101
|
Ueda K, Akiba J, Ogasawara S, Todoroki K, Nakayama M, Sumi A, Kusano H, Sanada S, Suekane S, Xu K, Bae KH, Kurisawa M, Igawa T, Yano H. Growth inhibitory effect of an injectable hyaluronic acid-tyramine hydrogels incorporating human natural interferon-α and sorafenib on renal cell carcinoma cells. Acta Biomater 2016; 29:103-111. [PMID: 26481041 DOI: 10.1016/j.actbio.2015.10.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 11/25/2022]
Abstract
Immunotherapy including interferon-alpha (IFN-α) is one of the treatment options for metastatic renal cell carcinoma (mRCC) patients. Despite clinical benefits for the selected patients, IFN-α therapy has some problems, such as poor tolerability and dose-limiting adverse effects. In addition, the frequent injections reduce a patient's quality of life and compliance. Recently, an injectable and biodegradable hydrogel system to prolong drug release is reported. In this study, we investigated the anticancer effect of IFN-α (Sumiferon®)-incorporated hyaluronic acid-tyramine (HA-Tyr) hydrogels in human RCC-xenografted in nude mice. We also evaluated the synergistic efficacy of IFN-α-incorporated HA-Tyr hydrogels+sorafenib in this model. IFN-α-incorporated HA-Tyr hydrogels+sorafenib most effectively inhibited tumor growth on human RCC cells xenografted in nude mice. In addition, IFN-α-incorporated HA-Tyr hydrogels+sorafenib inhibited the proliferation of tumor in nude mice by inducing apoptosis and the suppression of angiogenesis. Our results suggest a possibility that HA-Tyr hydrogel drug delivery system prolongs the biological half-life of natural human IFN-α and enhances its anticancer effects on human RCC cells. STATEMENT OF SIGNIFICANCE The scope of this study is to provide an alternative approach to improve the anticancer efficacy in renal cell carcinoma (RCC) treatment by using hyaluronic acid-tyramine (HA-Tyr) hydrogel drug delivery system. We investigated the anticancer effect of natural interferon-α (IFN-α)-incorporated HA-Tyr hydrogels in RCC cells. We also evaluated the synergistic efficacy of natural human IFN-α-incorporated HA-Tyr hydrogels+sorafenib. We demonstrated that HA-Tyr hydrogel system is able to release natural human IFN-α in sustained manner and enhances its anticancer effects on human RCC cells. In addition, we suggested that IFN-α-incorporated HA-Tyr hydrogels+sorafenib exhibited most effectively anticancer effects. Hence, we believe that this approach could be applied to treatment with RCC in the future.
Collapse
|
102
|
Zhang Q, Zhao Y, Yang B, Fu C, Zhao L, Wang X, Wei Y, Tao L. Lighting up the PEGylation agents via the Hantzsch reaction. Polym Chem 2016. [DOI: 10.1039/c5py01624j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PEG chain ends have been modified with a protein reactive-group through the Hantzsch reaction to in situ achieve fluorescent PEGylation agents for protein conjugation.
Collapse
Affiliation(s)
- Qingdong Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yuan Zhao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Bin Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Changkui Fu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials
- Ministry of Education
- School of Material Science & Engineering
- Tsinghua University
- Beijing
| | - Xing Wang
- The State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
103
|
Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem Rev 2015; 116:2170-243. [PMID: 26713458 DOI: 10.1021/acs.chemrev.5b00441] [Citation(s) in RCA: 478] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.
Collapse
Affiliation(s)
- Jana Herzberger
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| | - Kerstin Niederer
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Hannah Pohlit
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Department of Dermatology, University Medical Center , Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Jan Seiwert
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Matthias Worm
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| |
Collapse
|
104
|
Masaki K, Suzuki F, Hara T, Kawamura Y, Sezaki H, Hosaka T, Akuta N, Kobayashi M, Saitoh S, Suzuki Y, Arase Y, Ikeda K, Kobayashi M, Kumada H. Long-term effects of peginterferon alfa-2a therapy in Japanese patients with chronic hepatitis B virus infection. Virol J 2015; 12:225. [PMID: 26700861 PMCID: PMC4690279 DOI: 10.1186/s12985-015-0453-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022] Open
Abstract
Background There is no information on the long-term effects of peginterferon (PEG-IFN) alfa-2a therapy for chronic hepatitis B (CHB) in Japan. This double-blind, randomized trial investigated the efficacy of PEG-IFN therapy. Methods We analyzed 22 Japanese patients with CHB (hepatitis B e antigen [HBeAg]-positive: 17, HBeAg-negative: 5) treated with PEG-IFN alfa-2a and followed-up posttreatment for 5 years. Responders represented patients who showed persistent normalization of alanine transferase (ALT) levels, HBeAg clearance, and low hepatitis B virus (HBV) DNA levels (HBeAg-positive patient; <5 log copies/mL, HBeAg-negative patient; <4.3 log copies/mL) at end of treatment, and at 1, 2, 3, 4 and 5 years posttreatment. In addition, baseline HBeAg-positive patients who showed sustained normalization of ALT level, HBeAg clearance, and low HBV DNA level for more than 6 months until at 1, 2, 3, 4, and 5 years after completion of PEG-IFN were also classified as “triple responders” and the proportion of triple responders relative to all patients was termed the “triple response rate”. Results The response rates among HBeAg-positive patients were 13 %, 25 %, 14 %, 21 % and 21 % at end of treatment, and at 1, 2, 3, 4, and 5 years, respectively. The response rate tended to be higher in patients treated for 48 than 24 weeks. The respective response rates among HBeAg-negative patients were 0 %, 20 %, 20 %, 20 % and 25 %. During the treatment period, hepatitis B surface antigen (HBsAg) clearance at 3.5 years was noted in one patient, who was 37-year-old, male, had genotype C and received PEG-IFN alfa-2a at 90 μg for 48 weeks. Conclusion At 5 years after completion of PEG-IFN, the triple response rate in HBeAg-positive patients and combined response rate in HBeAg-negative patients were 21 % (3/14) and 25 % (1/4), respectively. The triple response was seen in three patients who had all been treated with PEG-IFN for 48 weeks.
Collapse
Affiliation(s)
- Keiichi Masaki
- Department of Hepatology, Toranomon Hospital, Tokyo, Japan.
| | | | - Tasuku Hara
- Department of Hepatology, Toranomon Hospital, Tokyo, Japan.
| | | | - Hitomi Sezaki
- Department of Hepatology, Toranomon Hospital, Tokyo, Japan.
| | - Tetsuya Hosaka
- Department of Hepatology, Toranomon Hospital, Tokyo, Japan.
| | - Norio Akuta
- Department of Hepatology, Toranomon Hospital, Tokyo, Japan.
| | | | - Satoshi Saitoh
- Department of Hepatology, Toranomon Hospital, Tokyo, Japan.
| | | | - Yasuji Arase
- Department of Hepatology, Toranomon Hospital, Tokyo, Japan.
| | - Kenji Ikeda
- Department of Hepatology, Toranomon Hospital, Tokyo, Japan.
| | - Mariko Kobayashi
- Research Institute for Hepatology, Toranomon Hospital, Tokyo, Japan.
| | | |
Collapse
|
105
|
Bioanalytical approaches to assess the proteolytic stability of therapeutic fusion proteins. Bioanalysis 2015; 7:3035-51. [DOI: 10.4155/bio.15.217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Therapeutic fusion proteins (TFPs) are designed to improve the therapeutic profile of an endogenous protein or protein fragment with a limited dose frequency providing the desired pharmacological activity in vivo. Fusion of a therapeutic protein to a half-life extension or targeting domain can improve the disposition of the molecule or introduce a novel mechanism of action. Prolonged exposure and altered biodistribution of an endogenous protein through fusion technology increases the potential for local protein unfolding during circulation increasing the chance for partial proteolysis of the therapeutic domain. Characterizing the proteolytic liabilities of a TFP can guide engineering efforts to inhibit or hinder partial proteolysis. This review focuses on considerations and techniques for evaluating the stability of a TFP both in vivo and in vitro.
