101
|
Uskoković V. When 1+1>2: Nanostructured composites for hard tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:434-51. [PMID: 26354283 PMCID: PMC4567690 DOI: 10.1016/j.msec.2015.07.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/15/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials, designed with the purpose of fulfilling Daedalus' dream - not restoring the tissues, but rather augmenting them.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
102
|
de Moraes ACM, Lima BA, de Faria AF, Brocchi M, Alves OL. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus. Int J Nanomedicine 2015; 10:6847-61. [PMID: 26586946 PMCID: PMC4636171 DOI: 10.2147/ijn.s90660] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) has been responsible for serious hospital infections worldwide. Nanomaterials are an alternative to conventional antibiotic compounds, because bacteria are unlikely to develop microbial resistance against nanomaterials. In the past decade, graphene oxide (GO) has emerged as a material that is often used to support and stabilize silver nanoparticles (AgNPs) for the preparation of novel antibacterial nanocomposites. In this work, we report the synthesis of the graphene-oxide silver nanocomposite (GO-Ag) and its antibacterial activity against relevant microorganisms in medicine. Materials and methods GO-Ag nanocomposite was synthesized through the reduction of silver ions (Ag+) by sodium citrate in an aqueous GO dispersion, and was extensively characterized using ultraviolet-visible absorption spectroscopy, X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. The antibacterial activity was evaluated by microdilution assays and time-kill experiments. The morphology of bacterial cells treated with GO-Ag was investigated via transmission electron microscopy. Results AgNPs were well distributed throughout GO sheets, with an average size of 9.4±2.8 nm. The GO-Ag nanocomposite exhibited an excellent antibacterial activity against methicillin-resistant S. aureus, Acinetobacter baumannii, Enterococcus faecalis, and Escherichia coli. All (100%) MRSA cells were inactivated after 4 hours of exposure to GO-Ag sheets. In addition, no toxicity was found for either pristine GO or bare AgNPs within the tested concentration range. Transmission electronic microscopy images offered insights into how GO-Ag nanosheets interacted with bacterial cells. Conclusion Our results indicate that the GO-Ag nanocomposite is a promising antibacterial agent against common nosocomial bacteria, particularly antibiotic-resistant MRSA. Morphological injuries on MRSA cells revealed a likely loss of viability as a result of the direct contact between bacteria and the GO-Ag sheets.
Collapse
Affiliation(s)
| | - Bruna Araujo Lima
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Andreia Fonseca de Faria
- Laboratory of Solid State Chemistry, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Brocchi
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Oswaldo Luiz Alves
- Laboratory of Solid State Chemistry, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
103
|
Abstract
The past decade has witnessed an extraordinary increase in research progress on ultrathin two-dimensional (2D) nanomaterials in the fields of condensed matter physics, materials science, and chemistry after the exfoliation of graphene from graphite in 2004. This unique class of nanomaterials has shown many unprecedented properties and thus is being explored for numerous promising applications. In this Perspective, I briefly review the state of the art in the development of ultrathin 2D nanomaterials and highlight their unique advantages. Then, I discuss the typical synthetic methods and some promising applications of ultrathin 2D nanomaterials together with some personal insights on the challenges in this research area. Finally, on the basis of the current achievement on ultrathin 2D nanomaterials, I give some personal perspectives on potential future research directions.
