101
|
Li H, Liu Q, Crielaard BJ, de Vries JW, Loznik M, Meng Z, Yang X, Göstl R, Herrmann A. Fast, Efficient, and Targeted Liposome Delivery Mediated by DNA Hybridization. Adv Healthc Mater 2019; 8:e1900389. [PMID: 31081288 DOI: 10.1002/adhm.201900389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/26/2019] [Indexed: 12/22/2022]
Abstract
Safety and efficacy, two significant parameters in drug administration, can be improved by site-specific delivery approaches. Here a fast, efficient, and targeted liposome delivery system steered by a DNA hybridization recognition mechanism is presented. For this purpose, lipid-terminated DNA is inserted in both liposome and cell membranes by simple mixing of the components. Cellular accumulation of cargo encapsulated in the liposomal core is substantially enhanced when the DNA sequence on the cell is complementary to that on the liposome. Additionally, in mixed cell populations, liposomes discriminate targets by their complementary DNA sequences. Exposure of cells to low temperature and endocytosis inhibitors suggests a caveolae-dependent endocytosis uptake pathway. Mechanistically, hybridization between DNA strands spatially traps liposomes and cell membranes in close proximity, consequently increases the local liposome concentration, and thereby enhances cellular uptake of liposomes and their payload. This programmable delivery system might contribute to new applications in molecular biology and drug delivery.
Collapse
Affiliation(s)
- Hongyan Li
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Qing Liu
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Bart J. Crielaard
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jan W. de Vries
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mark Loznik
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Zhuojun Meng
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Xintong Yang
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Andreas Herrmann
- Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
102
|
Raniolo S, Croce S, Thomsen RP, Okholm AH, Unida V, Iacovelli F, Manetto A, Kjems J, Desideri A, Biocca S. Cellular uptake of covalent and non-covalent DNA nanostructures with different sizes and geometries. NANOSCALE 2019; 11:10808-10818. [PMID: 31134260 DOI: 10.1039/c9nr02006c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA nanostructures with different sizes and shapes, assembled through either covalent or non-covalent bonds, namely tetrahedral and octahedral nanocages, rod-shaped chainmails, square box and rectangular DNA origami structures, were compared for their stability in serum, cell surface binding, internalization efficiency, and intracellular degradation rate. For cell internalization a specific cell system, highly expressing the scavenger receptor LOX-1 was used. The results indicate that LOX-1 binds and internalizes a broad family of DNA structures of different sizes that, however, have a different fate and lifetime inside the cells. Covalently linked tetrahedra, octahedra or chainmails are intact inside cells for up to 18 hours whilst the same DNA nanostructures without covalent bonds along with square box and rectangular origami are rapidly degraded. These data suggest that non-covalently linked structures may be useful for fast drug release whilst the covalently-linked structures could be appropriate vehicles for slow release of molecules.
Collapse
Affiliation(s)
- Sofia Raniolo
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Roma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Fluorescent and mass spectrometric evaluation of the phagocytic internalization of a CD47-peptide modified drug-nanocarrier. Anal Bioanal Chem 2019; 411:4193-4202. [PMID: 31093697 DOI: 10.1007/s00216-019-01825-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 10/26/2022]
Abstract
Ru(bpy)3@SiO2-COOH and Ru(bpy)3@SiO2@CD47-peptide nanoparticles (NPs) with fluorescent and mass spectrometric properties were designed and synthesized as the models of drug-nanocarriers. Their phagocytic internalization could be quantitatively measured using more sensitive inductively coupled plasma mass spectrometry (ICPMS) (102Ru) versus traditional laser confocal scanning microscope (λex/em = 458/600 nm) for the first time. Modification of a self-signal trigging CD47-peptide on the NPs' surface decreased internalization by 10 times, (2.79 ± 0.21) × 104 Ru(bpy)3@SiO2-COOH and (0.28 ± 0.04) × 104 Ru(bpy)3@SiO2@CD47-peptide NPs per RAW264.7 macrophage (n = 5). The alkynyl-linked CD47-peptide allowed us to quantify the number (2412 ± 250) of CD47-peptide modified on the NP and the total content (5.14 ± 0.25 amol) of signal regulatory protein α (SIRPα) on the macrophage by measuring the clickable tagged Eu using ICPMS. Furthermore, the interaction between CD47-peptide and SIRPα as well as the changes of the remaining free SIRPα during the internalization process of Ru(bpy)3@SiO2@CD47-peptide NPs were quantitatively evaluated, providing direct experimental evidence of the longspeculated crucial CD47-SIRPα interaction for drug-nanocarriers to escape internalization by phagocytic cells. Remarkable difference in the internalization ratio of 12.3 ± 4.8 of Ru(bpy)3@SiO2-COOH NPs and 4.3 ± 0.5 Ru(bpy)3@SiO2@CD47-peptide NPs with and without the protein corona indicated that CD47-peptide still worked when the protein corona formed. Not limited to the evaluation of the NPs studied here, such a fluorescent and mass spectrometric approach is very much expected to apply to the assessment of other drug-nanocarriers designed by chemists and before their medical applications. Graphical abstract.
Collapse
|
104
|
Jiang Z, Cui W, Mager J, Thayumanavan S. Postfunctionalization of Noncationic RNA–Polymer Complexes for RNA Delivery. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
105
|
Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, Masood A, Casula MF, Kostopoulou A, Oh E, Susumu K, Stewart MH, Medintz IL, Stratakis E, Parak WJ, Kanaras AG. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem Rev 2019; 119:4819-4880. [PMID: 30920815 DOI: 10.1021/acs.chemrev.8b00733] [Citation(s) in RCA: 484] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The design of nanoparticles is critical for their efficient use in many applications ranging from biomedicine to sensing and energy. While shape and size are responsible for the properties of the inorganic nanoparticle core, the choice of ligands is of utmost importance for the colloidal stability and function of the nanoparticles. Moreover, the selection of ligands employed in nanoparticle synthesis can determine their final size and shape. Ligands added after nanoparticle synthesis infer both new properties as well as provide enhanced colloidal stability. In this article, we provide a comprehensive review on the role of the ligands with respect to the nanoparticle morphology, stability, and function. We analyze the interaction of nanoparticle surface and ligands with different chemical groups, the types of bonding, the final dispersibility of ligand-coated nanoparticles in complex media, their reactivity, and their performance in biomedicine, photodetectors, photovoltaic devices, light-emitting devices, sensors, memory devices, thermoelectric applications, and catalysis.
Collapse
Affiliation(s)
- Amelie Heuer-Jungemann
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| | - Neus Feliu
- Department of Laboratory Medicine (LABMED) , Karolinska Institutet , Stockholm 171 77 , Sweden.,Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Ioanna Bakaimi
- School of Chemistry, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton SO171BJ , U.K
| | - Majd Hamaly
- King Hussein Cancer Center , P. O. Box 1269, Al-Jubeiha, Amman 11941 , Jordan
| | - Alaaldin Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy , The University of Jordan , Amman 11942 , Jordan.,Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | | | - Atif Masood
- Fachbereich Physik , Philipps Universität Marburg , 30357 Marburg , Germany
| | - Maria F Casula
- INSTM and Department of Chemical and Geological Sciences , University of Cagliari , 09042 Monserrato , Cagliari , Italy.,Department of Mechanical, Chemical and Materials Engineering , University of Cagliari , Via Marengo 2 , 09123 Cagliari , Italy
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser , Foundation for Research and Technology-Hellas , Heraklion , 71110 Crete , Greece
| | - Eunkeu Oh
- KeyW Corporation , Hanover , Maryland 21076 , United States.,Optical Sciences Division, Code 5600 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Kimihiro Susumu
- KeyW Corporation , Hanover , Maryland 21076 , United States.,Optical Sciences Division, Code 5600 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Michael H Stewart
- Optical Sciences Division, Code 5600 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser , Foundation for Research and Technology-Hellas , Heraklion , 71110 Crete , Greece
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| |
Collapse
|
106
|
Ferrer JR, Wertheim JA, Mirkin CA. Dual Toll-Like Receptor Targeting Liposomal Spherical Nucleic Acids. Bioconjug Chem 2019; 30:944-951. [PMID: 30830754 DOI: 10.1021/acs.bioconjchem.9b00047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liposomal spherical nucleic acids (LSNAs) are a class of nanomaterial used broadly for biomedical applications. Their intrinsic capacity to rapidly enter cells and engage cell surface and intracellular ligands stems from their unique three-dimensional architecture, which consists of densely packed and uniformly oriented oligonucleotides on the surface of a liposomal core. Such structures are promising for therapeutics because they can carry chemical cargo within the lipid core in addition to the nucleic acids that define them, in principle enabling delivery of multiple signals to a single cell. On the basis of these traits, we have designed novel dual-targeting LSNAs that deliver a nucleic acid specific for TLR9 inhibition and a small molecule (TAK-242) that inhibits TLR4. Toll-like receptors (TLRs) play a large role in pathogen recognition and disease initiation, and TLR subtypes are differentially located within the lipid membranes of the cell surface and within intracellular endosomes. Oftentimes, in acute or chronic inflammatory conditions, multiple TLRs are activated, leading to stimulation of distinct, and sometimes overlapping, downstream pathways. As such, these inflammatory conditions may respond to attenuation of more than one initiating receptor. We show that dual targeting LSNAs, comprised of unilamellar liposomal cores, the INH-18 oligonucleotide sequence, and TAK-242 robustly inhibit TLR-9 and TLR-4 respectively, in engineered TLR reporter cells and primary mouse peritoneal macrophages. Importantly, the LSNAs exhibit up to a 10- and a 1000-fold increase, respectively, in TLR inhibition compared to the linear sequence and TAK-242 alone. Moreover, the timing of delivery is shown to be a critical factor in effecting TLR-inhibition, with near-complete TLR-4 inhibition occurring when cells were pretreated with SNAs for 4 h prior to stimulation. The most pronounced effect observed from this approach is the benefit of delivering the small molecule within the SNA via the receptor-mediated internalization pathway common to SNAs.
