101
|
Molecular magnetism, quo vadis? A historical perspective from a coordination chemist viewpoint☆. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
102
|
Batra A, Singh P, Singh KN. Recent Advances in Functionalization of α-C(sp3)-H Centres in Inactivated Ethers through Cross Dehydrogenative Coupling. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700341] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Aanchal Batra
- Department of Chemistry; DAV College; Sec 10-D Chandigarh India
| | - Paramjit Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry; Panjab University; 160014 Chandigarh India
| | - Kamal Nain Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry; Panjab University; 160014 Chandigarh India
| |
Collapse
|
103
|
Oxo- and hydroxo-bridged diiron(III) porphyrin dimers: Inorganic and bio-inorganic perspectives and effects of intermacrocyclic interactions. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
104
|
Giri GC, Haldar S, Vijaykumar G, Bera M. Investigating the Coordination/Binding Events of Biologically Relevant Monosaccharides with New Mononuclear Iron(III) and Zinc(II) Complexes in Aqueous Solution. ChemistrySelect 2017. [DOI: 10.1002/slct.201700004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gopal C. Giri
- Department of Chemistry; University of Kalyani; Kalyani, Nadia, West Bengal- 741235 INDIA
| | - Shobhraj Haldar
- Department of Chemistry; University of Kalyani; Kalyani, Nadia, West Bengal- 741235 INDIA
| | - Gonela Vijaykumar
- Department of Chemical Sciences; Indian Institute of Science Education & Research-Kolkata; Mohanpur, West Bengal- 741246 INDIA
| | - Manindranath Bera
- Department of Chemistry; University of Kalyani; Kalyani, Nadia, West Bengal- 741235 INDIA
| |
Collapse
|
105
|
Wang W, Liu D, Hao S, Qu F, Ma Y, Du G, Asiri AM, Yao Y, Sun X. High-Efficiency and Durable Water Oxidation under Mild pH Conditions: An Iron Phosphate–Borate Nanosheet Array as a Non-Noble-Metal Catalyst Electrode. Inorg Chem 2017; 56:3131-3135. [DOI: 10.1021/acs.inorgchem.6b03171] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Fengli Qu
- College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yongjun Ma
- Analytical
and Test Center, Southwest University of Science and Technology, Mianyang 621010, China
| | - Gu Du
- Chengdu Institute of Geology and Mineral Resources, Chengdu 610064, China
| | - Abdullah M. Asiri
- Chemistry Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | | |
Collapse
|
106
|
|
107
|
Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chem Rev 2017; 117:8574-8621. [PMID: 28206744 DOI: 10.1021/acs.chemrev.6b00624] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.
Collapse
Affiliation(s)
- Vincent C-C Wang
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Suman Maji
- School of Chemical Engineering and Physical Sciences, Lovely Professional University , Jalandhar-Delhi G. T. Road (NH-1), Phagwara, Punjab India 144411
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University , 250 Kuo Kuang Road, Taichung 402, Taiwan
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Sunney I Chan
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.,Noyes Laboratory, 127-72, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
108
|
Benalia H, Barkat D. Solvent extraction studies of cobalt(II) by capric acid from sodium sulfate solution. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2016.1230864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Houria Benalia
- Department of Industrial Chemistry, Faculty of Science and Technology, Laboratory of Molecular Chemistry and Environment, Biskra University, Biskra, Algeria
| | - Djamel Barkat
- Department of Industrial Chemistry, Faculty of Science and Technology, Laboratory of Molecular Chemistry and Environment, Biskra University, Biskra, Algeria
| |
Collapse
|
109
|
Abstract
Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.
Collapse
Affiliation(s)
| | - Kenneth M. Merz
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute of Cyber-Enabled Research, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
110
|
Dammers S, Zimmermann TP, Walleck S, Stammler A, Bögge H, Bill E, Glaser T. A Mixed-Valence Fluorido-Bridged FeIIFeIII Complex. Inorg Chem 2017; 56:1779-1782. [DOI: 10.1021/acs.inorgchem.6b03093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Susanne Dammers
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany
| | - Thomas Philipp Zimmermann
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany
| | - Stephan Walleck
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany
| | - Anja Stammler
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany
| | - Hartmut Bögge
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany
| | - Eckhard Bill
- Max-Planck-Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Thorsten Glaser
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld,D-33615 Bielefeld, Germany
| |
Collapse
|
111
|
Sankaralingam M, Vadivelu P, Palaniandavar M. Novel nickel(ii) complexes of sterically modified linear N4 ligands: effect of ligand stereoelectronic factors and solvent of coordination on nickel(ii) spin-state and catalytic alkane hydroxylation. Dalton Trans 2017; 46:7181-7193. [DOI: 10.1039/c7dt00576h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The donor atom type and diazacyclo backbone of the ligands and solvent of coordination dictate the Ni(ii) spin state (4, LS; 1–3, 5, HS) and catalytic activity of complexes.