Collapse
Affiliation(s)
- Hua Zhang
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
104
|
Lalwani G, Gopalan A, D’Agati M, Sankaran JS, Judex S, Qin YX, Sitharaman B. Porous three-dimensional carbon nanotube scaffolds for tissue engineering. J Biomed Mater Res A 2015; 103:3212-25. [PMID: 25788440 PMCID: PMC4552611 DOI: 10.1002/jbm.a.35449] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/18/2015] [Accepted: 03/12/2015] [Indexed: 12/18/2022]
Abstract
Assembly of carbon nanomaterials into three-dimensional (3D) architectures is necessary to harness their unique physiochemical properties for tissue engineering and regenerative medicine applications. Herein, we report the fabrication and comprehensive cytocompatibility assessment of 3D chemically crosslinked macrosized (5-8 mm height and 4-6 mm diameter) porous carbon nanotube (CNT) scaffolds. Scaffolds prepared via radical initiated thermal crosslinking of single- or multiwalled CNTs (SWCNTs and MWCNTs) possess high porosity (>80%), and nano-, micro-, and macroscale interconnected pores. MC3T3 preosteoblast cells on MWCNT and SWCNT scaffolds showed good cell viability comparable to poly(lactic-co-glycolic) acid (PLGA) scaffolds after 5 days. Confocal live cell and immunofluorescence imaging showed that MC3T3 cells were metabolically active and could attach, proliferate, and infiltrate MWCNT and SWCNT scaffolds. SEM imaging corroborated cell attachment and spreading and suggested that cell morphology is governed by scaffold surface roughness. MC3T3 cells were elongated on scaffolds with high surface roughness (MWCNTs) and rounded on scaffolds with low surface roughness (SWCNTs). The surface roughness of scaffolds may be exploited to control cellular morphology and, in turn, govern cell fate. These results indicate that crosslinked MWCNTs and SWCNTs scaffolds are cytocompatible, and open avenues toward development of multifunctional all-carbon scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| | - Anu Gopalan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| | - Michael D’Agati
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| | | | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| |
Collapse
|
105
|
Li YH, Wang ZD, Wang W, Ding CW, Zhang HX, Li JM. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro. Exp Biol Med (Maywood) 2015; 240:1465-71. [PMID: 25877763 DOI: 10.1177/1535370215579142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/28/2015] [Indexed: 11/15/2022] Open
Abstract
The composite of poly-lactic-co-glycolic acid (PLGA) and calcium phosphate cements (CPC) are currently widely used in bone tissue engineering. However, the properties and biocompatibility of the alendronate-loaded PLGA/CPC (APC) porous scaffolds have not been characterized. APC scaffolds were prepared by a solid/oil/water emulsion solvent evaporation method. The morphology, porosity, and mechanical strength of the scaffolds were characterized. Bone marrow mesenchymal stem cells (BMSCs) from rabbit were cultured, expanded and seeded on the scaffolds, and the cell morphology, adhesion, proliferation, cell cycle and osteogenic differentiation of BMSCs were determined. The results showed that the APC scaffolds had a porosity of 67.43 ± 4.2% and pore size of 213 ± 95 µm. The compressive strength for APC was 5.79 ± 1.21 MPa, which was close to human cancellous bone. The scanning electron microscopy, cell counting kit-8 assay, flow cytometry and ALP activity revealed that the APC scaffolds had osteogenic potential on the BMSCs in vitro and exhibited excellent biocompatibility with engineered bone tissue. APC scaffolds exhibited excellent biocompatibility and osteogenesis potential and can potentially be used for bone tissue engineering.
Collapse
Affiliation(s)
- Yu-Hua Li
- Department of Orthopedics, Shandong University Qilu Hospital, Shandong 250012, China
| | - Zhen-Dong Wang
- Department of Orthopedics, The People's Hospital of Lanshan, Shandong 276800, China
| | - Wei Wang
- Department of Orthopedics, The 3rd Hospital of Yan Kuang Group Company Limited, Shandong 272100, China
| | - Chang-Wei Ding
- Department of Spinal Surgery, The 2nd People's Hospital of Jining, Shandong 272100, China
| | - Hao-Xuan Zhang
- Department of Orthopedics, Shandong University Qilu Hospital, Shandong 250012, China
| | - Jian-Min Li
- Department of Orthopedics, Shandong University Qilu Hospital, Shandong 250012, China
| |
Collapse
|
106
|
Liu T, Jiang LL, He MF, Zhu Z, Wang DB, Song TS, Tan WM, Ouyang P, Xie J. Green synthesis of reduced graphene oxide by a GRAS strain Bacillus subtilis 168 with high biocompatibility to zebrafish embryos. RSC Adv 2015. [DOI: 10.1039/c5ra12304f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A low toxic and highly biocompatible bacterially reduced graphene oxide was prepared by a “Generally Recognized As Safe” strain Bacillus subtilis 168 mediated with Vitamin K3.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
- College of Life Science and Pharmaceutical Engineering
| | - Ling-Ling Jiang
- College of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Ming-Fang He
- College of Life Science and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Zhengang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
- College of Life Science and Pharmaceutical Engineering
| | - De-bin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
- College of Life Science and Pharmaceutical Engineering
| | - Tian-Shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
- College of Life Science and Pharmaceutical Engineering
| | - Wei-min Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
- National Engineering Research Center for Coatings
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
- College of Life Science and Pharmaceutical Engineering
| | - Jingjing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
- College of Life Science and Pharmaceutical Engineering
| |
Collapse
|
107
|
Nurunnabi M, Parvez K, Nafiujjaman M, Revuri V, Khan HA, Feng X, Lee YK. Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv 2015; 5:42141-42161. [DOI: 10.1039/c5ra04756k] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This review article summarizes the latest progress in research regarding bioapplications of graphene oxide derivatives and provides expert opinions on strategies for overcoming the current challenges.