Collapse
Affiliation(s)
- Jennifer R Ferrer
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Department of Surgery , Northwestern Feinberg School of Medicine , Chicago , Illinois 60611 , United States.,International Institute for Nanotechnology , Evanston , Illinois 60208 , United States
| | - Jason A Wertheim
- Department of Surgery , Northwestern Feinberg School of Medicine , Chicago , Illinois 60611 , United States.,Department of Biomedical Engineering , Northwestern University , Evanston , Illinois 60208 , United States.,Department of Surgery , Jesse Brown VA Medical Center , Chicago , Illinois 60612 , United States
| | - Chad A Mirkin
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Department of Biomedical Engineering , Northwestern University , Evanston , Illinois 60208 , United States.,International Institute for Nanotechnology , Evanston , Illinois 60208 , United States
| |
Collapse
|
107
|
Dan K, Veetil AT, Chakraborty K, Krishnan Y. DNA nanodevices map enzymatic activity in organelles. NATURE NANOTECHNOLOGY 2019; 14:252-259. [PMID: 30742135 PMCID: PMC6859052 DOI: 10.1038/s41565-019-0365-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/18/2018] [Indexed: 05/18/2023]
Abstract
Cellular reporters of enzyme activity are based on either fluorescent proteins or small molecules. Such reporters provide information corresponding to wherever inside cells the enzyme is maximally active and preclude minor populations present in subcellular compartments. Here we describe a chemical imaging strategy to selectively interrogate minor, subcellular pools of enzymatic activity. This new technology confines the detection chemistry to a designated organelle, enabling imaging of enzymatic cleavage exclusively within the organelle. We have thus quantitatively mapped disulfide reduction exclusively in endosomes in Caenorhabditis elegans and identified that exchange is mediated by minor populations of the enzymes PDI-3 and TRX-1 resident in endosomes. Impeding intra-endosomal disulfide reduction by knocking down TRX-1 protects nematodes from infection by Corynebacterium diphtheriae, revealing the importance of this minor pool of endosomal TRX-1. TRX-1 also mediates endosomal disulfide reduction in human cells. A range of enzymatic cleavage reactions in organelles are amenable to analysis by this new reporter strategy.
Collapse
Affiliation(s)
- Krishna Dan
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behaviour, University of Chicago, Chicago, IL, USA
| | - Aneesh T Veetil
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behaviour, University of Chicago, Chicago, IL, USA
| | - Kasturi Chakraborty
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behaviour, University of Chicago, Chicago, IL, USA
| | - Yamuna Krishnan
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behaviour, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
108
|
Wang S, Chen Y, Wang S, Li P, Mirkin CA, Farha OK. DNA-Functionalized Metal-Organic Framework Nanoparticles for Intracellular Delivery of Proteins. J Am Chem Soc 2019; 141:2215-2219. [PMID: 30669839 DOI: 10.1021/jacs.8b12705] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to their large size, charged surfaces, and environmental sensitivity, proteins do not naturally cross cell-membranes in intact form and, therefore, are difficult to deliver for both diagnostic and therapeutic purposes. Based upon the observation that clustered oligonucleotides can naturally engage scavenger receptors that facilitate cellular transfection, nucleic acid-metal organic framework nanoparticle (MOF NP) conjugates have been designed and synthesized from NU-1000 and PCN-222/MOF-545, respectively, and phosphate-terminated oligonucleotides. They have been characterized structurally and with respect to their ability to enter mammalian cells. The MOFs act as protein hosts, and their densely functionalized, oligonucleotide-rich surfaces make them colloidally stable and ensure facile cellular entry. With insulin as a model protein, high loading and a 10-fold enhancement of cellular uptake (as compared to that of the native protein) were achieved. Importantly, this approach can be generalized to facilitate the delivery of a variety of proteins as biological probes or potential therapeutics.
Collapse
Affiliation(s)
- Shunzhi Wang
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Yijing Chen
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Shuya Wang
- Interdepartmental Biological Sciences , 2205 Tech Drive , Evanston , Illinois 60208 , United States
| | - Peng Li
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Chad A Mirkin
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Omar K Farha
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
109
|
Mable CJ, Canton I, Mykhaylyk OO, Ustbas Gul B, Chambon P, Themistou E, Armes SP. Targeting triple-negative breast cancer cells using Dengue virus-mimicking pH-responsive framboidal triblock copolymer vesicles. Chem Sci 2019. [DOI: 10.1039/c8sc05589k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dengue fever-mimicking pH-responsive framboidal triblock copolymer vesicles enable delivery of a nucleic acid payload to the nuclei of triple-negative breast cancer cells.
Collapse
Affiliation(s)
| | - Irene Canton
- Department of Biomedical Sciences
- University of Sheffield
- Firth Court
- Sheffield
- UK
| | | | - Burcin Ustbas Gul
- Department of Biomedical Sciences
- University of Sheffield
- Firth Court
- Sheffield
- UK
| | - Pierre Chambon
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | | | | |
Collapse
|
110
|
Yang Y, Zhong S, Wang K, Huang J. Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst 2019; 144:1052-1072. [DOI: 10.1039/c8an02070a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
111
|
Jiang Z, Cui W, Prasad P, Touve MA, Gianneschi NC, Mager J, Thayumanavan S. Bait-and-Switch Supramolecular Strategy To Generate Noncationic RNA-Polymer Complexes for RNA Delivery. Biomacromolecules 2018; 20:435-442. [PMID: 30525500 DOI: 10.1021/acs.biomac.8b01321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA interference (RNAi) requires the intracellular delivery of RNA molecules to initiate the neutralization of targeted mRNA molecules, inhibiting the expression or translation of the targeted gene. Current polymers and lipids that are used to deliver RNA molecules are generally required to be positively charged, to achieve complexation with RNA and the cellular internalization. However, positive surface charge has been implicated as the reason for toxicity in many of these systems. Herein, we report a novel strategy to generate noncationic RNA-polymer complexes for RNA delivery with low cytotoxicity. We use an in situ electrostatic complexation using a methylated pyridinium group, which is simultaneously removed during the RNA binding step. The resultant complexes demonstrate successful knockdown in preimplantation mammalian embryos, thus providing a new approach for nucleic acid delivery.
Collapse
Affiliation(s)
| | | | | | - Mollie A Touve
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States
| | - Nathan C Gianneschi
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States
| | | | | |
Collapse
|
112
|
Affiliation(s)
- Krzysztof Sztandera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Leibniz Institute of Polymer Research Dresden, 6 Hohe St., 01069 Dresden, Germany
| |
Collapse
|
113
|
Matczuk M, Ruzik L, Aleksenko SS, Keppler BK, Jarosz M, Timerbaev AR. Analytical methodology for studying cellular uptake, processing and localization of gold nanoparticles. Anal Chim Acta 2018; 1052:1-9. [PMID: 30685026 DOI: 10.1016/j.aca.2018.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022]
Abstract
Interactions of gold nanoparticles (AuNPs) with live cells are known to exert a great impact on their functions, including cell signalling, genomic, proteomic, and metabolomic processes. Modern analytical techniques applied to studying nanoparticle-cell interactions are to improve our understanding of the mode of action of AuNPs, which is essential for their approval in disease therapeutics. Such methods may vary depending on what step of particle internalization is in question, i.e., cellular uptake, intracellular transport (accompanying by changes in the chemical state), translocation to different cell compartments, interaction with relevant subcellular structures and localization. This review focuses on the implementation and critical assessment of advanced analytical methodologies to investigate the cellular processing of AuNPs. Also addressed is a sought-after issue of accounting in in-vitro studies for a chemical form in which the AuNPs enter the cell in vivo.
Collapse
Affiliation(s)
- Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Lena Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Svetlana S Aleksenko
- Saratov State Agrarian University, Teatralnaya Sq. 1, 410012, Saratov, Russian Federation
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Andrei R Timerbaev
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland; Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991, Moscow, Russian Federation.
| |
Collapse
|
114
|
Rotz MW, Holbrook RJ, MacRenaris KW, Meade TJ. A Markedly Improved Synthetic Approach for the Preparation of Multifunctional Au-DNA Nanoparticle Conjugates Modified with Optical and MR Imaging Probes. Bioconjug Chem 2018; 29:3544-3549. [PMID: 30193061 DOI: 10.1021/acs.bioconjchem.8b00504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a new, and vastly superior approach for labeling spherical nucleic acid conjugates (SNAs) with diagnostic probes. SNAs have been shown to provide the unique ability to traverse the cell membrane and deliver surface conjugated DNA into cells while preserving the DNA from nuclease degradation. Our previous work on preparing diagnostically labeled SNAs was labor intensive, relatively low yielding, and costly. Here, we describe a straightforward and facile preparation for labeling SNAs with optical and MR imaging probes with significantly improved physical properties. The synthesis of Gd(III) labeled DNA Au nanoparticle conjugates is achieved by sequential conjugation of 3'-thiol-modified oligonucleotides and cofunctionalization of the particle surface with the subsequent addition of 1,2 diothiolate modified chelates of Gd(III) (abbreviated: DNA-GdIII@AuNP). This new generation of SNA conjugates has a 2-fold increase of DNA labeling and a 1.4-fold increase in Gd(III) loading compared to published constructs. Furthermore, the relaxivity ( r1) is observed to increase 4.5-fold compared to the molecular dithiolane-Gd(III) complex, and 1.4-fold increase relative to previous particle constructs where the Gd(III) complexes were conjugated to the oligonucleotides rather than directly to the Au particle. Importantly, this simplified approach (2 steps) exploits the advantages of previous Gd(III) labeled SNA platforms; however, this new approach is scalable and eliminates modification of DNA for attaching the contrast agent, and the particles exhibit improved cell labeling.