Collapse
Affiliation(s)
| | - Prabha Vadivelu
- Chemical Sciences and Technology Division
- National Institute for Interdisciplinary Science and Technology
- CSIR
- Trivandrum-695019
- India
| | | |
Collapse
|
112
|
Safaei E, Naghdi N, Jagličić Z, Pevec A, Lee YI. Synthesis and characterization of an iron(III) complex of an ethylenediamine derivative of an aminophenol ligand in relevance to catechol dioxygenase active site. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
113
|
Sorokin AB. μ-Nitrido Diiron Phthalocyanine and Porphyrin Complexes: Unusual Structures With Interesting Catalytic Properties. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
114
|
Zhang X, Zhang T, Li B, Zhang G, Hai L, Ma X, Wu W. Direct synthesis of phenol by novel [FeFe]-hydrogenase model complexes as catalysts of benzene hydroxylation with H2O2. RSC Adv 2017. [DOI: 10.1039/c6ra27831k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Compared the catalytic performance of complexes 1–3, the complex 2 has the highest phenol yield (24.6%) and phenol selectivity (92%), which has the highest electron densities of the catalytically active sites.
Collapse
Affiliation(s)
- Xia Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Guanghui Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Li Hai
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Xiaoyuan Ma
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Wubin Wu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| |
Collapse
|
115
|
Khan FST, Guchhait T, Sasmal S, Rath SP. Hydroxo-bridged diiron(iii) and dimanganese(iii) bisporphyrins: modulation of metal spins by counter anions. Dalton Trans 2017; 46:1012-1037. [DOI: 10.1039/c6dt03829h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A brief account has been presented on how the inter-heme interactions in μ-hydroxo diiron(iii) bisporphyrins and counter anions can induce significant change in the structure and properties including the iron spin state without affecting the overall topology.
Collapse
Affiliation(s)
| | - Tapas Guchhait
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| | - Sujit Sasmal
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| | - Sankar Prasad Rath
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| |
Collapse
|
116
|
Wang Y, Yang Y, Zhang T, Zhang X, Jiang S, Zhang G, Li B. A new nitrogen heterocyclic carbene containing diiron complex as bio-inspired catalyst for proton reduction and benzene hydroxylation. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
117
|
Liu Q, Tang M, Zeng W, Zhang X, Wang J, Zhou Z. Optimal Size Matching and Minimal Distortion Energy: Implications for Natural Selection by the Macrocycle of the Iron Species in Heme. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Qiuhua Liu
- College of Chemistry and Chemical EngineeringCentral South University410083ChangshaChina
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules of the Ministry of EducationSchool of Chemistry and Chemical EngineeringHunan University of Science and Technology411201XiangtanChina
| | - Min Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules of the Ministry of EducationSchool of Chemistry and Chemical EngineeringHunan University of Science and Technology411201XiangtanChina
| | - Wennan Zeng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules of the Ministry of EducationSchool of Chemistry and Chemical EngineeringHunan University of Science and Technology411201XiangtanChina
| | - Xi Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules of the Ministry of EducationSchool of Chemistry and Chemical EngineeringHunan University of Science and Technology411201XiangtanChina
| | - Jianxiu Wang
- College of Chemistry and Chemical EngineeringCentral South University410083ChangshaChina
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules of the Ministry of EducationSchool of Chemistry and Chemical EngineeringHunan University of Science and Technology411201XiangtanChina
| |
Collapse
|
118
|
Karahan A, Kurtaran R, Yahsi Y, Gungor E, Kara H. A dinuclear oxygen-bridged Schiff base iron(III) complex derived from N,N′-bis(4-methoxy-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476616040156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
119
|
Khan FST, Pandey AK, Rath SP. Remarkable Anion-Dependent Spin-State Switching in Diiron(III) μ-Hydroxo Bisporphyrins: What Role do Counterions Play? Chemistry 2016; 22:16124-16137. [PMID: 27682429 DOI: 10.1002/chem.201603163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 12/20/2022]
Abstract
Addition of 2,4,6-trinitrophenol (HTNP) to an ethene-bridged diiron(III) μ-oxo bisporphyrin (1) in CH2 Cl2 initially leads to the formation of diiron(III) μ-hydroxo bisporphyrin (2⋅TNP) with a phenolate counterion that, after further addition of HTNP or dissolution in a nonpolar solvent, converts to a diiron(III) complex with axial phenoxide coordination (3⋅(TNP)2 ). The progress of the reaction from μ-oxo to μ-hydroxo to axially ligated complex has been monitored in solution by using 1 H NMR spectroscopy because their signals appear in three different and distinct spectral regions. The X-ray structure of 2⋅TNP revealed that the nearly planar TNP counterion fits perfectly within the bisporphyrin cavity to form a strong hydrogen bond with the μ-hydroxo group, which thus stabilizes the two equivalent iron centers. In contrast, such counterions as I5 , I3 , BF4 , SbF6 , and PF6 are found to be tightly associated with one of the porphyrin rings and, therefore, stabilize two different spin states of iron in one molecule. A spectroscopic investigation of 2⋅TNP has revealed the presence of two equivalent iron centers with a high-spin state (S=5/2) in the solid state that converts to intermediate spin (S=3/2) in solution. An extensive computational study by using a range of DFT methods was performed on 2⋅TNP and 2+ , and clearly supports the experimentally observed spin flip triggered by hydrogen-bonding interactions. The counterion is shown to perturb the spin-state ordering through, for example, hydrogen-bonding interactions, switched positions between counterion and axial ligand, ion-pair interactions, and charge polarization. The present investigation thus provides a clear rationalization of the unusual counterion-specific spin states observed in the μ-hydroxo bisporphyrins that have so far remained the most outstanding issue.