Collapse
Affiliation(s)
- Md Nurunnabi
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Khaled Parvez
- Max Plank Institute for Polymer Research
- Mainz 55128
- Germany
| | - Md Nafiujjaman
- Department of Green Bioengineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Haseeb A. Khan
- Analytical and Molecular Bioscience Research Group
- Department of Biochemistry
- College of Science
- King Saud University
- Riyadh 11451
| | - Xinliang Feng
- Max Plank Institute for Polymer Research
- Mainz 55128
- Germany
- Department of Chemistry and Food Chemistry
- Technische Universität Dresden
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Green Bioengineering
| |
Collapse
|
108
|
Ghorbanzadeh Ahangari M. Modeling of the interaction between polypropylene and monolayer sheets: a quantum mechanical study. RSC Adv 2015. [DOI: 10.1039/c5ra14292j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, we performed quantum mechanical calculations to determine the best monolayer sheet for preparing polypropylene nanocomposites.
Collapse
Affiliation(s)
- M. Ghorbanzadeh Ahangari
- Department of Mechanical Engineering
- Faculty of Engineering and Technology
- University of Mazandaran
- Babolsar
- Iran
| |
Collapse
|
109
|
Chen Y, Tan C, Zhang H, Wang L. Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 2015; 44:2681-701. [DOI: 10.1039/c4cs00300d] [Citation(s) in RCA: 696] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this critical review, we summarize the state-of-the-art progress of two-dimensional graphene analogues with a particular focus on biomedical applications.
Collapse
Affiliation(s)
- Yu Chen
- Nanomaterials Center
- School of Chemical Engineering and AIBN
- University of Queensland
- Queensland
- Australia
| | - Chaoliang Tan
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | - Hua Zhang
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | - Lianzhou Wang
- Nanomaterials Center
- School of Chemical Engineering and AIBN
- University of Queensland
- Queensland
- Australia
| |
Collapse
|
110
|
Goldman EB, Zak A, Tenne R, Kartvelishvily E, Levin-Zaidman S, Neumann Y, Stiubea-Cohen R, Palmon A, Hovav AH, Aframian DJ. Biocompatibility of tungsten disulfide inorganic nanotubes and fullerene-like nanoparticles with salivary gland cells. Tissue Eng Part A 2014; 21:1013-23. [PMID: 25366879 DOI: 10.1089/ten.tea.2014.0163] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Impaired salivary gland (SG) function leading to oral diseases is relatively common with no adequate solution. Previously, tissue engineering of SG had been proposed to overcome this morbidity, however, not yet clinically available. Multiwall inorganic (tungsten disulfide [WS2]) nanotubes (INT-WS2) and fullerene-like nanoparticles (IF-WS2) have many potential medical applications. A yet unexplored venue application is their interaction with SG, and therefore, our aim was to test the biocompatibility of INT/IF-WS2 with the A5 and rat submandibular cells (RSC) SG cells. The cells were cultured and subjected after 1 day to different concentrations of INT-WS2 and were compared to control groups. Growth curves, trypan blue viability test, and carboxyfluorescein succinimidyl ester (CFSE) proliferation assay were obtained. Furthermore, cells morphology and interaction with the nanoparticles were observed by light microscopy, scanning electron microscopy and transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy. The results showed no significant differences in growth curves, proliferation kinetics, and viability between the groups compared. Moreover, no alterations were observed in the cell morphology. Interestingly, TEM images indicated that the nanoparticles are uptaken by the cells and accumulate in cytoplasmic vesicles. These results suggest promising future medical applications for these nanoparticles.