Collapse
Affiliation(s)
- Matthew W Rotz
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Robert J Holbrook
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Keith W MacRenaris
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| | - Thomas J Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3113 , United States
| |
Collapse
|
115
|
Melamed JR, Kreuzberger NL, Goyal R, Day ES. Spherical Nucleic Acid Architecture Can Improve the Efficacy of Polycation-Mediated siRNA Delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:207-219. [PMID: 30195760 PMCID: PMC6023847 DOI: 10.1016/j.omtn.2018.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/11/2023]
Abstract
Clinical translation of small interfering RNA (siRNA) nanocarriers is hindered by limited knowledge regarding the parameters that regulate interactions between nanocarriers and biological systems. To address this, we investigated the influence of polycation-based nanocarrier architecture on intracellular siRNA delivery. We compared the cellular interactions of two polycation-based siRNA carriers that have similar size and surface charge but different siRNA orientation: (1) polyethylenimine-coated spherical nucleic acids (PEI-SNAs), in which polyethylenimine is wrapped around a spherical nucleic acid core containing radially oriented siRNA and (2) randomly assembled polyethylenimine-siRNA polyplexes that lack controlled architecture. We found that PEI-SNAs undergo enhanced and more rapid cellular uptake than polyplexes, suggesting a prominent role for architecture in cellular uptake. Confocal microscopy studies demonstrated that while PEI-SNAs and polyplexes exhibit similar intracellular stability, PEI-SNAs undergo decreased accumulation within lysosomes, identifying another advantage conferred by their architecture. Indeed, these advantageous cellular interactions enhanced the gene silencing potency of PEI-SNAs by 10-fold relative to polyplexes. Finally, cytocompatibility studies showed that PEI-SNAs exhibit decreased toxicity per PEI content relative to polyplexes, allowing the use of more polycation. Our studies provide critical insight into design considerations for engineering siRNA carriers and warrant future investigation of how nanocarrier architecture influences cellular-, organ-, and organism-level interactions.
Collapse
Affiliation(s)
- Jilian R Melamed
- Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Ritu Goyal
- Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Emily S Day
- Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA; Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA.
| |
Collapse
|
116
|
Bros M, Nuhn L, Simon J, Moll L, Mailänder V, Landfester K, Grabbe S. The Protein Corona as a Confounding Variable of Nanoparticle-Mediated Targeted Vaccine Delivery. Front Immunol 2018; 9:1760. [PMID: 30116246 PMCID: PMC6082927 DOI: 10.3389/fimmu.2018.01760] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023] Open
Abstract
Nanocarriers (NC) are very promising tools for cancer immunotherapy. Whereas conventional vaccines are based on the administration of an antigen and an adjuvant in an independent fashion, nanovaccines can facilitate cell-specific co-delivery of antigen and adjuvant. Furthermore, nanovaccines can be decorated on their surface with molecules that facilitate target-specific antigen delivery to certain antigen-presenting cell types or tumor cells. However, the target cell-specific uptake of nanovaccines is highly dependent on the modifications of the nanocarrier itself. One of these is the formation of a protein corona around NC after in vivo administration, which may potently affect cell-specific targeting and uptake of the NC. Understanding the formation and composition of the protein corona is, therefore, of major importance for the use of nanocarriers in vaccine approaches. This Mini Review will give a short overview of potential non-specific interactions of NC with body fluids or cell surfaces that need to be considered for the design of NC vaccines for immunotherapy of cancer.
Collapse
Affiliation(s)
- Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Johanna Simon
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Lorna Moll
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
117
|
Kim HJ, Yi Y, Kim A, Miyata K. Small Delivery Vehicles of siRNA for Enhanced Cancer Targeting. Biomacromolecules 2018; 19:2377-2390. [PMID: 29864287 DOI: 10.1021/acs.biomac.8b00546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Small interfering RNA (siRNA) drugs have been considered to treat various diseases in major organs. However, siRNA drugs developed for cancer therapy are hindered from proceeding to the clinic. To date, various delivery formulations have been developed from cationic lipids, polymers, and/or inorganic nanoparticles for systemic siRNA delivery to solid tumors. Most of these delivery vehicles do not generate small particle sizes and pharmacokinetics required for accumulation in target cancer cells compared with clinically tested anticancer drug-loaded polymeric micelles. This review describes the significance of small, long-circulating vehicles for efficient delivery of siRNA to cancer tissues via the enhanced permeability and retention (EPR) effect. We summarize recent biological evidence that supports the size effect of delivery vehicles in tumor microenvironments and introduce promising strategies for the construction of small vehicles with sizes of 10-50 nm. We then discuss the feasibility of these delivery vehicles with respect to translation to clinical trials.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Yu Yi
- Department of Materials Engineering, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for Nanosciecne and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , China
| | - Ahram Kim
- Department of Materials Science, Graduate School of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8573 , Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| |
Collapse
|
118
|
Wang G, Groman E, Simberg D. Discrepancies in the in vitro and in vivo role of scavenger receptors in clearance of nanoparticles by Kupffer cells. PRECISION NANOMEDICINE 2018. [DOI: 10.29016/180430.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles are recognized and cleared by Kupffer cells (KCs) in the liver. This process complicates the development of targeted nanoparticles because of significant reduction of number of nanoparticles that can reach target tissues. Macrophage scavenger receptor SR type AI/II is the central phagocytic receptor that has been shown to promote in vitro uptake of many nanoparticle types. In this paper, the authors set out to clarify the role of SR-AI/II in the in vivo liver clearance of 10kDa dextran superparamagnetic iron oxide (SPIO) Feridex-IV® and 20kDa dextran-coated SPIO nanoworms (SPIO NWs). Feridex showed efficient SR-AI/II-dependent uptake by isolated KCs in vitro, whereas SPIO NWs showed no uptake by KCs. Both Feridex and SPIO NWs showed a very short and nearly identical circulation half-life and efficient uptake by KCs in vivo. The SR-AI/II inhibitor, polyinosinic acid, prolonged the circulation half-life of both Feridex and SPIO NWs, but did not reduce the KC uptake. The circulation half-life and KC uptake of Feridex and SPIO NWs were identical in SR-AI/II-deficient mice and wild-type mice. These data suggest: (1) there is a limited correlation between in vitro and in vivo uptake mechanisms of nanoparticles in KCs; and (2) redundant, SR-AI/II independent mechanisms play a significant role in the nanoparticle recognition by KCs in vivo. Understanding the complexity of nanoparticle clearance assays and mechanisms is an important step to improving the design of “stealthy” nanoparticles.
Collapse
|
119
|
Baid K, Nellimarla S, Huynh A, Boulton S, Guarné A, Melacini G, Collins SE, Mossman KL. Direct binding and internalization of diverse extracellular nucleic acid species through the collagenous domain of class A scavenger receptors. Immunol Cell Biol 2018; 96:922-934. [DOI: 10.1111/imcb.12052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/24/2018] [Accepted: 03/29/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Kaushal Baid
- Biochemistry and Biomedical Sciences; McMaster Immunology Research Centre; Michael DeGroote Institute for Infectious Disease Research; McMaster University; Hamilton ON Canada
| | - Srinivas Nellimarla
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Centre; Michael DeGroote Institute for Infectious Disease Research; McMaster University; Hamilton ON Canada
| | - Angela Huynh
- Biochemistry and Biomedical Sciences; McMaster Immunology Research Centre; Michael DeGroote Institute for Infectious Disease Research; McMaster University; Hamilton ON Canada
| | - Stephen Boulton
- Biochemistry and Biomedical Sciences; McMaster Immunology Research Centre; Michael DeGroote Institute for Infectious Disease Research; McMaster University; Hamilton ON Canada
| | - Alba Guarné
- Biochemistry and Biomedical Sciences; McMaster Immunology Research Centre; Michael DeGroote Institute for Infectious Disease Research; McMaster University; Hamilton ON Canada
| | - Giuseppe Melacini
- Biochemistry and Biomedical Sciences; McMaster Immunology Research Centre; Michael DeGroote Institute for Infectious Disease Research; McMaster University; Hamilton ON Canada
- Department of Chemistry and Chemical Biology; McMaster University; Hamilton ON Canada
| | - Susan E Collins
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Centre; Michael DeGroote Institute for Infectious Disease Research; McMaster University; Hamilton ON Canada
| | - Karen L Mossman
- Biochemistry and Biomedical Sciences; McMaster Immunology Research Centre; Michael DeGroote Institute for Infectious Disease Research; McMaster University; Hamilton ON Canada
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Centre; Michael DeGroote Institute for Infectious Disease Research; McMaster University; Hamilton ON Canada
| |
Collapse
|
120
|
Kyriazi ME, Giust D, El-Sagheer AH, Lackie PM, Muskens OL, Brown T, Kanaras AG. Multiplexed mRNA Sensing and Combinatorial-Targeted Drug Delivery Using DNA-Gold Nanoparticle Dimers. ACS NANO 2018; 12:3333-3340. [PMID: 29557641 DOI: 10.1021/acsnano.7b08620] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The design of nanoparticulate systems which can perform multiple synergistic functions in cells with high specificity and selectivity is of great importance in applications. Here we combine recent advances in DNA-gold nanoparticle self-assembly and sensing to develop gold nanoparticle dimers that are able to perform multiplexed synergistic functions within a cellular environment. These dimers can sense two mRNA targets and simultaneously or independently deliver one or two DNA-intercalating anticancer drugs (doxorubicin and mitoxantrone) in live cells. Our study focuses on the design of sophisticated nanoparticle assemblies with multiple and synergistic functions that have the potential to advance sensing and drug delivery in cells.