Collapse
|
106
|
Liu EJ, Sinclair A, Keefe AJ, Nannenga BL, Coyle BL, Baneyx F, Jiang S. EKylation: Addition of an Alternating-Charge Peptide Stabilizes Proteins. Biomacromolecules 2015; 16:3357-61. [DOI: 10.1021/acs.biomac.5b01031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Erik J. Liu
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - Andrew Sinclair
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - Andrew J. Keefe
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - Brent L. Nannenga
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - Brandon L. Coyle
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - François Baneyx
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| | - Shaoyi Jiang
- Department
of Chemical Engineering, University of Washington, Box 351750, Seattle, Washington 98195, United States
| |
Collapse
|
107
|
Lee P, Towslee J, Maia J, Pokorski J. PEGylation to Improve Protein Stability During Melt Processing. Macromol Biosci 2015; 15:1332-7. [PMID: 26097064 PMCID: PMC4615555 DOI: 10.1002/mabi.201500143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/14/2015] [Indexed: 12/19/2022]
Abstract
Biopharmaceuticals are some of the most effective drugs on the market, however, delivery remains a challenge. Melt processing is a viable protein encapsulation method because it is solvent free, is high throughput, and yields very high encapsulation efficiencies. Problematically, proteins can lose activity during melt processing due to high heat and shear forces. Covalent attachment of poly(ethylene glycol), or PEGylation, has been widely used to increase thermal stability and prevent aggregation in solution. This study explored the effect of PEGylation on protein stability during melt processing using lysozyme and PLGA. The results indicate that PEGylation increases the retained activity of lysozyme, increases dispersion in the melt, and reduces the biphasic release profile in melt processed systems.
Collapse
Affiliation(s)
- Parker Lee
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Jenna Towslee
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - João Maia
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Jonathan Pokorski
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA.
| |
Collapse
|
108
|
Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency. Biochem J 2015; 469:211-21. [PMID: 26171830 DOI: 10.1042/bj20140768] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO.
Collapse
|
109
|
Weber A, Engelmaier A, Hainzelmayer S, Minibeck E, Anderle H, Schwarz HP, Turecek PL. Development, Validation, and Application of a Novel Ligand-Binding Assay to Selectively Measure PEGylated Recombinant Human Coagulation Factor VIII (BAX 855). Bioconjug Chem 2015; 26:2133-42. [DOI: 10.1021/acs.bioconjchem.5b00442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
110
|
Fontes A, Karimi S, Helm L, Ferreira PM, André JP. PEGylated DOTA‐AHA‐Based Gd
III
Chelates: A Relaxometric Study. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- André Fontes
- Centro de Química, Campus de Gualtar, Universidade do Minho, 4710‐057 Braga, Portugal http://www.quimica.uminho.pt/
| | - Shima Karimi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland http://www.gcib.epfl.ch/helm
| | - Lothar Helm
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland http://www.gcib.epfl.ch/helm
| | - Paula M. Ferreira
- Centro de Química, Campus de Gualtar, Universidade do Minho, 4710‐057 Braga, Portugal http://www.quimica.uminho.pt/
| | - João P. André
- Centro de Química, Campus de Gualtar, Universidade do Minho, 4710‐057 Braga, Portugal http://www.quimica.uminho.pt/
| |
Collapse
|
111
|
Kim KS, Hyun H, Yang JA, Lee MY, Kim H, Yun SH, Choi HS, Hahn SK. Bioimaging of Hyaluronate-Interferon α Conjugates Using a Non-Interfering Zwitterionic Fluorophore. Biomacromolecules 2015; 16:3054-61. [PMID: 26258264 DOI: 10.1021/acs.biomac.5b00933] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We conducted real-time bioimaging of the hyaluronate-interferon α (HA-IFNα) conjugate using a biologically inert zwitterionic fluorophore of ZW800-1 for the treatment of hepatitis C virus (HCV) infection. ZW800-1 was labeled on the IFNα molecule of the HA-IFNα conjugate to investigate its biodistribution and clearance without altering its physicochemical and targeting characteristics. Confocal microscopy clearly visualized the effective in vitro cellular uptake of the HA-IFNα conjugate to HepG2 cells. After verifying the biological activity in Daudi cells, we conducted the pharmacokinetic analysis of the HA-IFNα conjugate, which confirmed its target-specific delivery to the liver with a prolonged residence time longer than that of PEGylated IFNα. In vivo and ex vivo bioimaging of the ZW800-1-labeled HA-IFNα conjugate directly showed real-time biodistribution and clearance of the conjugate that are consistent with the biological behaviors analyzed by an enzyme-linked immunosorbent assay. Furthermore, the elevated level of OAS1 mRNA in the liver confirmed in vivo antiviral activity of HA-IFNα conjugates. With the data taken together, we could confirm the feasibility of ZW800-1 as a biologically inert fluorophore and target-specific HA-IFNα conjugate for the treatment of HCV infection.
Collapse
Affiliation(s)
- Ki Su Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School , 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Hoon Hyun
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , 330 Brookline Avenue, Boston, Massachusetts 02215, United States.,Department of Biomedical Science, Chonnam National University Medical School , 160 Baekseo-ro, Dong-gu, Gwangju 501-746, Korea
| | - Jeong-A Yang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Min Young Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Hyemin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School , 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Hak Soo Choi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , 330 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Sei Kwang Hahn
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School , 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| |
Collapse
|
112
|
Sardon H, Tan JPK, Chan JMW, Mantione D, Mecerreyes D, Hedrick JL, Yang YY. Thermoresponsive Random Poly(ether urethanes) with Tailorable LCSTs for Anticancer Drug Delivery. Macromol Rapid Commun 2015; 36:1761-7. [DOI: 10.1002/marc.201500247] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/02/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Haritz Sardon
- POLYMAT; University of the Basque Country UPV/EHU Joxe Mari Korta Center; Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| | - Jeremy P. K. Tan
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | | | - Daniele Mantione
- POLYMAT; University of the Basque Country UPV/EHU Joxe Mari Korta Center; Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| | - David Mecerreyes
- POLYMAT; University of the Basque Country UPV/EHU Joxe Mari Korta Center; Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
- Ikerbasque; Basque Foundation for Science; E-48011 Bilbao Spain
| | - James L. Hedrick
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| |
Collapse
|
113
|
Taylor JS, Zhang Q, Julander JG, Stoycheva AD, Tan H, Moy CV, Chanda S, Symons JA, Beigelman LN, Blatt LM, Hong J. Development of a Hyperglycosylated IFN Alfacon-1 (CIFN): Toward Bimonthly or Monthly Dosing for Antiviral Therapies. J Interferon Cytokine Res 2015; 35:621-33. [DOI: 10.1089/jir.2014.0138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
| | | | | | | | - Hua Tan
- Alios BioPharma, South San Francisco, California
| | | | | | | | | | | | - Jin Hong
- Alios BioPharma, South San Francisco, California
| |
Collapse
|
114
|
Holm LS, Thulstrup PW, Kasimova MR, van de Weert M. Preferential Interactions and the Effect of Protein PEGylation. PLoS One 2015; 10:e0133584. [PMID: 26230338 PMCID: PMC4521882 DOI: 10.1371/journal.pone.0133584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/29/2015] [Indexed: 01/29/2023] Open
Abstract
Background PEGylation is a strategy used by the pharmaceutical industry to prolong systemic circulation of protein drugs, whereas formulation excipients are used for stabilization of proteins during storage. Here we investigate the role of PEGylation in protein stabilization by formulation excipients that preferentially interact with the protein. Methodology/Principal Findings The model protein hen egg white lysozyme was doubly PEGylated on two lysines with 5 kDa linear PEGs (mPEG-succinimidyl valerate, MW 5000) and studied in the absence and presence of preferentially excluded sucrose and preferentially bound guanine hydrochloride. Structural characterization by far- and near-UV circular dichroism spectroscopy was supplemented by investigation of protein thermal stability with the use of differential scanning calorimetry, far and near-UV circular dichroism and fluorescence spectroscopy. It was found that PEGylated lysozyme was stabilized by the preferentially excluded excipient and destabilized by the preferentially bound excipient in a similar manner as lysozyme. However, compared to lysozyme in all cases the melting transition was lower by up to a few degrees and the calorimetric melting enthalpy was decreased to half the value for PEGylated lysozyme. The ratio between calorimetric and van’t Hoff enthalpy suggests that our PEGylated lysozyme is a dimer. Conclusion/Significance The PEGylated model protein displayed similar stability responses to the addition of preferentially active excipients. This suggests that formulation principles using preferentially interacting excipients are similar for PEGylated and non-PEGylated proteins.