Collapse
Affiliation(s)
| | - Anjani Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
120
|
Tissen OI, Neudachina LK, Pestov AV. Composition and stability of copper(II), nickel(II), and cobalt(II) complexes with mono- and bis(2-carboxy)-2-pycolylamine. RUSS J INORG CHEM+ 2016. [DOI: 10.1134/s0036023616090199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
121
|
A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron(III)-peroxo intermediates: Biological systems and chemical models. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
122
|
Tanaka S, Kon Y, Ogawa A, Uesaka Y, Tamura M, Sato K. Mixed Picolinate and Quinaldinate Iron(III) Complexes for the Catalytic Oxidation of Alcohols with Hydrogen Peroxide. ChemCatChem 2016. [DOI: 10.1002/cctc.201600362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shinji Tanaka
- Interdisciplinary Research Center for Catalytic Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Central 5 Higashi 1-1-1 Tsukuba Japan
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Central 5 Higashi 1-1-1 Tsukuba Japan
| | - Atsuko Ogawa
- Interdisciplinary Research Center for Catalytic Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Central 5 Higashi 1-1-1 Tsukuba Japan
| | - Yumiko Uesaka
- Interdisciplinary Research Center for Catalytic Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Central 5 Higashi 1-1-1 Tsukuba Japan
| | - Masanori Tamura
- Interdisciplinary Research Center for Catalytic Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Central 5 Higashi 1-1-1 Tsukuba Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Central 5 Higashi 1-1-1 Tsukuba Japan
| |
Collapse
|
123
|
Das A, Ghosh P, Priego JL, Jiménez-Aparicio R, Lahiri GK. Unsymmetric (μ-oxido)/(μ-pyrazolato) and Symmetric (μ-pyrazolato)2 Bridged Diosmium Frameworks: Electronic Structure and Magnetic Properties. Inorg Chem 2016; 55:8396-406. [DOI: 10.1021/acs.inorgchem.6b00898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ankita Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prabir Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - José Luis Priego
- Departamento de Química Inorgánica, Facultad
de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Reyes Jiménez-Aparicio
- Departamento de Química Inorgánica, Facultad
de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
124
|
Hamer M, Rezzano IN. Classical Characterization Techniques to Reveal the Structural Model of Nanocomposites with Bimetallic Monolayers of Porphyrins. Inorg Chem 2016; 55:8595-602. [PMID: 27482597 DOI: 10.1021/acs.inorgchem.6b01136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanocomposites with bimetallic monolayers of porphyrins were prepared. The well-ordered metalloporphyrin monolayers covalently linked to the gold surface produce an important increase of the B band (∼400 nm) shifted 20 nm relative to that of the related high-spin iron(III) complexes in solution. The position of the B band in the bimetallic architectures is highly dependent on the relative amount of the two porphyrins, showing the most significant shift for the SiO2/APTES/AuNp/Fe-TPyP&M-TPyP (1:1) (30 nm, M = Ni(II) or Cu(II)). Resonance Raman based on the oxidation state marker bands (1553, 1354, and 390 cm(-1)) indicates that Fe-TPyP attached on gold nanoparticles adopts a low-spin Fe(II) conformation, which changes to Fe(II) intermediate spin or a low-spin Fe(III) in the presence of Cu-TPyP or Ni-TPyP. Surface-enhanced Raman scattering studies confirmed the hypothesis. MALDI-TOF analysis of the composites on gold nanoparticles was very useful in the detection of oxygenated forms of the metal complexes.