Collapse
Affiliation(s)
| | | | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Peter M Lackie
- Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , United Kingdom
| | | | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | | |
Collapse
|
121
|
Abstract
Herein, we report a class of molecular spherical nucleic acid (SNA) nanostructures. These nano-sized single molecules are synthesized from T8 polyoctahedral silsesquioxane and buckminsterfullerene C60 scaffolds, modified with 8 and 12 pendant DNA strands, respectively. These conjugates have different DNA surface densities and thus exhibit different levels of nuclease resistance, cellular uptake, and gene regulation capabilities; the properties displayed by the C60 SNA conjugate are closer to those of conventional and prototypical gold nanoparticle SNAs. Importantly, the C60 SNA can serve as a single entity (no transfection agent required) antisense agent to efficiently regulate gene expression. The realization of molecularly pure forms of SNAs will open the door for studying the interactions of such structures with ligands and living cells with a much greater degree of control than the conventional polydisperse forms of SNAs.
Collapse
|
122
|
Song WC, Kim KR, Park M, Lee KE, Ahn DR. Backbone-modified oligonucleotides for tuning the cellular uptake behaviour of spherical nucleic acids. Biomater Sci 2018; 5:412-416. [PMID: 28133665 DOI: 10.1039/c6bm00792a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spherical nucleic acids (SNAs) are spherically arranged oligonucleotides on core inorganic nanoparticles and have great potential for intracellular delivery of bioactive molecules, since they have been found to be internalized into mammalian cells. Understanding the factors that influence the cellular uptake of SNAs would be beneficial to design SNAs with novel uptake properties. We here report the effect of the sugar backbone type of the oligonucleotides on the cellular internalization of SNAs. After the preparation of SNAs with the oligonucleotides of five different sugar backbones, we analyze the cellular uptake efficiency quantitatively by flow cytometry and inductively coupled plasma mass spectrometry (ICP-MS). The data reveal that the uptake efficiencies and the uptake mechanisms significantly rely on the backbone type. These results suggest that the backbone modification can provide a unique handle to tune the cellular uptake behavior of SNAs.
Collapse
Affiliation(s)
- Woo Chul Song
- The Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea.
| | - Kyoung-Ran Kim
- The Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea. and Department of Chemistry, College of Science, Yonsei University, Seoul, Republic of Korea
| | - Miri Park
- The Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea.
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dae-Ro Ahn
- The Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea. and Department of Biological Chemistry, KIST Campus, University of Science and Technology (UST), Republic of Korea
| |
Collapse
|
123
|
Wang P, Rahman MA, Zhao Z, Weiss K, Zhang C, Chen Z, Hurwitz SJ, Chen ZG, Shin DM, Ke Y. Visualization of the Cellular Uptake and Trafficking of DNA Origami Nanostructures in Cancer Cells. J Am Chem Soc 2018; 140:2478-2484. [PMID: 29406750 PMCID: PMC7261494 DOI: 10.1021/jacs.7b09024] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA origami is a promising molecular delivery system for a variety of therapeutic applications including cancer therapy, given its capability to fabricate homogeneous nanostructures whose physicochemical properties (size, shape, surface chemistry) can be precisely tailored. However, the correlation between DNA-origami design and internalization efficiency in different cancer cell lines remains elusive. We investigated the cellular uptake of four DNA-origami nanostructures (DONs) with programmed sizes and shapes in multiple human cancer cell lines. The cellular uptake efficiency of DONs was influenced by size, shape, and cell line. Scavenger receptors were responsible for the internalization of DONs into cancer cells. We observed distinct stages of the internalization process of a gold nanoparticle (AuNP)-tagged rod-shape DON, using high-resolution transmission electron microscopy. This study provides detailed understanding of cellular uptake and intracellular trafficking of DONs in cancer cells, and offers new insights for future optimization of DON-based drug delivery systems for cancer treatment.
Collapse
Affiliation(s)
- Pengfei Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Mohammad Aminur Rahman
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zhixiang Zhao
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410083, China
| | - Kristin Weiss
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Chao Zhang
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University Rollins School of Public Health, Atlanta, Georgia 30322, United States
| | - Zhengjia Chen
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University Rollins School of Public Health, Atlanta, Georgia 30322, United States
| | - Selwyn J. Hurwitz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zhuo G. Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Dong M. Shin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
124
|
Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem Rev 2018; 119:6459-6506. [PMID: 29465222 DOI: 10.1021/acs.chemrev.7b00663] [Citation(s) in RCA: 580] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, we have seen rapid advances in applying nanotechnology in biomedical areas including bioimaging, biodetection, and drug delivery. As an emerging field, DNA nanotechnology offers simple yet powerful design techniques for self-assembly of nanostructures with unique advantages and high potential in enhancing drug targeting and reducing drug toxicity. Various sequence programming and optimization approaches have been developed to design DNA nanostructures with precisely engineered, controllable size, shape, surface chemistry, and function. Potent anticancer drug molecules, including Doxorubicin and CpG oligonucleotides, have been successfully loaded on DNA nanostructures to increase their cell uptake efficiency. These advances have implicated the bright future of DNA nanotechnology-enabled nanomedicine. In this review, we begin with the origin of DNA nanotechnology, followed by summarizing state-of-the-art strategies for the construction of DNA nanostructures and drug payloads delivered by DNA nanovehicles. Further, we discuss the cellular fates of DNA nanostructures as well as challenges and opportunities for DNA nanostructure-based drug delivery.
Collapse
Affiliation(s)
- Qinqin Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China
| | - Hua Li
- Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China.,Research & Development Center, Shandong Buchang Pharmaceutical Company, Limited, Heze 274000 , China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China.,Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
125
|
Chen X, Gao C. Influences of size and surface coating of gold nanoparticles on inflammatory activation of macrophages. Colloids Surf B Biointerfaces 2017; 160:372-380. [DOI: 10.1016/j.colsurfb.2017.09.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
|
126
|
Sun J, Liu Y, Ge M, Zhou G, Sun W, Liu D, Liang XJ, Zhang J. A Distinct Endocytic Mechanism of Functionalized-Silica Nanoparticles in Breast Cancer Stem Cells. Sci Rep 2017; 7:16236. [PMID: 29176652 PMCID: PMC5701218 DOI: 10.1038/s41598-017-16591-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023] Open
Abstract
Nanoparticles provide new fields for life medical science application, including targeted-drug delivery and cancer treatment. To maximize the delivery efficiency of nanoparticle, one must understand the uptake mechanism of nanoparticle in cells, which may determine their ultimate fate and localization in cells. Recently, the proposed-cancer stem cell (CSC) theory has been attracted great attention and regarded as new targets for the new nanodrug developmet and cancer therapies. The interaction between nanoparticles and cancer cells has been extensively studied, but the uptake mechanism of nanoparticles in CSCs has received little attention. Here, we use the pharmacological inhibitors of major endocytic pathways to study the silica nanoparticle (SiNP) uptake mechanisms in the human breast adenocarcinoma cell line (MCF-7) and MCF-7-derived breast cancer stem cells (BCSCs). The results demonstrate that the uptake of SiNPs, particularly amino-functionalized SiNPs, in MCF-7 cells is strongly affected by the actin depolymerization, whereas BCSCs more strongly inhibit the amino-functionalized SiNP uptake after the scavenger receptor disruption. These findings indicate a distinct endocytic mechanism of functionalized SiNPs in BCSCs, which is significant for designing ideal nanosized drug delivery systems and improving the selectivity for CSC-targeted therapy.
Collapse
Affiliation(s)
- Jiadong Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China.,College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China.,CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| | - Yajing Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China.,College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Min Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China.,College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China.,College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Wentong Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China.,College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China. .,College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China.
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China.
