101
|
Fedorov AK, Gelfand MS. Towards practical applications in quantum computational biology. NATURE COMPUTATIONAL SCIENCE 2021; 1:114-119. [PMID: 38217223 DOI: 10.1038/s43588-021-00024-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/12/2021] [Indexed: 01/15/2024]
Abstract
Fascinating progress in understanding our world at the smallest scales moves us to the border of a new technological revolution governed by quantum physics. By taking advantage of quantum phenomena, quantum computing devices allow a speedup in solving diverse tasks. In this Perspective, we discuss the potential impact of quantum computing on computational biology. Bearing in mind the limitations of existing quantum computing devices, we attempt to indicate promising directions for further research in the emerging area of quantum computational biology.
Collapse
Affiliation(s)
- A K Fedorov
- Russian Quantum Center, Moscow, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - M S Gelfand
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Kharkevitch Institute for Information Transmission Problems, Moscow, Russia
| |
Collapse
|
102
|
Horbatenko Y, Lee S, Filatov M, Choi CH. How Beneficial Is the Explicit Account of Doubly-Excited Configurations in Linear Response Theory? J Chem Theory Comput 2021; 17:975-984. [DOI: 10.1021/acs.jctc.0c01214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yevhen Horbatenko
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
103
|
Gray C, Wei T, Polívka T, Daskalakis V, Duffy CDP. Trivial Excitation Energy Transfer to Carotenoids Is an Unlikely Mechanism for Non-photochemical Quenching in LHCII. FRONTIERS IN PLANT SCIENCE 2021; 12:797373. [PMID: 35095968 PMCID: PMC8792765 DOI: 10.3389/fpls.2021.797373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 05/04/2023]
Abstract
Higher plants defend themselves from bursts of intense light via the mechanism of Non-Photochemical Quenching (NPQ). It involves the Photosystem II (PSII) antenna protein (LHCII) adopting a conformation that favors excitation quenching. In recent years several structural models have suggested that quenching proceeds via energy transfer to the optically forbidden and short-lived S 1 states of a carotenoid. It was proposed that this pathway was controlled by subtle changes in the relative orientation of a small number of pigments. However, quantum chemical calculations of S 1 properties are not trivial and therefore its energy, oscillator strength and lifetime are treated as rather loose parameters. Moreover, the models were based either on a single LHCII crystal structure or Molecular Dynamics (MD) trajectories about a single minimum. Here we try and address these limitations by parameterizing the vibronic structure and relaxation dynamics of lutein in terms of observable quantities, namely its linear absorption (LA), transient absorption (TA) and two-photon excitation (TPE) spectra. We also analyze a number of minima taken from an exhaustive meta-dynamical search of the LHCII free energy surface. We show that trivial, Coulomb-mediated energy transfer to S 1 is an unlikely quenching mechanism, with pigment movements insufficiently pronounced to switch the system between quenched and unquenched states. Modulation of S 1 energy level as a quenching switch is similarly unlikely. Moreover, the quenching predicted by previous models is possibly an artifact of quantum chemical over-estimation of S 1 oscillator strength and the real mechanism likely involves short-range interaction and/or non-trivial inter-molecular states.
Collapse
Affiliation(s)
- Callum Gray
- Digital Environment Research Institute (DERI), Queen Mary University of London, London, United Kingdom
| | - Tiejun Wei
- Digital Environment Research Institute (DERI), Queen Mary University of London, London, United Kingdom
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Vangelis Daskalakis
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Christopher D. P. Duffy
- Digital Environment Research Institute (DERI), Queen Mary University of London, London, United Kingdom
- *Correspondence: Christopher D. P. Duffy
| |
Collapse
|
104
|
Antonucci G, Croci M, Miras-Moreno B, Fracasso A, Amaducci S. Integration of Gas Exchange With Metabolomics: High-Throughput Phenotyping Methods for Screening Biostimulant-Elicited Beneficial Responses to Short-Term Water Deficit. FRONTIERS IN PLANT SCIENCE 2021; 12:678925. [PMID: 34140966 PMCID: PMC8204046 DOI: 10.3389/fpls.2021.678925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
Biostimulants are emerging as a feasible tool for counteracting reduction in climate change-related yield and quality under water scarcity. As they are gaining attention, the necessity for accurately assessing phenotypic variables in their evaluation is emerging as a critical issue. In light of this, high-throughput phenotyping techniques have been more widely adopted. The main bottleneck of these techniques is represented by data management, which needs to be tailored to the complex, often multifactorial, data. This calls for the adoption of non-linear regression models capable of capturing dynamic data and also the interaction and effects between multiple factors. In this framework, a commercial glycinebetaine- (GB-) based biostimulant (Vegetal B60, ED&F Man) was tested and distributed at a rate of 6 kg/ha. Exogenous application of GB, a widely accumulated and documented stress adaptor molecule in plants, has been demonstrated to enhance the plant abiotic stress tolerance, including drought. Trials were conducted on tomato plants during the flowering stage in a greenhouse. The experiment was designed as a factorial combination of irrigation (water-stressed and well-watered) and biostimulant treatment (treated and control) and adopted a mixed phenotyping-omics approach. The efficacy of a continuous whole-canopy multichamber system coupled with generalized additive mixed modeling (GAMM) was evaluated to discriminate between water-stressed plants under the biostimulant treatment. Photosynthetic performance was evaluated by using GAMM, and was then correlated to metabolic profile. The results confirmed a higher photosynthetic efficiency of the treated plants, which is correlated to biostimulant-mediated drought tolerance. Furthermore, metabolomic analyses demonstrated the priming effect of the biostimulant for stress tolerance and detoxification and stabilization of photosynthetic machinery. In support of this, the overaccumulation of carotenoids was particularly relevant, given their photoprotective role in preventing the overexcitation of photosystem II. Metabolic profile and photosynthetic performance findings suggest an increased effective use of water (EUW) through the overaccumulation of lipids and leaf thickening. The positive effect of GB on water stress resistance could be attributed to both the delayed onset of stress and the elicitation of stress priming through the induction of H2O2-mediated antioxidant mechanisms. Overall, the mixed approach supported by a GAMM analysis could prove a valuable contribution to high-throughput biostimulant testing.
Collapse
Affiliation(s)
- Giulia Antonucci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
- *Correspondence: Giulia Antonucci
| | - Michele Croci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore (UCSC), Piacenza, Italy
| |
Collapse
|
105
|
Lapillo M, Cignoni E, Cupellini L, Mennucci B. The energy transfer model of nonphotochemical quenching: Lessons from the minor CP29 antenna complex of plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148282. [DOI: 10.1016/j.bbabio.2020.148282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
|
106
|
Šebelík V, West R, Trsková EK, Kaňa R, Polívka T. Energy transfer pathways in the CAC light-harvesting complex of Rhodomonas salina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148280. [PMID: 32717221 DOI: 10.1016/j.bbabio.2020.148280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
Photosynthetic organisms had to evolve diverse mechanisms of light-harvesting to supply photosynthetic apparatus with enough energy. Cryptophytes represent one of the groups of photosynthetic organisms combining external and internal antenna systems. They contain one type of immobile phycobiliprotein located at the lumenal side of the thylakoid membrane, together with membrane-bound chlorophyll a/c antenna (CAC). Here we employ femtosecond transient absorption spectroscopy to study energy transfer pathways in the CAC proteins of cryptophyte Rhodomonas salina. The major CAC carotenoid, alloxanthin, is a cryptophyte-specific carotenoid, and it is the only naturally-occurring carotenoid with two triple bonds in its structure. In order to explore the energy transfer pathways within the CAC complex, three excitation wavelengths (505, 590, and 640 nm) were chosen to excite pigments in the CAC antenna. The excitation of Chl c at either 590 or 640 nm proves efficient energy transfer between Chl c and Chl a. The excitation of alloxanthin at 505 nm shows an active pathway from the S2 state with efficiency around 50%, feeding both Chl a and Chl c with approximately 1:1 branching ratio, yet, the S1-route is rather inefficient. The 57 ps energy transfer time to Chl a gives ~25% efficiency of the S1 channel. The low efficiency of the S1 route renders the overall carotenoid-Chl energy transfer efficiency low, pointing to the regulatory role of alloxanthin in the CAC antenna.