Collapse
Affiliation(s)
- Mariana Hamer
- Universidad de Buenos Aires , Facultad de Farmacia y Bioquı́mica, CONICET-IQUIFIB, Junin 956, CP 1113 Buenos Aires, Argentina
| | - Irene N Rezzano
- Universidad de Buenos Aires , Facultad de Farmacia y Bioquı́mica, CONICET-IQUIFIB, Junin 956, CP 1113 Buenos Aires, Argentina
| |
Collapse
|
125
|
Mitchell KJ, Abboud KA, Christou G. Magnetostructural Correlation for High-Nuclearity Iron(III)/Oxo Complexes and Application to Fe5, Fe6, and Fe8 Clusters. Inorg Chem 2016; 55:6597-608. [DOI: 10.1021/acs.inorgchem.6b00769] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kylie J. Mitchell
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Khalil A. Abboud
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - George Christou
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
126
|
Szávuly MI, Surducan M, Nagy E, Surányi M, Speier G, Silaghi-Dumitrescu R, Kaizer J. Functional models of nonheme diiron enzymes: kinetic and computational evidence for the formation of oxoiron(iv) species from peroxo-diiron(iii) complexes, and their reactivity towards phenols and H2O2. Dalton Trans 2016; 45:14709-18. [PMID: 27283752 DOI: 10.1039/c6dt01598k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of the previously reported peroxo adducts [Fe2(μ-O2)(L(1))4(CH3CN)2](2+), and [Fe2(μ-O2)(L(2))4(CH3CN)2](2+), (L(1) = 2-(2'-pyridyl)benzimidazole and L(2) = 2-(2'-pyridyl)-N-methylbenzimidazole) towards H2O2 as catalase mimics, and towards various phenols as functional RNR-R2 mimics, is described. Kinetic, mechanistic and computational studies gave direct evidence for the involvement of the (μ-1,2-peroxo)diiron(iii) intermediate in the O-H activation process via formation of low-spin oxoiron(iv) species.
Collapse
Affiliation(s)
- Miklós István Szávuly
- Department of Chemistry, University of Pannonia, 8201 Veszprém, Wartha Vince u. 1., Hungary.
| | | | | | | | | | | | | |
Collapse
|
127
|
Sekino M, Furutachi H, Tasaki K, Ishikawa T, Mori S, Fujinami S, Akine S, Sakata Y, Nomura T, Ogura T, Kitagawa T, Suzuki M. New mechanistic insight into intramolecular arene hydroxylation initiated by (μ-1,2-peroxo)diiron(III) complexes with dinucleating ligands. Dalton Trans 2016; 45:469-73. [PMID: 26646073 DOI: 10.1039/c5dt04088d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(μ-1,2-Peroxo)diiron(iii) complexes (-R) with dinucleating ligands (R-L) generated from the reaction of bis(μ-hydroxo)diiron(ii) complexes [Fe2(R-L)(OH)2](2+) (-R) with dioxygen in acetone at -20 °C provide a diiron-centred electrophilic oxidant, presumably diiron(iv)-oxo species, which is involved in aromatic ligand hydroxylation.
Collapse
Affiliation(s)
- Mio Sekino
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Hideki Furutachi
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Kyosuke Tasaki
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Takanao Ishikawa
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shigeki Mori
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shuhei Fujinami
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shigehisa Akine
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Yoko Sakata
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Takashi Nomura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Teizo Kitagawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Masatatsu Suzuki
- Department of Chemistry and Biochemistry, Graduate Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
128
|
Synthesis, isolation and characterization of dinuclear oxidodiiron(III) complexes modified by monodentate pyridines. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
129
|
Syntheses, structural, spectroscopic and magnetic properties of polynuclear Fe(III) complexes containing N and O donor ligands. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
130
|
Sanmartín-Matalobos J, Portela-García C, Fondo M, García-Deibe AM, Llamas-Saiz AL. A simple route to dinuclear complexes containing unusual μ-Nsulfonamido bridges. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1161183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jesús Sanmartín-Matalobos
- Dpto. de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Portela-García
- Dpto. de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Matilde Fondo
- Dpto. de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana M. García-Deibe
- Dpto. de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio L. Llamas-Saiz
- Unidade de Raios X. RIAIDT. Edificio CACTUS. Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
131
|
Chuah WY, Frankcombe TJ. Deprotonation of Water Ligands in V, Cr, Mn, Fe, and Co Complexes Reduces Oxidation-Driven Carboxylate Ligand Frequency Shifts. J Phys Chem B 2016; 120:2225-33. [PMID: 26903280 DOI: 10.1021/acs.jpcb.6b00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Mn complexes, it has been shown that oxidation-driven changes in carboxylate ligand vibrations are suppressed, if a water or hydroxo ligand is simultaneously deprotonated. Deprotonation with oxidation has also been shown to greatly reduce the dependence of Mn complex redox energies on the oxidation state of the metal. We have here investigated the effect of oxidation with deprotonation on the carboxylate ligand frequencies of V, Cr, Mn, Fe, and Co complexes. The effects of anionic ligand substitution (instead of deprotonation) and solvent dielectric were also investigated to determine the mechanism that drives carboxylate frequency shifts. It is shown that the effect of deprotonation was similar for all of the metals tested in this study. C-O bond lengths and O-C-O angle changes in the carboxylate ligand were also reduced by deprotonation. Furthermore, the effect of anionic ligand substitution was similar to deprotonation in the suppression of carboxylate frequency shifts. These shifts were also reduced by increases in the solvent dielectric, in the absence of charge conservation through deprotonation. Therefore, we conclude that carboxylate frequency shifts are largely driven by electrostatic effects.
