101
|
Class Id ribonucleotide reductase utilizes a Mn 2(IV,III) cofactor and undergoes large conformational changes on metal loading. J Biol Inorg Chem 2019; 24:863-877. [PMID: 31414238 PMCID: PMC6754362 DOI: 10.1007/s00775-019-01697-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
Outside of the photosynthetic machinery, high-valent manganese cofactors are rare in biology. It was proposed that a recently discovered subclass of ribonucleotide reductase (RNR), class Id, is dependent on a Mn2(IV,III) cofactor for catalysis. Class I RNRs consist of a substrate-binding component (NrdA) and a metal-containing radical-generating component (NrdB). Herein we utilize a combination of EPR spectroscopy and enzyme assays to underscore the enzymatic relevance of the Mn2(IV,III) cofactor in class Id NrdB from Facklamia ignava. Once formed, the Mn2(IV,III) cofactor confers enzyme activity that correlates well with cofactor quantity. Moreover, we present the X-ray structure of the apo- and aerobically Mn-loaded forms of the homologous class Id NrdB from Leeuwenhoekiella blandensis, revealing a dimanganese centre typical of the subclass, with a tyrosine residue maintained at distance from the metal centre and a lysine residue projected towards the metals. Structural comparison of the apo- and metal-loaded forms of the protein reveals a refolding of the loop containing the conserved lysine and an unusual shift in the orientation of helices within a monomer, leading to the opening of a channel towards the metal site. Such major conformational changes have not been observed in NrdB proteins before. Finally, in vitro reconstitution experiments reveal that the high-valent manganese cofactor is not formed spontaneously from oxygen, but can be generated from at least two different reduced oxygen species, i.e. H2O2 and superoxide (O 2 ·- ). Considering the observed differences in the efficiency of these two activating reagents, we propose that the physiologically relevant mechanism involves superoxide.
Collapse
|
102
|
Odella E, Wadsworth BL, Mora SJ, Goings JJ, Huynh MT, Gust D, Moore TA, Moore GF, Hammes-Schiffer S, Moore AL. Proton-Coupled Electron Transfer Drives Long-Range Proton Translocation in Bioinspired Systems. J Am Chem Soc 2019; 141:14057-14061. [DOI: 10.1021/jacs.9b06978] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L. Wadsworth
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - S. Jimena Mora
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Joshua J. Goings
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Mioy T. Huynh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Devens Gust
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Gary F. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ana L. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
103
|
Maróti P. Thermodynamic View of Proton Activated Electron Transfer in the Reaction Center of Photosynthetic Bacteria. J Phys Chem B 2019; 123:5463-5473. [PMID: 31181159 DOI: 10.1021/acs.jpcb.9b03506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The temperature dependence of the sequential coupling of proton transfer to the second interquinone electron transfer is studied in the reaction center proteins of photosynthetic bacteria modified by different mutations and treatment by divalent cations. The Eyring plots of kinetics were evaluated by the Marcus theory of electron and proton transfer. In mutants of electron transfer limitation (including the wild type), the observed thermodynamic parameters had to be corrected for those of the fast proton pre-equilibrium. The electron transfer is nonadiabatic with transmission coefficient 6 × 10-4, and the reorganization energy amounts to 1.2 eV. If the proton transfer is the rate limiting step, the reorganization energy and the works terms fall in the range of 200-500 meV, depending on the site of damage in the proton transfer chain. The product term is 100-150 meV larger than the reactant term. While the electron transfer mutants have a low free energy of activation (∼200 meV), the proton transfer variants show significantly elevated levels of the free energy barrier (∼500 meV). The second electron transfer in the bacterial reaction center can serve as a model system of coupled electron and proton transfer in other proteins or ion channels.
Collapse
Affiliation(s)
- Péter Maróti
- Institute of Medical Physics , University of Szeged , Rerrich Béla tér 1 , Szeged , H-6720 , Hungary
| |
Collapse
|
104
|
Ultrafast structural rearrangement dynamics induced by the photodetachment of phenoxide in aqueous solution. Nat Commun 2019; 10:2944. [PMID: 31270331 PMCID: PMC6610110 DOI: 10.1038/s41467-019-10989-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/14/2019] [Indexed: 01/28/2023] Open
Abstract
The elementary processes that accompany the interaction of ionizing radiation with biologically relevant molecules are of fundamental importance. However, the ultrafast structural rearrangement dynamics induced by the ionization of biomolecules in aqueous solution remain hitherto unknown. Here, we employ femtosecond optical pump-probe spectroscopy to elucidate the vibrational wave packet dynamics that follow the photodetachment of phenoxide, a structural mimic of tyrosine, in aqueous solution. Photodetachment of phenoxide leads to wave packet dynamics of the phenoxyl radical along 12 different vibrational modes. Eight of the modes are totally symmetric and support structural rearrangement upon electron ejection. Comparison to a previous photodetachment study of phenoxide in the gas phase reveals the important role played by the solvent environment in driving ultrafast structural reorganization induced by ionizing radiation. This work provides insight into the ultrafast molecular dynamics that follow the interaction of ionizing radiation with molecules in aqueous solution. The interaction of biomolecules with ionizing radiation induces structural changes which are still largely unknown. The authors use femtosecond wave packet spectroscopy to observe ultrafast structural dynamics that follow the photodetachment of phenoxide in aqueous solution.
Collapse
|
105
|
Sandoval BA, Kurtoic SI, Chung MM, Biegasiewicz KF, Hyster TK. Photoenzymatic Catalysis Enables Radical-Mediated Ketone Reduction in Ene-Reductases. Angew Chem Int Ed Engl 2019; 58:8714-8718. [PMID: 30951226 PMCID: PMC6570536 DOI: 10.1002/anie.201902005] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Indexed: 11/12/2022]
Abstract
Flavin-dependent ene-reductases (EREDs) are known to stereoselectively reduce activated alkenes, but are inactive toward carbonyls. Demonstrated here is that in the presence of photoredox catalysts, these enzymes will reduce aromatic ketones. Mechanistic experiments suggest this reaction proceeds through ketyl radical formation, a reaction pathway that is distinct from the native hydride-transfer mechanism. Furthermore, this reactivity is accessible without modification of either the enzyme or cofactors, allowing both native and non-natural mechanisms to occur simultaneously. Based on control experiments, we hypothesize that binding to the enzyme active site attenuates the reduction potential of the substrate, enabling single-electron reduction. This reactivity highlights opportunities to access new catalytic manifolds by merging photoredox catalysis with biocatalysis.
Collapse
Affiliation(s)
- Braddock A Sandoval
- Department of Chemistry, Princeton University, Frick Chemical Laboratory, Princeton, NJ, 08544, USA
| | - Sarah I Kurtoic
- Department of Chemistry, Princeton University, Frick Chemical Laboratory, Princeton, NJ, 08544, USA
| | - Megan M Chung
- Department of Chemistry, Princeton University, Frick Chemical Laboratory, Princeton, NJ, 08544, USA
| | - Kyle F Biegasiewicz
- Department of Chemistry, Princeton University, Frick Chemical Laboratory, Princeton, NJ, 08544, USA
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Frick Chemical Laboratory, Princeton, NJ, 08544, USA
| |
Collapse
|
106
|
Berggren G, Sahlin M, Crona M, Tholander F, Sjöberg BM. Compounds with capacity to quench the tyrosyl radical in Pseudomonas aeruginosa ribonucleotide reductase. J Biol Inorg Chem 2019; 24:841-848. [PMID: 31218442 PMCID: PMC6754346 DOI: 10.1007/s00775-019-01679-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 11/02/2022]
Abstract
Ribonucleotide reductase (RNR) has been extensively probed as a target enzyme in the search for selective antibiotics. Here we report on the mechanism of inhibition of nine compounds, serving as representative examples of three different inhibitor classes previously identified by us to efficiently inhibit RNR. The interaction between the inhibitors and Pseudomonas aeruginosa RNR was elucidated using a combination of electron paramagnetic resonance spectroscopy and thermal shift analysis. All nine inhibitors were found to efficiently quench the tyrosyl radical present in RNR, required for catalysis. Three different mechanisms of radical quenching were identified, and shown to depend on reduction potential of the assay solution and quaternary structure of the protein complex. These results form a good foundation for further development of P. aeruginosa selective antibiotics. Moreover, this study underscores the complex nature of RNR inhibition and the need for detailed spectroscopic studies to unravel the mechanism of RNR inhibitors.