Collapse
Affiliation(s)
- Louise Stenstrup Holm
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Peter W. Thulstrup
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marina R. Kasimova
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marco van de Weert
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
115
|
Bichoupan K, Dieterich DT. Pegylated-IFNα2a for HIV/hepatitis C virus coinfected patients: out with the old, in with the new. Expert Opin Biol Ther 2015; 14:1369-78. [PMID: 25104426 DOI: 10.1517/14712598.2014.943180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Liver disease is a major burden in patients co-infected with HIV and hepatitis C virus (HCV). From the time of its approval, pegylated-IFNα-2a (pegIFN-α2a) has played a major role in treatment of HCV in HIV/HCV co-infection. AREAS COVERED This article briefly summarizes the epidemiology of HCV/HIV co-infection, the pharmacokinetic, and pharmacodynamic properties of pegIFN-α2a. Results from clinical trials investigating therapies containing pegIFN-α2a for HIV/HCV co-infected patients will be discussed with a focus on efficacy and safety. EXPERT OPINION PegIFN-α2a has improved rates of sustained virologic response for co-infected patients. In combination with direct-acting antivirals (DAA), the disparity between mono- and co-infected patients is beginning to disappear. For the first time, IFN-free regimens are available in clinical practice. It is unlikely that pegIFN-α2a will continue to be a critical component in treatments for HCV in the general co-infected population.
Collapse
|
116
|
Development of next generation of therapeutic IFN-α2b via genetic code expansion. Acta Biomater 2015; 19:100-11. [PMID: 25769229 DOI: 10.1016/j.actbio.2015.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/08/2015] [Accepted: 03/03/2015] [Indexed: 01/04/2023]
Abstract
With the aim to overcome the heterogeneity associated with marketed IFN-α2b PEGylates and optimize the size of the PEG moiety and the site of PEGylation, we develop a viable and facile platform through genetic code expansion for PEGylation of IFN-α2b at any chosen site(s). This approach includes site-specific incorporation of an azide-bearing amino acid into IFN-α2b followed by orthogonal and stoichiometric conjugation of a variety of PEGs via a copper-free click reaction. By this approach, only the chosen site(s) within IFN-α2b is consistently PEGylated under mild conditions, leading to a single and homogenous conjugate. Furthermore, it makes the structure-activity relationship study of IFN-α2b possible by which the opposite effects of PEGylation on the biological and pharmacological properties are optimized. Upon re-examination of the PEGylated IFN-α2b isomers carrying different sizes of PEG at different sites, we find mono-PEGylates at H34, A74 and E107 with a 20-, 10- and 10-kDa PEG moiety, respectively, have both higher biological activities and better PK profiles than others. These might represent the direction for development of the next generation of PEGylated IFN-α2b.
Collapse
|
117
|
Gurusamy KS, Toon CD, Thorburn D, Tsochatzis E, Davidson BR. Pharmacological treatments for chronic hepatitis C liver disease: a network meta-analysis. Hippokratia 2015. [DOI: 10.1002/14651858.cd011641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kurinchi Selvan Gurusamy
- Royal Free Campus, UCL Medical School; Department of Surgery; Royal Free Hospital Rowland Hill Street London UK NW3 2PF
| | - Clare D Toon
- West Sussex County Council; Public Health Research Unit; The Grange, County Hall Campus Tower Street Chichester West Sussex UK PO19 1QT
| | - Douglas Thorburn
- Royal Free Hospital and the UCL Institute of Liver and Digestive Health; Sheila Sherlock Liver Centre; Pond Street London UK NW3 2QG
| | - Emmanuel Tsochatzis
- Royal Free Hospital and the UCL Institute of Liver and Digestive Health; Sheila Sherlock Liver Centre; Pond Street London UK NW3 2QG
| | - Brian R Davidson
- Royal Free Campus, UCL Medical School; Department of Surgery; Royal Free Hospital Rowland Hill Street London UK NW3 2PF
| |
Collapse
|
118
|
Gurusamy KS, Tsochatzis E, Thorburn D, Davidson BR. Pharmacological treatments for chronic hepatitis B liver disease: a network meta-analysis. Hippokratia 2015. [DOI: 10.1002/14651858.cd011643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kurinchi Selvan Gurusamy
- Royal Free Campus, UCL Medical School; Department of Surgery; Royal Free Hospital Rowland Hill Street London UK NW3 2PF
| | - Emmanuel Tsochatzis
- Royal Free Hospital and the UCL Institute of Liver and Digestive Health; Sheila Sherlock Liver Centre; Pond Street London UK NW3 2QG
| | - Douglas Thorburn
- Royal Free Hospital and the UCL Institute of Liver and Digestive Health; Sheila Sherlock Liver Centre; Pond Street London UK NW3 2QG
| | - Brian R Davidson
- Royal Free Campus, UCL Medical School; Department of Surgery; Royal Free Hospital Rowland Hill Street London UK NW3 2PF
| |
Collapse
|
119
|
Mcleod VM, Chan LJ, Ryan GM, Porter CJ, Kaminskas LM. Optimal PEGylation can Improve the Exposure of Interferon in the Lungs Following Pulmonary Administration. J Pharm Sci 2015; 104:1421-30. [DOI: 10.1002/jps.24353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/07/2022]
|
120
|
Podobnik B, Helk B, Smilović V, Škrajnar Š, Fidler K, Jevševar S, Godwin A, Williams P. Conjugation of PolyPEG to interferon alpha extends serum half-life while maintaining low viscosity of the conjugate. Bioconjug Chem 2015; 26:452-9. [PMID: 25629733 DOI: 10.1021/bc500523t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The covalent attachment of poly(ethylene glycol) (PEG) to therapeutic proteins is a commonly used approach for extending in vivo half-lives. A potential limitation of this PEGylation strategy is the adverse effect of PEG on conjugate viscosity. Interferon-alpha (IFN) was conjugated via its N-terminal amino group by reductive amination to α-aldehyde functional comb-shaped PolyPEG polymers (50 and 70 kDa) and to linear PEG (30 kDa). In vitro potencies of the purified PEGylated IFN conjugates were measured by reporter gene assay using a HEK293P/ISRE-SEAP cell line. IFN levels were measured in rats following intravenous injection. Viscosities of various linear PEG and PolyPEG polymers along with the polymer-IFN conjugates were determined using a rotational rheometer with cone-and-plate geometry. In vitro potencies and half-lives of the PEGylated IFN conjugates were compared with those of the marketed branched PEG-IFN conjugate PEGASYS. Both PolyPEG-IFN conjugates retained a similar potency as that of the marketed comparator, whereas the linear PEG-IFN conjugate potency was greater. All conjugates showed extended half-lives compared to that of naked IFN, with the PolyPEG conjugates exhibiting the longest half-lives and the linear PEG conjugate, the shortest. Viscosity analysis showed that the linear PEG-IFN conjugate was over twice as viscous as both PolyPEG conjugates. Taken together, this work demonstrates the potential of PolyPEG conjugation to therapeutic proteins as a novel tool for optimizing pharmacokinetic profiles in a way that potentially allows administration of high-dose formulations because of lower conjugate viscosity.