Collapse
Affiliation(s)
- Wooi Yee Chuah
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Terry J Frankcombe
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia.,School of Physical, Environmental and Mathematical Sciences, University of New South Wales , Canberra, ACT 2600, Australia
| |
Collapse
|
132
|
Pal N, Majumdar A. Controlling the Reactivity of Bifunctional Ligands: Carboxylate-Bridged Nonheme Diiron(II) Complexes Bearing Free Thiol Groups. Inorg Chem 2016; 55:3181-91. [DOI: 10.1021/acs.inorgchem.6b00316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nabhendu Pal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Amit Majumdar
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
133
|
Kejriwal A, Biswas S, Biswas AN, Bandyopadhyay P. cis-Dihydroxylation of electron deficient olefins catalysed by an oxo-bridged diiron(III) complex with H2O2. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2015.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
134
|
Safak B, Yahsi Y, Gungor E, Kara H. Crystal structure and magnetic properties of dinuclear iron(III) complex with ONNO-donor ligand. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476615080107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
135
|
Yahsi Y, Gungor E, Kazak C, Kara H. Crystal structure of a μ-oxo-bridged dimeric iron(III) complex. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476615080120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
136
|
Zhou Y, Dong X, Zhang Y, Tong P, Qu J. Highly selective fluorescence sensors for the fluoride anion based on carboxylate-bridged diiron complexes. Dalton Trans 2016; 45:6839-46. [DOI: 10.1039/c5dt03801d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diiron–sulfur clusters bearing urea and anthracene units showed rapid and selective recognition for the fluoride ion.
Collapse
Affiliation(s)
- Yuhan Zhou
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Xiaoliang Dong
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Yixin Zhang
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Peng Tong
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian
- P.R. China
| |
Collapse
|
137
|
Balamurugan M, Suresh E, Palaniandavar M. Non-heme μ-Oxo- and bis(μ-carboxylato)-bridged diiron(iii) complexes of a 3N ligand as catalysts for alkane hydroxylation: stereoelectronic factors of carboxylate bridges determine the catalytic efficiency. Dalton Trans 2016; 45:11422-36. [DOI: 10.1039/c6dt01059h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereoelectronic factors of carboxylate bridges in diiron(iii) complexes determine the efficiency of catalytic alkane hydroxylation with m-CPBA.
Collapse
Affiliation(s)
- Mani Balamurugan
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli - 620024
- India
| | - Eringathodi Suresh
- Analytical Science Discipline
- Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364 002
- India
| | | |
Collapse
|
138
|
Strautmann JBH, Dammers S, Limpke T, Parthier J, Zimmermann TP, Walleck S, Heinze-Brückner G, Stammler A, Bögge H, Glaser T. Design and synthesis of a dinucleating ligand system with varying terminal donor functions that provides no bridging donor and its application to the synthesis of a series of FeIII–μ-O–FeIII complexes. Dalton Trans 2016; 45:3340-61. [DOI: 10.1039/c5dt03711e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed the dinucleating ligands H4julia, susan, and H4hildeMe2 and present their μ-oxo diferric complexes.