Collapse
Affiliation(s)
- Gustav Berggren
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| | - Margareta Sahlin
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mikael Crona
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Swedish Orphan Biovitrum AB, Stockholm, Sweden
| | - Fredrik Tholander
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
107
|
Zhang J, Lalevée J, Hill NS, Peng X, Zhu D, Kiehl J, Morlet-Savary F, Stenzel MH, Coote ML, Xiao P. Photoinitiation Mechanism and Ability of Monoamino-Substituted Anthraquinone Derivatives as Cationic Photoinitiators of Polymerization under LEDs. Macromol Rapid Commun 2019; 40:e1900234. [PMID: 31210405 DOI: 10.1002/marc.201900234] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Indexed: 12/13/2022]
Abstract
The design and development of photoinitiating systems applicable to UV or even visible light delivered from light-emitting diodes (LEDs) has been attracting increasing attention due to their great potential applications in various fields. Compared to the strategy of synthesizing novel compounds, the exploration of existing chemicals with interesting photochemical/photophysical properties for their usage as photoinitiators is more appealing and easily commercialized. Nevertheless, a number of compounds such as monoamino-substituted anthraquinone derivatives, which are intensively investigated for their photophysical and photochemical properties, have seldom been studied for their roles as photoinitiators under LED irradiation. Herein, three monoamino-substituted anthraquinone derivatives, that is, 1-aminoanthraquinone, 1-(methylamino)anthraquinone and 1-(benzamido)anthraquinone, are studied for their potential as photoinitiators. The photoinitiation mechanism of these monoamino-substituted anthraquinone derivatives, when combined with iodonium salt, is first clarified using computational quantum chemistry, fluorescence, steady-state photolysis, and electron spin resonance spin-trapping techniques. Then, their photoinitiation ability for the cationic photopolymerization of epoxide and divinyl ether monomers is also investigated.
Collapse
Affiliation(s)
- Jing Zhang
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100, Mulhouse, France.,School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.,Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100, Mulhouse, France.,Université de Strasbourg, France
| | - Nicholas S Hill
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Xiaotong Peng
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Di Zhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jonathan Kiehl
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fabrice Morlet-Savary
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100, Mulhouse, France.,Université de Strasbourg, France
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Pu Xiao
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100, Mulhouse, France.,School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
108
|
Schneider J, Bangle RE, Swords WB, Troian-Gautier L, Meyer GJ. Determination of Proton-Coupled Electron Transfer Reorganization Energies with Application to Water Oxidation Catalysts. J Am Chem Soc 2019; 141:9758-9763. [DOI: 10.1021/jacs.9b01296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jenny Schneider
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Rachel E. Bangle
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Wesley B. Swords
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States
| |
Collapse
|
109
|
Saura P, Frey DM, Gamiz-Hernandez AP, Kaila VRI. Electric field modulated redox-driven protonation and hydration energetics in energy converting enzymes. Chem Commun (Camb) 2019; 55:6078-6081. [PMID: 31066378 PMCID: PMC6932871 DOI: 10.1039/c9cc01135h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biological energy conversion is catalysed by proton-coupled electron transfer (PCET) reactions that form the chemical basis of respiratory and photosynthetic enzymes. Despite recent advances in structural, biophysical, and computational experiments, the mechanistic principles of these reactions still remain elusive. Based on common functional features observed in redox enzymes, we study here generic mechanistic models for water-mediated long-range PCET reactions. We show how a redox reaction within a buried protein environment creates an electric field that induces hydration changes between the proton acceptor and donor groups, and in turn, lowers the reaction barrier and increases the thermodynamic driving forces for the water-mediated PCET process. We predict linear free energy relationships, and discuss the proposed mechanism in context of PCET in cytochrome c oxidase.
Collapse
Affiliation(s)
- Patricia Saura
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | | | | | | |
Collapse
|
110
|
Sandoval BA, Kurtoic SI, Chung MM, Biegasiewicz KF, Hyster TK. Photoenzymatic Catalysis Enables Radical‐Mediated Ketone Reduction in Ene‐Reductases. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Braddock A. Sandoval
- Department of ChemistryPrinceton UniversityFrick Chemical Laboratory Princeton NJ 08544 USA
| | - Sarah I. Kurtoic
- Department of ChemistryPrinceton UniversityFrick Chemical Laboratory Princeton NJ 08544 USA
| | - Megan M. Chung
- Department of ChemistryPrinceton UniversityFrick Chemical Laboratory Princeton NJ 08544 USA
| | - Kyle F. Biegasiewicz
- Department of ChemistryPrinceton UniversityFrick Chemical Laboratory Princeton NJ 08544 USA
| | - Todd K. Hyster
- Department of ChemistryPrinceton UniversityFrick Chemical Laboratory Princeton NJ 08544 USA
| |
Collapse
|
111
|
Reguera G. Microbial nanowires and electroactive biofilms. FEMS Microbiol Ecol 2019; 94:5000162. [PMID: 29931163 DOI: 10.1093/femsec/fiy086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
Geobacter bacteria are the only microorganisms known to produce conductive appendages or pili to electronically connect cells to extracellular electron acceptors such as iron oxide minerals and uranium. The conductive pili also promote cell-cell aggregation and the formation of electroactive biofilms. The hallmark of these electroactive biofilms is electronic heterogeneity, mediated by coordinated interactions between the conductive pili and matrix-associated cytochromes. Collectively, the matrix-associated electron carriers discharge respiratory electrons from cells in multilayered biofilms to electron-accepting surfaces such as iron oxide coatings and electrodes poised at a metabolically oxidizable potential. The presence of pilus nanowires in the electroactive biofilms also promotes the immobilization and reduction of soluble metals, even when present at toxic concentrations. This review summarizes current knowledge about the composition of the electroactive biofilm matrix and the mechanisms that allow the wired Geobacter biofilms to generate electrical currents and participate in metal redox transformations.
Collapse
Affiliation(s)
- Gemma Reguera
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
112
|
Rose HR, Maggiolo AO, McBride MJ, Palowitch GM, Pandelia ME, Davis KM, Yennawar NH, Boal AK. Structures of Class Id Ribonucleotide Reductase Catalytic Subunits Reveal a Minimal Architecture for Deoxynucleotide Biosynthesis. Biochemistry 2019; 58:1845-1860. [PMID: 30855138 PMCID: PMC6456427 DOI: 10.1021/acs.biochem.8b01252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Class I ribonucleotide reductases (RNRs) share a common mechanism of nucleotide reduction in a catalytic α subunit. All RNRs initiate catalysis with a thiyl radical, generated in class I enzymes by a metallocofactor in a separate β subunit. Class Id RNRs use a simple mechanism of cofactor activation involving oxidation of a MnII2 cluster by free superoxide to yield a metal-based MnIIIMnIV oxidant. This simple cofactor assembly pathway suggests that class Id RNRs may be representative of the evolutionary precursors to more complex class Ia-c enzymes. X-ray crystal structures of two class Id α proteins from Flavobacterium johnsoniae ( Fj) and Actinobacillus ureae ( Au) reveal that this subunit is distinctly small. The enzyme completely lacks common N-terminal ATP-cone allosteric motifs that regulate overall activity, a process that normally occurs by dATP-induced formation of inhibitory quaternary structures to prevent productive β subunit association. Class Id RNR activity is insensitive to dATP in the Fj and Au enzymes evaluated here, as expected. However, the class Id α protein from Fj adopts higher-order structures, detected crystallographically and in solution. The Au enzyme does not exhibit these quaternary forms. Our study reveals structural similarity between bacterial class Id and eukaryotic class Ia α subunits in conservation of an internal auxiliary domain. Our findings with the Fj enzyme illustrate that nucleotide-independent higher-order quaternary structures can form in simple RNRs with truncated or missing allosteric motifs.