Collapse
Affiliation(s)
- B Podobnik
- †Sandoz Biopharmaceuticals, Mengeš, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia
| | - B Helk
- ‡Novartis Pharma AG, CH-4056 Basel, Switzerland
| | - V Smilović
- †Sandoz Biopharmaceuticals, Mengeš, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia
| | - Š Škrajnar
- †Sandoz Biopharmaceuticals, Mengeš, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia
| | - K Fidler
- †Sandoz Biopharmaceuticals, Mengeš, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia
| | - S Jevševar
- †Sandoz Biopharmaceuticals, Mengeš, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia
| | - A Godwin
- §PolyTherics Ltd, Babraham Research Campus, Babraham, Cambridge CB22 3AT, United Kingdom
| | - P Williams
- ∥PolyTherics Ltd, Unit 4, Vanguard Centre, University of Warwick Science Park, Coventry, CV4 7EZ, United Kingdom
| |
Collapse
|
121
|
Gong Y, Leroux JC, Gauthier MA. Releasable Conjugation of Polymers to Proteins. Bioconjug Chem 2015; 26:1172-81. [DOI: 10.1021/bc500611k] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuhui Gong
- Swiss
Federal Institute of Technology Zurich (ETHZ), Department of Chemistry
and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg
1−5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Swiss
Federal Institute of Technology Zurich (ETHZ), Department of Chemistry
and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg
1−5/10, 8093 Zurich, Switzerland
| | - Marc A. Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Centre, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
| |
Collapse
|
122
|
Cobo I, Li M, Sumerlin BS, Perrier S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. NATURE MATERIALS 2015; 14:143-59. [PMID: 25401924 DOI: 10.1038/nmat4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/04/2014] [Indexed: 05/18/2023]
Abstract
The chemical structure and function of biomacromolecules has evolved to fill many essential roles in biological systems. More specifically, proteins, peptides, nucleic acids and polysaccharides serve as vital structural components, and mediate chemical transformations and energy/information storage processes required to sustain life. In many cases, the properties and applications of biological macromolecules can be further expanded by attaching synthetic macromolecules. The modification of biomacromolecules by attaching a polymer that changes its properties in response to environmental variations, thus affecting the properties of the biomacromolecule, has led to the emergence of a new family of polymeric biomaterials. Here, we summarize techniques for conjugating responsive polymers to biomacromolecules and highlight applications of these bioconjugates reported so far. In doing so, we aim to show how advances in synthetic tools could lead to rapid expansion in the variety and uses of responsive bioconjugates.
Collapse
Affiliation(s)
- Isidro Cobo
- Key Centre for Polymers &Colloids, School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Ming Li
- Tyco Fire Protection Products, Mansfield, Texas 76063, USA
| | - Brent S Sumerlin
- George &Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science &Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Sébastien Perrier
- 1] Department of Chemistry, The University of Warwick, Coventry CV4 7AL, UK [2] Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
123
|
Park EJ, Sun Kim M, Suk Lee H, Choon Lee K, Hee Na D. Differences in electrophoretic behavior between linear and branched PEG-conjugated proteins. Electrophoresis 2015; 36:918-23. [DOI: 10.1002/elps.201400539] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Eun Ji Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Republic of Korea
| | - Myung Sun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy; The Catholic University of Korea; Bucheon Republic of Korea
| | - Kang Choon Lee
- Drug Targeting Laboratory; College of Pharmacy; Sungkyunkwan University; Suwon Republic of Korea
| | - Dong Hee Na
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Republic of Korea
| |
Collapse
|
124
|
Obermeyer AC, Olsen BD. Synthesis and Application of Protein-Containing Block Copolymers. ACS Macro Lett 2015; 4:101-110. [PMID: 35596389 DOI: 10.1021/mz500732e] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins possess an impressive array of functionality ranging from catalytic activity to selective binding and mechanical strength, making them highly attractive for materials engineering. Conjugation of synthetic polymers to proteins has the potential to improve the physical properties of the protein as well as provide functionality not typically found in native proteins, such as stimuli-responsive behavior and the programmable ability to self-assemble. This viewpoint discusses the design of protein-polymer conjugates, an important class of block copolymers. Use of these hybrid molecules in biological and catalytic applications is highlighted, and the ability of the polymer to direct the solution and solid-state self-assembly of the hybrid block copolymers is reviewed. Future challenges in polymer and material science that will enable these hybrid molecules to reach their potential as protein-based materials are outlined.
Collapse
Affiliation(s)
- Allie C. Obermeyer
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
125
|
Mohanty AK, Dilnawaz F, Mohanta GP, Sahoo SK. Polymer–Drug Conjugates for Targeted Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
126
|
|
127
|
Rao VA. Perspectives on Engineering Biobetter Therapeutic Proteins with Greater Stability in Inflammatory Environments. BIOBETTERS 2015. [DOI: 10.1007/978-1-4939-2543-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
128
|
Viral hepatitis C therapy: pharmacokinetic and pharmacodynamic considerations. Clin Pharmacokinet 2014; 53:409-27. [PMID: 24723109 DOI: 10.1007/s40262-014-0142-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis C is a global health problem. To prevent or reduce complications, the hepatitis C virus (HCV) infection needs to be eradicated. There have been several developments in treating these patients since the discovery of the virus. As of 1 January 2014, the drugs that are approved for treatment of chronic HCV infection are peginterferon-α, ribavirin, boceprevir, telaprevir, simeprevir and sofosbuvir. In this review we provide an overview of the clinical pharmacokinetic characteristics of these agents by describing their absorption, distribution, metabolism and excretion. In the pharmacodynamic part we summarize what is known about the relationships between the pharmacokinetics of each drug and efficacy or toxicity. We briefly discuss the pharmacokinetics and pharmacodynamics of chronic hepatitis C treatment in special patient populations, such as patients with liver cirrhosis, renal insufficiency or HCV/HIV coinfection, and children. With this knowledge, physicians, pharmacists, nurse practitioners, etc. should be educated to safely and effectively treat HCV-infected patients.
Collapse
|
129
|
Sever M, Newberry KJ, Verstovsek S. Therapeutic options for patients with polycythemia vera and essential thrombocythemia refractory/resistant to hydroxyurea. Leuk Lymphoma 2014; 55:2685-90. [PMID: 24524340 PMCID: PMC4835800 DOI: 10.3109/10428194.2014.893310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hydroxyurea (HU) has traditionally been the first-line treatment for patients with polycythemia vera (PV) or essential thrombocythemia (ET) at high risk for vascular complications. However, approximately 20-25% of patients develop resistance or intolerance to HU and must be treated with second-line therapies. Resistance is associated with disease transformation and reduced survival. However, given the dearth of large-scale controlled clinical trials in this patient population, there is no clear consensus on how to best treat patients who develop resistance or intolerance to HU. Herein, we review current literature on treatment options for patients with HU-refractory/resistant PV or ET and provide recommendations for treating these patients.
Collapse
Affiliation(s)
- Matjaz Sever
- Deparment of Hematology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Kate J. Newberry
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
130
|
Zhang L, Liu M, Jamil S, Han R, Xu G, Ni Y. PEGylation and pharmacological characterization of a potential anti-tumor drug, an engineered arginine deiminase originated from Pseudomonas plecoglossicida. Cancer Lett 2014; 357:346-354. [PMID: 25462857 DOI: 10.1016/j.canlet.2014.11.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/25/2014] [Accepted: 11/19/2014] [Indexed: 12/12/2022]
Abstract
Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for arginine-auxotrophic tumors. PEGylation is one of the best methods to formulate a bioconjugated protein with extended physical stability and reduced immunogenicity. Here, PEGylation and pharmacological properties of an engineered ADI originated from Pseudomonas plecoglossicida were studied. Among polyethylene glycol (PEG) reagents with succinimidyl ester groups varying in size and linkers, three PEGylated products with high yield and catalytic activity were further characterized, named ADI-SS(20 kDa), ADI-SC(20 kDa), and ADI-SPA(20 kDa). In the pharmacodynamic/pharmacokinetic (PD/PK) studies with ADI-SPA(20 kDa), a remarkable improvement in circulating half-life compared with native ADI was observed. ADI-SPA(20 kDa) injections via intravenous, intramuscular and subcutaneous routes all exhibited superior efficacy than native ADI on depleting serum arginine. Additionally, our results demonstrated that single ADI-SPA(20 kDa) administration of 5 U/mouse via intravenous injection could maintain serum arginine at an undetectable level for 5 days with a half-life of 53.2 h, representing 11-fold improvement in half-life than that of the native ADI. In a mice H22 hepatocarcinoma model, ADI-SPA(20 kDa) dosage of 5 U per 5 days showed an inhibition rate of 95.02% on tumor growth during 15-day treatments.