Collapse
Affiliation(s)
| | - Susanne Dammers
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Thomas Limpke
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Janine Parthier
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | | | - Stephan Walleck
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Gabriele Heinze-Brückner
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| |
Collapse
|
139
|
Mal S, Pietraszkiewicz M, Pietraszkiewicz O. Synthesis and photophysical studies of tetrazolate-based Eu(III) photoluminescent ternary complexes containing N-heterocyclic phosphine oxides auxiliary co-ligands. LUMINESCENCE 2015; 31:1085-90. [PMID: 26679054 DOI: 10.1002/bio.3075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 11/12/2022]
Abstract
Two new ternary tetrazolate Eu(III) complexes with phosphine oxide co-ligands Eu(PTO)3 ·(P1/P2) [PTO = 5-(2-pyridyl-1-oxide)tetrazole, P1 = diphenylphosphorylamino-phenylphosphoryl-benzene, P2 = diphenylphosphorylpyridine)-bis-isobutyricphosphoryl] were synthesized and characterized using UV, fluorescence, IR and (1) H NMR spectroscopic techniques. The analytical data prove that the complexes are mononuclear in nature and the central Eu(III) ion is coordinated by three N and three O atoms of tetrazolate, and two O atoms of the corresponding bidentate phosphine oxide ligands. The ancillary ligand increased the photoluminescence efficiency of Eu(PTO)3 ·P1 (complex 3) by twofold compared with our previously reported Eu(PTO)3 complex (complex 1). Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Suraj Mal
- Institute of Physical Chemistry, Polish Academy of Sciences, 01224, Warsaw, Kasprzaka 44/52, Poland.,Division of Material Physics, Ruder Boskovic Institute, Bijenicka cesta, 54, 10000, Zagreb, Croatia
| | - Marek Pietraszkiewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, 01224, Warsaw, Kasprzaka 44/52, Poland
| | - Oksana Pietraszkiewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, 01224, Warsaw, Kasprzaka 44/52, Poland
| |
Collapse
|
140
|
Stauber JM, Bloch ED, Vogiatzis KD, Zheng SL, Hadt RG, Hayes D, Chen LX, Gagliardi L, Nocera DG, Cummins CC. Pushing Single-Oxygen-Atom-Bridged Bimetallic Systems to the Right: A Cryptand-Encapsulated Co–O–Co Unit. J Am Chem Soc 2015; 137:15354-7. [DOI: 10.1021/jacs.5b09827] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julia M. Stauber
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric D. Bloch
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Konstantinos D. Vogiatzis
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shao-Liang Zheng
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ryan G. Hadt
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Dugan Hayes
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lin X. Chen
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Laura Gagliardi
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel G. Nocera
- Department
of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christopher C. Cummins
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
141
|
Chen M, Wu Y, Han Y, Lin X, Sun J, Zhang W, Cao R. An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21852-21859. [PMID: 26368828 DOI: 10.1021/acsami.5b06195] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An ultrathin Fe-based film was prepared by electrodeposition from an Fe(II) solution through a fast and simple cyclic voltammetry method. The extremely low Fe loading of 12.3 nmol cm(-2) on indium tin oxide electrodes is crucial for high atom efficiency and transparence of the resulted film. This Fe-based film was shown to be a very efficient electrocatalyst for oxygen evolution from neutral aqueous solution with remarkable activity and stability. In a 34 h controlled potential electrolysis at 1.45 V (vs NHE) and pH 7.0, impressive turnover number of 5.2 × 10(4) and turnover frequency of 1528 h(-1) were obtained. To the best of our knowledge, these values represent one of the highest among electrodeposited catalyst films for water oxidation under comparable conditions. The morphology and the composition of the catalyst film was determined by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy, which all confirmed the deposition of Fe-based materials with Fe(III) oxidation state on the electrode. This study is significant because of the use of iron, the fast and simple cyclic voltammetry electrodeposition, the extremely low catalyst loading and thus the transparency of the catalyst film, the remarkable activity and stability, and the oxygen evolution in neutral aqueous media.
Collapse
Affiliation(s)
- Mingxing Chen
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Yizhen Wu
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Yongzhen Han
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Xiaohuan Lin
- College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Rui Cao
- Department of Chemistry, Renmin University of China , Beijing 100872, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China
| |
Collapse
|
142
|
Dong X, Liu L, Zhou Y, Liu J, Zhang Y, Chen Y, Qu J. Synthesis of carboxylate-bridged iron-thiolate clusters from alcohols/aldehydes or carboxylate salts. Dalton Trans 2015; 44:14952-8. [PMID: 26228059 DOI: 10.1039/c5dt01445j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of novel carboxylate-bridged cyclopentadienyl diiron complexes [Cp*Fe(μ-SEt)2(μ-η(2)-OOCR)FeCp*][PF6] (, R = H; , R = Me; , R = Et; , R = Pr-n; , R = Ph; , R = p-Me-C6H4; , R = PhCH[double bond, length as m-dash]CH; , CH[triple bond, length as m-dash]C) were obtained from alcohols/aldehydes or sodium carboxylates at room temperature. These eight complexes were fully characterized by spectroscopy, and some of them (, , and ) were further studied by X-ray crystallography. In addition, the electrochemical properties of clusters and are also discussed.
Collapse
Affiliation(s)
- Xiaoliang Dong
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
143
|
Stewart CD, Pedraza M, Arman H, Fan HJ, Schilling EL, Szpoganicz B, Musie GT. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution. J Inorg Biochem 2015; 149:25-38. [PMID: 25969174 PMCID: PMC4834926 DOI: 10.1016/j.jinorgbio.2015.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 11/29/2022]
Abstract
A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV-Vis and (13)C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI-MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1(-) and 2(-). Complexes 1(-) and 2(-) showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pK(app), between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pK(app) and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported.
