of ZIKV is a tedious task; molecular assays such as reverse transcription-polymerase chain reaction (RT-PCR), real-time qRT-PCR, loop-mediated isothermal amplification (LAMP), lateral flow assays (LFAs), biosensors, nucleic acid sequence-based amplification (NASBA) tests, strand invasion-based amplification tests and immune assays like enzyme-linked immunosorbent assay (ELISA) are in-use to ascertain the ZIKV infection or Zika fever. Herein, this review highlights the recent advances in the diagnosis, surveillance, and monitoring of ZIKV. These new insights gained from the recent advances can aid in the rapid and definitive detection of this virus and/or Zika fever. The summarized information will aid the strategies to design and adopt effective prevention and control strategies to counter this viral pathogen of great public health concern.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Hafiz M. N. Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Mexico
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rubén Bueno-Marí
- Laboratorios Lokímica, Departamento de Investigación y Desarrollo (I+D), Valencia, Spain
| |
Collapse
|
114
|
Banerjee R, Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 2018; 143:1970-1996. [DOI: 10.1039/c8an00307f] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in lateral flow immunoassay-based devices as a point-of-care analytical tool for the detection of infectious diseases are reviewed.
Collapse
Affiliation(s)
- Ruptanu Banerjee
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| | - Amit Jaiswal
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| |
Collapse
|