Collapse
Affiliation(s)
- Elisheva B Goldman
- 1 Faculty of Dental Medicine, The Hebrew University of Jerusalem , Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Farshid B, Lalwani G, Sitharaman B. In vitro cytocompatibility of one-dimensional and two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites. J Biomed Mater Res A 2014; 103:2309-21. [PMID: 25367032 DOI: 10.1002/jbm.a.35363] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/04/2014] [Accepted: 10/22/2014] [Indexed: 11/09/2022]
Abstract
This study investigates the in vitro cytocompatibility of one-dimensional and two-dimensional (1D and 2D) carbon and inorganic nanomaterial reinforced polymeric nanocomposites fabricated using biodegradable polymer poly (propylene fumarate), crosslinking agent N-vinyl pyrrolidone (NVP) and following nanomaterials: single and multiwalled carbon nanotubes, single and multiwalled graphene oxide nanoribbons, graphene oxide nanoplatelets, molybdenum disulfide nanoplatelets, or tungsten disulfide nanotubes dispersed between 0.02 and 0.2 wt% concentrations in the polymer. The extraction media of unreacted components, crosslinked nanocomposites and their degradation products were examined for effects on viability and attachment using two cell lines: NIH3T3 fibroblasts and MC3T3 preosteoblasts. The extraction media of unreacted PPF/NVP elicited acute dose-dependent cytotoxicity attributed to leaching of unreacted components into cell culture media. However, extraction media of crosslinked nanocomposites showed no dose dependent adverse effects. Further, all crosslinked nanocomposites showed high viability (78-100%), high cellular attachment (40-55%), and spreading that was confirmed by confocal and scanning electron microscopy. Degradation products of nanocomposites showed a mild dose-dependent cytotoxicity possibly due to acidic degradation components of PPF. In general, compared to PPF control, none of the nanocomposites showed significant differences in cellular response to unreacted components, crosslinked nanocomposites and their degradation products. Initial minor cytotoxic response and lower cell attachment numbers were observed only for a few nanocomposite groups; these effects were absent at later time points for all PPF nanocomposites. The favorable cytocompatibility results for all the nanocomposites opens avenues for in vivo safety and efficacy studies for bone tissue engineering applications.
Collapse
Affiliation(s)
- Behzad Farshid
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794.,Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York, 11794
| | - Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
| |
Collapse
|
112
|
Hu K, Kulkarni DD, Choi I, Tsukruk VV. Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.03.001] [Citation(s) in RCA: 392] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
113
|
Lalwani G, Xing W, Sitharaman B. Enzymatic Degradation of Oxidized and Reduced Graphene Nanoribbons by Lignin Peroxidase. J Mater Chem B 2014; 2:6354-6362. [PMID: 25215188 PMCID: PMC4157692 DOI: 10.1039/c4tb00976b] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The expanding use of graphene for various industrial and biomedical applications requires efficient remediation strategies during their disposal into waste streams. Additionally, the interactions of graphene with the biota need thorough evaluation. In this study, we investigated the interactions of oxidized and reduced graphene oxide nanoribbons (GONRs and rGONRs) with lignin peroxidase (LiP), a ligninolytic enzyme released from white rot fungus. GONRs and rGONRs were treated with LiP in the presence and absence of veratryl alcohol (VA; an electron transfer mediator and secondary metabolite of white rot fungi). Transmission electron microscopy showed the formation of large defects (holes) in the graphene sheet, which increased in diameter with increased degradation time. Raman spectroscopic analysis indicated that, within 96 hours, in the presence of hydrogen peroxide and VA, the GONRs and rGONRs were completely and partially degraded by LiP, respectively. Comparisons between groups with or without VA showed that degradation of GONRs was accelerated in the presence of VA. These results indicated that LiP could efficiently degrade GONRs and rGONRs in the presence of VA, suggesting that VA may be an essential factor needed to degrade rGONRs via LiP treatment. Thus, the wide presence of white rot fungi, and thereby LiP, in nature, could lead to efficient degradation of graphene present in the environment. Additionally, LiP, which has a higher theoretical redox potential compared to horseradish peroxidases and myeloperoxidases, could be a better candidate for the environmental remediation of graphene.
Collapse
Affiliation(s)
- Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| | - Weiliang Xing
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| |
Collapse
|
114
|
Gu M, Liu Y, Chen T, Du F, Zhao X, Xiong C, Zhou Y. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering? TISSUE ENGINEERING. PART B, REVIEWS 2014; 20:477-91. [PMID: 24447041 PMCID: PMC4186769 DOI: 10.1089/ten.teb.2013.0638] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 01/09/2014] [Indexed: 12/24/2022]
Abstract
Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Ming Gu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, P.R. China
| | - Yunsong Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, P.R. China
| | - Tong Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, P.R. China
| | - Feng Du
- Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing, P.R. China
| | - Xianghui Zhao
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, P.R. China
| | - Chunyang Xiong
- Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing, P.R. China
| | - Yongsheng Zhou
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, P.R. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing, P.R. China
| |
Collapse
|
115
|
In vitro hematological and in vivo vasoactivity assessment of dextran functionalized graphene. Sci Rep 2014; 3:2584. [PMID: 24002570 PMCID: PMC3761081 DOI: 10.1038/srep02584] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/12/2013] [Indexed: 11/08/2022] Open
Abstract
The intravenous, intramuscular or intraperitoneal administration of water solubilized graphene nanoparticles for biomedical applications will result in their interaction with the hematological components and vasculature. Herein, we have investigated the effects of dextran functionalized graphene nanoplatelets (GNP-Dex) on histamine release, platelet activation, immune activation, blood cell hemolysis in vitro, and vasoactivity in vivo. The results indicate that GNP-Dex formulations prevented histamine release from activated RBL-2H3 rat mast cells, and at concentrations ≥ 7 mg/ml, showed a 12-20% increase in levels of complement proteins. Cytokine (TNF-Alpha and IL-10) levels remained within normal range. GNP-Dex formulations did not cause platelet activation or blood cell hemolysis. Using the hamster cheek pouch in vivo model, the initial vasoactivity of GNP-Dex at concentrations (1-50 mg/ml) equivalent to the first pass of a bolus injection was a brief concentration-dependent dilation in arcade and terminal arterioles. However, they did not induce a pro-inflammatory endothelial dysfunction effect.