Collapse
Affiliation(s)
- Christopher D Stewart
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Mayra Pedraza
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Hua-Jun Fan
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, United States
| | - Eduardo Luiz Schilling
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ghezai T Musie
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, United States.
| |
Collapse
|
144
|
Dinda S, Genest A, Rösch N. O2 Activation and Catalytic Alcohol Oxidation by Re Complexes with Redox-Active Ligands: A DFT Study of Mechanism. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shrabani Dinda
- Institute of High Performance Computing, Agency for Science, Technology
and Research, 1 Fusionopolis Way, #16-16
Connexis, Singapore 138632, Singapore
| | - Alexander Genest
- Institute of High Performance Computing, Agency for Science, Technology
and Research, 1 Fusionopolis Way, #16-16
Connexis, Singapore 138632, Singapore
| | - Notker Rösch
- Institute of High Performance Computing, Agency for Science, Technology
and Research, 1 Fusionopolis Way, #16-16
Connexis, Singapore 138632, Singapore
- Department Chemie and Catalysis Research
Center, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
145
|
Gonzalez-de-Castro A, Xiao J. Green and Efficient: Iron-Catalyzed Selective Oxidation of Olefins to Carbonyls with O2. J Am Chem Soc 2015; 137:8206-18. [DOI: 10.1021/jacs.5b03956] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| |
Collapse
|
146
|
İşci Ü, Faponle AS, Afanasiev P, Albrieux F, Briois V, Ahsen V, Dumoulin F, Sorokin AB, de Visser SP. Site-selective formation of an iron(iv)-oxo species at the more electron-rich iron atom of heteroleptic μ-nitrido diiron phthalocyanines. Chem Sci 2015; 6:5063-5075. [PMID: 30155008 PMCID: PMC6088558 DOI: 10.1039/c5sc01811k] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/16/2015] [Indexed: 11/21/2022] Open
Abstract
A combination of MS and computation on μ-nitrido bridged diiron complexes reveals H2O2 binding to the complex and generates an oxidant capable of oxidizing methane.
Iron(iv)–oxo species have been identified as the active intermediates in key enzymatic processes, and their catalytic properties are strongly affected by the equatorial and axial ligands bound to the metal, but details of these effects are still unresolved. In our aim to create better and more efficient oxidants of H-atom abstraction reactions, we have investigated a unique heteroleptic diiron phthalocyanine complex. We propose a novel intramolecular approach to determine the structural features that govern the catalytic activity of iron(iv)–oxo sites. Heteroleptic μ-nitrido diiron phthalocyanine complexes having an unsubstituted phthalocyanine (Pc1) and a phthalocyanine ligand substituted with electron-withdrawing alkylsulfonyl groups (PcSO2R) were prepared and characterized. A reaction with terminal oxidants gives two isomeric iron(iv)–oxo and iron(iii)–hydroperoxo species with abundances dependent on the equatorial ligand. Cryospray ionization mass spectrometry (CSI-MS) characterized both hydroperoxo and diiron oxo species in the presence of H2O2. When m-CPBA was used as the oxidant, the formation of diiron oxo species (PcSO2R)FeNFe(Pc1)
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O was also evidenced. Sufficient amounts of these transient species were trapped in the quadrupole region of the mass-spectrometer and underwent a CID-MS/MS fragmentation. Analyses of fragmentation patterns indicated a preferential formation of hydroperoxo and oxo moieties at more electron-rich iron sites of both heteroleptic μ-nitrido complexes. DFT calculations show that both isomers are close in energy. However, the analysis of the iron(iii)–hydroperoxo bond strength reveals major differences for the (Pc1)FeN(PcSO2R)FeIIIOOH system as compared to (PcSO2R)FeN(Pc1)FeIIIOOH system, and, hence binding of a terminal oxidant will be preferentially on more electron-rich sides. Subsequent kinetics studies showed that these oxidants are able to even oxidize methane to formic acid efficiently.
Collapse
Affiliation(s)
- Ümit İşci
- Gebze Technical University , Department of Chemistry , P.O. Box 141, Gebze , 41400 Kocaeli , Turkey .
| | - Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , UK .
| | - Pavel Afanasiev
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON) , UMR 5256 , CNRS-Université Lyon 1 , 2, av. A. Einstein , 69626 Villeurbanne Cedex , France .
| | - Florian Albrieux
- Centre Commun de Spectrométrie de Masse UMR 5246 , CNRS-Université Claude Bernard Lyon 1 , Université de Lyon , Bâtiment Curien , 43, bd du 11 Novembre , 69622 Villeurbanne Cedex , France
| | - Valérie Briois
- Synchrotron Soleil , L'orme des merisiers, St-Aubin , 91192 Gif-sur-Yvette , France
| | - Vefa Ahsen
- Gebze Technical University , Department of Chemistry , P.O. Box 141, Gebze , 41400 Kocaeli , Turkey .
| | - Fabienne Dumoulin
- Gebze Technical University , Department of Chemistry , P.O. Box 141, Gebze , 41400 Kocaeli , Turkey .
| | - Alexander B Sorokin
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON) , UMR 5256 , CNRS-Université Lyon 1 , 2, av. A. Einstein , 69626 Villeurbanne Cedex , France .