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China. .,College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China.
| |
Collapse
|
127
|
Bamberger D, Hobernik D, Konhäuser M, Bros M, Wich PR. Surface Modification of Polysaccharide-Based Nanoparticles with PEG and Dextran and the Effects on Immune Cell Binding and Stimulatory Characteristics. Mol Pharm 2017; 14:4403-4416. [DOI: 10.1021/acs.molpharmaceut.7b00507] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Denise Bamberger
- Department
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55128 Mainz, Germany
| | - Dominika Hobernik
- Department
of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Matthias Konhäuser
- Department
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55128 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Peter R. Wich
- Department
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55128 Mainz, Germany
| |
Collapse
|
128
|
Ding L, Sun R, Zhang X. Rap2b siRNA significantly enhances the anticancer therapeutic efficacy of adriamycin in a gold nanoshell-based drug/gene co-delivery system. Oncotarget 2017; 8:21200-21211. [PMID: 28423503 PMCID: PMC5400577 DOI: 10.18632/oncotarget.15508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Rap2b is a novel p53 target we have identified recently. Knockdown of Rap2b sensitizes HCT116 cells to adriamycin-induced apoptosis, indicating that Rap2b promotes adriamycin resistance in cancer cells. In the present study, we designed a nanostructure-based drug/gene delivery system to evaluate the potential of Rap2b siRNA as a therapeutic agent against human cancers. Specifically, after co-incubated with HCT116 cells, adriamycin- and Rap2b siRNA-loaded gold nanoshells were internalized. Subsequent laser irradiation promoted release of adriamycin and Rap2b siRNA from the nanoparticles. The laser-induced release of Rap2b siRNA decreased cellular expression of Rap2b and significantly enhanced the anticancer therapeutic efficacy of adriamycin in vitro and in vivo. In addition, laser irradiation of the nanoparticles might exert an additional thermal killing effect on cancer cells and further improved the anticancer efficacy of adriamycin. In summary, Rap2b siRNA is a potential enhancing agent for adriamycin-based anticancer therapeutics and the gold nanoshell-based drug/gene delivery system carrying both adriamycin and Rap2b siRNA provides a promising anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Li Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ruonan Sun
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinyue Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
129
|
Wu L, Zhang Z, Gao H, Li Y, Hou L, Yao H, Wu S, Liu J, Wang L, Zhai Y, Ou H, Lin M, Wu X, Liu J, Lang G, Xin Q, Wu G, Luo L, Liu P, Shentu J, Wu N, Sheng J, Qiu Y, Chen W, Li L. Open-label phase I clinical trial of Ad5-EBOV in Africans in China. Hum Vaccin Immunother 2017; 13. [PMID: 28708962 DOI: 10.1002/smll.201701815] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/31/2017] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND To determine the safety and immunogenicity of a novel recombinant adenovirus type 5 vector based Ebola virus disease vaccine (Ad5-EBOV) in Africans in China. METHODS A phase 1, dose-escalation, open-label trial was conducted. 61 healthy Africans were sequentially enrolled, with 31 participants receiving one shot intramuscular injection and 30 participants receiving a double-shot regimen. Primary and secondary end points related to safety and immunogenicity were assessed within 28 d after vaccination. This study was registered with ClinicalTrials.gov (NCT02401373). RESULTS Ad5-EBOV is well tolerated and no adverse reaction of grade 3 or above was observed. 53 (86.89%) participants reported at least one adverse reaction within 28 d of vaccination. The most common reaction was fever and the mild pain at injection site, and there were no significant difference between these 2 groups. Ebola glycoprotein-specific antibodies appeared in all 61 participants and antibodies titers peaked after 28 d of vaccination. The geometric mean titres (GMTs) were similar between these 2 groups (1919.01 vs 1684.70 P = 0.5562). The glycoprotein-specific T-cell responses rapidly peaked after 14 d of vaccination and then decreased, however, the percentage of subjects with responses were much higher in the high-dose group (60.00% vs 9.68%, P = 0.0014). Pre-existing Ad5 neutralizing antibodies could significantly dampen the specific humoral immune response and cellular response to the vaccine. CONCLUSION The application of Ad5-EBOV demonstrated safe in Africans in China and a specific GP antibody and T-cell response could occur 14 d after the first immunization. This acceptable safety profile provides a reliable basis to proceed with trials in Africa.
Collapse
MESH Headings
- Adult
- Africa/epidemiology
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- China
- Ebola Vaccines/administration & dosage
- Ebola Vaccines/adverse effects
- Ebola Vaccines/immunology
- Ebolavirus/immunology
- Female
- Fever/ethnology
- Healthy Volunteers
- Hemorrhagic Fever, Ebola/epidemiology
- Hemorrhagic Fever, Ebola/ethnology
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Male
- Membrane Glycoproteins/immunology
- Middle Aged
- T-Lymphocytes/immunology
- Vaccination
- Young Adult
Collapse
Affiliation(s)
- Lihua Wu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Zhe Zhang
- c Beijing Institute of Biotechnology , Haidian District, Beijing , China
| | - Hainv Gao
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
- d Zhejiang University International Hospital , Xiacheng District, Hangzhou , Zhejiang , China
| | - Yuhua Li
- e National Institutes for Food and Drug Control , Chongwen District, Beijing , China
| | - Lihua Hou
- c Beijing Institute of Biotechnology , Haidian District, Beijing , China
| | - Hangping Yao
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Shipo Wu
- c Beijing Institute of Biotechnology , Haidian District, Beijing , China
| | - Jian Liu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Ling Wang
- e National Institutes for Food and Drug Control , Chongwen District, Beijing , China
| | - You Zhai
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Huilin Ou
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Meihua Lin
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Xiaoxin Wu
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
- d Zhejiang University International Hospital , Xiacheng District, Hangzhou , Zhejiang , China
| | - Jingjing Liu
- e National Institutes for Food and Drug Control , Chongwen District, Beijing , China
| | - Guanjing Lang
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Qian Xin
- f The General Hospital of People's Liberation Army , Beijing , China
| | - Guolan Wu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Li Luo
- g Department of Epidemiology and Biostatistics , School of Public Health, Southeast University , Nanjing , Jiangsu , China
| | - Pei Liu
- g Department of Epidemiology and Biostatistics , School of Public Health, Southeast University , Nanjing , Jiangsu , China
| | - Jianzhong Shentu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Nanping Wu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Jifang Sheng
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Yunqing Qiu
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
| | - Wei Chen
- c Beijing Institute of Biotechnology , Haidian District, Beijing , China
| | - Lanjuan Li
- a The First Affiliated Hospital, College of Medicine, Zhejiang University , Xiacheng District, Hangzhou , Zhejiang , China
- b The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Xiacheng District, Hangzhou , Zhejiang , China
- d Zhejiang University International Hospital , Xiacheng District, Hangzhou , Zhejiang , China
| |
Collapse
|
130
|
Functional nucleic acids as in vivo metabolite and ion biosensors. Biosens Bioelectron 2017; 94:94-106. [DOI: 10.1016/j.bios.2017.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/27/2022]
|
131
|
Yue J, Feliciano TJ, Li W, Lee A, Odom TW. Gold Nanoparticle Size and Shape Effects on Cellular Uptake and Intracellular Distribution of siRNA Nanoconstructs. Bioconjug Chem 2017; 28:1791-1800. [PMID: 28574255 PMCID: PMC5737752 DOI: 10.1021/acs.bioconjchem.7b00252] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gold nanoparticles (AuNPs) show potential for transfecting target cells with small interfering RNA (siRNA), but the influence of key design parameters such as the size and shape of the particle core is incomplete. This paper describes a side-by-side comparison of the in vitro response of U87 glioblastoma cells to different formulations of siRNA-conjugated gold nanoconstructs targeting the expression of isocitrate dehydrogenase 1 (IDH1) based on 13 nm spheres, 50 nm spheres, and 40 nm stars. 50 nm spheres and 40 nm stars showed much higher uptake efficiency compared to 13 nm spheres. Confocal fluorescence microscopy showed that all three formulations were localized in the endosomes at early incubation times (2 h), but after 24 h, 50 nm spheres and 40 nm stars were neither in endosomes nor in lysosomes while 13 nm spheres remained in endosomes. Transmission electron microscopy images revealed that the 13 nm spheres were enclosed and dispersed within endocytic vesicles while 50 nm spheres and 40 nm stars were aggregated, and some of these NPs were outside of endocytic vesicles. In our comparison of nanoconstructs with different sizes and shapes, while holding siRNA surface density and nanoparticle concentration constant, we found that larger particles (50 nm spheres and 40 nm stars) showed higher potential as carriers for the delivery of siRNA.
Collapse
Affiliation(s)
- Jun Yue
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Timothy Joel Feliciano
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Wenlong Li
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Andrew Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W. Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
132
|
Preparation of dual-stimuli-responsive liposomes using methacrylate-based copolymers with pH and temperature sensitivities for precisely controlled release. Colloids Surf B Biointerfaces 2017; 155:449-458. [PMID: 28463812 DOI: 10.1016/j.colsurfb.2017.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022]
Abstract
Dual-signal-sensitive copolymers were synthesized by copolymerization of methoxy diethylene glycol methacrylate, methacrylic acid, and lauroxy tetraethylene glycol methacrylate, which respectively provide temperature sensitivity, pH sensitivity, and anchoring to liposome surfaces. These novel copolymers, with water solubility that differs depending on temperature and pH, are soluble in water under neutral pH and low-temperature conditions, but they become water-insoluble and form aggregates under acidic pH and high-temperature conditions. Liposomes modified with these copolymers exhibited enhanced content release at weakly acidic pH with increasing temperature, although no temperature-dependent content release was observed in neutral conditions. Interaction between the copolymers and the lipid monolayer at the air-water interface revealed that the copolymer chains penetrate more deeply into the monolayer with increasing temperature at acidic pH than at neutral pH, where the penetration of copolymer chains was moderate and temperature-independent at neutral pH. Interaction of the copolymer-modified liposomes with HeLa cells demonstrated that the copolymer-modified liposomes were adsorbed quickly and efficiently onto the cell surface and that they were internalized more gradually than the unmodified liposomes through endocytosis. Furthermore, the copolymer-modified liposomes enhanced the content release in endosomes with increasing temperature, but no such temperature-dependent enhancement of content release was observed for unmodified liposomes.