Collapse
Affiliation(s)
- Václav Šebelík
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Robert West
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Eliška Kuthanová Trsková
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Tomáš Polívka
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
107
|
Bauer B, Bravyi S, Motta M, Chan GKL. Quantum Algorithms for Quantum Chemistry and Quantum Materials Science. Chem Rev 2020; 120:12685-12717. [DOI: 10.1021/acs.chemrev.9b00829] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bela Bauer
- Microsoft Quantum, Station Q, University of California
, Santa Barbara, California 93106, United States
| | - Sergey Bravyi
- IBM Quantum, IBM T. J. Watson Research Center
, Yorktown Heights, New York 10598, United States
| | - Mario Motta
- IBM Quantum, IBM Research Almaden
, San Jose, California 95120, United States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology
, Pasadena, California 91125, United States
| |
Collapse
|
108
|
Gurchiek JK, Rose JB, Guberman-Pfeffer MJ, Tilluck RW, Ghosh S, Gascón JA, Beck WF. Fluorescence Anisotropy Detection of Barrier Crossing and Ultrafast Conformational Dynamics in the S 2 State of β-Carotene. J Phys Chem B 2020; 124:9029-9046. [PMID: 32955881 DOI: 10.1021/acs.jpcb.0c06961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carotenoids are usually only weakly fluorescent despite being very strong absorbers in the mid-visible region because their first two excited singlet states, S1 and S2, have very short lifetimes. To probe the structural mechanisms that promote the nonradiative decay of the S2 state to the S1 state, we have carried out a series of fluorescence lineshape and anisotropy measurements with a prototype carotenoid, β-carotene, in four aprotic solvents. The anisotropy values observed in the fluorescence emission bands originating from the S2 and S1 states reveal that the large internal rotations of the emission transition dipole moment, as much as 50° relative to that of the absorption transition dipole moment, are initiated during ultrafast evolution on the S2 state potential energy surface and persist upon nonradiative decay to the S1 state. Electronic structure calculations of the orientation of the transition dipole moment account for the anisotropy results in terms of torsional and pyramidal distortions near the center of the isoprenoid backbone. The excitation wavelength dependence of the fluorescence anisotropy indicates that these out-of-plane conformational motions are initiated by passage over a low-activation energy barrier from the Franck-Condon S2 structure. This conclusion is consistent with detection over the 80-200 K range of a broad, red-shifted fluorescence band from a dynamic intermediate evolving on a steep gradient of the S2 state potential energy surface after crossing the activation barrier. The temperature dependence of the oscillator strength and anisotropy indicate that nonadiabatic passage from S2 through a conical intersection seam to S1 is promoted by the out-of-plane motions of the isoprenoid backbone with strong hindrance by solvent friction.
Collapse
Affiliation(s)
- J K Gurchiek
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Justin B Rose
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Matthew J Guberman-Pfeffer
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06268-1712, United States
| | - Ryan W Tilluck
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Soumen Ghosh
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Lombardy 20133, Italy
| | - José A Gascón
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06268-1712, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
109
|
Optical Projection and Spatial Separation of Spin-Entangled Triplet Pairs from the S1 (21 Ag–) State of Pi-Conjugated Systems. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
110
|
Saccon F, Durchan M, Bína D, Duffy CD, Ruban AV, Polívka T. A Protein Environment-Modulated Energy Dissipation Channel in LHCII Antenna Complex. iScience 2020; 23:101430. [PMID: 32818906 PMCID: PMC7452274 DOI: 10.1016/j.isci.2020.101430] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
The major light-harvesting complex of photosystem II (LHCII) is the main contributor to sunlight energy harvesting in plants. The flexible design of LHCII underlies a photoprotective mechanism whereby this complex switches to a dissipative state in response to high light stress, allowing the rapid dissipation of excess excitation energy (non-photochemical quenching, NPQ). In this work, we locked single LHCII trimers in a quenched conformation after immobilization of the complexes in polyacrylamide gels to impede protein interactions. A comparison of their pigment excited-state dynamics with quenched LHCII aggregates in buffer revealed the presence of a new spectral band at 515 nm arising after chlorophyll excitation. This is suggested to be the signature of a carotenoid excited state, linked to the quenching of chlorophyll singlet excited states. Our data highlight the marked sensitivity of pigment excited-state dynamics in LHCII to structural changes induced by the environment.
Collapse
Affiliation(s)
- Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Milan Durchan
- University of South Bohemia, Institute of Physics, Faculty of Science, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - David Bína
- University of South Bohemia, Institute of Chemistry, Faculty of Science, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Christopher D.P. Duffy
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Alexander V. Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Tomáš Polívka
- University of South Bohemia, Institute of Physics, Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
111
|
Artes Vivancos JM, van Stokkum IHM, Saccon F, Hontani Y, Kloz M, Ruban A, van Grondelle R, Kennis JTM. Unraveling the Excited-State Dynamics and Light-Harvesting Functions of Xanthophylls in Light-Harvesting Complex II Using Femtosecond Stimulated Raman Spectroscopy. J Am Chem Soc 2020; 142:17346-17355. [PMID: 32878439 PMCID: PMC7564077 DOI: 10.1021/jacs.0c04619] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Photosynthesis
in plants starts with the capture of photons by
light-harvesting complexes (LHCs). Structural biology and spectroscopy
approaches have led to a map of the architecture and energy transfer
pathways between LHC pigments. Still, controversies remain regarding
the role of specific carotenoids in light-harvesting and photoprotection,
obligating the need for high-resolution techniques capable of identifying
excited-state signatures and molecular identities of the various pigments
in photosynthetic systems. Here we demonstrate the successful application
of femtosecond stimulated Raman spectroscopy (FSRS) to a multichromophoric
biological complex, trimers of LHCII. We demonstrate the application
of global and target analysis (GTA) to FSRS data and utilize it to
quantify excitation migration in LHCII trimers. This powerful combination
of techniques allows us to obtain valuable insights into structural,
electronic, and dynamic information from the carotenoids of LHCII
trimers. We report spectral and dynamical information on ground- and
excited-state vibrational modes of the different pigments, resolving
the vibrational relaxation of the carotenoids and the pathways of
energy transfer to chlorophylls. The lifetimes and spectral characteristics
obtained for the S1 state confirm that lutein 2 has a distorted conformation
in LHCII and that the lutein 2 S1 state does not transfer to chlorophylls,
while lutein 1 is the only carotenoid whose S1 state plays a significant
energy-harvesting role. No appreciable energy transfer takes place
from lutein 1 to lutein 2, contradicting recent proposals regarding
the functions of the various carotenoids (Son et al. Chem.2019, 5 (3), 575–584). Also, our results demonstrate that FSRS can be used in combination
with GTA to simultaneously study the electronic and vibrational landscapes
in LHCs and pave the way for in-depth studies of photoprotective conformations
in photosynthetic systems.
Collapse
Affiliation(s)
- Juan M Artes Vivancos
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.,Department of Chemistry, Kennedy College of Science, University of Massachusetts-Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road/E1 4NS London, U.K
| | - Yusaku Hontani
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Alexander Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road/E1 4NS London, U.K
| | - Rienk van Grondelle
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
112
|
Uragami C, Sato H, Yukihira N, Fujiwara M, Kosumi D, Gardiner AT, Cogdell RJ, Hashimoto H. Photoprotective mechanisms in the core LH1 antenna pigment-protein complex from the purple photosynthetic bacterium, Rhodospirillum rubrum. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
113
|
Qu Z, Ma Y. Variational Multistate Density Functional Theory for a Balanced Treatment of Static and Dynamic Correlations. J Chem Theory Comput 2020; 16:4912-4922. [PMID: 32672966 DOI: 10.1021/acs.jctc.0c00208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, an approach to variational multistate density functional theory (vMSDFT) is explored. In this approach, the Kohn-Sham orbitals as well as configuration coefficients were simultaneously optimized, thus yielding a full variational minimum. Furthermore, this work also proposes two important improvements on the MSDFT framework. First, a "point-to-point correction" is used to correct the static correlation present in the DFT framework. Therefore, double counting of static correlation in vMSDFT is mitigated. Second, a general form to construct the transition density functional in the vMSDFT framework is proposed, which allows for the properties of vMSDFT wave functions to be standardized to the complete active space self-consistent field properties. The utility of vMSDFT is illustrated on molecular systems of interest including bond breaking, diradicals, excited states, and conical intersections. The numerical results suggest that the accuracy of vMSDFT is in close agreement with the high-level multireference methods.