Collapse
|
116
|
Talukdar Y, Rashkow J, Lalwani G, Kanakia S, Sitharaman B. The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials 2014; 35:4863-4877. [PMID: 24674462 PMCID: PMC3995421 DOI: 10.1016/j.biomaterials.2014.02.054] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/28/2014] [Indexed: 12/15/2022]
Abstract
We report the effects of two-dimensional graphene nanostructures; graphene nano-onions (GNOs), graphene oxide nanoribbons (GONRs), and graphene oxide nanoplatelets (GONPs) on viability, and differentiation of human mesenchymal stem cells (MSCs). Cytotoxicity of GNOs, GONRs, and GONPs dispersed in distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)] (DSPE-PEG), on adipose derived mesenchymal stem cells (adMSCs), and bone marrow-derived mesenchymal stem cells (bmMSCs) was assessed by AlamarBlue and Calcein AM viability assays at concentrations ranging from 5 to 300 μg/ml for 24 or 72 h. Cytotoxicity of the 2D graphene nanostructures was found to be dose dependent, not time dependent, with concentrations less than 50 μg/ml showing no significant differences compared to untreated controls. Differentiation potential of adMSCs to adipocytes and osteoblasts, - characterized by Oil Red O staining and elution, alkaline phosphatase activity, calcium matrix deposition and Alizarin Red S staining - did not change significantly when treated with the three graphene nanoparticles at a low (10 μg/ml) and high (50 μg/ml) concentration for 24 h. Transmission electron microscopy (TEM) and confocal Raman spectroscopy indicated cellular uptake of only GNOs and GONPs. The results lay the foundation for the use of these nanoparticles at potentially safe doses as ex vivo labels for MSC-based imaging and therapy.
Collapse
Affiliation(s)
- Yahfi Talukdar
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| | - Jason Rashkow
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| | - Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| | - Shruti Kanakia
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281
| |
Collapse
|
117
|
Talukdar Y, Avti P, Sun J, Sitharaman B. Multimodal ultrasound-photoacoustic imaging of tissue engineering scaffolds and blood oxygen saturation in and around the scaffolds. Tissue Eng Part C Methods 2014; 20:440-9. [PMID: 24107069 PMCID: PMC4005489 DOI: 10.1089/ten.tec.2013.0203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 10/07/2013] [Indexed: 12/31/2022] Open
Abstract
Preclinical, noninvasive imaging of tissue engineering polymeric scaffold structure and/or the physiological processes such as blood oxygenation remains a challenge. In vitro or ex vivo, the widely used scaffold characterization modalities such as porosimetry, electron or optical microscopy, and X-ray microcomputed tomography have limitations or disadvantages-some are invasive or destructive, others have limited tissue penetration (few hundred micrometers) and/or show poor contrast under physiological conditions. Postmortem histological analysis, the most robust technique for the evaluation of neovascularization is obviously not appropriate for acquiring physiological or longitudinal data. In this study, we have explored the potential of ultrasound (US)-coregistered photoacoustic (PA) imaging as a noninvasive multimodal imaging modality to overcome some of the above challenges and/or provide complementary information. US-PA imaging was employed to characterize poly(lactic-co-glycolic acid) (PLGA) polymer scaffolds or single-walled carbon nanotube (SWCNT)-incorporated PLGA (SWCNT-PLGA) polymer scaffolds as well as blood oxygen saturation within and around the scaffolds. Ex vivo, PLGA and SWCNT-PLGA scaffolds were placed at 0.5, 2, and 6 mm depths in chicken breast tissues. PLGA scaffolds could be localized with US imaging, but generate no PA signal (excitation wavelengths 680 and 780 nm). SWCNT-PLGA scaffolds generated strong PA signals at both wavelengths due to the presence of the SWCNTs and could be localized with both US and PA imaging depths between 0.5-6 mm (lateral resolution = 90 μm, axial resolution = 40 μm). In vivo, PLGA and SWCNT-PLGA scaffolds were implanted in subcutaneous pockets at 2 mm depth in rats, and imaged at 7 and 14 days postsurgery. The anatomical position of both the scaffolds could be determined from the US images. Only SWCNT-PLGA scaffolds could be easily detected in the US-PA images. SWCNT-PLGA scaffolds had significant four times higher PA signal intensity compared with the surrounding tissue and PLGA scaffolds. In vivo blood oxygen saturation maps around and within the PLGA scaffolds could be obtained by PA imaging. There was no significant difference in oxygen saturation for the PLGA scaffolds at the two time points. The blood oxygen saturation maps complemented the histological analysis of neovascularization of the PLGA scaffolds.