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , UK .
| |
Collapse
|
147
|
Buelt AA, Conrad CA, Mackay WD, Shehata MF, Smith VD, Smith RC. Conjugated polymers with regularly spaced m-phenylene units and post-polymerization modification to yield stimuli-responsive materials. POLYM INT 2015. [DOI: 10.1002/pi.4877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ashley A Buelt
- Department of Chemistry; Clemson University; Clemson SC 29634 USA
| | - Catherine A Conrad
- Laboratory for Creative Inquiry in Chemistry; Clemson University; Clemson SC 29634 USA
| | - William D Mackay
- Center for Optical Materials Science and Engineering Technology; Clemson University; Anderson SC 29634 USA
| | - Mina F Shehata
- Center for Optical Materials Science and Engineering Technology; Clemson University; Anderson SC 29634 USA
| | - Virginia D Smith
- Center for Optical Materials Science and Engineering Technology; Clemson University; Anderson SC 29634 USA
| | - Rhett C Smith
- Department of Chemistry; Clemson University; Clemson SC 29634 USA
- Laboratory for Creative Inquiry in Chemistry; Clemson University; Clemson SC 29634 USA
- Center for Optical Materials Science and Engineering Technology; Clemson University; Anderson SC 29634 USA
| |
Collapse
|
148
|
Chatterjee I, Saha Chowdhury N, Ghosh P, Goswami S. Octacoordinated Dioxo-Molybdenum Complex via Formal Oxidative Addition of Molecular Oxygen. Studies of Chemical Reactions Between M(CO)6 (M = Cr, Mo) and 2,4-Di-tert-butyl-6-(pyridin-2-ylazo)-phenol. Inorg Chem 2015; 54:5257-65. [DOI: 10.1021/acs.inorgchem.5b00218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ipsita Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Nabanita Saha Chowdhury
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Pradip Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Sreebrata Goswami
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
149
|
|
150
|
Jozwiuk A, Ingram AL, Powell DR, Moubaraki B, Chilton NF, Murray KS, Houser RP. Redox and acid-base properties of asymmetric non-heme (hydr)oxo-bridged diiron complexes. Dalton Trans 2015; 43:9740-53. [PMID: 24841725 DOI: 10.1039/c4dt00047a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The diiron unit is commonly found as the active site in enzymes that catalyze important biological transformations. Two μ-(hydr)oxo-diiron(iii) complexes with the ligands 2,2'-(2-methyl-2-(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H2L) and 2,2'-(2-methyl-2(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(4-nitrophenol) (H2L(NO2)), namely [(FeL)2(μ-O)] () and [(FeL(NO2))2(μ-OH)]ClO4 () were synthesized and characterized. In the solid state, both structures are asymmetric, with unsupported (hydr)oxo bridges. Intramolecular hydrogen bonding of the ligand NH groups to the phenolate O atoms hold the diiron cores in a bent configuration (Fe-O-Fe angle of 143.7° for and 140.1° for ). A new phenolate bridged diferrous complex, [(FeL)2] (), was synthesized and characterized. Upon exposure to air the diferrous complex is oxidized to the diferric . Cyclic voltammetry at different scan rates and chemical reduction of [(FeL)2(μ-OH)]BPh4 () with cobaltocene revealed disproportionation followed by proton transfer, and a mixed-valence species could not be trapped. Subsequent exposure to molecular oxygen results in the formation of . Electrochemical studies of indicate easier reduction of the diiron(iii/iii) to the mixed-valence state than for . The protonation of by benzoic acid to form [(FeL)2(μ-OH)](+) only changes the Fe-O-Fe angle by 5° (from 143.7° to 138.6°), and the pKa of the hydroxo bridge is estimated to be about 20.4. We attribute this high pKa partly to stabilization of the benzoate by hydrogen bonding to the ligand's amine proton. Magnetic susceptibility studies on solid samples of and yielded values of the antiferromagnetic exchange coupling constants, J, for these S = 5/2 dimers of -13.1 cm(-1) and -87.5 cm(-1), respectively, typical of such unsupported hydroxo- and oxo-bridges.
Collapse
Affiliation(s)
- Anna Jozwiuk
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | | | | | |
Collapse
|