Collapse
Affiliation(s)
- Zexing Qu
- Institute of Theoretical Chemistry and Laboratory of Theoretical & Computational Chemistry, Jilin University, Changchun 130023, China
| | - Yingjin Ma
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China.,Center of Scientific Computing Applications & Research, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
114
|
Khokhlov D, Belov A. Ab Initio Study of Low-Lying Excited States of Carotenoid-Derived Polyenes. J Phys Chem A 2020; 124:5790-5803. [PMID: 32573233 DOI: 10.1021/acs.jpca.0c01678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Knowledge about excited states of carotenoids is essential for understanding photophysical processes underlying photosynthesis. However, due to the presence of a large number of optically dark states, experimental study of the excited-state manifold is limited to a significant extent. In this paper, we apply high-level ab initio quantum chemical methods to study the low-lying excited states of polyenes containing from 8 to 13 conjugated double bonds, which serve as a model for natural carotenoids. Vertical and adiabatic excitation energies from the ground 1Ag- state to the excited 2Ag-, 1Bu+, and 1Bu- states were evaluated by means of density matrix renormalization group (DMRG) with NEVPT2 perturbative correction. The energies of all excited states are highly sensitive to nuclear geometry, especially the 2Ag- state. Thus, the 2Ag- and 1Bu+ states interchange their relative positions upon geometry relaxation, while the vertical excitation energy to the 2Ag- state is rather high. At the same time, the 1Bu- state energy is shown to be higher than other studied excited states at any geometry. With relaxed geometries of the excited states, absorption and transient absorption spectra were calculated within the Franck-Condon approximation bridging the gap between experimental spectroscopic data and computational results.
Collapse
Affiliation(s)
- Daniil Khokhlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Aleksandr Belov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
115
|
Kollenz P, Herten DP, Buckup T. Unravelling the Kinetic Model of Photochemical Reactions via Deep Learning. J Phys Chem B 2020; 124:6358-6368. [PMID: 32589422 DOI: 10.1021/acs.jpcb.0c04299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Time-resolved spectroscopies have been playing an essential role in the elucidation of the fundamental mechanisms of light-driven processes, particularly in exploring relaxation models for electronically excited molecules. However, the determination of such models from experimentally obtained time-resolved and spectrally resolved data still demands a high degree of intuition, frequently poses numerical challenges, and is often not free from ambiguities. Here, we demonstrate the analysis of time-resolved laser spectroscopy data via a deep learning network to obtain the correct relaxation kinetic model. In its current design, the presented Deep Spectroscopy Kinetic Analysis Network (DeepSKAN) can predict kinetic models (involved states and relaxation pathways) consisting of up to five states, which results in 103 possible different classes, by estimating the probability of occurrence of a given kinetic model class. DeepSKAN was trained with synthetic time-resolved spectra spanning over 4 orders of magnitude in time with a unitless time axis, thereby demonstrating its potential as a universal approach for analyzing data from various time-resolved spectroscopy techniques in different time ranges. By adding the probabilities of each pathway of the top-k models normalized by the total probability, we can determine the relaxation pathways for a given data set with high certainty (up to 99%). Due to its architecture and training, DeepSKAN is robust against experimental noise and typical preanalysis errors like time-zero corrections. Application of DeepSKAN to experimental data is successfully demonstrated for three different photoinduced processes: transient absorption of the retinal isomerization, transient IR spectroscopy of the relaxation of the photoactivated DRONPA, and transient absorption of the dynamics in lycopene. This approach delivers kinetic models and could be a unifying asset in several areas of spectroscopy.
Collapse
Affiliation(s)
- Philipp Kollenz
- Physikalisch Chemisches Institut, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Dirk-Peter Herten
- Physikalisch Chemisches Institut, Ruprecht-Karls University, D-69120 Heidelberg, Germany.,Institute of Cardiovascular Sciences & School of Chemistry, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B152TT, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| |
Collapse
|
116
|
Balevičius V, Duffy CDP. Excitation quenching in chlorophyll-carotenoid antenna systems: 'coherent' or 'incoherent'. PHOTOSYNTHESIS RESEARCH 2020; 144:301-315. [PMID: 32266612 PMCID: PMC7239839 DOI: 10.1007/s11120-020-00737-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/18/2020] [Indexed: 05/20/2023]
Abstract
Plants possess an essential ability to rapidly down-regulate light-harvesting in response to high light. This photoprotective process involves the formation of energy-quenching interactions between the chlorophyll and carotenoid pigments within the antenna of Photosystem II (PSII). The nature of these interactions is currently debated, with, among others, 'incoherent' or 'coherent' quenching models (or a combination of the two) suggested by a range of time-resolved spectroscopic measurements. In 'incoherent quenching', energy is transferred from a chlorophyll to a carotenoid and is dissipated due to the intrinsically short excitation lifetime of the latter. 'Coherent quenching' would arise from the quantum mechanical mixing of chlorophyll and carotenoid excited state properties, leading to a reduction in chlorophyll excitation lifetime. The key parameters are the energy gap, [Formula: see text] and the resonance coupling, J, between the two excited states. Coherent quenching will be the dominant process when [Formula: see text] i.e., when the two molecules are resonant, while the quenching will be largely incoherent when [Formula: see text] One would expect quenching to be energetically unfavorable for [Formula: see text] The actual dynamics of quenching lie somewhere between these limiting regimes and have non-trivial dependencies of both J and [Formula: see text] Using the Hierarchical Equation of Motion (HEOM) formalism we present a detailed theoretical examination of these excitation dynamics and their dependence on slow variations in J and [Formula: see text] We first consider an isolated chlorophyll-carotenoid dimer before embedding it within a PSII antenna sub-unit (LHCII). We show that neither energy transfer, nor the mixing of excited state lifetimes represent unique or necessary pathways for quenching and in fact discussing them as distinct quenching mechanisms is misleading. However, we do show that quenching cannot be switched 'on' and 'off' by fine tuning of [Formula: see text] around the resonance point, [Formula: see text] Due to the large reorganization energy of the carotenoid excited state, we find that the presence (or absence) of coherent interactions have almost no impact of the dynamics of quenching. Counter-intuitively significant quenching is present even when the carotenoid excited state lies above that of the chlorophyll. We also show that, above a rather small threshold value of [Formula: see text]quenching becomes less and less sensitive to J (since in the window [Formula: see text] the overall lifetime is independent of it). The requirement for quenching appear to be only that [Formula: see text] Although the coherent/incoherent character of the quenching can vary, the overall kinetics are likely robust with respect to fluctuations in J and [Formula: see text] This may be the basis for previous observations of NPQ with both coherent and incoherent features.