Collapse
Affiliation(s)
- Yahfi Talukdar
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Pramod Avti
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - John Sun
- VisualSonics, Inc., Toronto, Ontario, Canada
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| |
Collapse
|
118
|
Papageorgiou DG, Roumeli E, Chrissafis K, Lioutas C, Triantafyllidis K, Bikiaris D, Boccaccini AR. Thermal degradation kinetics and decomposition mechanism of PBSu nanocomposites with silica-nanotubes and strontium hydroxyapatite nanorods. Phys Chem Chem Phys 2014; 16:4830-42. [DOI: 10.1039/c3cp55103b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
119
|
Abstract
The interest in polymer based composites for tissue engineering applications has been increasing in recent years. Nanotubes materials, including carbon nanotubes (CNTs) and noncarbonic nanotubes, with unique electrical, mechanical, and surface properties, such as high aspect ratio, have long been recognized as effective reinforced materials for enhancing the mechanical properties of polymer matrix. This review paper is an attempt to present a coherent yet concise review on the mechanical and biocompatibility properties of CNTs and noncarbonic nanotubes/polymer composites, such as Boron nitride nanotubes (BNNTs) and Tungsten disulfide nanotubes (WSNTs) reinforced polymer composites which are used as scaffolds for tissue engineering. We also introduced different preparation methods of CNTs/polymer composites, such as in situ polymerization, solution mixing, melt blending, and latex technology, each of them has its own advantages.
Collapse
|
120
|
Lalwani G, Sundararaj JL, Schaefer K, Button T, Sitharaman B. Synthesis, Characterization, In Vitro Phantom Imaging, and Cytotoxicity of A Novel Graphene-Based Multimodal Magnetic Resonance Imaging - X-Ray Computed Tomography Contrast Agent. J Mater Chem B 2014; 2:3519-3530. [PMID: 24999431 DOI: 10.1039/c4tb00326h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Graphene nanoplatelets (GNPs), synthesized using potassium permanganate-based oxidation and exfoliation followed by reduction with hydroiodic acid (rGNP-HI), have intercalated manganese ions within the graphene sheets, and upon functionalization with iodine, show excellent potential as biomodal contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT). Structural characterization of rGNP-HI nanoparticles with low- and high-resolution transmission electron microscope (TEM) showed disc-shaped nanoparticles (average diameter, 200 nm, average thickness, 3 nm). Energy dispersive X-ray spectroscopy (EDX) analysis confirmed the presence of intercalated manganese. Raman spectroscopy and X-ray diffraction (XRD) analysis of rGNP-HI confirmed the reduction of oxidized GNPs (O-GNPs), absence of molecular and physically adsorbed iodine, and the functionalization of graphene with iodine as polyiodide complexes (I3- and I5-). Manganese and iodine content were quantified as 5.1 ± 0.5 and 10.54 ± 0.87 wt% by inductively-coupled plasma optical emission spectroscopy and ion-selective electrode measurements, respectively. In vitro cytotoxicity analysis, using absorbance (LDH assay) and fluorescence (calcein AM) based assays, performed on NIH3T3 mouse fibroblasts and A498 human kidney epithelial cells, showed CD50 values of rGNP-HI between 179-301 µg/ml, depending on the cell line and the cytotoxicity assay. CT and MRI phantom imaging of rGNP-HI showed high CT (approximately 3200% greater than HI at equimolar iodine concentration) and MRI (approximately 59% greater than equimolar Mn2+ solution) contrast. These results open avenues for further in vivo safety and efficacy studies towards the development of carbon nanostructure-based multimodal MRI-CT contrast agents.