Collapse
Affiliation(s)
- Hannah R. Rose
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Ailiena O. Maggiolo
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Molly J. McBride
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Gavin M. Palowitch
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | | | - Katherine M. Davis
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Neela H. Yennawar
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
113
|
Song X, Zhang F, Bu Y. Dynamic relaying properties of a β-turn peptide in long-range electron transfer. J Comput Chem 2019; 40:988-996. [PMID: 30451309 DOI: 10.1002/jcc.25541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 11/05/2022]
Abstract
The relay stations play a significant role in long-range charge hopping transfer in proteins. Although studies have clarified that many more protein structural motifs can function as relays in charge hopping transfers by acting as intermediate charge carriers, the relaying properties are still poorly understood. In this work, taking a β-turn oligopeptide as an example, we report a dynamic character of a relay with tunable relaying properties using the density functional theory calculations. Our main finding is that a β-turn peptide can serve as an effective electron relay in facilitating long-range electron migration and its relay properties is vibration-tunable. The vibration-induced structural transient distortions remarkably affect the lowest occupied molecular orbital (LUMO) energy, vertical electron affinity and electron-binding mode of the β-turn oligopeptide and the singly occupied molecular orbital (SOMO) energy of the corresponding electron adduct and thus the relaying properties. Different vibration modes lead to different structural distortions and thus have different effects on the relaying properties and ability of the β-turn peptide. For the relaying properties, there approximately is a linear negative correlation of electron affinity with the LUMO energy of the β-turn or the SOMO energy of its electron adduct. Besides, such relaying properties also vary in the vibration evolution process, and the electron-binding modes may be tunable. As an important addition to the known static charge relaying properties occurring in various protein structural motifs, this work reports the dynamic electron-relaying characteristics of a β-turn oligopeptide with variable relaying properties governed by molecular vibrations which can be applied to different proteins in mediating long-range charge transfers. Clearly, this work reveals molecular vibration effects on the electron relaying properties of protein structural motifs and provides new insights into the dynamics of long-range charge transfers in proteins. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiufang Song
- School of Chemistry &Chemical Engineering, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | - Fengying Zhang
- School of Chemistry &Chemical Engineering, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | - Yuxiang Bu
- School of Chemistry &Chemical Engineering, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
114
|
Recent advances in photoinduced catalysis for water splitting and environmental applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
115
|
Mamun AA, Toda MJ, Kozlowski PM. Can photolysis of the Co C bond in coenzyme B12-dependent enzymes be used to mimic the native reaction? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 191:175-184. [DOI: 10.1016/j.jphotobiol.2018.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
116
|
Resa S, Millán A, Fuentes N, Crovetto L, Luisa Marcos M, Lezama L, Choquesillo-Lazarte D, Blanco V, Campaña AG, Cárdenas DJ, Cuerva JM. O–H and (CO)N–H bond weakening by coordination to Fe(ii). Dalton Trans 2019; 48:2179-2189. [DOI: 10.1039/c8dt04689a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coordination of hydroxyl/amide groups to Fe(ii) diminishes BDFEs of O–H and (CO)N–H bonds down to 76.0 and 80.5 kcal mol−1 respectively.
Collapse
|
117
|
Dol C, Gerbaud G, Guigliarelli B, Bloch E, Gastaldi S, Besson E. Modulating lifetimes and relaxation times of phenoxyl radicals through their incorporation into different hybrid nanostructures. Phys Chem Chem Phys 2019; 21:16337-16344. [DOI: 10.1039/c9cp03052b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Playing with the structural features of various hybrid materials enables to adjust physical properties of phenoxyl radicals.
Collapse
Affiliation(s)
| | | | | | - Emily Bloch
- Aix Marseille Univ
- CNRS
- MADIREL
- Marseille
- France
| | | | | |
Collapse
|
118
|
Xia Q, Dong J, Song H, Wang Q. Visible‐Light Photocatalysis of the Ketyl Radical Coupling Reaction. Chemistry 2018; 25:2949-2961. [DOI: 10.1002/chem.201804873] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Qing Xia
- State Key Laboratory of Elemento-Organic ChemistryResearch Institute of, Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic ChemistryResearch Institute of, Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic ChemistryResearch Institute of, Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic ChemistryResearch Institute of, Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300071 P. R. China
| |
Collapse
|
119
|
Jana L, Maity PP, Perveen H, Dash M, Jana S, Dey A, De SK, Chattopadhyay S. Attenuation of utero-toxicity, metabolic dysfunction and inflammation by soy protein concentrate in rats exposed to fluoridated water: consequence of hyperlipidemia in parallel with hypohomocysteinemia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36462-36473. [PMID: 30374712 DOI: 10.1007/s11356-018-3542-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
Lipid peroxidation and ROS generation are the pathogenesis of chronic fluoride toxicity, and its detrimental effects on human reproduction are noted drastically. The aim of the present study was to elucidate the defensive effects of soy protein concentrate (SPC) against sodium fluoride (NaF)-induced uterine dysfunction at biochemical and histological level. Rats were randomly distributed into four groups as control, NaF-treated (200 ppm), and SPC co-administered groups (20 mg and 40 mg/ 100 g body weight) for 16 days. SPC reversed the toxic effects of NaF. SPC significantly ameliorated the NaF-induced alterations of the antioxidant system in the uterus by decreasing lipid peroxidation products and by increasing antioxidant activities. SPC significantly counteracted the adverse effects of NaF on serum level of lactate dehydrogenase (LDH) and inflammatory markers Interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α) and nuclear factor kappa-B (NF-κB). Our results also explored that lipid profile was meaningfully altered due to NaF and also focused a diminution of circulating homocysteine (Hcy) and altered lipid profiles along with a diminished quantity of serum B12 and B9. However, both the doses of SPC reverted back serum levels of B12, B9, and Hcy status in similar fashion along with its corrective action on lipid profile. NaF-treated group exhibited a marked degree of reduction in the weights of ovary and uterus with an alteration of normal tissue histology and significant diminution in serum estradiol (ES) levels without fluctuating uterine estradiol receptor-α (ER-α). However, SPC restored the normal tissue histoarchitecture and also increased the functional efficiency and expression of the ER-α receptor by overturning the ES levels in NaF-treated rats. Moreover, both the doses of SPC were effective against NaF-induced alterations, although 40 mg SPC/100 g body weight had better efficacy in ameliorating the NaF-induced adverse effects on the uterus and ovary.
Collapse
Affiliation(s)
- Lipirani Jana
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Pikash Pratim Maity
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Hasina Perveen
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Moumita Dash
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Suryashis Jana
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Arindam Dey
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Subrata Kumar De
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India.
| |
Collapse
|
120
|
Marais A, Adams B, Ringsmuth AK, Ferretti M, Gruber JM, Hendrikx R, Schuld M, Smith SL, Sinayskiy I, Krüger TPJ, Petruccione F, van Grondelle R. The future of quantum biology. J R Soc Interface 2018; 15:20180640. [PMID: 30429265 PMCID: PMC6283985 DOI: 10.1098/rsif.2018.0640] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/12/2018] [Indexed: 01/17/2023] Open
Abstract
Biological systems are dynamical, constantly exchanging energy and matter with the environment in order to maintain the non-equilibrium state synonymous with living. Developments in observational techniques have allowed us to study biological dynamics on increasingly small scales. Such studies have revealed evidence of quantum mechanical effects, which cannot be accounted for by classical physics, in a range of biological processes. Quantum biology is the study of such processes, and here we provide an outline of the current state of the field, as well as insights into future directions.