Collapse
Affiliation(s)
- Vytautas Balevičius
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Christopher D P Duffy
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
117
|
Son M, Pinnola A, Schlau-Cohen GS. Zeaxanthin independence of photophysics in light-harvesting complex II in a membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148115. [DOI: 10.1016/j.bbabio.2019.148115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 11/15/2022]
|
118
|
Khan T, Dominguez-Martin MA, Šímová I, Fuciman M, Kerfeld CA, Polívka T. Excited-State Properties of Canthaxanthin in Cyanobacterial Carotenoid-Binding Proteins HCP2 and HCP3. J Phys Chem B 2020; 124:4896-4905. [DOI: 10.1021/acs.jpcb.0c03137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tuhin Khan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Maria Agustina Dominguez-Martin
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ivana Šímová
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Marcel Fuciman
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Cheryl A. Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
119
|
Staleva-Musto H, Kuznetsova V, Bína D, Litvín R, Polívka T. Intramolecular charge-transfer state of carotenoids siphonaxanthin and siphonein: function of non-conjugated acyl-oxy group. PHOTOSYNTHESIS RESEARCH 2020; 144:127-135. [PMID: 31802367 DOI: 10.1007/s11120-019-00694-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
We used ultrafast transient absorption spectroscopy to study excited-state dynamics of two keto-carotenoids, siphonaxanthin and siphonein. These two carotenoids differ in the presence of dodecanoyl-oxy group in siphonein, which is attached to the C19 carbon on the same side of the molecule as the conjugated keto group. We show that this dodecanoyl-oxy group, though not in conjugation, is still capable of modifying excited state properties. While spectroscopic properties of siphonein and siphonaxanthin are nearly identical in a non-polar solvent, they become markedly different in polar solvents. In a polar solvent, siphonein, having the dodecanoyl-oxy moiety, exhibits less pronounced vibrational bands in the absorption spectrum and has significantly enhanced characteristic features of an intramolecular charge-transfer (ICT) state in transient absorption spectra compared to siphonaxanthin. The presence of the dodecanoyl-oxy moiety also alters the lifetimes of the S1/ICT state. For siphonaxanthin, the lifetimes are 60, 20, and 14 ps in n-hexane, acetonitrile, and methanol, whereas for siphonein these lifetimes yield 60, 11, and 10 ps. Thus, we show that even a non-conjugated functional group can affect the charge-transfer character of the S1/ICT state. By comparison with fucoxanthin acyl-oxy derivatives, we show that position of the acyl-oxy group in respect to the conjugated keto group is the key feature determining whether the polarity-dependent behavior is enhanced or suppressed.
Collapse
Affiliation(s)
- Hristina Staleva-Musto
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Valentyna Kuznetsova
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - David Bína
- Institute of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Radek Litvín
- Institute of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic.
| |
Collapse
|
120
|
Streckaite S, Macernis M, Li F, Kuthanová Trsková E, Litvin R, Yang C, Pascal AA, Valkunas L, Robert B, Llansola-Portoles MJ. Modeling Dynamic Conformations of Organic Molecules: Alkyne Carotenoids in Solution. J Phys Chem A 2020; 124:2792-2801. [PMID: 32163283 PMCID: PMC7313542 DOI: 10.1021/acs.jpca.9b11536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Calculating
the spectroscopic properties of complex conjugated
organic molecules in their relaxed state is far from simple. An additional complexity arises for
flexible molecules in solution, where the rotational energy barriers
are low enough so that nonminimum conformations may become dynamically
populated. These metastable conformations quickly relax during the
minimization procedures preliminary to density functional theory calculations,
and so accounting for their contribution to the experimentally observed
properties is problematic. We describe a strategy for stabilizing
these nonminimum conformations in silico, allowing
their properties to be calculated. Diadinoxanthin and alloxanthin
present atypical vibrational properties in solution, indicating the
presence of several conformations. Performing energy calculations in vacuo and polarizable continuum model calculations in
different solvents, we found three different conformations with values
for the δ dihedral angle of the end ring ca. 0, 180, and 90°
with respect to the plane of the conjugated chain. The latter conformation,
a nonglobal minimum, is not stable during the minimization necessary
for modeling its spectroscopic properties. To circumvent this classical
problem, we used a Car–Parinello MD supermolecular approach,
in which diadinoxanthin was solvated by water molecules so that metastable
conformations were stabilized by hydrogen-bonding interactions. We
progressively removed the number of solvating waters to find the minimum
required for this stabilization. This strategy represents the first
modeling of a carotenoid in a distorted conformation and provides
an accurate interpretation of the experimental data.
Collapse
Affiliation(s)
- Simona Streckaite
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mindaugas Macernis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, LT-10222 Vilnius, Lithuania
| | - Fei Li
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.,Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - Eliška Kuthanová Trsková
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.,Institute of Microbiology, Academy of Sciences of the Czech Republic, 379 81 Třeboň, Czech Republic
| | - Radek Litvin
- Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Chunhong Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - Andrew A Pascal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Leonas Valkunas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, LT-10222 Vilnius, Lithuania.,Molecular Compounds Physics Department, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Manuel J Llansola-Portoles
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
121
|
Akhtar P, Nowakowski PJ, Wang W, Do TN, Zhao S, Siligardi G, Garab G, Shen JR, Tan HS, Lambrev PH. Spectral tuning of light-harvesting complex II in the siphonous alga Bryopsis corticulans and its effect on energy transfer dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148191. [PMID: 32201306 DOI: 10.1016/j.bbabio.2020.148191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms - absorbing at around 650 nm and 658 nm - and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting.
Collapse
Affiliation(s)
- Parveen Akhtar
- Biological Research Centre, Szeged, Hungary; ELI-ALPS, ELI Nonprofit Ltd., Szeged, Hungary
| | - Paweł J Nowakowski
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Wenda Wang
- Photosynthesis Research Centre, Chinese Academy of Sciences, Beijing, China
| | - Thanh Nhut Do
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Songhao Zhao
- Photosynthesis Research Centre, Chinese Academy of Sciences, Beijing, China
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Győző Garab
- Biological Research Centre, Szeged, Hungary; Department of Physics, Faculty of Science, University of Ostrava, Czech Republic
| | - Jian-Ren Shen
- Photosynthesis Research Centre, Chinese Academy of Sciences, Beijing, China; Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore.
| | | |
Collapse
|
122
|
Excitation dynamics and relaxation in the major antenna of a marine green alga Bryopsis corticulans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148186. [PMID: 32171793 DOI: 10.1016/j.bbabio.2020.148186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 11/20/2022]
Abstract
The light-harvesting complexes II (LHCIIs) of spinach and Bryopsis corticulans as a green alga are similar in structure, but differ in carotenoid (Car) and chlorophyll (Chl) compositions. Carbonyl Cars siphonein (Spn) and siphonaxanthin (Spx) bind to B. corticulans LHCII likely in the sites as a pair of lutein (Lut) molecules bind to spinach LHCII in the central domain. To understand the light-harvesting and photoprotective properties of the algal LHCII, we compared its excitation dynamics and relaxation to those of spinach LHCII been well documented. It was found that B. corticulans LHCII exhibited a substantially longer chlorophyll (Chl) fluorescence lifetime (4.9 ns vs 4.1 ns) and a 60% increase of the fluorescence quantum yield. Photoexcitation populated 3Car* equally between Spn and Spx in B. corticulans LHCII, whereas predominantly at Lut620 in spinach LHCII. These results prove the functional differences of the LHCIIs with different Car pairs and Chl a/b ratios: B. corticulans LHCII shows the enhanced blue-green light absorption, the alleviated quenching of 1Chl*, and the dual sites of quenching 3Chl*, which may facilitate its light-harvesting and photoprotection functions. Moreover, for both types of LHCIIs, the triplet excitation profiles revealed the involvement of extra 3Car* formation mechanisms besides the conventional Chl-to-Car triplet transfer, which are discussed in relation to the ultrafast processes of 1Chl* quenching. Our experimental findings will be helpful in deepening the understanding of the light harvesting and photoprotection functions of B. corticulans living in the intertidal zone with dramatically changing light condition.