Collapse
Affiliation(s)
- Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794-5281
| | - Joe Livingston Sundararaj
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794
| | - Kenneth Schaefer
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794-5281
| | - Terry Button
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794-5281 ; Department of Radiology, Stony Brook University, Stony Brook, New York 11794
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794-5281
| |
Collapse
|
121
|
Lalwani G, Cai X, Nie L, Wang LV, Sitharaman B. Graphene-based contrast agents for photoacoustic and thermoacoustic tomography. PHOTOACOUSTICS 2013; 1:62-67. [PMID: 24490141 PMCID: PMC3904379 DOI: 10.1016/j.pacs.2013.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/18/2013] [Accepted: 10/08/2013] [Indexed: 05/23/2023]
Abstract
In this work, graphene nanoribbons and nanoplatelets were investigated as contrast agents for photoacoustic and thermoacoustic tomography (PAT and TAT). We show that oxidized single-and multi-walled graphene oxide nanoribbons (O-SWGNRs, O-MWGNRs) exhibit approximately 5-10 fold signal enhancement for PAT in comparison to blood at the wavelength of 755 nm, and approximately 10-28% signal enhancement for TAT in comparison to deionized (DI) water at 3 GHz. Oxidized graphite microparticles (O-GMPs) and exfoliated graphene oxide nanoplatelets (O-GNPs) show no significant signal enhancement for PAT, and approximately 12-29% signal enhancement for TAT. These results indicate that O-GNRs show promise as multi-modal PAT and TAT contrast agents, and that O-GNPs are suitable contrast agents for TAT.
Collapse
Affiliation(s)
- Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Xin Cai
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Liming Nie
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
122
|
Yang Q, Mi B. Nanomaterials for membrane fouling control: accomplishments and challenges. Adv Chronic Kidney Dis 2013; 20:536-55. [PMID: 24206605 DOI: 10.1053/j.ackd.2013.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
We report a review of recent research efforts on incorporating nanomaterials-including metal/metal oxide nanoparticles, carbon-based nanomaterials, and polymeric nanomaterials-into/onto membranes to improve membrane antifouling properties in biomedical or potentially medical-related applications. In general, nanomaterials can be incorporated into/onto a membrane by blending them into membrane fabricating materials or by attaching them to membrane surfaces via physical or chemical approaches. Overall, the fascinating, multifaceted properties (eg, high hydrophilicity, superparamagnetic properties, antibacterial properties, amenable functionality, strong hydration capability) of nanomaterials provide numerous novel strategies and unprecedented opportunities to fully mitigate membrane fouling. However, there are still challenges in achieving a broader adoption of nanomaterials in the membrane processes used for biomedical applications. Most of these challenges arise from the concerns over their long-term antifouling performance, hemocompatibility, and toxicity toward humans. Therefore, rigorous investigation is still needed before the adoption of some of these nanomaterials in biomedical applications, especially for those nanomaterials proposed to be used in the human body or in contact with living tissue/body fluids for a long period of time. Nevertheless, it is reasonable to predict that the service lifetime of membrane-based biomedical devices and implants will be prolonged significantly with the adoption of appropriate fouling control strategies.
Collapse
|
123
|
Sagar N, Pandey AK, Gurbani D, Khan K, Singh D, Chaudhari BP, Soni VP, Chattopadhyay N, Dhawan A, Bellare JR. In-vivo efficacy of compliant 3D nano-composite in critical-size bone defect repair: a six month preclinical study in rabbit. PLoS One 2013; 8:e77578. [PMID: 24204879 PMCID: PMC3799616 DOI: 10.1371/journal.pone.0077578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/03/2013] [Indexed: 12/30/2022] Open
Abstract
Bone defects above critical size do not heal completely by itself and thus represent major clinical challenge to reconstructive surgery. Numerous bone substitutes have already been used to promote bone regeneration, however their use, particularly for critical-sized bone defects along with their long term in vivo safety and efficacy remains a concern. The present study was designed to obtain a complete healing of critical-size defect made in the proximal tibia of New Zealand White rabbit, using nano-hydroxyapatite/gelatin and chemically carboxymethylated chitin (n-HA/gel/CMC) scaffold construct. The bone-implant interfaces and defect site healing was evaluated for a period up to 25 weeks using radiography, micro-computed tomography, fluorescence labeling, and histology and compared with respective SHAM (empty contra lateral control). The viscoelastic porous scaffold construct allows easy surgical insertion and post-operatively facilitate oxygenation and angiogenesis. Radiography of defect treated with scaffold construct suggested expedited healing at defect edges and within the defect site, unlike confined healing at edges of the SHAM sites. The architecture indices analyzed by micro-computed tomography showed a significant increase in percentage of bone volume fraction, resulted in reconciled cortico-trabecular bone formation at n-HA/gel/CMC constructs treated site (15.2% to 52.7%) when compared with respective SHAM (10.2% to 31.8%). Histological examination and fluorescence labeling revealed that the uniformly interconnected porous surface of scaffold construct enhanced osteoblasts' activity and mineralization. These preclinical data suggest that, n-HA/gel/CMC construct exhibit stimulation of bone's innate regenerative capacity, thus underscoring their use in guided bone regeneration.