Collapse
Affiliation(s)
- Adriana Marais
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Betony Adams
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Andrew K Ringsmuth
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- ARC Centre of Excellence for Engineered Quantum Systems, The University of Queensland, St Lucia 4072, Australia
| | - Marco Ferretti
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - J Michael Gruber
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ruud Hendrikx
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Maria Schuld
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Samuel L Smith
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ilya Sinayskiy
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- National Institute for Theoretical Physics, KwaZulu-Natal, South Africa
| | - Tjaart P J Krüger
- Department of Physics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, South Africa
| | - Francesco Petruccione
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- National Institute for Theoretical Physics, KwaZulu-Natal, South Africa
| | - Rienk van Grondelle
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
121
|
Greene BL, Stubbe J, Nocera DG. Photochemical Rescue of a Conformationally Inactivated Ribonucleotide Reductase. J Am Chem Soc 2018; 140:15744-15752. [PMID: 30347141 DOI: 10.1021/jacs.8b07902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class Ia ribonucleotide reductase (RNR) of Escherichia coli contains an unusually stable tyrosyl radical cofactor in the β2 subunit (Y122•) necessary for nucleotide reductase activity. Upon binding the cognate α2 subunit, loaded with nucleoside diphosphate substrate and an allosteric/activity effector, a rate determining conformational change(s) enables rapid radical transfer (RT) within the active α2β2 complex from the Y122• site in β2 to the substrate activating cysteine residue (C439) in α2 via a pathway of redox active amino acids (Y122[β] ↔ W48[β]? ↔ Y356[β] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]) spanning >35 Å. Ionizable residues at the α2β2 interface are essential in mediating RT, and therefore control activity. One of these mutations, E350X (where X = A, D, Q) in β2, obviates all RT, though the mechanism of control by which E350 mediates RT remains unclear. Herein, we utilize an E350Q-photoβ2 construct to photochemically rescue RNR activity from an otherwise inactive construct, wherein the initial RT event (Y122• → Y356) is replaced by direct photochemical radical generation of Y356•. These data present compelling evidence that E350 conveys allosteric information between the α2 and β2 subunits facilitating conformational gating of RT that specifically targets Y122• reduction, while the fidelity of the remainder of the RT pathway is retained.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | | | - Daniel G Nocera
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
122
|
Sayfutyarova ER, Goldsmith ZK, Hammes-Schiffer S. Theoretical Study of C-H Bond Cleavage via Concerted Proton-Coupled Electron Transfer in Fluorenyl-Benzoates. J Am Chem Soc 2018; 140:15641-15645. [PMID: 30383371 DOI: 10.1021/jacs.8b10461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Developing new strategies to activate and cleave C-H bonds is important for a broad range of applications. Recently a new approach for C-H bond activation using multi-site concerted proton-coupled electron transfer (PCET) involving intermolecular electron transfer to an oxidant coupled to intramolecular proton transfer was reported. For a series of oxidants reacting with 2-(9 H-fluoren-9-yl)benzoate, experimental studies revealed an atypical Brønsted α, defined as the slope of the logarithm of the PCET rate constant versus the logarithm of the equilibrium constant or the scaled driving force. Herein this reaction is modeled with a vibronically nonadiabatic PCET theory. Hydrogen tunneling, thermal sampling of the proton donor-acceptor mode, solute and solvent reorganization, and contributions from excited vibronic states are found to play important roles. The calculations qualitatively reproduce the experimental observation of a Brønsted α significantly less than 0.5 and explain this shallow slope in terms of exoergic processes between pairs of electron-proton vibronic states. These fundamental mechanistic insights may guide the design of more effective strategies for C-H bond activation and cleavage.
Collapse
Affiliation(s)
- Elvira R Sayfutyarova
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Zachary K Goldsmith
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| |
Collapse
|
123
|
Cinar ME, Lal M, Deiseroth HJ, Schlirf J, Schmittel M. Detection and follow-up reactions of distonic β
, β
-dimesityl enol radical cations containing nitrogen heterocyclic bases. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Emin Cinar
- Department Chemie-Biologie; Universität Siegen; Siegen Germany
| | - Mukul Lal
- Department Chemie-Biologie; Universität Siegen; Siegen Germany
| | | | - Jens Schlirf
- Department Chemie-Biologie; Universität Siegen; Siegen Germany
| | | |
Collapse
|
124
|
Srinivas V, Lebrette H, Lundin D, Kutin Y, Sahlin M, Lerche M, Eirich J, Branca RMM, Cox N, Sjöberg BM, Högbom M. Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens. Nature 2018; 563:416-420. [PMID: 30429545 PMCID: PMC6317698 DOI: 10.1038/s41586-018-0653-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022]
Abstract
Ribonucleotide reductase (RNR) catalyses the only known de novo pathway for the production of all four deoxyribonucleotides that are required for DNA synthesis1,2. It is essential for all organisms that use DNA as their genetic material and is a current drug target3,4. Since the discovery that iron is required for function in the aerobic, class I RNR found in all eukaryotes and many bacteria, a dinuclear metal site has been viewed as necessary to generate and stabilize the catalytic radical that is essential for RNR activity5-7. Here we describe a group of RNR proteins in Mollicutes-including Mycoplasma pathogens-that possess a metal-independent stable radical residing on a modified tyrosyl residue. Structural, biochemical and spectroscopic characterization reveal a stable 3,4-dihydroxyphenylalanine (DOPA) radical species that directly supports ribonucleotide reduction in vitro and in vivo. This observation overturns the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase. The metal-independent radical requires new mechanisms for radical generation and stabilization, processes that are targeted by RNR inhibitors. It is possible that this RNR variant provides an advantage under metal starvation induced by the immune system. Organisms that encode this type of RNR-some of which are developing resistance to antibiotics-are involved in diseases of the respiratory, urinary and genital tracts. Further characterization of this RNR family and its mechanism of cofactor generation will provide insight into new enzymatic chemistry and be of value in devising strategies to combat the pathogens that utilize it. We propose that this RNR subclass is denoted class Ie.
Collapse
Affiliation(s)
- Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Yuri Kutin
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Mülheim an der Ruhr, Germany
| | - Margareta Sahlin
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Michael Lerche
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Jürgen Eirich
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Rui M M Branca
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
125
|
Mondal S, Bera S, Maity S, Ghosh P. Orthometalated N-(Benzophenoxazine)- o-aminophenol: Phenolato versus Phenoxyl States. ACS OMEGA 2018; 3:13323-13334. [PMID: 31458047 PMCID: PMC6645054 DOI: 10.1021/acsomega.8b01983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/03/2018] [Indexed: 06/10/2023]
Abstract
The molecular and electronic structures of the orthometalated ruthenium(III) and osmium(III) complexes of N-(benzophenoxazine)-o-aminophenol (OXLH2) that exhibits versatile redox activities are reported. The redox chemistry of OXLH2 is remarkably different from that of N-(aryl)-o-aminophenol (APLH2). The study established that OXLH2 is redox noninnocent and is a precursor of a phenoxyl radical. One of the C-H bonds of OXLH2 is activated by ions, and OXLH2 reveals three different redox states as dianionic phenolato (OXL2-), monoanionic phenoxyl radical (OXL•-), and zwitterionic phenoxium cation (OXL±) states. The reaction of OXLH2 with [RuII(PPh3)3Cl2] in boiling toluene in air affords an orthometalated OXL2- complex of ruthenium(III), trans-[(OXL2-)RuIII(PPh3)2(Cl)] (1), whereas the similar reaction with [OsII(PPh3)3Br2] yields an orthometalated OXL•- complex, cis-[(OXL•-)OsIII(PPh3)Br2] (2). 1 and 2 exhibit ligand-based reversible redox waves due to OXL•-/OXL2-, OXL±/OXL•-, and MIII/MII couples. The 1 + ion is a OXL•- complex of ruthenium(III). 2 - exhibits temperature-dependent valence tautomerism due to [OsII(OXL•-) ↔ OsIII(OXL2-)] equilibrium. 2 2- is a OXL2- complex of osmium(II), while 1 2+ and 2 + are OXL± complexes of metal(III). 2 is an oxidant and effective catalyst for oxidation of 3,5-di-tert-butylcatechol to the corresponding quinone, and the turnover number is 119.7 h-1. The UV-vis-NIR absorption spectrum of 1 displays an NIR band at 800 nm due to an intra-ligand-charge-transfer transition, which is absent in 2 incorporating a OXL•- radical. The molecular and electronic structures of 1 and 2 and their oxidized and reduced analogues were confirmed by single-crystal X-ray crystallography, variable-temperature electron paramagnetic resonance spectroscopy, spectroelectrochemical measurements, and density functional theory calculations.