Collapse
|
123
|
Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs. Nat Commun 2020; 11:1295. [PMID: 32157079 PMCID: PMC7064482 DOI: 10.1038/s41467-020-15074-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 02/17/2020] [Indexed: 11/08/2022] Open
Abstract
Plants prevent photodamage under high light by dissipating excess energy as heat. Conformational changes of the photosynthetic antenna complexes activate dissipation by leveraging the sensitivity of the photophysics to the protein structure. The mechanisms of dissipation remain debated, largely due to two challenges. First, because of the ultrafast timescales and large energy gaps involved, measurements lacked the temporal or spectral requirements. Second, experiments have been performed in detergent, which can induce non-native conformations, or in vivo, where contributions from homologous antenna complexes cannot be disentangled. Here, we overcome both challenges by applying ultrabroadband two-dimensional electronic spectroscopy to the principal antenna complex, LHCII, in a near-native membrane. Our data provide evidence that the membrane enhances two dissipative pathways, one of which is a previously uncharacterized chlorophyll-to-carotenoid energy transfer. Our results highlight the sensitivity of the photophysics to local environment, which may control the balance between light harvesting and dissipation in vivo.
Collapse
|
124
|
Taffet EJ, Fassioli F, Toa ZSD, Beljonne D, Scholes GD. Uncovering dark multichromophoric states in Peridinin-Chlorophyll-Protein. J R Soc Interface 2020; 17:20190736. [PMID: 32183641 PMCID: PMC7115236 DOI: 10.1098/rsif.2019.0736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/28/2020] [Indexed: 01/02/2023] Open
Abstract
It has long been recognized that visible light harvesting in Peridinin-Chlorophyll-Protein is driven by the interplay between the bright (S2) and dark (S1) states of peridinin (carotenoid), along with the lowest-lying bright (Qy) and dark (Qx) states of chlorophyll-a. Here, we analyse a chromophore cluster in the crystal structure of Peridinin-Chlorophyll-Protein, in particular, a peridinin-peridinin and a peridinin-chlorophyll-a dimer, and present quantum chemical evidence for excited states that exist beyond the confines of single peridinin and chlorophyll chromophores. These dark multichromophoric states, emanating from the intermolecular packing native to Peridinin-Chlorophyll-Protein, include a correlated triplet pair comprising neighbouring peridinin excitations and a charge-transfer interaction between peridinin and the adjacent chlorophyll-a. We surmise that such dark multichromophoric states may explain two spectral mysteries in light-harvesting pigments: the sub-200-fs singlet fission observed in carotenoid aggregates, and the sub-200-fs chlorophyll-a hole generation in Peridinin-Chlorophyll-Protein.
Collapse
Affiliation(s)
- Elliot J. Taffet
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08540, USA
- Department of Chemistry, University of Mons, 7000 Mons, Belgium
| | - Francesca Fassioli
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08540, USA
- SISSA – Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Zi S. D. Toa
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - David Beljonne
- Department of Chemistry, University of Mons, 7000 Mons, Belgium
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08540, USA
| |
Collapse
|
125
|
Oviedo-Casado S, Šanda F, Hauer J, Prior J. Magnetic pulses enable multidimensional optical spectroscopy of dark states. J Chem Phys 2020; 152:084201. [DOI: 10.1063/1.5139409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Santiago Oviedo-Casado
- Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
- Departamento de Física Aplicada, Universidad Politécnica de Cartagena, Cartagena 30202, Spain
| | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 121 16, Czech Republic
- Fakultät für Chemie, TU München, Oettingenstraße 67, 80538 Munich, Germany
| | - Jürgen Hauer
- Fakultät für Chemie, TU München, Oettingenstraße 67, 80538 Munich, Germany
- Photonics Institute, TU Wien, Gußhausstraße 27-29, 1040 Vienna, Austria
| | - Javier Prior
- Departamento de Física Aplicada, Universidad Politécnica de Cartagena, Cartagena 30202, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada 18071, Spain
| |
Collapse
|
126
|
Wang L, Bai S, Wu Y, Liu Y, Yao J, Fu H. Revealing the Nature of Singlet Fission under the Veil of Internal Conversion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Long Wang
- Beijing Key Laboratory for Optical Materials and Photonic DevicesDepartment of ChemistryCapital Normal University Beijing 100048 P. R. China
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of Technology Taiyuan 030024 P. R. China
| | - Shuming Bai
- Department of ChemistryDuke University Durham NC 27708 USA
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic DevicesDepartment of ChemistryCapital Normal University Beijing 100048 P. R. China
| | - Yanping Liu
- Beijing Key Laboratory for Optical Materials and Photonic DevicesDepartment of ChemistryCapital Normal University Beijing 100048 P. R. China
| | - Jiannian Yao
- Beijing Key Laboratory for Optical Materials and Photonic DevicesDepartment of ChemistryCapital Normal University Beijing 100048 P. R. China
- Institute of Molecular PlusSchool of Chemical Engineering and TechnologyTianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic DevicesDepartment of ChemistryCapital Normal University Beijing 100048 P. R. China
- Institute of Molecular PlusSchool of Chemical Engineering and TechnologyTianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| |
Collapse
|
127
|
Šebelík V, Kloz M, Rebarz M, Přeček M, Kang EH, Choi TL, Christensen RL, Polívka T. Spectroscopy and excited state dynamics of nearly infinite polyenes. Phys Chem Chem Phys 2020; 22:17867-17879. [PMID: 32766621 DOI: 10.1039/d0cp02465a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Steady-state and transient absorption spectra with <50 fs time resolution were obtained for two conjugated polymers, both with ≈200 conjugated double bonds (N), constrained in planar, stable, polyene frameworks. Solutions of the polymers exhibit the same S2 → S1 → S* → S0 decay pathway observed for the N = 11-19 polyene oligomers and for zeaxanthin homologues with N = 11-23. Comparisons with the excited state dynamics of polydiactylene and a much longer, more disordered polyene polymer (poly(DEDPM)) show that the S2, S1, and S* lifetimes of the four polymers are almost identical. The S* signals in the polymers are assigned to absorption from vibrationally excited ground states. In spite of significant heterogeneities and variations in conjugation lengths in these long polyenes, their S0 → S2 absorptions are vibronically-resolved in room temperature solutions with electronic origins at ≈600 nm. The limiting wavelength for the S0 → S2 transitions is consistent with the persistence of bond length alternation in the electronic ground states and a HOMO-LUMO band gap in polyenes with N ≈ 200. The coincidence of the well-resolved S0 → S2 electronic origins and the convergence of the excited state lifetimes in the four polymers point to a common, "nearly infinite" polyene limit.
Collapse
Affiliation(s)
- Václav Šebelík
- Institute of Physics, Faculty of Science, University of South Bohemia, České Budjovice, Czech Republic.
| | - Miroslav Kloz
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní BřeŽany, Czech Republic
| | - Mateusz Rebarz
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní BřeŽany, Czech Republic
| | - Martin Přeček
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní BřeŽany, Czech Republic
| | - Eun-Hye Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | | | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, České Budjovice, Czech Republic.
| |
Collapse
|
128
|
Mi J, Jia KP, Balakrishna A, Al-Babili S. A Method for Extraction and LC-MS-Based Identification of Carotenoid-Derived Dialdehydes in Plants. Methods Mol Biol 2020; 2083:177-188. [PMID: 31745921 DOI: 10.1007/978-1-4939-9952-1_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We developed a chemical derivatization based ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometer (UHPLC-Q-Orbitrap MS) analytical method to identify low-abundant and instable carotenoid-derived dialdehydes (DIALs, diapocarotenoids) from plants. Application of this method enhances the MS response signal of DIALs, enabling the detection of diapocarotenoids, which is crucial for understanding the function of these compounds and for elucidating the carotenoid oxidative metabolic pathway in plants.
Collapse
Affiliation(s)
- Jianing Mi
- The BioActives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Kun-Peng Jia
- The BioActives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
129
|
Adamec F, Farci D, Bína D, Litvín R, Khan T, Fuciman M, Piano D, Polívka T. Photophysics of deinoxanthin, the keto-carotenoid bound to the main S-layer unit of Deinococcus radiodurans. Photochem Photobiol Sci 2020; 19:495-503. [DOI: 10.1039/d0pp00031k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An ultrafast transient absorption experiment on the SDBC, which binds the carotenoid deinoxanthin, reveals a non-specific binding site that loosely binds the carotenoid, but protects the carotenoid from the outer environment.
