101
|
Manjón‐Mata I, Quirós MT, Velasco‐Juárez E, Buñuel E, Cárdenas DJ. Nickel‐Catalyzed Hydroborylative Polycyclization of Allenynes: an Atom‐Economical and Diastereoselective Synthesis of Bicyclic 5‐5 Fused Rings. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Inés Manjón‐Mata
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - M. Teresa Quirós
- Department of Organic Chemistry and Inorganic Chemistry Facultad de Farmacia Universidad de Alcalá Campus Universitario. Ctra. Madrid-Barcelona, Km. 33,600. Alcalá de Henares 28871 Madrid Spain
| | - Elena Velasco‐Juárez
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Elena Buñuel
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Diego J. Cárdenas
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
102
|
Karunakar GV, Raju CE, Sreenivasulu G, Bharath Kumar P, Kadiyala V, Sridhar B. Cationic gold-catalyzed intramolecular cyclization of substituted 1,5-diynes to access indenone derivatives. Chem Asian J 2022; 17:e202101408. [PMID: 35243791 DOI: 10.1002/asia.202101408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Indexed: 11/05/2022]
Abstract
An efficient intramolecular cyclization reaction was developed to achive indenone derivatives. The substituted 1,5-diyenes were converted to the cooresponding indenones via gold-catalyzed organic transformation and moderate to excellent yields of the title molecules were obatined via formation of two C=O and one C-C bonds under mild reaction condtions in one-pot.
Collapse
Affiliation(s)
- Galla V Karunakar
- CSIR-IICT, Crop Protection Chemicals Division, Uppal Road, Tarnaka, 500007, Hyderabad, INDIA
| | - Chittala Emmaniel Raju
- Indian Institute of Chemical Technology CSIR: Indian Institute of Chemical Technology, Chemistry, INDIA
| | - Gottam Sreenivasulu
- Indian Institute of Chemical Technology CSIR: Indian Institute of Chemical Technology, Chemistry, INDIA
| | | | | | | |
Collapse
|
103
|
Han X, Gaignard-Gaillard Q, Retailleau P, Gandon V, Voituriez A. Synthesis of chiral polycyclic N-heterocycles via gold(I)-catalyzed 1,6-enyne cyclization/intramolecular nucleophilic addition. Chem Commun (Camb) 2022; 58:3043-3046. [PMID: 35156961 DOI: 10.1039/d1cc06388j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cycloisomerization of N-tethered indole- and dihydropyrrole-arylpropargyl substrates into complex polycycles was investigated by using gold(I) catalysis. Enantioselectivities up to 93% ee were obtained in the asymmetric version of this process. DFT calculations rationalized the reactivity observed for the formation of such complex molecular frameworks.
Collapse
Affiliation(s)
- Xu Han
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France. .,Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France.
| | - Quentin Gaignard-Gaillard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France. .,Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France.
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Vincent Gandon
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France. .,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
104
|
Xu B, Zhang Z, Han J, Gu G, Zhang J. Enantioselectivity Tunable Gold‐catalyzed Intermolecular [3+2] Cycloaddition of
N
‐Allenamides
with Nitrones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bing Xu
- Department of Chemistry Fudan University, 2005 Songhu Road Shanghai 200438 P. R. China
- Zhuhai Fudan Innovation Institute Zhuhai 519000 China
| | - Zhan‐Ming Zhang
- Department of Chemistry Fudan University, 2005 Songhu Road Shanghai 200438 P. R. China
| | - Jie Han
- Department of Chemistry Fudan University, 2005 Songhu Road Shanghai 200438 P. R. China
- Zhuhai Fudan Innovation Institute Zhuhai 519000 China
| | - Guangxin Gu
- Department of Materials Science Fudan University, 2005 Songhu Road Shanghai 200438 P.R China
- Zhuhai Fudan Innovation Institute Zhuhai 519000 China
| | - Junliang Zhang
- Department of Chemistry Fudan University, 2005 Songhu Road Shanghai 200438 P. R. China
- Zhuhai Fudan Innovation Institute Zhuhai 519000 China
| |
Collapse
|
105
|
Chan P, Baratay C, Li W, Mathiew M, Yu L, Kyne S, Rao W. Gold‐ and Brønsted Acid‐Catalysed Deacyloxylative Cycloaromatisation of 1,6‐Diyne Esters to 11H‐Benzo[a]fluorenes and 13H‐Indeno[1,2‐l]phenanthrenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Wenhai Li
- China Pharmaceutical University CHINA
| | | | - Lei Yu
- Monash University AUSTRALIA
| | | | | |
Collapse
|
106
|
Sun Q, Deng TY, Chen JJ, Liu JY, Lu X, Zhang ZX, Li JH. Insights into the gold(I)-catalyzed intermolecular annulations of alkynes with N-allenamides: a mechanistic DFT study. Dalton Trans 2022; 51:3734-3739. [PMID: 35166737 DOI: 10.1039/d1dt04028f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of Au(I)-catalyzed intermolecular annulation of 2-(1-alkynyl)-2-alken-1-one with N-allenamide was carefully elucidated using density functional theory (DFT). The reaction is initiated by the binding of the Au(I) catalyst with 2-(1-alkynyl)-2-alken-1-one rather than with N-allenamide. The key intermediate, a gold all-carbon 1,3-dipole species, is revealed to be more reactive than the gold allylic carbocation. The influence of ligands and substituents was rationally analyzed. We believe that our study will provide deeper mechanistic insights into the chemoselective reactions of alkynes with N-allenamide.