Collapse
Affiliation(s)
| | | | | | - Prasanta Ghosh
- E-mail: . Phone: +91-33-2428-7347. Fax: +91-33-2477-3597
| |
Collapse
|
126
|
Odella E, Mora SJ, Wadsworth BL, Huynh MT, Goings JJ, Liddell PA, Groy TL, Gervaldo M, Sereno LE, Gust D, Moore TA, Moore GF, Hammes-Schiffer S, Moore AL. Controlling Proton-Coupled Electron Transfer in Bioinspired Artificial Photosynthetic Relays. J Am Chem Soc 2018; 140:15450-15460. [DOI: 10.1021/jacs.8b09724] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - S. Jimena Mora
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L. Wadsworth
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Mioy T. Huynh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joshua J. Goings
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Paul A. Liddell
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas L. Groy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Miguel Gervaldo
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal No. 3, 5800 Río Cuarto, Córdoba, Argentina
| | - Leónides E. Sereno
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal No. 3, 5800 Río Cuarto, Córdoba, Argentina
| | - Devens Gust
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Gary F. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ana L. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
127
|
Robbins JM, Geng J, Barry BA, Gadda G, Bommarius AS. Photoirradiation Generates an Ultrastable 8-Formyl FAD Semiquinone Radical with Unusual Properties in Formate Oxidase. Biochemistry 2018; 57:5818-5826. [PMID: 30226367 DOI: 10.1021/acs.biochem.8b00571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formate oxidase (FOX) was previously shown to contain a noncovalently bound 8-formyl FAD (8-fFAD) cofactor. However, both the absorption spectra and the kinetic parameters previously reported for FOX are inconsistent with more recent reports. The ultraviolet-visible (UV-vis) absorption spectrum reported in early studies closely resembles the spectra observed for protein-bound 8-formyl flavin semiquinone species, thus suggesting FOX may be photosensitive. Therefore, the properties of dark and light-exposed FOX were investigated using steady-state kinetics and site-directed mutagenesis analysis along with inductively coupled plasma optical emission spectroscopy, UV-vis absorption spectroscopy, circular dichroism spectroscopy, liquid chromatography and mass spectrometry, and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, these experimental results demonstrate that FOX is deactivated in the presence of light through generation of an oxygen stable, anionic (red) 8-fFAD semiquinone radical capable of persisting either in an aerobic environment for multiple weeks or in the presence of a strong reducing agent like sodium dithionite. Herein, we study the photoinduced formation of the 8-fFAD semiquinone radical in FOX and report the first EPR spectrum of this radical species. The stability of the 8-fFAD semiquinone radical suggests FOX to be a model enzyme for probing the structural and mechanistic features involved in stabilizing flavin semiquinone radicals. It is likely that the photoinduced formation of a stable 8-fFAD semiquinone radical is a defining characteristic of 8-formyl flavin-dependent enzymes. Additionally, a better understanding of the radical stabilization process may yield a FOX enzyme with more robust activity and broader industrial usefulness.
Collapse
Affiliation(s)
- John M Robbins
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0100 , United States.,Engineered Biosystems Building (EBB) , Georgia Institute of Technology , Atlanta , Georgia 30332-2000 , United States
| | - Jiafeng Geng
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332-0363 , United States
| | - Bridgette A Barry
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332-0363 , United States
| | - Giovanni Gadda
- Department of Chemistry , Georgia State University , Atlanta , Georgia 30302-3965 , United States.,Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , Georgia 30302-3965 , United States.,Center for Biotechnology and Drug Design , Georgia State University , Atlanta , Georgia 30302-3965 , United States.,Department of Biology , Georgia State University , Atlanta , Georgia 30302-3965 , United States
| | - Andreas S Bommarius
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0100 , United States.,Engineered Biosystems Building (EBB) , Georgia Institute of Technology , Atlanta , Georgia 30332-2000 , United States.,School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332-0363 , United States
| |
Collapse
|
128
|
Martinie RJ, Blaesi EJ, Bollinger JM, Krebs C, Finkelstein KD, Pollock CJ. Two-Color Valence-to-Core X-ray Emission Spectroscopy Tracks Cofactor Protonation State in a Class I Ribonucleotide Reductase. Angew Chem Int Ed Engl 2018; 57:12754-12758. [PMID: 30075052 PMCID: PMC6579043 DOI: 10.1002/anie.201807366] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/20/2018] [Indexed: 12/20/2022]
Abstract
Proton transfer reactions are of central importance to a wide variety of biochemical processes, though determining proton location and monitoring proton transfers in biological systems is often extremely challenging. Herein, we use two-color valence-to-core X-ray emission spectroscopy (VtC XES) to identify protonation events across three oxidation states of the O2 -activating, radical-initiating manganese-iron heterodinuclear cofactor in a class I-c ribonucleotide reductase. This is the first application of VtC XES to an enzyme intermediate and the first simultaneous measurement of two-color VtC spectra. In contrast to more conventional methods of assessing protonation state, VtC XES is a more direct probe applicable to a wide range of metalloenzyme systems. These data, coupled to insight provided by DFT calculations, allow the inorganic cores of the MnIV FeIV and MnIV FeIII states of the enzyme to be assigned as MnIV (μ-O)2 FeIV and MnIV (μ-O)(μ-OH)FeIII , respectively.
Collapse
Affiliation(s)
- Ryan J Martinie
- Department of Chemistry, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
| | - Elizabeth J Blaesi
- Department of Chemistry, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
| | - J Martin Bollinger
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
| | - Kenneth D Finkelstein
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY, 14853, USA
| | - Christopher J Pollock
- Department of Chemistry, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
- Present address: Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
129
|
Martinie RJ, Blaesi EJ, Bollinger JM, Krebs C, Finkelstein KD, Pollock CJ. Two‐Color Valence‐to‐Core X‐ray Emission Spectroscopy Tracks Cofactor Protonation State in a Class I Ribonucleotide Reductase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryan J. Martinie
- Department of Chemistry The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
| | - Elizabeth J. Blaesi
- Department of Chemistry The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
| | - J. Martin Bollinger
- Department of Chemistry and Department of Biochemistry and Molecular Biology The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
| | - Kenneth D. Finkelstein
- Cornell High Energy Synchrotron Source, Wilson Laboratory Cornell University Ithaca NY 14853 USA
| | - Christopher J. Pollock
- Department of Chemistry The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
- Present address: Cornell High Energy Synchrotron Source Wilson Laboratory Cornell University Ithaca NY 14853 USA
| |
Collapse
|
130
|
Hammes-Schiffer S. Controlling Electrons and Protons through Theory: Molecular Electrocatalysts to Nanoparticles. Acc Chem Res 2018; 51:1975-1983. [PMID: 30110147 DOI: 10.1021/acs.accounts.8b00240] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development of renewable energy sources that are environmentally friendly and economical is of critical importance. The effective utilization of such energy sources relies on catalysts to facilitate the interconversion between electrical and chemical energy through multielectron, multiproton reactions. The design of effective catalysts for these types of energy conversion processes requires the ability to control the localization and movement of electrons and protons, as well as the coupling between them. Theoretical calculations, in conjunction with experimental validation and feedback, are playing a key role in these catalyst design efforts. A general theory has been developed for describing proton-coupled electron transfer (PCET) reactions, which encompass all reactions involving the coupled transfer of electrons and protons, including sequential and concerted mechanisms for multielectron, multiproton processes. In addition, computational methods have been devised to compute the input quantities for the PCET rate constant expressions and to generate free energy pathways for molecular electrocatalysts. These methods have been extended to heterogeneous PCET reactions to enable the modeling of PCET processes at electrode and nanoparticle surfaces. Three distinct theoretical studies of PCET reactions relevant to catalyst design for energy conversion processes are discussed. In the first application, theoretical calculations of hydrogen production catalyzed by hangman metalloporphyrins predicted that the porphyrin ligand is reduced, leading to dearomatization and proton transfer from the carboxylic acid hanging group to the meso carbon of the porphyrin rather than the metal center, producing a phlorin intermediate. Subsequent experiments isolated and characterized the phlorin intermediate, validating this theoretical prediction. These molecular electrocatalysts exemplify the potential use of noninnocent ligands to localize electrons and protons on different parts of the catalyst and to direct their motions accordingly. In the second application, theoretical calculations on substituted benzimidazole phenol molecules predicted that certain substituents would lead to multiple intramolecular proton transfer reactions upon oxidation. Subsequent experiments verified these multiproton reactions, as well as the predicted shifts in the redox potentials and kinetic isotope effects. These bioinspired molecular systems demonstrate the potential use of multiproton relays to enable the transport of protons over longer distances along specified pathways, as well as the tuning of redox potentials through this movement of positive charge. In the third application, theoretical studies of heterogeneous PCET in photoreduced ZnO nanoparticles illustrated the significance of proton diffusion through the bulk of the nanoparticle as well as interfacial PCET to an organic radical in solution at its surface. These theoretical calculations were consistent with prior experimental studies of this system, although theoretical methods for heterogeneous PCET have not yet attained the level of predictive capability highlighted for the molecular electrocatalysts. These examples suggest that theory will play a significant role in the design of both molecular and heterogeneous catalysts to control the movement and coupling of electrons and protons. The resulting catalysts will be essential for the development of renewable energy sources to address current energy challenges.