Collapse
Affiliation(s)
- František Adamec
- Institute of Physics
- Faculty of Science
- University of South Bohemia
- České Budějovice
- Czech Republic
| | - Domenica Farci
- Department of Plant Physiology
- Warsaw University of Life Sciences - SGGW
- Warsaw
- Poland
| | - David Bína
- Institute of Chemistry
- Faculty of Science
- University of South Bohemia
- Czech Republic
- Biology Centre
| | - Radek Litvín
- Institute of Chemistry
- Faculty of Science
- University of South Bohemia
- Czech Republic
- Biology Centre
| | - Tuhin Khan
- Institute of Physics
- Faculty of Science
- University of South Bohemia
- České Budějovice
- Czech Republic
| | - Marcel Fuciman
- Institute of Physics
- Faculty of Science
- University of South Bohemia
- České Budějovice
- Czech Republic
| | - Dario Piano
- Department of Plant Physiology
- Warsaw University of Life Sciences - SGGW
- Warsaw
- Poland
- Laboratory of Photobiology and Plant Physiology
| | - Tomáš Polívka
- Institute of Physics
- Faculty of Science
- University of South Bohemia
- České Budějovice
- Czech Republic
| |
Collapse
|
130
|
Wang L, Bai S, Wu Y, Liu Y, Yao J, Fu H. Revealing the Nature of Singlet Fission under the Veil of Internal Conversion. Angew Chem Int Ed Engl 2019; 59:2003-2007. [PMID: 31729139 DOI: 10.1002/anie.201912202] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/02/2019] [Indexed: 11/07/2022]
Abstract
Singlet fission (SF) holds the potential to boost the maximum power conversion efficiency of photovoltaic devices. Internal conversion (IC) has been considered as one of the major competitive deactivation pathways to transform excitation energy into heat. Now, using time-resolved spectroscopy and theoretical calculation, it is demonstrated that, instead of a conventional IC pathway, an unexpected intramolecular singlet fission (iSF) process is responsible for excited state deactivation in isoindigo derivatives. The 1 TT state could form at ultrafast rate and nearly quantitatively in solution. In solid films, the slipped stacked intermolecular packing of a thiophene-functionalized derivative leads to efficient triplet pair separation, giving rise to an overall triplet yield of 181 %. This work not only enriches the pool of iSF-capable materials, but also contributes to a better understanding of the iSF mechanism, which could be relevant for designing new SF sensitizers.
Collapse
Affiliation(s)
- Long Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Shuming Bai
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Yanping Liu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Jiannian Yao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
131
|
Van Wittenberghe S, Alonso L, Malenovský Z, Moreno J. In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS-NIR slow-induced conformational pigment bed changes. PHOTOSYNTHESIS RESEARCH 2019; 142:283-305. [PMID: 31541418 PMCID: PMC6874624 DOI: 10.1007/s11120-019-00664-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/13/2019] [Indexed: 05/29/2023]
Abstract
Regulated heat dissipation under excessive light comprises a complexity of mechanisms, whereby the supramolecular light-harvesting pigment-protein complex (LHC) shifts state from light harvesting towards heat dissipation, quenching the excess of photo-induced excitation energy in a non-photochemical way. Based on whole-leaf spectroscopy measuring upward and downward spectral radiance fluxes, we studied spectrally contiguous (hyperspectral) transient time series of absorbance A(λ,t) and passively induced chlorophyll fluorescence F(λ,t) dynamics of intact leaves in the visible and near-infrared wavelengths (VIS-NIR, 400-800 nm) after sudden strong natural-like illumination exposure. Besides light avoidance mechanism, we observed on absorbance signatures, calculated from simultaneous reflectance R(λ,t) and transmittance T(λ,t) measurements as A(λ,t) = 1 - R(λ,t) - T(λ,t), major dynamic events with specific onsets and kinetical behaviour. A consistent well-known fast carotenoid absorbance feature (500-570 nm) appears within the first seconds to minutes, seen from both the reflected (backscattered) and transmitted (forward scattered) radiance differences. Simultaneous fast Chl features are observed, either as an increased or decreased scattering behaviour during quick light adjustment consistent with re-organizations of the membrane. The carotenoid absorbance feature shows up simultaneously with a major F decrease and corresponds to the xanthophyll conversion, as quick response to the proton gradient build-up. After xanthophyll conversion (t = 3 min), a kinetically slower but major and smooth absorbance increase was occasionally observed from the transmitted radiance measurements as wide peaks in the green (~ 550 nm) and the near-infrared (~ 750 nm) wavelengths, involving no further F quenching. Surprisingly, in relation to the response to high light, this broad and consistent VIS-NIR feature indicates a slowly induced absorbance increase with a sigmoid kinetical behaviour. In analogy to sub-leaf-level observations, we suggest that this mechanism can be explained by a structure-induced low-energy-shifted energy redistribution involving both Car and Chl. These findings might pave the way towards a further non-invasive spectral investigation of antenna conformations and their relations with energy quenching at the intact leaf level, which is, in combination with F measurements, of a high importance for assessing plant photosynthesis in vivo and in addition from remote observations.
Collapse
Affiliation(s)
- Shari Van Wittenberghe
- Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia, C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia Spain
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
| | - Luis Alonso
- Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia, C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia Spain
| | - Zbyněk Malenovský
- Geography and Spatial Sciences, School of Technology, Environments and Design, University of Tasmania, Private Bag 76, Hobart, TAS 7001 Australia
| | - José Moreno
- Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia, C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia Spain
| |
Collapse
|
132
|
Gryaznov AA, Klenina IB, Makhneva ZK, Moskalenko AA, Proskuryakov II. The Singlet–Triplet Fission of Carotenoid Excitation in Light-Harvesting Complexes from Thermochromatium tepidum. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919060083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
133
|
Mascoli V, Liguori N, Xu P, Roy LM, van Stokkum IH, Croce R. Capturing the Quenching Mechanism of Light-Harvesting Complexes of Plants by Zooming in on the Ensemble. Chem 2019. [DOI: 10.1016/j.chempr.2019.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
134
|
Wei T, Balevičius V, Polívka T, Ruban AV, Duffy CDP. How carotenoid distortions may determine optical properties: lessons from the Orange Carotenoid Protein. Phys Chem Chem Phys 2019; 21:23187-23197. [PMID: 31612872 DOI: 10.1039/c9cp03574e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carotenoids in photosynthetic proteins carry out the dual function of harvesting light and defending against photo-damage by quenching excess energy. The latter involves the low-lying, dark, excited state labelled S1. Here "dark" means optically-forbidden, a property that is often attributed to molecular symmetry, which leads to speculation that its optical properties may be strongly-perturbed by structural distortions. This has been both explicitly and implicitly proposed as an important feature of photo-protective energy quenching. Here we present a theoretical analysis of the relationship between structural distortions and S1 optical properties. We outline how S1 is dark not because of overall geometric symmetry but because of a topological symmetry related to bond length alternation in the conjugated backbone. Taking the carotenoid echinenone as an example and using a combination of molecular dynamics, quantum chemistry, and the theory of spectral lineshapes, we show that distortions that break this symmetry are extremely stiff. They are therefore absent in solution and only marginally present in even a very highly-distorted protein binding pocket such as in the Orange Carotenoid Protein (OCP). S1 remains resolutely optically-forbidden despite any breaking of bulk molecular symmetry by the protein environment. However, rotations of partially conjugated end-rings can result in fine tuning of the S1 transition density which may exert some influence on interactions with neighbouring chromophores.