Collapse
Affiliation(s)
- Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Tian-Yu Deng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jia-Jie Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jia-Yi Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface & Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi-Xia Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
107
|
Fan Z, Ni SF, Pang JY, Guo LT, Yang H, Li K, Ma C, Liu JK, Wu B, Yang JM. Cu(I)-Catalyzed Cross-Coupling Rearrangements of Terminal Alkynes with Tropylium Tetrafluoroborate: Facile Access to Barbaralyl-Substituted Allenyl Acid Esters and 7-Alkynyl Cycloheptatrienes. J Org Chem 2022; 87:3066-3078. [DOI: 10.1021/acs.joc.1c02849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhe Fan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Jin-Yu Pang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Li-Ting Guo
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hao Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ke Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Cheng Ma
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
108
|
Giovanardi G, Secchi A, Arduini A, Cera G. Diametric calix[6]arene-based phosphine gold(I) cavitands. Beilstein J Org Chem 2022; 18:190-196. [PMID: 35233258 PMCID: PMC8848346 DOI: 10.3762/bjoc.18.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/02/2022] [Indexed: 12/18/2022] Open
Abstract
We report the synthesis and characterization, in low polarity solvents, of a novel class of diametric phosphine gold(I) cavitands characterized by a 1,2,3-alternate geometry. Preliminary catalytic studies were performed on a model cycloisomerization of 1,6-enynes as a function of the relative orientation of the bonded gold(I) nuclei with respect to the macrocyclic cavity.
Collapse
Affiliation(s)
- Gabriele Giovanardi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Arturo Arduini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
109
|
Ito M, Onoda H, Takaki A, Shibata T. Gold‐Catalyzed Cascade and Divergent Synthesis of Indolobenzazepines and Indoloquinolines from Nitrogen‐Tethered 1,8‐Diynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mamoru Ito
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University Shinjuku, Tokyo 169-8555 Japan
| | - Hideaki Onoda
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University Shinjuku, Tokyo 169-8555 Japan
| | - Asahi Takaki
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University Shinjuku, Tokyo 169-8555 Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University Shinjuku, Tokyo 169-8555 Japan
| |
Collapse
|
110
|
Ge J, Wu H, Kong D, Huang G. Mechanism and Origins of Enantioselectivity of Cobalt-Catalyzed Intermolecular Hydroacylation/Cyclization of 1,6-Enynes with Aldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo00179a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations were performed to investigate the cobalt-catalyzed intermolecular hydroacylation/cyclization of 1,6-enynes. The computations show that the initial oxidative cyclization constitutes the rate-determining step of the overall reaction....
Collapse
|
111
|
Casciotti M, Romo-Islas G, Álvarez M, Molina F, Muñoz-Molina JM, Belderrain TR, Rodríguez L. Gold( i) complexes bearing a PNP-type pincer ligand: photophysical properties and catalytic investigations. Dalton Trans 2022; 51:17162-17169. [DOI: 10.1039/d2dt02429b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of two dinuclear and five tetranuclear gold(i) complexes bearing the 2,6-bis(diphenylphosphinomethyl)pyridine diphosphane ligand (DPPMPY) are herein reported.
Collapse
Affiliation(s)
- Martina Casciotti
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Guillermo Romo-Islas
- Departament de Química Inorgànica i Orgànica. Secció de Química Inorgànica. Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| | - María Álvarez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Francisco Molina
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - José María Muñoz-Molina
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Tomás R. Belderrain
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica. Secció de Química Inorgànica. Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
112
|
Shi C, Zhou JJ, Hong P, Zhu BH, Hong FL, Qian PC, Sun Q, Lu X, Ye LW. Efficient synthesis of tetracyclic γ-lactams via gold-catalyzed oxidative cyclization of alkenyl diynes. Org Chem Front 2022. [DOI: 10.1039/d2qo00123c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient gold-catalyzed cascade cyclization of alkenyl diynes involving alkyne oxidation, carbene-alkyne metathesis and cyclopropanation has been developed, furnishing a series of tetracyclic γ-lactams bearing one quaternary carbon center and...