Collapse
Affiliation(s)
- Long Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Menghan Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Serwanja Jamil
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ruizhi Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guochao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
131
|
PEG — A versatile conjugating ligand for drugs and drug delivery systems. J Control Release 2014; 192:67-81. [DOI: 10.1016/j.jconrel.2014.06.046] [Citation(s) in RCA: 471] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/07/2023]
|
132
|
Zhang X, Wang H, Ma Z, Wu B. Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns. Expert Opin Drug Metab Toxicol 2014; 10:1691-702. [DOI: 10.1517/17425255.2014.967679] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
133
|
Verhoef JJF, Carpenter JF, Anchordoquy TJ, Schellekens H. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discov Today 2014; 19:1945-52. [PMID: 25205349 DOI: 10.1016/j.drudis.2014.08.015] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/05/2014] [Accepted: 08/31/2014] [Indexed: 10/24/2022]
Abstract
Conjugation of polyethylene glycol (PEG) to therapeutics has proven to be an effective approach to increase the serum half-life. However, the increased use of PEGylated therapeutics has resulted in unexpected immune-mediated side-effects. There are claims that these are caused by anti-PEG antibodies inducing rapid clearance. These claims are however hampered by the lack of standardized and well-validated antibody assays. PEGylation has also been associated with the activation of the complement system causing severe hypersensitivity reactions. Here, we critically review the clinical and analytical tools used. In addition, we propose an explanation of the immune-mediated side-effects of PEGylated products based on the haptogenic properties of PEG, responsible for complement activation and the induction of anti-PEG antibodies.
Collapse
Affiliation(s)
- Johan J F Verhoef
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands.
| | - John F Carpenter
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Thomas J Anchordoquy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Huub Schellekens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
134
|
Yang B, Zhao Y, Wang S, Zhang Y, Fu C, Wei Y, Tao L. Synthesis of Multifunctional Polymers through the Ugi Reaction for Protein Conjugation. Macromolecules 2014. [DOI: 10.1021/ma501385m] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bin Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yuan Zhao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shiqi Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yaling Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Changkui Fu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
135
|
Abstract
Hepatitis C virus (HCV) infection is curable by therapy. The antiviral treatment of chronic hepatitis C has been based for decades on the use of interferon (IFN)-α, combined with ribavirin. More recently, new therapeutic approaches that target essential components of the HCV life cycle have been developed, including direct-acting antiviral (DAA) and host-targeted agents (HTA). A new standard-of-care treatment has been approved in 2011 for patients infected with HCV genotype 1, based on a triple combination of pegylated IFN-α, ribavirin, and either telaprevir or boceprevir, two inhibitors of the HCV protease. New triple and quadruple combination therapies including pegylated IFN-α, ribavirin, and one or two DAAs/HTAs, respectively, are currently being evaluated in Phase II and III clinical trials. In addition, various options for all-oral, IFN-free regimens are currently being evaluated. This chapter describes the characteristics of the different drugs used in the treatment of chronic hepatitis C and those currently in development and provides an overview of the current and future standard-of-care treatments of chronic hepatitis C.
Collapse
Affiliation(s)
- Jean-Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C and D, Department of Virology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France.
| |
Collapse
|
136
|
Ueda T. Next-generation optimized biotherapeutics - A review and preclinical study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2053-2057. [PMID: 24954894 DOI: 10.1016/j.bbapap.2014.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Biotherapeutics have been clinically used since the 1990s. Recently, next-generation optimized biotherapeutics, which are expected to act on the same molecular target as their predecessors with further properties by antibody-drug conjugation, radiolabeling, PEGylation and glycoconjugation, are on the market. This article reviews recent next-generation optimized biotherapeutics. Moreover, since trials of protein engineering for biotherapeutics have been conducted, these preclinical approaches are also described. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Tadashi Ueda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
137
|
Mäde V, Els-Heindl S, Beck-Sickinger AG. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 2014; 10:1197-212. [PMID: 24991269 PMCID: PMC4077397 DOI: 10.3762/bjoc.10.118] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022] Open
Abstract
The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS) offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.
Collapse
Affiliation(s)
- Veronika Mäde
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| |
Collapse
|
138
|
Abstract
Discovery of insulin in the early 1900s initiated the research and development to improve the means of therapeutic protein delivery in patients. In the past decade, great emphasis has been placed on bringing protein and peptide therapeutics to market. Despite tremendous efforts, parenteral delivery still remains the major mode of administration for protein and peptide therapeutics. Other routes such as oral, nasal, pulmonary and buccal are considered more opportunistic rather than routine application. Improving biological half-life, stability and therapeutic efficacy is central to protein and peptide delivery. Several approaches have been tried in the past to improve protein and peptide in vitro/in vivo stability and performance. Approaches may be broadly categorized as chemical modification and colloidal delivery systems. In this review we have discussed various chemical approaches such as PEGylation, hyperglycosylation, mannosylation, and colloidal carriers including microparticles, nanoparticles, liposomes, carbon nanotubes and micelles for improving protein and peptide delivery. Recent developments on in situ thermosensitive gel-based protein and peptide delivery have also been described. This review summarizes recent developments on some currently existing approaches to improve stability, bioavailability and bioactivity of peptide and protein therapeutics following parenteral administration.
Collapse
|
139
|
Deng NH, Wang L, He QC, Zheng JC, Meng Y, Meng YF, Zhang CJ, Shen FB. PEGylation alleviates the non-specific toxicities of Alpha-Momorcharin and preserves its antitumor efficacy in vivo. Drug Deliv 2014; 23:95-100. [PMID: 24786488 DOI: 10.3109/10717544.2014.905652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alpha-Momorcharin (α-MMC) is a ribosome inactivating protein from Momordica charantia with anti-tumor activity. Previously, we had observed that modification of α-MMC with polyethylene glycol (PEG) could reduce toxicity, but it also reduces its anti-tumor activity in vitro. This study aims to investigate whether the metabolism-extended properties of α-MMC resulting from PEGylation could preserve its anti-tumor efficacy in vivo through pharmacokinetics and antitumor experiments. The pharmacokinetics experiments were conducted in rats using the TCA (Trichloroacetic Acid) method. Antitumor activity in vivo was investigated in murine mammary carcinoma (EMT-6) and human mammary carcinoma (MDA-MB-231) transplanted tumor mouse models. The results showed that PEGylation increased the plasma half-life of α-MMC in rats from 6.2-7.5 h to 52-87 h. When administered at 1 mg/kg, α-MMC-PEG and α-MMC showed similar anti-tumor activities in vivo, with a T/C% of 38.56% for α-MMC versus 35.43% for α-MMC-PEG in the EMT-6 tumor model and 36.30% for α-MMC versus 39.88% for α-MMC-PEG in the MDA-MB-231 tumor model (p > 0.05). Importantly, at the dose of 3 mg/kg, all the animals treated with α-MMC died while the animals treated with α-MMC-PEG exhibited only moderate toxic reactions, and α-MMC-PEG exhibited improved anti-tumor efficacy with a T/C% (relative tumor growth rate) of 25.18% and 21.07% in the EMT-6 and MDA-MB-231 tumor models, respectively. The present study demonstrates that PEGylation extends the half-life of α-MMC and alleviates non-specific toxicity, thereby preserving its antitumor efficacy in vivo, and a higher lever of dosage can be used to achieve better therapeutic efficacy.