Collapse
Affiliation(s)
- Tiejun Wei
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | | | | | | | | |
Collapse
|
135
|
Saccon F, Durchan M, Kaňa R, Prášil O, Ruban AV, Polívka T. Spectroscopic Properties of Violaxanthin and Lutein Triplet States in LHCII are Independent of Carotenoid Composition. J Phys Chem B 2019; 123:9312-9320. [DOI: 10.1021/acs.jpcb.9b06293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Saccon
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, U.K
| | - Milan Durchan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Ondřej Prášil
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, U.K
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
136
|
Taffet EJ, Lee BG, Toa ZSD, Pace N, Rumbles G, Southall J, Cogdell RJ, Scholes GD. Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. J Phys Chem B 2019; 123:8628-8643. [PMID: 31553605 DOI: 10.1021/acs.jpcb.9b04027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report quantum chemical calculations using multireference perturbation theory (MRPT) with the density matrix renormalization group (DMRG) plus photothermal deflection spectroscopy measurements to investigate the manifold of carotenoid excited states and establish their energies relative to the bright state (S2) as a function of nuclear reorganization. We conclude that the primary photophysics and function of carotenoids are determined by interplay of only the bright (S2) and lowest-energy dark (S1) states. The lowest-lying dark state, far from being energetically distinguishable from the lowest-lying bright state along the entire excited-state nuclear reorganization pathway, is instead computed to be either the second or first excited state depending on what equilibrium geometry is considered. This result suggests that, rather than there being a dark intermediate excited state bridging a non-negligible energy gap from the lowest-lying dark state to the lowest-lying bright state, there is in fact no appreciable energy gap to bridge following photoexcitation. Instead, excited-state nuclear reorganization constitutes the bridge from S2 to S1, in the sense that these two states attain energetic degeneracy along this pathway.
Collapse
Affiliation(s)
- Elliot J Taffet
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Benjamin G Lee
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Zi S D Toa
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Natalie Pace
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Garry Rumbles
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - June Southall
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences , University of Glasgow , University Avenue, Glasgow G12 8QQ , U.K
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences , University of Glasgow , University Avenue, Glasgow G12 8QQ , U.K
| | - Gregory D Scholes
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
137
|
Park S, Steen CJ, Fischer AL, Fleming GR. Snapshot transient absorption spectroscopy: toward in vivo investigations of nonphotochemical quenching mechanisms. PHOTOSYNTHESIS RESEARCH 2019; 141:367-376. [PMID: 31020482 DOI: 10.1007/s11120-019-00640-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Although the importance of nonphotochemical quenching (NPQ) on photosynthetic biomass production and crop yields is well established, the in vivo operation of the individual mechanisms contributing to overall NPQ is still a matter of controversy. In order to investigate the timescale and activation dynamics of specific quenching mechanisms, we have developed a technique called snapshot transient absorption (TA) spectroscopy, which can monitor molecular species involved in the quenching response with a time resolution of 30 s. Using intact thylakoid membrane samples, we show how conventional TA kinetic and spectral analyses enable the determination of the appropriate wavelength and time delay for snapshot TA experiments. As an example, we show how the chlorophyll-carotenoid charge transfer and excitation energy transfer mechanisms can be monitored based on signals corresponding to the carotenoid (Car) radical cation and Car S1 excited state absorption, respectively. The use of snapshot TA spectroscopy together with the previously reported fluorescence lifetime snapshot technique (Sylak-Glassman et al. in Photosynth Res 127:69-76, 2016) provides valuable information such as the concurrent appearance of specific quenching species and overall quenching of excited Chl. Furthermore, we show that the snapshot TA technique can be successfully applied to completely intact photosynthetic organisms such as live cells of Nannochloropsis. This demonstrates that the snapshot TA technique is a valuable method for tracking the dynamics of intact samples that evolve over time, such as the photosynthetic system in response to high-light exposure.
Collapse
Affiliation(s)
- Soomin Park
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy Nanoscience Institute, Berkeley, CA, 94720, USA
| | - Collin J Steen
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy Nanoscience Institute, Berkeley, CA, 94720, USA
| | - Alexandra L Fischer
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy Nanoscience Institute, Berkeley, CA, 94720, USA
- Intel Corporation, NE Century Blvd 2501, Hillsboro, OR, 97214, USA
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Kavli Energy Nanoscience Institute, Berkeley, CA, 94720, USA.
| |
Collapse
|
138
|
Segatta F, Cupellini L, Garavelli M, Mennucci B. Quantum Chemical Modeling of the Photoinduced Activity of Multichromophoric Biosystems. Chem Rev 2019; 119:9361-9380. [PMID: 31276384 PMCID: PMC6716121 DOI: 10.1021/acs.chemrev.9b00135] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 01/21/2023]
Abstract
Multichromophoric biosystems represent a broad family with very diverse members, ranging from light-harvesting pigment-protein complexes to nucleic acids. The former are designed to capture, harvest, efficiently transport, and transform energy from sunlight for photosynthesis, while the latter should dissipate the absorbed radiation as quickly as possible to prevent photodamages and corruption of the carried genetic information. Because of the unique electronic and structural characteristics, the modeling of their photoinduced activity is a real challenge. Numerous approaches have been devised building on the theoretical development achieved for single chromophores and on model Hamiltonians that capture the essential features of the system. Still, a question remains: is a general strategy for the accurate modeling of multichromophoric systems possible? By using a quantum chemical point of view, here we review the advancements developed so far highlighting differences and similarities with the single chromophore treatment. Finally, we outline the important limitations and challenges that still need to be tackled to reach a complete and accurate picture of their photoinduced properties and dynamics.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari” University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Lorenzo Cupellini
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari” University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
139
|
Excited State Properties of Fucoxanthin Aggregates. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
140
|
Musser AJ, Al-Hashimi M, Heeney M, Clark J. Heavy-atom effects on intramolecular singlet fission in a conjugated polymer. J Chem Phys 2019; 151:044902. [DOI: 10.1063/1.5110269] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Andrew J. Musser
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Martin Heeney
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, Exhibition Rd., London SW7 2AZ, United Kingdom
| | - Jenny Clark
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
141
|
Abstract
After presenting the basic theoretical models of excitation energy transfer and charge transfer, I describe some of the novel experimental methods used to probe them. Finally, I discuss recent results concerning ultrafast energy and charge transfer in biological systems, in chemical systems and in photovoltaics based on sensitized transition metal oxides.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
142
|
Abstract
Entanglement of states is one of the most surprising and counterintuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic semiconductor materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which consists of a pair of localized triplet excitons coupled into an overall spin-0, -1, or -2 configuration. The most widely analyzed of these is the spin-0 pair, denoted 1(TT), which was initially invoked in the 1960s to explain delayed fluorescence in acene films. It is considered an essential gateway state for triplet-triplet annihilation and the reverse process, singlet fission, enabling interconversion between one singlet and two triplet excitons without any change in overall spin. This state has returned to the forefront of organic materials research in recent years, thanks both to its central role in the resurgent field of singlet fission and to its implication in a host of exotic new photophysical behaviors. Here we review the properties of triplet-pair states, from first principles to recent experimental results.
Collapse
Affiliation(s)
- Andrew J Musser
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom; ,
| | - Jenny Clark
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom; ,
| |
Collapse
|
143
|
Chaudhuri S, Acharya A, Nibbering ETJ, Batista VS. Regioselective Ultrafast Photoinduced Electron Transfer from Naphthols to Halocarbon Solvents. J Phys Chem Lett 2019; 10:2657-2662. [PMID: 31051077 DOI: 10.1021/acs.jpclett.9b00410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Excited state decay of 2-naphthol (2N) in halocarbon solvents has been observed to be significantly slower when compared to that of 1-naphthol (1N). In this study, we provide new physical insights behind this observation by exploring the regioselective electron transfer (ET) mechanism from photoexcited 1N and 2N to halocarbon solvents at a detailed molecular level. Using state-of-the-art electronic structure calculations, we explore several configurations of naphthol-chloroform complexes and find that the proximity of the electron-accepting chloroform molecule to the electron-rich -OH group of the naphthol is the dominant factor affecting electron transfer rates. The origin of significantly slower electron transfer rates for 2N is traced back to the notably smaller electronic coupling when the electron-accepting chloroform molecule is on top of the aromatic ring distal to the -OH group. Our findings suggest that regioselective photoinduced electron transfer could thus be exploited to control electron transfer in substituted acenes tailored for specific applications.