Collapse
Affiliation(s)
- Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
131
|
Soudackov AV, Hammes-Schiffer S. Proton-coupled electron transfer reactions: analytical rate constants and case study of kinetic isotope effects in lipoxygenase. Faraday Discuss 2018; 195:171-189. [PMID: 27735009 DOI: 10.1039/c6fd00122j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general theory has been developed for proton-coupled electron transfer (PCET), which is vital to a wide range of chemical and biological processes. This theory describes PCET reactions in terms of nonadiabatic transitions between reactant and product electron-proton vibronic states and includes the effects of thermal fluctuations of the solvent or protein environment, as well as the proton donor-acceptor motion. Within the framework of this general PCET theory, a series of analytical rate constant expressions has been derived for PCET reactions in well-defined regimes. Herein, the application of this theory to PCET in the enzyme soybean lipoxygenase illustrates the regimes of validity for the various rate constant expressions and elucidates the fundamental physical principles dictating PCET reactions. Such theoretical studies provide significant physical insights that guide the interpretation of experimental data and lead to experimentally testable predictions. A combination of theoretical treatments with atomic-level simulations is essential to understanding PCET.
Collapse
Affiliation(s)
- Alexander V Soudackov
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
132
|
Yan J, Yang Z, Chen Y, Chang Y, Lyu C, Luo C, Cheng M, Hsu H. Activation of O−H and C−O Bonds in Water and Methanol by a Vanadium‐Bound Thiyl Radical. Chemistry 2018; 24:15190-15194. [DOI: 10.1002/chem.201803431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/17/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Jyun‐An Yan
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Zi‐Kuan Yang
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Yu‐Sen Chen
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Ya‐Ho Chang
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Chiao‐Ling Lyu
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Chun‐Gang Luo
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Mu‐Jeng Cheng
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Hua‐Fen Hsu
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| |
Collapse
|
133
|
MacAleese L, Girod M, Nahon L, Giuliani A, Antoine R, Dugourd P. Radical Anions of Oxidized vs. Reduced Oxytocin: Influence of Disulfide Bridges on CID and Vacuum UV Photo-Fragmentation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1826-1834. [PMID: 29949057 DOI: 10.1007/s13361-018-1989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 06/08/2023]
Abstract
The nonapeptide oxytocin (OT) is used as a model sulfur-containing peptide to study the damage induced by vacuum UV (VUV) radiations. In particular, the effect of the presence (or absence in reduced OT) of oxytocin's internal disulfide bridge is evaluated in terms of photo-fragmentation yield and nature of the photo-fragments. Intact, as well as reduced, OT is studied as dianions and radical anions. Radical anions are prepared and photo-fragmented in two-color experiments (UV + VUV) in a linear ion trap. VUV photo-fragmentation patterns are analyzed and compared, and radical-induced mechanisms are proposed. The effect of VUV is principally to ionize but secondary fragmentation is also observed. This secondary fragmentation seems to be considerably enabled by the initial position of the radical on the molecule. In particular, the possibility to form a radical on free cysteines seems to increase the susceptibility to VUV fragmentation. Interestingly, disulfide bridges, which are fundamental for protein structure, could also be responsible for an increased resistance to ionizing radiations. Graphical Abstract.
Collapse
Affiliation(s)
- Luke MacAleese
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière UMR 5306, 69622, Villeurbanne, France.
| | - Marion Girod
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques UMR 5280, 69100, Villeurbanne, France
| | - Laurent Nahon
- Synchrotron SOLEIL, BP 48 St Aubin, 91192, Gif Sur Yvette, France
| | - Alexandre Giuliani
- Synchrotron SOLEIL, BP 48 St Aubin, 91192, Gif Sur Yvette, France
- UAR1008 CEPIA, INRA, BP 71627, 44316, Nantes, France
| | - Rodolphe Antoine
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière UMR 5306, 69622, Villeurbanne, France
| | - Philippe Dugourd
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière UMR 5306, 69622, Villeurbanne, France
| |
Collapse
|
134
|
|
135
|
Bowring MA, Bradshaw LR, Parada GA, Pollock TP, Fernández-Terán RJ, Kolmar SS, Mercado BQ, Schlenker CW, Gamelin DR, Mayer JM. Activationless Multiple-Site Concerted Proton-Electron Tunneling. J Am Chem Soc 2018; 140:7449-7452. [PMID: 29847111 PMCID: PMC6310214 DOI: 10.1021/jacs.8b04455] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transfer of protons and electrons is key to energy conversion and storage, from photosynthesis to fuel cells. Increased understanding and control of these processes are needed. A new anthracene-phenol-pyridine molecular triad was designed to undergo fast photoinduced multiple-site concerted proton-electron transfer (MS-CPET), with the phenol moiety transferring an electron to the photoexcited anthracene and a proton to the pyridine. Fluorescence quenching and transient absorption experiments in solutions and glasses show rapid MS-CPET (3.2 × 1010 s-1 at 298 K). From 5.5 to 90 K, the reaction rate and kinetic isotope effect (KIE) are independent of temperature, with zero Arrhenius activation energy. From 145 to 350 K, there are only slight changes with temperature. This MS-CPET reaction thus occurs by tunneling of both the proton and electron, in different directions. Since the reaction proceeds without significant thermal activation energy, the rate constant indicates the magnitude of the electron/proton double tunneling probability.
Collapse
Affiliation(s)
- Miriam A. Bowring
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
| | - Liam R. Bradshaw
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Giovanny A. Parada
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Timothy P. Pollock
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Scott S. Kolmar
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Cody W. Schlenker
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Daniel R. Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
136
|
Yang JD, Ji P, Xue XS, Cheng JP. Recent Advances and Advisable Applications of Bond Energetics in Organic Chemistry. J Am Chem Soc 2018; 140:8611-8623. [DOI: 10.1021/jacs.8b04104] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Pengju Ji
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
137
|
Reguera G. Harnessing the power of microbial nanowires. Microb Biotechnol 2018; 11:979-994. [PMID: 29806247 PMCID: PMC6201914 DOI: 10.1111/1751-7915.13280] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 12/13/2022] Open
Abstract
The reduction of iron oxide minerals and uranium in model metal reducers in the genus Geobacter is mediated by conductive pili composed primarily of a structurally divergent pilin peptide that is otherwise recognized, processed and assembled in the inner membrane by a conserved Type IVa pilus apparatus. Electronic coupling among the peptides is promoted upon assembly, allowing the discharge of respiratory electrons at rates that greatly exceed the rates of cellular respiration. Harnessing the unique properties of these conductive appendages and their peptide building blocks in metal bioremediation will require understanding of how the pilins assemble to form a protein nanowire with specialized sites for metal immobilization. Also important are insights into how cells assemble the pili to make an electroactive matrix and grow on electrodes as biofilms that harvest electrical currents from the oxidation of waste organic substrates. Genetic engineering shows promise to modulate the properties of the peptide building blocks, protein nanowires and current‐harvesting biofilms for various applications. This minireview discusses what is known about the pilus material properties and reactions they catalyse and how this information can be harnessed in nanotechnology, bioremediation and bioenergy applications.
Collapse
Affiliation(s)
- Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Rd., Rm. 6190, East Lansing, MI, 48824, USA
| |
Collapse
|
138
|
Chen PYT, Funk MA, Brignole EJ, Drennan CL. Disruption of an oligomeric interface prevents allosteric inhibition of Escherichia coli class Ia ribonucleotide reductase. J Biol Chem 2018; 293:10404-10412. [PMID: 29700111 DOI: 10.1074/jbc.ra118.002569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductases (RNRs) convert ribonucleotides to deoxynucleotides, a process essential for DNA biosynthesis and repair. Class Ia RNRs require two dimeric subunits for activity: an α2 subunit that houses the active site and allosteric regulatory sites and a β2 subunit that houses the diferric tyrosyl radical cofactor. Ribonucleotide reduction requires that both subunits form a compact α2β2 state allowing for radical transfer from β2 to α2 RNR activity is regulated allosterically by dATP, which inhibits RNR, and by ATP, which restores activity. For the well-studied Escherichia coli class Ia RNR, dATP binding to an allosteric site on α promotes formation of an α4β4 ring-like state. Here, we investigate whether the α4β4 formation causes or results from RNR inhibition. We demonstrate that substitutions at the α-β interface (S37D/S39A-α2, S39R-α2, S39F-α2, E42K-α2, or L43Q-α2) that disrupt the α4β4 oligomer abrogate dATP-mediated inhibition, consistent with the idea that α4β4 formation is required for dATP's allosteric inhibition of RNR. Our results further reveal that the α-β interface in the inhibited state is highly sensitive to manipulation, with a single substitution interfering with complex formation. We also discover that residues at the α-β interface whose substitution has previously been shown to cause a mutator phenotype in Escherichia coli (i.e. S39F-α2 or E42K-α2) are impaired only in their activity regulation, thus linking this phenotype with the inability to allosterically down-regulate RNR. Whereas the cytotoxicity of RNR inhibition is well-established, these data emphasize the importance of down-regulation of RNR activity.