Collapse
Affiliation(s)
- Nian-hua Deng
- a Department of Immunology , College of Preclinical and Forensic Medicine, Sichuan University , Chengdu , PR China .,b School of Medical Laboratory Science, Chengdu Medical College , Chengdu , PR China
| | - Ling Wang
- b School of Medical Laboratory Science, Chengdu Medical College , Chengdu , PR China
| | - Qian-chuan He
- c Public Health Sciences Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA , and
| | - Jue-cun Zheng
- b School of Medical Laboratory Science, Chengdu Medical College , Chengdu , PR China
| | - Yao Meng
- b School of Medical Laboratory Science, Chengdu Medical College , Chengdu , PR China
| | - Yan-Fa Meng
- d Key Laboratory of Bio-Resources and Eco-Environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , College of Life Science, Sichuan University , Chengdu , PR China
| | - Chong-Jie Zhang
- a Department of Immunology , College of Preclinical and Forensic Medicine, Sichuan University , Chengdu , PR China
| | - Fu-bing Shen
- b School of Medical Laboratory Science, Chengdu Medical College , Chengdu , PR China
| |
Collapse
|
140
|
Hauser G, Awad T, Brok J, Thorlund K, Štimac D, Mabrouk M, Gluud C, Gluud LL, Cochrane Hepato‐Biliary Group. Peginterferon plus ribavirin versus interferon plus ribavirin for chronic hepatitis C. Cochrane Database Syst Rev 2014; 2014:CD005441. [PMID: 24585509 PMCID: PMC11053364 DOI: 10.1002/14651858.cd005441.pub3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pegylated interferon (peginterferon) plus ribavirin is the recommended treatment for patients with chronic hepatitis C, but systematic assessment of the effect of this treatment compared with interferon plus ribavirin is needed. OBJECTIVES To systematically evaluate the benefits and harms of peginterferon plus ribavirin versus interferon plus ribavirin for patients with chronic hepatitis C. SEARCH METHODS We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Science Citation Index-Expanded, and LILACS. We also searched conference abstracts, journals, and grey literature. The last searches were conducted in September 2013. SELECTION CRITERIA We included randomised clinical trials comparing peginterferon plus ribavirin versus interferon plus ribavirin with or without co-intervention(s) (e.g., other antiviral drugs) for chronic hepatitis C. Quasi-randomised and observational studies retrieved through the searches for randomised clinical trials were also considered for reports of harms. Our primary outcomes were liver-related morbidity, all-cause mortality, serious adverse events, adverse events leading to treatment discontinuation, other adverse events, and quality of life. Our secondary outcome was sustained virological response in serum, that is, undetectable hepatitis C virus RNA in serum by sensitive tests six months after the end of treatment. DATA COLLECTION AND ANALYSIS Two review authors independently used a standardised data collection form. We meta-analysed data with both fixed-effect and random-effects models. For each outcome, we calculated the odds ratio (OR) (for liver-related morbidity or all-cause mortality) or the risk ratio (RR) along with 95% confidence interval (CI) based on intention-to-treat analysis. We used domains of the trials to assess the risk of systematic errors (bias) and trial sequential analyses to assess the risk of random errors (play of chance).For each outcome, we calculated the RR with 95% CI based on intention-to-treat analysis. Effects of interventions on outcomes were assessed according to GRADE. MAIN RESULTS We included 27 randomised trials with 5938 participants. All trials had high risk of bias. We considered that the risk of bias did not impact on the quality of evidence for liver-related mortality and adverse event outcomes, but it did for virological response. All trials compared peginterferon alpha-2a or peginterferon alpha-2b plus ribavirin versus interferon plus ribavirin for participants with chronic hepatitis C. Three trials administered co-interventions (amantadine hydrochloride 200 mg daily to both intervention groups), and 24 trials were conducted without co-interventions. The effect observed between the two intervention groups regarding liver-related morbidity plus all-cause mortality (5/907 (0.55%) versus 4/882 (0.45%) was imprecise: OR 1.14 ( 95% CI 0.38 to 3.42; five trials; low quality of evidence), as was the risk of adverse events leading to treatment discontinuation (332/2692 (12.3%) versus 409/2176 (18.8%); RR 0.86, 95% CI 0.68 to 1.09; 15 trials; low quality of evidence) or regarding adverse events leading to treatment discontinuation (332/2692 (12.3%) versus 409/2176 (18.8%); RR 0.86, 95% CI 0.66 to 1.12; 17 trials; low quality of evidence). However, peginterferon plus ribavirin versus interferon plus ribavirin significantly increased the risk of neutropenia (332/2202 (15.1%) versus 117/1653 (7.1%); RR 2.15, 95% CI 1.76 to 2.61; 13 trials), thrombocytopenia (65/1113 (5.8%) versus 23/1082 (2.1%); RR 2.63, 95% CI 1.68 to 4.11; 10 trials), arthralgia (517/1740 (29.7%) versus 282/1194 (23.6%); RR 1.19, 95% CI 1.05 to 1.35; four trials), injection site reaction (627/1168 (53.7%) versus 186/649 (28.7%); RR 1.71, 95% CI 1.50 to 1.93; four trials), and nausea (606/1784 (34.0%) versus 354/1239 (28.6%); RR 1.13, 95% CI 1.01 to 1.26; four trials). The most frequent adverse event was fatigue, which occurred in 57% of participants (2024/3608). No significant difference was noted between peginterferon plus ribavirin versus interferon plus ribavirin in terms of fatigue (1177/2062 (57.1%) versus 847/1546 (54.8%); RR 1.01, 95% CI 0.96 to 1.07; 12 trials). No significant differences were reported between the two treatment groups regarding anaemia, headache, rigours, myalgia, pyrexia, weight loss, asthenia, depression, insomnia, irritability, alopecia, pruritus, skin rash, thyroid malfunction, decreased appetite, or diarrhoea. We were unable to identify any data on quality of life. Peginterferon plus ribavirin versus interferon plus ribavirin seemed to significantly increase the number of participants achieving sustained virological response (1673/3300 participants (50.7%) versus 1081/2804 patients (36.7%); RR 1.39, 95% CI 1.25 to 1.56; I2 = 64%; 27 trials; very low quality of evidence). However, the risk of bias in the 13/27 (48.1%) trials reporting on this outcome was high and was considered only 'lower' in the remainder. Because the conventional meta-analysis did not reach its required information size (n = 14,486 participants), we used trial sequential analysis to control for risks of random errors. Again, in this analysis, the estimated effect was statistically significant in favour of peginterferon. Subgroup analyses according to risk of bias, viral genotype, baseline viral load, past treatment history, and type of intervention yielded similarly significant results favouring peginterferon over interferon on the outcome of sustained virological response. AUTHORS' CONCLUSIONS Peginterferon plus ribavirin versus interferon plus ribavirin seems to significantly increase the proportion of patients with sustained virological response, as well as the risk of certain adverse events. However, we have insufficient evidence to recommend or reject peginterferon plus ribavirin for liver-related morbidity plus all-cause mortality compared with interferon plus ribavirin. The clinical consequences of achieved sustained virological response are unknown, as sustained virological response is still an unvalidated surrogate outcome. We found no evidence of the potential benefits on quality of life in patients with achieved sustained virological response. Further high-quality research is likely to have an important impact on our confidence in the estimate of patient-relevant outcomes and is likely to change our estimates.There is very low quality evidence that peginterferon plus ribavirin increases the proportion of patients with sustained virological response in comparison with interferon plus ribavirin. There is evidence that it also increases the risk of certain adverse events.