Collapse
Affiliation(s)
- Subhajyoti Chaudhuri
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| | - Atanu Acharya
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| | - Erik T J Nibbering
- Max Born Institut für Nichtlineare Optik and Kurzzeitspektroskopie , Max Born Strasse 2A , 12489 Berlin , Germany
| | - Victor S Batista
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| |
Collapse
|
144
|
Niedzwiedzki DM, Wolf BM, Blankenship RE. Excitation energy transfer in the far-red absorbing violaxanthin/vaucheriaxanthin chlorophyll a complex from the eustigmatophyte alga FP5. PHOTOSYNTHESIS RESEARCH 2019; 140:337-354. [PMID: 30701484 DOI: 10.1007/s11120-019-00615-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
This work highlights spectroscopic investigations on a new representative of photosynthetic antenna complexes in the LHC family, a putative violaxanthin/vaucheriaxanthin chlorophyll a (VCP) antenna complex from a freshwater Eustigmatophyte alga FP5. A representative VCP-like complex, named as VCP-B3 was studied with both static and time-resolved spectroscopies with the aim of obtaining a deeper understanding of excitation energy migration within the pigment array of the complex. Compared to other VCP representatives, the absorption spectrum of the VCP-B3 is strongly altered in the range of the chlorophyll a Qy band, and is substantially red-shifted with the longest wavelength absorption band at 707 nm at 77 K. VCP-B3 shows a moderate xanthophyll-to-chlorophyll a efficiency of excitation energy transfer in the 50-60% range, 20-30% lower from comparable VCP complexes from other organisms. Transient absorption studies accompanied by detailed data fitting and simulations support the idea that the xanthophylls that occupy the central part of the complex, complementary to luteins in the LHCII, are violaxanthins. Target analysis suggests that the primary route of xanthophyll-to-chlorophyll a energy transfer occurs via the xanthophyll S1 state.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Department of Energy, Environmental & Chemical Engineering and Center for Solar Energy and Energy Storage, Washington University in St Louis, St. Louis, MO, 63130, USA.
- Photosynthetic Antenna Research Center, Washington University in St Louis, St. Louis, MO, 63130, USA.
| | - Benjamin M Wolf
- Department of Biology, Washington University in St Louis, St. Louis, MO, 63130, USA
| | - Robert E Blankenship
- Department of Biology, Washington University in St Louis, St. Louis, MO, 63130, USA
- Department of Chemistry, Washington University in St Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
145
|
|
146
|
Microsecond and millisecond dynamics in the photosynthetic protein LHCSR1 observed by single-molecule correlation spectroscopy. Proc Natl Acad Sci U S A 2019; 116:11247-11252. [PMID: 31101718 DOI: 10.1073/pnas.1821207116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biological systems are subjected to continuous environmental fluctuations, and therefore, flexibility in the structure and function of their protein building blocks is essential for survival. Protein dynamics are often local conformational changes, which allows multiple dynamical processes to occur simultaneously and rapidly in individual proteins. Experiments often average over these dynamics and their multiplicity, preventing identification of the molecular origin and impact on biological function. Green plants survive under high light by quenching excess energy, and Light-Harvesting Complex Stress Related 1 (LHCSR1) is the protein responsible for quenching in moss. Here, we expand an analysis of the correlation function of the fluorescence lifetime by improving the estimation of the lifetime states and by developing a multicomponent model correlation function, and we apply this analysis at the single-molecule level. Through these advances, we resolve previously hidden rapid dynamics, including multiple parallel processes. By applying this technique to LHCSR1, we identify and quantitate parallel dynamics on hundreds of microseconds and tens of milliseconds timescales, likely at two quenching sites within the protein. These sites are individually controlled in response to fluctuations in sunlight, which provides robust regulation of the light-harvesting machinery. Considering our results in combination with previous structural, spectroscopic, and computational data, we propose specific pigments that serve as the quenching sites. These findings, therefore, provide a mechanistic basis for quenching, illustrating the ability of this method to uncover protein function.
Collapse
|
147
|
de la Cruz
Valbuena G, V. A. Camargo F, Borrego-Varillas R, Perozeni F, D’Andrea C, Ballottari M, Cerullo G. Molecular Mechanisms of Nonphotochemical Quenching in the LHCSR3 Protein of Chlamydomonas reinhardtii. J Phys Chem Lett 2019; 10:2500-2505. [PMID: 31042040 PMCID: PMC6613783 DOI: 10.1021/acs.jpclett.9b01184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photosynthetic organisms possess photoprotection mechanisms from excess light conditions. The fastest response consists in the pH-triggered activation of a dissipation channel of the energy absorbed by the chlorophylls into heat, called nonphotochemical quenching. In green algae, the pigment binding complex LHCSR3 acts both as a chlorophyll quencher and as a pH detector. In this work, we study the quenching of the LHCSR3 protein in vitro considering two different protein aggregation states and two pH conditions using a combination of picosecond time-resolved photoluminescence and femtosecond transient absorption in the visible and NIR spectral regions. We find that the mechanisms at the basis of LHCSR3 quenching activity are always active, even at pH 7.5 and low aggregation. However, quenching efficiency is strongly enhanced by pH and by aggregation conditions. In particular, we find that electron transfer from carotenoids to chlorophylls is enhanced at low pH, while quenching mediated by protein-protein interactions is increased by going to a high aggregation state. We also observe a weak pH-dependent energy transfer from the chlorophylls to the S1 state of carotenoids.
Collapse
Affiliation(s)
| | - Franco V. A. Camargo
- IFN-CNR,
Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
| | - Rocio Borrego-Varillas
- IFN-CNR,
Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
| | - Federico Perozeni
- Dipartimento
di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Cosimo D’Andrea
- IFN-CNR,
Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
- Center
for NanoScience and Technology@PoliMi, Istituto
Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- E-mail:
| | - Matteo Ballottari
- Dipartimento
di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
- E-mail:
| | - Giulio Cerullo
- IFN-CNR,
Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
- E-mail:
| |
Collapse
|
148
|
Leng X, Jin F, Wei M, Ma H, Feng J, Ma Y. Electronic energy transfer studied by many-body Green’s function theory. J Chem Phys 2019; 150:164107. [DOI: 10.1063/1.5066290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Xia Leng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fan Jin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Min Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huizhong Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jin Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuchen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
149
|
Bennett DIG, Amarnath K, Park S, Steen CJ, Morris JM, Fleming GR. Models and mechanisms of the rapidly reversible regulation of photosynthetic light harvesting. Open Biol 2019; 9:190043. [PMID: 30966997 PMCID: PMC6501642 DOI: 10.1098/rsob.190043] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/07/2019] [Indexed: 02/02/2023] Open
Abstract
The rapid response of photosynthetic organisms to fluctuations in ambient light intensity is incompletely understood at both the molecular and membrane levels. In this review, we describe research from our group over a 10-year period aimed at identifying the photophysical mechanisms used by plants, algae and mosses to control the efficiency of light harvesting by photosystem II on the seconds-to-minutes time scale. To complement the spectroscopic data, we describe three models capable of describing the measured response at a quantitative level. The review attempts to provide an integrated view that has emerged from our work, and briefly looks forward to future experimental and modelling efforts that will refine and expand our understanding of a process that significantly influences crop yields.
Collapse
Affiliation(s)
- Doran I. G. Bennett
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kapil Amarnath
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Soomin Park
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Collin J. Steen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Jonathan M. Morris
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| |
Collapse
|
150
|
Son M, Pinnola A, Bassi R, Schlau-Cohen GS. Ultrabroadband two-dimensional electronic spectroscopy reveals energy flow pathways in LHCII across the visible spectrum. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920509034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We utilise ultrabroadband two-dimensional electronic spectroscopy to map out pathways of energy flow in LHCII across the entire visible region. In addition to the well-established, low-lying chlorophyll Qy bands, our results reveal additional pathways of energy relaxation on the higher-lying excited states involving the S2 energy levels of carotenoids, including ultrafast carotenoid-to-chlorophyll energy transfer on 90-150 fs timescales.
Collapse
|