Collapse
|
133
|
Dror Y, Sorkin R, Brand G, Boubriak O, Urban J, Klein J. The effect of the serum corona on interactions between a single nano-object and a living cell. Sci Rep 2017; 7:45758. [PMID: 28383528 PMCID: PMC5382918 DOI: 10.1038/srep45758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles (NPs) which enter physiological fluids are rapidly coated by proteins, forming a so-called corona which may strongly modify their interaction with tissues and cells relative to the bare NPs. In this work the interactions between a living cell and a nano-object, and in particular the effect on this of the adsorption of serum proteins, are directly examined by measuring the forces arising as an Atomic Force Microscope tip (diameter 20 nm) - simulating a nano-object - approaches and contacts a cell. We find that the presence of a serum protein corona on the tip strongly modifies the interaction as indicated by pronounced increase in the indentation, hysteresis and work of adhesion compared to a bare tip. Classically one expects an AFM tip interacting with a cell surface to be repelled due to cell elastic distortion, offset by tip-cell adhesion, and indeed such a model fits the bare-tip/cell interaction, in agreement with earlier work. However, the force plots obtained with serum-modified tips are very different, indicating that the cell is much more compliant to the approaching tip. The insights obtained in this work may promote better design of NPs for drug delivery and other nano-medical applications.
Collapse
Affiliation(s)
- Yael Dror
- Materials and Interfaces Department, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Physical and Theoretical Chemistry, Oxford University, Oxford OX1 3QZ, United Kingdom
| | - Raya Sorkin
- Materials and Interfaces Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Guy Brand
- Materials and Interfaces Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Olga Boubriak
- University Laboratory of Physiology, Oxford University, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Jill Urban
- University Laboratory of Physiology, Oxford University, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Jacob Klein
- Materials and Interfaces Department, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Physical and Theoretical Chemistry, Oxford University, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
134
|
Chinen AB, Guan CM, Ko CH, Mirkin CA. The Impact of Protein Corona Formation on the Macrophage Cellular Uptake and Biodistribution of Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201603847. [PMID: 28196309 PMCID: PMC5493144 DOI: 10.1002/smll.201603847] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/04/2017] [Indexed: 05/03/2023]
Abstract
The effect of serum protein adsorption on the biological fate of Spherical Nucleic Acids (SNAs) is investigated. Through a proteomic analysis, it is shown that G-quadruplexes templated on the surface of a gold nanoparticle in the form of SNAs mediate the formation of a protein corona that is rich in complement proteins relative to SNAs composed of poly-thymine (poly-T) DNA. Cellular uptake studies show that complement receptors on macrophage cells recognize the SNA protein corona, facilitating their internalization, and causing G-rich SNAs to accumulate in the liver and spleen more than poly-T SNAs in vivo. These results support the conclusion that nucleic acid sequence and architecture can mediate nanoparticle-biomolecule interactions and alter their cellular uptake and biodistribution properties and illustrate that nucleic acid sequence is an important parameter in the design of SNA therapeutics.
Collapse
Affiliation(s)
- Alyssa B Chinen
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chenxia M Guan
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Caroline H Ko
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
135
|
Molino NM, Neek M, Tucker JA, Nelson EL, Wang SW. Display of DNA on Nanoparticles for Targeting Antigen Presenting Cells. ACS Biomater Sci Eng 2017; 3:496-501. [PMID: 28989957 DOI: 10.1021/acsbiomaterials.7b00148] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Efficient delivery of antigens is of paramount concern in immunotherapies. We aimed to target antigen presenting cells (APCs) by conjugating CpG oligonucleotides to an E2 protein nanoparticle surface (CpG-PEG-E2). Compared to E2 alone, we observed ~4-fold increase of in vitro APC uptake of both CpG-PEG-E2 and E2 conjugated to non-CpG DNA. Furthermore, compared to E2-alone or E2 functionalized solely with polyethylene glycol (PEG), the CpG-PEG-E2 showed enhanced lymph node retention up to at least 48 hr and 2-fold increase in APC uptake in vivo, parameters which are advantageous for vaccine success. This suggests that enhanced APC uptake of nanoparticles mediated by oligonucleotide display may help overcome delivery barriers in vaccine development.
Collapse
Affiliation(s)
- Nicholas M Molino
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697 USA
| | - Medea Neek
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697 USA
| | - Jo Anne Tucker
- Department of Medicine, University of California, Irvine, CA 92697 USA
| | - Edward L Nelson
- Department of Medicine, University of California, Irvine, CA 92697 USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697 USA.,Institute for Immunology, University of California, Irvine, CA 92697 USA
| | - Szu-Wen Wang
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697 USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697 USA.,Department of Biomedical Engineering, University of California, Irvine, CA 92697 USA
| |
Collapse
|
136
|
Dykman LA, Khlebtsov NG. Immunological properties of gold nanoparticles. Chem Sci 2017; 8:1719-1735. [PMID: 28451297 PMCID: PMC5396510 DOI: 10.1039/c6sc03631g] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo. For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.
Collapse
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms , Russian Academy of Sciences , 13 Prospekt Entuziastov , Saratov 410049 , Russia . ;
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms , Russian Academy of Sciences , 13 Prospekt Entuziastov , Saratov 410049 , Russia . ;
- Saratov National Research State University , 83 Ulitsa Astrakhanskaya , Saratov 410012 , Russia
| |
Collapse
|
137
|
Paramasivam G, Kayambu N, Rabel AM, Sundramoorthy AK, Sundaramurthy A. Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics. Acta Biomater 2017; 49:45-65. [PMID: 27915023 DOI: 10.1016/j.actbio.2016.11.066] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Anisotropic nanoparticles have fascinated scientists and engineering communities for over a century because of their unique physical and chemical properties. In recent years, continuous advances in design and fabrication of anisotropic nanoparticles have opened new avenues for application in various areas of biology, chemistry and physics. Anisotropic nanoparticles have the plasmon absorption in the visible as well as near-infrared (NIR) region, which enables them to be used for crucial applications such as biological imaging, medical diagnostics and therapy ("theranostics"). Here, we describe the progress in anisotropic nanoparticles achieved since the millennium in the area of preparation including various shapes and modification of the particle surface, and in areas of application by providing examples of applications in biosensing, bio-imaging, drug delivery and theranostics. Furthermore, we also explain various mechanisms involved in cellular uptake of anisotropic nanoparticles, and conclude with our opinion on various obstacles that limit their applications in biomedical field. STATEMENT OF SIGNIFICANCE Anisotropy at the molecular level has always fascinated scientists and engineering communities for over a century, however, the research on novel methods through which shape and size of nanoparticles can be precisely controlled has opened new avenues for anisotropic nanoparticles in various areas of biology, chemistry and physics. In this manuscript, we describe progress achieved since the millennium in the areas of preparation of various shapes of anisotropic nanoparticles, investigate various methods involved in modifying the surface of these NPs, and provide examples of applications in biosensing and bio-imaging, drug delivery and theranostics. We also present mechanisms involved in cellular uptake of nanoparticles, describe different methods of preparation of anisotropic nanoparticles including biomimetic and photochemical synthesis, and conclude with our opinion on various obstacles that limit their applications in biomedical field.
Collapse
|
138
|
Wang Z, Li S, Zhang M, Ma Y, Liu Y, Gao W, Zhang J, Gu Y. Laser-Triggered Small Interfering RNA Releasing Gold Nanoshells against Heat Shock Protein for Sensitized Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600327. [PMID: 28251053 PMCID: PMC5323853 DOI: 10.1002/advs.201600327] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/22/2016] [Indexed: 05/22/2023]
Abstract
The resistance of cancer cells to photothermal therapy is closely related to the overexpression of heat shock proteins (HSPs), which are abnormally upregulated when cells are under lethal stresses. Common strategies that use small molecule inhibitors against HSPs to enhance hyperthermia effect lack spatial and temporal control of drug release, leading to unavoidable systemic toxicity. Herein, a versatile photothermal platform is developed which is composed of a hollow gold nanoshell core densely packed with small interfering RNAs against heat shock protein 70 (Hsp70). Upon near infrared light irradiation, the small interfering RNAs can detach from gold surface specifically and escape from endosomes for Hsp70 silencing. Meanwhile, the temperature increases for hyperthermia therapy due to the high photothermal efficiency of the nanoshells. Efficient downregulation of Hsp70 after light activation is achieved in vitro and in vivo. Ultimately, the light-controlled dual functional nanosystem, with the effects of Hsp70 silencing and temperature elevation, results in sensitized photothermal therapy in nude mice model under mild temperature. This strategy smartly combines the localized photothermal therapy with controlled Hsp70 silencing, and has great potential for clinical translation with a simple and easily controlled structure.