Collapse
Affiliation(s)
- Goran Hauser
- Clinical Hospital Centre RijekaDepartment of GastroenterologyKresimirova 42RijekaCroatia51 000
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupDepartment 7812, Rigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Tahany Awad
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupDepartment 7812, Rigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Jesper Brok
- RigshospitaletPaediatric Department 4072Blemdagsvej 9CopenhagenDenmark2100 Ø
| | - Kristian Thorlund
- McMaster UniversityDepartment of Clinical Epidemiology and BiostatisticsHamiltonOntarioCanada
| | - Davor Štimac
- Clinical Hospital Centre RijekaDepartment of GastroenterologyKresimirova 42RijekaCroatia51 000
| | - Mahasen Mabrouk
- Faculty of Medicine, Cairo UniversityEndemic Medicine and Liver DepartmentCairoEgypt
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupDepartment 7812, Rigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Lise Lotte Gluud
- Copenhagen University Hospital HvidovreGastro Unit, Medical DivisionKettegaards AlleHvidovreDenmark2650
| | | |
Collapse
|
141
|
Hauser G, Awad T, Thorlund K, Štimac D, Mabrouk M, Gluud C, Cochrane Hepato‐Biliary Group. Peginterferon alpha-2a versus peginterferon alpha-2b for chronic hepatitis C. Cochrane Database Syst Rev 2014; 2014:CD005642. [PMID: 24585451 PMCID: PMC11040422 DOI: 10.1002/14651858.cd005642.pub3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A combination of weekly pegylated interferon (peginterferon) alpha and daily ribavirin still represents standard treatment of chronic hepatitis C infection in the majority of patients. However, it is not established which of the two licensed peginterferon products, peginterferon alpha-2a or peginterferon alpha-2b, is the most effective and has a better safety profile. OBJECTIVES To systematically evaluate the benefits and harms of peginterferon alpha-2a versus peginterferon alpha-2b in head-to-head randomised clinical trials in patients with chronic hepatitis C. SEARCH METHODS We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded, and LILACS until October 2013. We also searched conference abstracts, journals, and grey literature. SELECTION CRITERIA We included randomised clinical trials comparing peginterferon alpha-2a versus peginterferon alpha-2b given with or without co-intervention(s) (for example, ribavirin) for chronic hepatitis C. Quasi-randomised studies and observational studies as identified by the searches were also considered for assessment of harms. Our primary outcomes were all-cause mortality, liver-related morbidity, serious adverse events, adverse events leading to treatment discontinuation, other adverse events, and quality of life. The secondary outcome was sustained virological response in the blood serum. DATA COLLECTION AND ANALYSIS Two authors independently used a standardised data collection form. We meta-analysed data with both the fixed-effect and the random-effects models. For each outcome we calculated the relative risk (RR) with 95% confidence interval (CI) based on intention-to-treat analysis. We used domains of the trials to assess the risk of systematic errors (bias) and trial sequential analyses to assess the risks of random errors (play of chance). Intervention effects on the outcomes were assessed according to GRADE. MAIN RESULTS We included 17 randomised clinical trials which compared peginterferon alpha-2a plus ribavirin versus peginterferon alpha-2b plus ribavirin in 5847 patients. All trials had a high risk of bias. Very few trials reported data on very few patients for the patient-relevant outcomes all-cause mortality, liver-related morbidity, serious adverse events, and quality of life. Accordingly, we were unable to conduct meta-analyses on all-cause mortality, liver-related morbidity, and quality of life. Twelve trials reported on adverse events leading to discontinuation of treatment without clear evidence of a difference between the two peginterferons (197/2171 (9.1%) versus 311/3169 (9.9%); RR 0.84, 95% CI 0.57 to 1.22; I2 = 44%; low quality evidence). A trial sequential analysis showed that we could exclude a relative risk reduction of 20% or more on this outcome. Peginterferon alpha-2a significantly increased the number of patients who achieved a sustained virological response in the blood serum compared with peginterferon alpha-2b (1069/2099 (51%) versus 1327/3075 (43%); RR 1.12, 95% CI 1.06 to 1.18; I2= 0%, 12 trials; moderate quality evidence). Trial sequential analyses supported this result. Subgroup analyses based on risk of bias, viral genotype, and treatment history yielded similar results. Trial sequential analyses supported the results in patients with genotypes 1 and 4, but not in patients with genotypes 2 and 3. AUTHORS' CONCLUSIONS There is lack of evidence on patient-important outcomes and paucity of evidence on adverse events. Moderate quality evidence suggests that peginterferon alpha-2a is associated with a higher sustained virological response in serum than with peginterferon alpha-2b. This finding may be affected by the high risk of bias of the included studies . The clinical consequences of peginterferon alpha-2a versus peginterferon alpha-2b are unknown, and we cannot translate an effect on sustained virological response into comparable clinical effects because sustained virological response is still an unvalidated surrogate outcome for patient-important outcomes. The lack of evidence on patient-important outcomes and the paucity of evidence on adverse events means that we are unable to draw any conclusions about the effects of one peginterferon over the other.
Collapse
Affiliation(s)
- Goran Hauser
- Clinical Hospital Centre RijekaDepartment of GastroenterologyKresimirova 42RijekaCroatia51 000
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupDepartment 7812, Rigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Tahany Awad
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupDepartment 7812, Rigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Kristian Thorlund
- McMaster UniversityDepartment of Clinical Epidemiology and BiostatisticsHamiltonOntarioCanada
| | - Davor Štimac
- Clinical Hospital Centre RijekaDepartment of GastroenterologyKresimirova 42RijekaCroatia51 000
| | - Mahasen Mabrouk
- Faculty of Medicine, Cairo UniversityEndemic Medicine and Liver DepartmentCairoEgypt
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupDepartment 7812, Rigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | | |
Collapse
|
142
|
Purification, characterization and plasma half-life of PEGylated soluble recombinant non-HA-binding CD44. BioDrugs 2014; 28:393-402. [PMID: 24567264 DOI: 10.1007/s40259-014-0089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to increase the serum half-life of recombinant CD44 hyaluronan (HA) binding domain by PEGylation. We have previously found that recombinant soluble CD44 HA binding domain (CD44HABD) and its non-HA-binding triple mutant CD44HABD(R41AY78SY79S) (CD44-3MUT) inhibits angiogenesis and subcutaneous tumor growth. However, this ~12 kDa recombinant protein displays a high serum clearance rate. METHODS Here, we report the purification of monomeric CD44-3MUT from urea solubilized inclusion bodies using weak anion exchange chromatography and gel filtration. To increase the serum residence time of CD44-3MUT we PEGylated the resulting protein using 20 kDa methoxy-PEG-propionaldehyde. RESULTS PEGylation of CD44-3MUT prolonged its in vivo serum half-life about 70-fold from 0.03 to 1.8 hours. Along with extended plasma residence time, PEGylation also increased the systemic exposure. By cell impedance assay we confirmed that PEGylated CD44-3MUT maintained its in vitro function. The results from the impedance assay additionally demonstrate that the CD44-3MUT effect on endothelial cells is mediated by vimentin. CONCLUSIONS In summary, we have developed a purification protocol for large-scale production of CD44-3MUT and generated a PEGylated form of CD44-3MUT. HA binding domain of CD44(CD44HABD) and its modified non-HA binding form (CD44-3MUT) inhibit angiogenesis and tumor growth in vivo without disturbing HA-binding functions. CD44-3MUT has been PEGylated for use as a new type of anti-angiogenic human drug. PEGylation of CD44-3MUT improved pharmacokinetic properties but retains its functional activity.
Collapse
|
143
|
|
144
|
Degasperi E, Viganò M, Aghemo A, Lampertico P, Colombo M. PegIFN-α2a for the treatment of chronic hepatitis B and C: a 10-year history. Expert Rev Anti Infect Ther 2014; 11:459-74. [DOI: 10.1586/eri.13.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
145
|
Abstract
Chronic hepatitis B virus is a serious and life threatening disease afflicting 350 million people worldwide, despite the availability of effective vaccines. Thus far, current monotherapy with conventional interferon-alpha, lamivudine and adefovir dipivoxil remains unsatisfactory. In addition, the use of conventional interferon-alpha needs to be administered subcutaneously three-times weekly and is associated with frequent adverse events. Although nucleoside/nucleotide analogs such as lamivudine and adefovir dipivoxil are well tolerated and can normalize serum alanine aminotransaminase rapidly, 1-year therapy with either lamivudine or adefovir dipivoxil results in low hepatitis B e antigen seroconversion rates. In hepatitis B e antigen-negative patients, most would relapse after lamivudine has been discontinued. Peginterferon-alpha2a, an immunomodulatory agent, is a new drug that has just completed Phase III clinical trials for the treatment of both hepatitis B e antigen-positive and -negative chronic hepatitis B virus infection. The advantage of peginterferon-alpha2a in achieving sustained virologic response over nucleoside/nucleotide analogs is particularly obvious in the hepatitis B e antigen-negative group. In both studies, sustained off-treatment response is superior to the use of monotherapy with lamivudine, and concomitant use of lamivudine and pegnterferon-alpha2a does not have advantages over the use of peginterferon-alpha2a alone. These recent data put peginterferon-alpha2a as the antihepatitis B virus therapy of choice, especially in young and motivated patients with chronic hepatitis B virus infection. However, despite the superiority of peginterferon-alpha2a over currently licensed nucleoside/nucleotide analogs, more research needs to be conducted in order to find the most optimal treatment regimen in our fight against chronic hepatitis B virus infection.