Collapse
Affiliation(s)
| | | | - Edward J Brignole
- From the Departments of Chemistry and.,Biology and.,the Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Catherine L Drennan
- From the Departments of Chemistry and .,Biology and.,the Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
139
|
Rose HR, Ghosh MK, Maggiolo AO, Pollock CJ, Blaesi EJ, Hajj V, Wei Y, Rajakovich LJ, Chang WC, Han Y, Hajj M, Krebs C, Silakov A, Pandelia ME, Bollinger JM, Boal AK. Structural Basis for Superoxide Activation of Flavobacterium johnsoniae Class I Ribonucleotide Reductase and for Radical Initiation by Its Dimanganese Cofactor. Biochemistry 2018; 57:2679-2693. [PMID: 29609464 DOI: 10.1021/acs.biochem.8b00247] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A ribonucleotide reductase (RNR) from Flavobacterium johnsoniae ( Fj) differs fundamentally from known (subclass a-c) class I RNRs, warranting its assignment to a new subclass, Id. Its β subunit shares with Ib counterparts the requirements for manganese(II) and superoxide (O2-) for activation, but it does not require the O2--supplying flavoprotein (NrdI) needed in Ib systems, instead scavenging the oxidant from solution. Although Fj β has tyrosine at the appropriate sequence position (Tyr 104), this residue is not oxidized to a radical upon activation, as occurs in the Ia/b proteins. Rather, Fj β directly deploys an oxidized dimanganese cofactor for radical initiation. In treatment with one-electron reductants, the cofactor can undergo cooperative three-electron reduction to the II/II state, in contrast to the quantitative univalent reduction to inactive "met" (III/III) forms seen with I(a-c) βs. This tendency makes Fj β unusually robust, as the II/II form can readily be reactivated. The structure of the protein rationalizes its distinctive traits. A distortion in a core helix of the ferritin-like architecture renders the active site unusually open, introduces a cavity near the cofactor, and positions a subclass-d-specific Lys residue to shepherd O2- to the Mn2II/II cluster. Relative to the positions of the radical tyrosines in the Ia/b proteins, the unreactive Tyr 104 of Fj β is held away from the cofactor by a hydrogen bond with a subclass-d-specific Thr residue. Structural comparisons, considered with its uniquely simple mode of activation, suggest that the Id protein might most closely resemble the primordial RNR-β.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yifeng Wei
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | | | | | | | | | | - Maria-Eirini Pandelia
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | | | | |
Collapse
|
140
|
Jasniewski AJ, Que L. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem Rev 2018; 118:2554-2592. [PMID: 29400961 PMCID: PMC5920527 DOI: 10.1021/acs.chemrev.7b00457] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
141
|
Parent A, Benjdia A, Guillot A, Kubiak X, Balty C, Lefranc B, Leprince J, Berteau O. Mechanistic Investigations of PoyD, a Radical S-Adenosyl-l-methionine Enzyme Catalyzing Iterative and Directional Epimerizations in Polytheonamide A Biosynthesis. J Am Chem Soc 2018; 140:2469-2477. [PMID: 29253341 PMCID: PMC5824343 DOI: 10.1021/jacs.7b08402] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of bioactive peptides. Among RiPPs, the bacterial toxin polytheonamide A is characterized by a unique set of post-translational modifications catalyzed by novel radical S-adenosyl-l-methionine (SAM) enzymes. Here we show that the radical SAM enzyme PoyD catalyzes in vitro polytheonamide epimerization in a C-to-N directional manner. By combining mutagenesis experiments with labeling studies and investigating the enzyme substrate promiscuity, we deciphered in detail the mechanism of PoyD. We notably identified a critical cysteine residue as a likely key H atom donor and demonstrated that PoyD belongs to a distinct family of radical SAM peptidyl epimerases. In addition, our study shows that the core peptide directly influences the epimerization pattern allowing for production of peptides with unnatural epimerization patterns.
Collapse
Affiliation(s)
- Aubérie Parent
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Xavier Kubiak
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Clémence Balty
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| | - Benjamin Lefranc
- Inserm U1239, PRIMACEN, University of Rouen Normandy , 76000 Rouen, France
| | - Jérôme Leprince
- Inserm U1239, PRIMACEN, University of Rouen Normandy , 76000 Rouen, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay , 78350 Jouy-en-Josas, France
| |
Collapse
|
142
|
Streit BR, Celis AI, Moraski GC, Shisler KA, Shepard EM, Rodgers KR, Lukat-Rodgers GS, DuBois JL. Decarboxylation involving a ferryl, propionate, and a tyrosyl group in a radical relay yields heme b. J Biol Chem 2018; 293:3989-3999. [PMID: 29414780 DOI: 10.1074/jbc.ra117.000830] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/01/2018] [Indexed: 01/02/2023] Open
Abstract
The H2O2-dependent oxidative decarboxylation of coproheme III is the final step in the biosynthesis of heme b in many microbes. However, the coproheme decarboxylase reaction mechanism is unclear. The structure of the decarboxylase in complex with coproheme III suggested that the substrate iron, reactive propionates, and an active-site tyrosine convey a net 2e-/2H+ from each propionate to an activated form of H2O2 Time-resolved EPR spectroscopy revealed that Tyr-145 formed a radical species within 30 s of the reaction of the enzyme-coproheme complex with H2O2 This radical disappeared over the next 270 s, consistent with a catalytic intermediate. Use of the harderoheme III intermediate as substrate or substitutions of redox-active side chains (W198F, W157F, or Y113S) did not strongly affect the appearance or intensity of the radical spectrum measured 30 s after initiating the reaction with H2O2, nor did it change the ∼270 s required for the radical signal to recede to ≤10% of its initial intensity. These results suggested Tyr-145 as the site of a catalytic radical involved in decarboxylating both propionates. Tyr-145• was accompanied by partial loss of the initially present Fe(III) EPR signal intensity, consistent with the possible formation of Fe(IV)=O. Site-specifically deuterated coproheme gave rise to a kinetic isotope effect of ∼2 on the decarboxylation rate constant, indicating that cleavage of the propionate Cβ-H bond was partly rate-limiting. The inferred mechanism requires two consecutive hydrogen atom transfers, first from Tyr-145 to the substrate Fe/H2O2 intermediate and then from the propionate Cβ-H to Tyr-145•.
Collapse
Affiliation(s)
- Bennett R Streit
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717-3400 and
| | - Arianna I Celis
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717-3400 and
| | - Garrett C Moraski
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717-3400 and
| | - Krista A Shisler
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717-3400 and
| | - Eric M Shepard
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717-3400 and
| | - Kenton R Rodgers
- the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Gudrun S Lukat-Rodgers
- the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Jennifer L DuBois
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717-3400 and
| |
Collapse
|
143
|
Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, Lederman D. Protein bioelectronics: a review of what we do and do not know. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:026601. [PMID: 29303117 DOI: 10.1088/1361-6633/aa85f2] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.