Collapse
Affiliation(s)
- Nitin Sagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, Maharashtra, India
| | - Alok K. Pandey
- Nanomaterial Toxicology Group, Council for Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Deepak Gurbani
- Nanomaterial Toxicology Group, Council for Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Kainat Khan
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and 12 Industrial Research), Lucknow, Uttar Pradesh, India
| | - Dhirendra Singh
- Regulatory toxicology group, Council for Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Bhushan P. Chaudhari
- Regulatory toxicology group, Council for Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Vivek P. Soni
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, Maharashtra, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and 12 Industrial Research), Lucknow, Uttar Pradesh, India
| | - Alok Dhawan
- Nanomaterial Toxicology Group, Council for Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Institute of Life Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Jayesh R. Bellare
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, Maharashtra, India
- Department of Chemical Engineering, Indian Institute of Technology-Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
124
|
LALWANI GAURAV, SITHARAMAN BALAJI. MULTIFUNCTIONAL FULLERENE- AND METALLOFULLERENE-BASED NANOBIOMATERIALS. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793984413420038] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent advances in nanotechnology have enabled the synthesis and characterization of nanomaterials suitable for applications in the field of biology and medicine. Due to their unique physico-chemical properties, carbon-based nanomaterials such as fullerenes, metallofullerenes, carbon nanotubes and graphene have been widely investigated as multifunctional materials for applications in tissue engineering, molecular imaging, therapeutics, drug delivery and biosensing. In this review, we focus on the multifunctional capabilities of fullerenes and metallofullerenes for diagnosis and therapy. Specifically, we review recent advances toward the development of fullerene- and metallofullerene-based magnetic resonance imaging (MRI) and X-ray imaging contrast agents, drug and gene delivery vehicles, and photodynamic therapy agents. We also discuss in vitro and in vivo toxicity, and biocompatibility issues associated with the use of fullerenes and metallofullerenes for biomedical applications.
Collapse
Affiliation(s)
- GAURAV LALWANI
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794-5281, USA
| | - BALAJI SITHARAMAN
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794-5281, USA
| |
Collapse
|
125
|
Lalwani G, Henslee AM, Farshid B, Parmar P, Lin L, Qin YX, Kasper FK, Mikos AG, Sitharaman B. Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering. Acta Biomater 2013; 9:8365-73. [PMID: 23727293 DOI: 10.1016/j.actbio.2013.05.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/30/2022]
Abstract
In this study, we have investigated the efficacy of inorganic nanotubes as reinforcing agents to improve the mechanical properties of poly(propylene fumarate) (PPF) composites as a function of nanomaterial loading concentration (0.01-0.2 wt.%). Tungsten disulfide nanotubes (WSNTs) were used as reinforcing agents in the experimental group. Single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) were used as positive controls, and crosslinked PPF composites were used as the baseline control. Mechanical testing (compression and three-point bending) shows a significant enhancement (up to 28-190%) in the mechanical properties (compressive modulus, compressive yield strength, flexural modulus and flexural yield strength) of WSNT-reinforced PPF nanocomposites compared to the baseline control. In comparison to the positive controls, significant improvements in the mechanical properties of WSNT nanocomposites were also observed at various concentrations. In general, the inorganic nanotubes (WSNTs) showed mechanical reinforcement better than (up to 127%) or equivalent to that of carbon nanotubes (SWCNTs and MWCNTs). Sol fraction analysis showed significant increases in the crosslinking density of PPF in the presence of WSNTs (0.01-0.2 wt.%). Transmission electron microscopy (TEM) analysis on thin sections of crosslinked nanocomposites showed the presence of WSNTs as individual nanotubes in the PPF matrix, whereas SWCNTs and MWCNTs existed as micron-sized aggregates. The trend in the surface area of nanostructures obtained by Brunauer-Emmett-Teller (BET) surface area analysis was SWCNTs>MWCNTs>WSNTs. The BET surface area analysis, TEM analysis and sol fraction analysis results taken together suggest that chemical composition (inorganic vs. carbon nanomaterials), the presence of functional groups (such as sulfide and oxysulfide) and individual dispersion of the nanomaterials in the polymer matrix (absence of aggregation of the reinforcing agent) are the key parameters affecting the mechanical properties of nanostructure-reinforced PPF composites and the reason for the observed increases in the mechanical properties compared to the baseline and positive controls.
Collapse
Affiliation(s)
- Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | | | | | | | | | | | | | | | | |
Collapse
|