Collapse
Affiliation(s)
- Chee-Kin Hui
- Department of Medicine, Center for the Study of Liver Diseases, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China.
| | | |
Collapse
|
146
|
Plett PA, Chua HL, Sampson CH, Katz BP, Fam CM, Anderson LJ, Cox G, Orschell CM. PEGylated G-CSF (BBT-015), GM-CSF (BBT-007), and IL-11 (BBT-059) analogs enhance survival and hematopoietic cell recovery in a mouse model of the hematopoietic syndrome of the acute radiation syndrome. HEALTH PHYSICS 2014; 106:7-20. [PMID: 24276546 PMCID: PMC3843149 DOI: 10.1097/hp.0b013e3182a4dd4e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, using a previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated HGF were investigated. The PEGylated-HGFs possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs. C57BL/6 mice underwent single dose lethal irradiation (7.76-8.72 Gy, Cs, 0.62-1.02 Gy min) and were treated with various dosing regimens of 0.1, 0.3, and 1.0 mg kg of analogs of human PEG-G-CSF, murine PEG-GM-CSF, or human PEG-IL-11. Mice were administered one of the HGF analogs at 24-28 h post irradiation, and in some studies, additional doses given every other day (beginning with the 24-28 h dose) for a total of three or nine doses. Thirty-day (30 d) survival was significantly increased with only one dose of 0.3 mg kg of PEG-G-CSF and PEG-IL-11 or three doses of 0.3 mg kg of PEG-GM-CSF (p ≤ 0.006). Enhanced survival correlated with consistently and significantly enhanced WBC, NE, RBC, and PLT recovery for PEG-G- and PEG-GM-CSF, and enhanced RBC and PLT recovery for PEG-IL-11 (p ≤ 0.05). Longer administration schedules or higher doses did not provide a significant additional survival benefit over the shorter, lower dose, schedules. These data demonstrate the efficacy of BBT's PEG-HGF to provide significantly increased survival with fewer injections and lower drug doses, which may have significant economic and logistical value in the aftermath of a radiation event.
Collapse
Affiliation(s)
| | - Hui Lin Chua
- Indiana University School of Medicine, Indianapolis, IN
| | | | - Barry P. Katz
- Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | | |
Collapse
|
147
|
Levine PM, Craven TW, Bonneau R, Kirshenbaum K. Intrinsic bioconjugation for site-specific protein PEGylation at N-terminal serine. Chem Commun (Camb) 2014; 50:6909-12. [DOI: 10.1039/c4cc01928h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A rapid and site-specific method to introduce PEG chains onto the N-terminus of peptides and proteins through native amide linkages at serine is described.
Collapse
Affiliation(s)
| | - Timothy W. Craven
- Center for Genomics and Systems Biology
- New York University
- New York, USA
| | - Richard Bonneau
- Center for Genomics and Systems Biology
- New York University
- New York, USA
- Courant Institute of Mathematical Sciences
- New York University
| | | |
Collapse
|
148
|
Liu Y, Hao X, Waddington LJ, Qiu J, Hughes TC. Surface Modification of Multiwalled Carbon Nanotubes with Engineered Self-Assembled RAFT Diblock Coatings. Aust J Chem 2014. [DOI: 10.1071/ch13401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A facile method to modify the surface of multiwalled carbon nanotubes (MWCNTs) via electrostatic interactions between polyelectrolytes and oxidized MWCNTs was developed. Diblock copolymers containing poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMETAC), a positively charged block, and poly(ethylene glycol) methacrylate (PEGMA), a neutral block, with tailored molecular weights and low polydispersities were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. Acid treated-MWCNTs were coated with the RAFT diblock copolymers to improve their dispersibility in aqueous phosphate buffered saline (PBS) solution. The short positively charged PMETAC block was designed to attach the block copolymers to the surface of MWCNTs via electrostatic interactions, whereas the PEGMA block improved dispersibility of the MWCNTs in aqueous solutions. Extensive screening of the diblock copolymers with different degrees of polymerization (DP) showed that the dispersion stability of the polymer-coated MWCNTs in PBS was greatly improved with increasing chain length of the PEGMA block. In particular, the MWCNTs coated with a diblock copolymer containing PEGMA (DP = 118, the longest block investigated) showed superior dispersion stability in both water and PBS solution.
Collapse
|
149
|
Chua HL, Plett PA, Sampson CH, Katz BP, Carnathan GW, MacVittie TJ, Lenden K, Orschell CM. Survival efficacy of the PEGylated G-CSFs Maxy-G34 and neulasta in a mouse model of lethal H-ARS, and residual bone marrow damage in treated survivors. HEALTH PHYSICS 2014; 106:21-38. [PMID: 24276547 PMCID: PMC3843155 DOI: 10.1097/hp.0b013e3182a4df10] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In an effort to expand the worldwide pool of available medical countermeasures (MCM) against radiation, the PEGylated G-CSF (PEG-G-CSF) molecules Neulasta and Maxy-G34, a novel PEG-G-CSF designed for increased half-life and enhanced activity compared to Neulasta, were examined in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS), along with the lead MCM for licensure and stockpiling, G-CSF. Both PEG-G-CSFs were shown to retain significant survival efficacy when administered as a single dose 24 h post-exposure, compared to the 16 daily doses of G-CSF required for survival efficacy. Furthermore, 0.1 mg kg of either PEG-G-CSF affected survival of lethally-irradiated mice that was similar to a 10-fold higher dose. The one dose/low dose administration schedules are attractive attributes of radiation MCM given the logistical challenges of medical care in a mass casualty event. Maxy-G34-treated mice that survived H-ARS were examined for residual bone marrow damage (RBMD) up to 9 mo post-exposure. Despite differences in Sca-1 expression and cell cycle position in some hematopoietic progenitor phenotypes, Maxy-G34-treated mice exhibited the same degree of hematopoietic stem cell (HSC) insufficiency as vehicle-treated H-ARS survivors in competitive transplantation assays of 150 purified Sca-1+cKit+lin-CD150+cells. These data suggest that Maxy-G34, at the dose, schedule, and time frame examined, did not mitigate RBMD but significantly increased survival from H-ARS at one-tenth the dose previously tested, providing strong support for advanced development of Maxy-G34, as well as Neulasta, as MCM against radiation.
Collapse
Affiliation(s)
- Hui Lin Chua
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - P. Artur Plett
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Barry P. Katz
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
150
|
Moosmann A, Müller E, Böttinger H. Purification of PEGylated proteins, with the example of PEGylated lysozyme and PEGylated scFv. Methods Mol Biol 2014; 1129:527-538. [PMID: 24648098 DOI: 10.1007/978-1-62703-977-2_37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PEGylation is a common and highly accepted possibility for half-life prolongation of proteins by increasing the hydrodynamic size. The chromatographic purification of PEGylated protein, using PEG (poly-ethylene glycol) of different PEG chain lengths, with the example of lysozyme and a scFv, is described in detail here, and helpful suggestions for the purification of other PEGylated proteins are listed. The relevant characterization methods for PEGylated proteins, important for the successful purification, are also described. The purification starts with a CEX (cation exchange) chromatography leading to about 95 % purity for polishing HIC (hydrophobic interaction chromatography) is described.
Collapse
Affiliation(s)
- Anna Moosmann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart, 70569, Germany,
| | | | | |
Collapse
|