Collapse
Affiliation(s)
- Zhaohui Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningDepartment of Biomedical EngineeringSchool of EngineeringChina Pharmaceutical UniversityNo. 24 Tongjia LaneGulou DistrictNanjing210009China
| | - Siwen Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningDepartment of Biomedical EngineeringSchool of EngineeringChina Pharmaceutical UniversityNo. 24 Tongjia LaneGulou DistrictNanjing210009China
| | - Min Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningDepartment of Biomedical EngineeringSchool of EngineeringChina Pharmaceutical UniversityNo. 24 Tongjia LaneGulou DistrictNanjing210009China
| | - Yi Ma
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningDepartment of Biomedical EngineeringSchool of EngineeringChina Pharmaceutical UniversityNo. 24 Tongjia LaneGulou DistrictNanjing210009China
| | - Yuxi Liu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningDepartment of Biomedical EngineeringSchool of EngineeringChina Pharmaceutical UniversityNo. 24 Tongjia LaneGulou DistrictNanjing210009China
| | - Weidong Gao
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningDepartment of Biomedical EngineeringSchool of EngineeringChina Pharmaceutical UniversityNo. 24 Tongjia LaneGulou DistrictNanjing210009China
| | - Jiaqi Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningDepartment of Biomedical EngineeringSchool of EngineeringChina Pharmaceutical UniversityNo. 24 Tongjia LaneGulou DistrictNanjing210009China
| | - Yueqing Gu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningDepartment of Biomedical EngineeringSchool of EngineeringChina Pharmaceutical UniversityNo. 24 Tongjia LaneGulou DistrictNanjing210009China
| |
Collapse
|
139
|
Ly S, Navaroli DM, Didiot MC, Cardia J, Pandarinathan L, Alterman JF, Fogarty K, Standley C, Lifshitz LM, Bellve KD, Prot M, Echeverria D, Corvera S, Khvorova A. Visualization of self-delivering hydrophobically modified siRNA cellular internalization. Nucleic Acids Res 2017; 45:15-25. [PMID: 27899655 PMCID: PMC5224471 DOI: 10.1093/nar/gkw1005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
siRNAs are a new class of therapeutic modalities with promising clinical efficacy that requires modification or formulation for delivery to the tissue and cell of interest. Conjugation of siRNAs to lipophilic groups supports efficient cellular uptake by a mechanism that is not well characterized. Here we study the mechanism of internalization of asymmetric, chemically stabilized, cholesterol-modified siRNAs (sd-rxRNAs®) that efficiently enter cells and tissues without the need for formulation. We demonstrate that uptake is rapid with significant membrane association within minutes of exposure followed by the formation of vesicular structures and internalization. Furthermore, sd-rxRNAs are internalized by a specific class of early endosomes and show preferential association with epidermal growth factor (EGF) but not transferrin (Tf) trafficking pathways as shown by live cell TIRF and structured illumination microscopy (SIM). In fixed cells, we observe ∼25% of sd-rxRNA co-localizing with EGF and <5% with Tf, which is indicative of selective endosomal sorting. Likewise, preferential sd-rxRNA co-localization was demonstrated with EEA1 but not RBSN-containing endosomes, consistent with preferential EGF-like trafficking through EEA1-containing endosomes. sd-rxRNA cellular uptake is a two-step process, with rapid membrane association followed by internalization through a selective, saturable subset of the endocytic process. However, the mechanistic role of EEA1 is not yet known. This method of visualization can be used to better understand the kinetics and mechanisms of hydrophobic siRNA cellular uptake and will assist in further optimization of these types of compounds for therapeutic intervention.
Collapse
Affiliation(s)
- Socheata Ly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Deanna M Navaroli
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Marie-Cécile Didiot
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | - Julia F Alterman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Kevin Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Clive Standley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karl D Bellve
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Matthieu Prot
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Dimas Echeverria
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Anastasia Khvorova
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
140
|
Abstract
RNA interference (RNAi)-based gene regulation has recently emerged as a promising strategy to silence genes that drive disease progression. RNAi is typically mediated by small interfering ribonucleic acids (siRNAs), which, upon delivery into the cell cytoplasm, trigger degradation of complementary messenger RNA molecules to halt production of their encoded proteins. While RNAi has enormous clinical potential, its in vivo utility has been hindered because siRNAs are rapidly degraded by nucleases, cannot passively enter cells, and are quickly cleared from the bloodstream. To overcome these delivery barriers, siRNAs can be conjugated to nanoparticles (NPs), which increase their stability and circulation time to enable in vivo gene regulation. Here, we present methods to conjugate siRNA duplexes to NPs with gold surfaces. Further, we describe how to quantify the resultant amount of siRNA sense and antisense strands loaded onto the NPs using a fluorescence-based assay. This method focuses on the attachment of siRNAs to 13 nm gold NPs, but it is adaptable to other types of nucleic acids and nanoparticles as discussed throughout the protocol.
Collapse
|
141
|
Alsaleh NB, Persaud I, Brown JM. Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor. PLoS One 2016; 11:e0167366. [PMID: 27907088 PMCID: PMC5131952 DOI: 10.1371/journal.pone.0167366] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/13/2016] [Indexed: 12/20/2022] Open
Abstract
Engineered nanomaterial (ENM)-mediated toxicity often involves triggering immune responses. Mast cells can regulate both innate and adaptive immune responses and are key effectors in allergic diseases and inflammation. Silver nanoparticles (AgNPs) are one of the most prevalent nanomaterials used in consumer products due to their antimicrobial properties. We have previously shown that AgNPs induce mast cell degranulation that was dependent on nanoparticle physicochemical properties. Furthermore, we identified a role for scavenger receptor B1 (SR-B1) in AgNP-mediated mast cell degranulation. However, it is completely unknown how SR-B1 mediates mast cell degranulation and the intracellular signaling pathways involved. In the current study, we hypothesized that SR-B1 interaction with AgNPs directs mast cell degranulation through activation of signal transduction pathways that culminate in an increase in intracellular calcium signal leading to mast cell degranulation. For these studies, we utilized bone marrow-derived mast cells (BMMC) isolated from C57Bl/6 mice and RBL-2H3 cells (rat basophilic leukemia cell line). Our data support our hypothesis and show that AgNP-directed mast cell degranulation involves activation of PI3K, PLCγ and an increase in intracellular calcium levels. Moreover, we found that influx of extracellular calcium is required for the cells to degranulate in response to AgNP exposure and is mediated at least partially via the CRAC channels. Taken together, our results provide new insights into AgNP-induced mast cell activation that are key for designing novel ENMs that are devoid of immune system activation.
Collapse
Affiliation(s)
- Nasser B. Alsaleh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Indushekhar Persaud
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jared M. Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
142
|
Chinen AB, Ferrer JR, Merkel TJ, Mirkin CA. Relationships between Poly(ethylene glycol) Modifications on RNA-Spherical Nucleic Acid Conjugates and Cellular Uptake and Circulation Time. Bioconjug Chem 2016; 27:2715-2721. [PMID: 27762539 PMCID: PMC5439959 DOI: 10.1021/acs.bioconjchem.6b00483] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Two synthetic approaches
that allow one to control PEG content
within spherical nucleic acids (SNAs) have been developed. One approach
begins with RNA-modified gold nanoparticles followed by a backfill
of PEG 2K alkanethiols, and the other involves co-adsorption of the
two entities on a gold nanoparticle template. These two methods have
been used to explore the role of PEG density on the chemical and biological
properties of RNA–SNAs. Such studies show that while increasing
the extent of PEGylation within RNA–SNAs extends their blood
circulation half-life in mice, it also results in decreased cellular
uptake. Modified ELISA assays show that constructs, depending upon
RNA and PEG content, have markedly different affinities for class
A scavenger receptors, the entities responsible, in part, for cellular
internalization of SNAs. In designing SNAs for therapeutic purposes,
these competing factors must be considered and appropriately adjusted
depending upon the desired use.
Collapse
Affiliation(s)
- Alyssa B Chinen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer R Ferrer
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timothy J Merkel
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
143
|
Wong AC, Wright DW. Size-Dependent Cellular Uptake of DNA Functionalized Gold Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5592-5600. [PMID: 27562251 DOI: 10.1002/smll.201601697] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/14/2016] [Indexed: 05/18/2023]
Abstract
The extensive use of gold nanoparticles (AuNPs) in nanomedicine, especially for intracellular imaging, photothermal therapy, and drug delivery, has necessitated the study of how functionalized AuNPs engage with living biological interfaces like the mammalian cell. Nanoparticle size, shape, surface charge, and surface functionality can affect the accumulation of functionalized AuNPs in cells. Confocal microscopy, flow cytometry, and inductively coupled plasma mass spectrometry demonstrate that CaSki cells, a human cervical cancer cell line, internalize AuNPs functionalized with hairpin, single stranded, and double stranded DNA differently. Surface charge and DNA conformation are shown to have no effect on the cell-nanoparticle interaction. CaSki cells accumulate small DNA-AuNPs in greater quantities than large DNA-AuNPs, demonstrating that size is the major contributor to cellular uptake properties. These data suggest that DNA-AuNPs can be easily tailored through modulation of size to design functional AuNPs with optimal cellular uptake properties and enhanced performance in nanomedicine applications.
Collapse
Affiliation(s)
- Alexis C Wong
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN, 37235-1822, USA
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN, 37235-1822, USA.
| |
Collapse
|
144
|
Yang H, Chen Z, Zhang L, Yung WY, Leung KCF, Chan HYE, Choi CHJ. Mechanism for the Cellular Uptake of Targeted Gold Nanorods of Defined Aspect Ratios. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5178-5189. [PMID: 27442290 DOI: 10.1002/smll.201601483] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/19/2016] [Indexed: 06/06/2023]
Abstract
Biomedical applications of non-spherical nanoparticles such as photothermal therapy and molecular imaging require their efficient intracellular delivery, yet reported details on their interactions with the cell remain inconsistent. Here, the effects of nanoparticle geometry and receptor targeting on the cellular uptake and intracellular trafficking are systematically explored by using C166 (mouse endothelial) cells and gold nanoparticles of four different aspect ratios (ARs) from 1 to 7. When coated with poly(ethylene glycol) strands, the cellular uptake of untargeted nanoparticles monotonically decreases with AR. Next, gold nanoparticles are functionalized with DNA oligonucleotides to target Class A scavenger receptors expressed by C166 cells. Intriguingly, cellular uptake is maximized at a particular AR: shorter nanorods (AR = 2) enter C166 cells more than nanospheres (AR = 1) and longer nanorods (AR = 4 or 7). Strikingly, long targeted nanorods align to the cell membrane in a near-parallel manner followed by rotating by ≈90° to enter the cell via a caveolae-mediated pathway. Upon cellular entry, targeted nanorods of all ARs predominantly traffic to the late endosome without progressing to the lysosome. The studies yield important materials design rules for drug delivery carriers based on targeted, anisotropic nanoparticles.