Collapse
Affiliation(s)
- Christopher D Bostick
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, United States of America. Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, United States of America
| | | | | | | | | | | |
Collapse
|
144
|
Cerqueira NMFSA, Fernandes PA, Ramos MJ. Protocol for Computational Enzymatic Reactivity Based on Geometry Optimisation. Chemphyschem 2018; 19:669-689. [DOI: 10.1002/cphc.201700339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/22/2017] [Indexed: 01/12/2023]
Affiliation(s)
- N. M. F. S. A. Cerqueira
- REQUIMTE-UCIBIO; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - P. A. Fernandes
- REQUIMTE-UCIBIO; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - M. J. Ramos
- REQUIMTE-UCIBIO; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; Rua do Campo Alegre s/n 4169-007 Porto Portugal
| |
Collapse
|
145
|
Davis I, Koto T, Liu A. Radical Trapping Study of the Relaxation of bis-Fe(IV) MauG. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2018; 5:46-55. [PMID: 29479564 PMCID: PMC5822730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The di-heme enzyme, MauG, utilizes a high-valent, charge-resonance stabilized bis-Fe(IV) state to perform protein radical-based catalytic chemistry. Though the bis-Fe(IV) species is able to oxidize remote tryptophan residues on its substrate protein, it does not rapidly oxidize its own residues in the absence of substrate. The slow return of bis-Fe(IV) MauG to its resting di-ferric state occurs via up to two intermediates, one of which has been previously proposed by Ma et al. (Biochem J 2016; 473:1769) to be a methionine-based radical in a recent study. In this work, we pursue intermediates involved in the return of high-valent MauG to its resting state in the absence of the substrate by EPR spectroscopy and radical trapping. The bis-Fe(IV) MauG is shown by EPR, HPLC, UV-Vis, and high-resolution mass spectrometry to oxidize the trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to a radical species directly. Nitrosobenzene was also employed as a trapping agent and was shown to form an adduct with high-valent MauG species. The effects of DMPO and nitrosobenzene on the kinetics of the return to di-ferric MauG were both investigated. This work eliminates the possibility that a MauG-based methionine radical species accumulates during the self-reduction of bis-Fe(IV) MauG.
Collapse
Affiliation(s)
- Ian Davis
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Teruaki Koto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
146
|
Nakashige TG, Nolan EM. Human calprotectin affects the redox speciation of iron. Metallomics 2017; 9:1086-1095. [PMID: 28561859 DOI: 10.1039/c7mt00044h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report that the metal-sequestering human host-defense protein calprotectin (CP, S100A8/S100A9 oligomer) affects the redox speciation of iron (Fe) in bacterial growth media and buffered aqueous solution. Under aerobic conditions and in the absence of an exogenous reducing agent, CP-Ser (S100A8(C42S)/S100A9(C3S) oligomer) depletes Fe from three different bacterial growth media preparations over a 48 h timeframe (T = 30 °C). The presence of the reducing agent β-mercaptoethanol accelerates this process and allows CP-Ser to deplete Fe over a ≈1 h timeframe. Fe-depletion assays performed with metal-binding-site variants of CP-Ser show that the hexahistidine (His6) site, which coordinates Fe(ii) with high affinity, is required for Fe depletion. An analysis of Fe redox speciation in buffer containing Fe(iii) citrate performed under aerobic conditions demonstrates that CP-Ser causes a time-dependent increase in the [Fe(ii)]/[Fe(iii)] ratio. Taken together, these results indicate that the hexahistidine site of CP stabilizes Fe(ii) and thereby shifts the redox equilibrium of Fe to the reduced ferrous state under aerobic conditions. We also report that the presence of bacterial metabolites affects the Fe-depleting activity of CP-Ser. Supplementation of bacterial growth media with an Fe(iii)-scavenging siderophore (enterobactin, staphyloferrin B, or desferrioxamine B) attenuates the Fe-depleting activity of CP-Ser. This result indicates that formation of Fe(iii)-siderophore complexes blocks CP-mediated reduction of Fe(iii) and hence the ability of CP to coordinate Fe(ii). In contrast, the presence of pyocyanin (PYO), a redox-cycling phenazine produced by Pseudomonas aeruginosa that reduces Fe(iii) to Fe(ii), accelerates Fe depletion by CP-Ser under aerobic conditions. These findings indicate that the presence of microbial metabolites that contribute to metal homeostasis at the host/pathogen interface can affect the metal-sequestering function of CP.
Collapse
Affiliation(s)
- Toshiki G Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
147
|
Shon JH, Teets TS. Potent Bis-Cyclometalated Iridium Photoreductants with β-Diketiminate Ancillary Ligands. Inorg Chem 2017; 56:15295-15303. [PMID: 29172506 DOI: 10.1021/acs.inorgchem.7b02859] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we outline a strategy to prepare a class of improved visible-light photosensitizers. Bis-cyclometalated iridium complexes with electron-rich β-diketiminate (NacNac) ancillary ligands are demonstrated to be potent excited-state electron donors. Evaluation of the photophysical and electrochemical properties establishes the excited-state redox potentials of the complexes, and Stern-Volmer quenching experiments inform on the kinetics of photoinduced electron transfer to the model substrates methyl viologen (MV2+) and benzophenone (BP). Compared to fac-Ir(ppy)3 (ppy = 2-phenylpyridine), widely regarded as a state-of-the-art photoreductant, the complexes we describe have excited-state redox potentials that are more potent by 300-400 mV and rates for photoinduced electron transfer that are accelerated by as much as a factor of 3. These complexes emerge as promising targets for application in photocatalytic reactions and other photochemical processes.
Collapse
Affiliation(s)
- Jong-Hwa Shon
- Department of Chemistry, University of Houston , 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston , 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
148
|
Lennox JC, Dempsey JL. Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium-Tyrosine Complex. J Phys Chem B 2017; 121:10530-10542. [PMID: 29130684 DOI: 10.1021/acs.jpcb.7b06443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pKa units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.
Collapse
Affiliation(s)
- J Christian Lennox
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
149
|
Greene BL, Taguchi AT, Stubbe J, Nocera DG. Conformationally Dynamic Radical Transfer within Ribonucleotide Reductase. J Am Chem Soc 2017; 139:16657-16665. [PMID: 29037038 DOI: 10.1021/jacs.7b08192] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductases (RNR) catalyze the reduction of nucleotides to deoxynucleotides through a mechanism involving an essential cysteine based thiyl radical. In the E. coli class 1a RNR the thiyl radical (C439•) is a transient species generated by radical transfer (RT) from a stable diferric-tyrosyl radical cofactor located >35 Å away across the α2:β2 subunit interface. RT is facilitated by sequential proton-coupled electron transfer (PCET) steps along a pathway of redox active amino acids (Y122β ↔ [W48β?] ↔ Y356β ↔ Y731α ↔ Y730α ↔ C439α). The mutant R411A(α) disrupts the H-bonding environment and conformation of Y731, ostensibly breaking the RT pathway in α2. However, the R411A protein retains significant enzymatic activity, suggesting Y731 is conformationally dynamic on the time scale of turnover. Installation of the radical trap 3-amino tyrosine (NH2Y) by amber codon suppression at positions Y731 or Y730 and investigation of the NH2Y• trapped state in the active α2:β2 complex by HYSCORE spectroscopy validate that the perturbed conformation of Y731 in R411A-α2 is dynamic, reforming the H-bond between Y731 and Y730 to allow RT to propagate to Y730. Kinetic studies facilitated by photochemical radical generation reveal that Y731 changes conformation on the ns-μs time scale, significantly faster than the enzymatic kcat. Furthermore, the kinetics of RT across the subunit interface were directly assessed for the first time, demonstrating conformationally dependent RT rates that increase from 0.6 to 1.6 × 104 s-1 when comparing wild type to R411A-α2, respectively. These results illustrate the role of conformational flexibility in modulating RT kinetics by targeting the PCET pathway of radical transport.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Alexander T Taguchi
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
150
|
Peptides as Bio-inspired Molecular Electronic Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 29081052 DOI: 10.1007/978-3-319-66095-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Understanding the electronic properties of single peptides is not only of fundamental importance to biology, but it is also pivotal to the realization of bio-inspired molecular electronic materials. Natural proteins have evolved to promote electron transfer in many crucial biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here we highlight the importance of secondary structure characteristic to proteins/peptides, and its relevance to electron transfer. The proposed mechanisms responsible for such transfer are discussed, as are details of the electrochemical techniques used to investigate their electronic properties. Several factors that have been shown to influence electron transfer in peptides are also considered. Finally, a comprehensive experimental and theoretical study demonstrates that the electron transfer kinetics of peptides can be successfully fine tuned through manipulation of chemical composition and backbone rigidity. The methods used to characterize the conformation of all peptides synthesized throughout the study are outlined, along with the various approaches used to further constrain the peptides into their geometric conformations. The aforementioned sheds light on the potential of peptides to one day play an important role in the fledgling field of molecular electronics.
Collapse
|