Collapse
Affiliation(s)
- Hongrong Yang
- Department of Electronic Engineering (Biomedical Engineering), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhong Chen
- Department of Electronic Engineering (Biomedical Engineering), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Lei Zhang
- Department of Electronic Engineering (Biomedical Engineering), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wing-Yin Yung
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chung Hang Jonathan Choi
- Department of Electronic Engineering (Biomedical Engineering), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
145
|
Heuer-Jungemann A, El-Sagheer AH, Lackie PM, Brown T, Kanaras AG. Selective killing of cells triggered by their mRNA signature in the presence of smart nanoparticles. NANOSCALE 2016; 8:16857-16861. [PMID: 27714148 DOI: 10.1039/c6nr06154k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The design of nanoparticles that can selectively perform multiple roles is of utmost importance for the development of the next generation of nanoparticulate drug delivery systems. So far most research studies are focused on the customization of nanoparticulate carriers to maximize their drug loading, enhance their optical signature for tracking in cells or provide photo-responsive effects for therapeutic purposes. However, a vital requirement of the new generation of drug carriers must be the ability to deliver their payload selectively only to cells of interest rather than the majority of various cells in the vicinity. Here we show for the first time a new design of nanoparticulate drug carriers that can specifically distinguish different cell types based on their mRNA signature. These nanoparticles sense and efficiently kill model tumour cells by the delivery of an anti-cancer drug but retain their payload in cells lacking the specific mRNA target.
Collapse
Affiliation(s)
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK and Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Peter M Lackie
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Antonios G Kanaras
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, UK and Institute for Life Sciences, University of Southampton, Southampton, SO171BJ, UK.
| |
Collapse
|
146
|
Barnaby S, Perelman GA, Kohlstedt K, Chinen AB, Schatz GC, Mirkin CA. Design Considerations for RNA Spherical Nucleic Acids (SNAs). Bioconjug Chem 2016; 27:2124-31. [PMID: 27523252 PMCID: PMC5034328 DOI: 10.1021/acs.bioconjchem.6b00350] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/21/2016] [Indexed: 12/13/2022]
Abstract
Ribonucleic acids (RNAs) are key components in many cellular processes such as cell division, differentiation, growth, aging, and death. RNA spherical nucleic acids (RNA-SNAs), which consist of dense shells of double-stranded RNA on nanoparticle surfaces, are powerful and promising therapeutic modalities because they confer advantages over linear RNA such as high cellular uptake and enhanced stability. Due to their three-dimensional shell of oligonucleotides, SNAs, in comparison to linear nucleic acids, interact with the biological environment in unique ways. Herein, the modularity of the RNA-SNA is used to systematically study structure-function relationships in order to understand how the oligonucleotide shell affects interactions with a specific type of biological environment, namely, one that contains serum nucleases. We use a combination of experiment and theory to determine the key architectural properties (i.e., sequence, density, spacer moiety, and backfill molecule) that affect how RNA-SNAs interact with serum nucleases. These data establish a set of design parameters for SNA architectures that are optimized in terms of stability.
Collapse
Affiliation(s)
- Stacey
N. Barnaby
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Grant A. Perelman
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kevin
L. Kohlstedt
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alyssa B. Chinen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
147
|
Shen L, Krauthäuser S, Fischer K, Hobernik D, Abassi Y, Dzionek A, Nikolaev A, Voltz N, Diken M, Krummen M, Montermann E, Tubbe I, Lorenz S, Strand D, Schild H, Grabbe S, Bros M. Vaccination with trifunctional nanoparticles that address CD8 + dendritic cells inhibits growth of established melanoma. Nanomedicine (Lond) 2016; 11:2647-2662. [PMID: 27628310 DOI: 10.2217/nnm-2016-0174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM We wanted to assess the potency of a trifunctional nanoparticle (NP) that targeted and activated CD8+ dendritic cells (DC) and delivered an antigen to induce antitumor responses. MATERIALS & METHODS The DC targeting and activating properties of ferrous NPs conjugated with immunostimulatory CpG-oligonucleotides, anti-DEC205 antibody and ovalbumin (OVA) as a model antigen to induce antigen-specific T-cell responses and antitumor responses were analyzed. RESULTS OVA-loaded NP conjugated with immunostimulatory CpG-oligonucleotides and anti-DEC205 antibody efficiently targeted and activated CD8+ DC in vivo, and induced strong OVA-specific T-cell activation. Vaccination of B16/OVA tumor-burdened mice with this NP formulation resulted in tumor growth arrest. CONCLUSION CD8+ DC-targeting trifunctional nanocarriers bear significant potential for antitumor immunotherapy.
Collapse
Affiliation(s)
- Limei Shen
- Department of Dermatology, University Medical Center Mainz, Germany
| | | | - Karl Fischer
- Institute for Physical Chemistry, Johannes Gutenberg-University Mainz, Germany
| | | | - Yasmin Abassi
- Department of Internal Medicine III, Division of Translational & Experimental Oncology, University Medical Center Mainz, Germany
| | | | - Alexej Nikolaev
- Institute for Molecular Medicine, University Medical Center Mainz, Germany
| | - Nicole Voltz
- Department of Dermatology, University Medical Center Mainz, Germany
| | - Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Mathias Krummen
- Department of Dermatology, University Medical Center Mainz, Germany
| | | | - Ingrid Tubbe
- Department of Dermatology, University Medical Center Mainz, Germany
| | - Steffen Lorenz
- Imaging Core Facility, University Medical Center Mainz, Germany
| | - Dennis Strand
- Imaging Core Facility, University Medical Center Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Germany
| |
Collapse
|
148
|
Chen D, Monteiro-Riviere NA, Zhang LW. Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27418010 DOI: 10.1002/wnan.1419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/08/2016] [Accepted: 06/24/2016] [Indexed: 01/12/2023]
Abstract
Metallic nanoparticles (NP) have been used for biomedical applications especially for imaging. Compared to nonmetallic NP, metallic NP provide high contrast images because of their optical light scattering, magnetic resonance, X-ray absorption, or other physicochemical properties. In this review, a series of in vitro imaging techniques for metallic NP will be introduced, meanwhile their strengths and weaknesses will be discussed. By utilizing these imaging methods, the cellular uptake of metallic NP can be easily visualized to better understand the endocytic mechanisms of NP intracellular delivery. Several types of metallic NP that are used for imaging or as contrast agents such as quantum dots, gold, iron oxide, and other metallic NP will be presented. Cellular uptake of metallic NP and associated endocytic mechanisms highly depends upon the NP size, charge, surface coating, shape, or other factors such as cell type, cell differentiation status, cell surface status, external forces, protein binding, temperature, and the biological milieu. Classical endocytic routes such as lipid raft-mediated pathways, clathrin or caveolae-mediated pathways, macropinocytosis, and phagocytosis have been investigated, yet there is still a demand to determine other endocytic pathways. Knowing the different methodologies used to determine the endocytic pathways will increase the understanding of NP toxicity, cancer cell targeting, and imaging, so that surface coatings can be created for efficient cell uptake of metallic NP with minimal cytotoxicity WIREs Nanomed Nanobiotechnol 2017, 9:e1419. doi: 10.1002/wnan.1419 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dandan Chen
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, United States
| | - Leshuai W Zhang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
149
|
Schöttler S, Landfester K, Mailänder V. Die Steuerung des Stealth-Effekts von Nanoträgern durch das Verständnis der Proteinkorona. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Susanne Schöttler
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Hautklinik; Universitätsmedizin der Johannes Gutenberg-Universität; Langenbeckstraße 1 55131 Mainz Deutschland
| | - Katharina Landfester
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Volker Mailänder
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Hautklinik; Universitätsmedizin der Johannes Gutenberg-Universität; Langenbeckstraße 1 55131 Mainz Deutschland
| |
Collapse
|
150
|
Schöttler S, Landfester K, Mailänder V. Controlling the Stealth Effect of Nanocarriers through Understanding the Protein Corona. Angew Chem Int Ed Engl 2016; 55:8806-15. [PMID: 27303916 DOI: 10.1002/anie.201602233] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/21/2016] [Indexed: 12/13/2022]
Abstract
The past decade has seen a significant increase in interest in the use of polymeric nanocarriers in medical applications. In particular, when used as drug vectors in targeted delivery, nanocarriers could overcome many obstacles for drug therapy. Nevertheless, their application is still impeded by the complex composition of the blood proteins covering the particle surface, termed the protein corona. The protein corona complicates any prediction of cell interactions, biodistribution, and toxicity. In particular, the unspecific uptake of nanocarriers is a major obstacle in clinical studies. This Minireview provides an overview of what we currently know about the characteristics of the protein corona of nanocarriers, with a focus on surface functionalization that reduces unspecific uptake (the stealth effect). The ongoing improvement of nanocarriers to allow them to meet all the requirements necessary for successful application, including targeted delivery and stealth, are further discussed.
Collapse
Affiliation(s)
- Susanne Schöttler
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|