Collapse
|
113
|
Pan C, Wang G, Zhao H, Ni J, Fan R, Zhou Y, Zhu Y, Wu S, Fan B. Cobalt-catalyzed cascade hydroalkenylation of 1,6-enynes with chalcones. Org Chem Front 2022. [DOI: 10.1039/d1qo01450a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient stereoselective cobalt-catalyzed hydrovinylative cyclization of 1,6-enynes with chalcones to obtain functionalized pyrrolidines has been developed.
Collapse
Affiliation(s)
- Chunxiang Pan
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Gaowei Wang
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Hengyuan Zhao
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Jianxiao Ni
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Ruifeng Fan
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Yongyun Zhou
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Yuanbin Zhu
- Yunnan Tiefeng High Tech Mining Chemicals. Co. Ltd, Qingfeng Industrial Park, Lufeng, 651200, Yunnan Province, China
| | - Shiyuan Wu
- Yunnan Tiefeng High Tech Mining Chemicals. Co. Ltd, Qingfeng Industrial Park, Lufeng, 651200, Yunnan Province, China
| | - Baomin Fan
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
- Yunnan Tiefeng High Tech Mining Chemicals. Co. Ltd, Qingfeng Industrial Park, Lufeng, 651200, Yunnan Province, China
| |
Collapse
|
114
|
Vicente R, Tudela E, Rodríguez MA, Suarez AL, Ballesteros A. Gold-Catalysed Rearrangement of Unconventional Cyclopropane-Tethered 1,5-Enynes. Chem Commun (Camb) 2022; 58:8206-8209. [DOI: 10.1039/d2cc02869g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of particular cyclopropane-tethered 1,5-enynes, namely 6-alkynyl-4-alkylidenebicyclo[3.1.0]hex-2-enes, enabled the discovery of an unprecedented gold-catalyzed rearrangment to indenes. A computational study of the mechanism of this profund skeleton rearrangement is...
Collapse
|
115
|
Zhu D, Cao T, Chen K, Zhu S. Rh2(II)-Catalyzed Enantioselective Intramolecular Büchner Reaction and Aromatic Substitution of Donor-Donor Carbenes. Chem Sci 2022; 13:1992-2000. [PMID: 35308865 PMCID: PMC8848862 DOI: 10.1039/d1sc05374d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
The chiral dirhodium(ii) tetracarboxylate-catalyzed enantioselective intramolecular Büchner reaction of donor/donor-carbenes was reported and a series of valuable chiral polycyclic products were synthesized. Both aryloxy enynones and diazo compounds were efficient carbene precursors for this reaction. Excellent yields (up to 99%) and outstanding enantioselectivities (up to >99% ee) were achieved under standard conditions. For furyl substituted chiral cyclohepta[b]benzofurans bearing a substituent at the C4 position on cycloheptatrienes, control reactions showed that the chiral Büchner products could slowly racemize either under dark or natural light conditions. A diradical-involved mechanism rather than a zwitterionic intermediate was proposed to explain the racemization. Furthermore, furyl substituted chiral fluorene derivatives were obtained via asymmetric aromatic substitution when biaryl enynones were employed as carbene precursors. The chiral dirhodium(ii) tetracarboxylate-catalyzed enantioselective intramolecular Büchner reaction and aromatic substitution of donor/donor-carbenes were reported and a series of valuable chiral polycyclic products were synthesized.![]()
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan 528225 P. R. China
| |
Collapse
|
116
|
Chi X, Xia T, Yang Y, Cao T, Zhang D, Liu H. Highly Diastereoselective Synthesis of Octahydro-1H-cyclpenta[c]pyridine Skeleton via Pd/Au-Relay Catalyzed Cascade Reaction of (Z)-1-Iodo-1,6-diene and Alkyne. Org Chem Front 2022. [DOI: 10.1039/d2qo00233g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Octahydro-1H-cyclopenta[c]pyridine Skeletons exist in a broad spectrum of bioactive natural products, and the development of efficient and convenient protocols to construct this skeleton remains a challenging task. Herein, we...
Collapse
|
117
|
Lv K, Bao X. Mechanistic insights into nickel- and gold-catalyzed diastereoselective [4 + 2 + 1] cycloadditions between dienynes and diazo compounds: a DFT study. Org Chem Front 2022. [DOI: 10.1039/d1qo01468d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Density functional theory (DFT) calculations were performed to gain an in-depth mechanistic understanding of Ni(0)- and Au(i)-catalyzed diastereoselective [4 + 2 + 1] cycloadditions between dienynes and diazo compounds.
Collapse
Affiliation(s)
- Kang Lv
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
- School of Engineering, Jining University, Qufu, Shandong 273155, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
118
|
Li C, Yang Y, Zhou Y, Yu Z. A Formal [3+3+1] Reaction of Enyne‐Methylenecyclopropanes through Au(I)‐Catalyzed Enyne Cycloisomerization and Rh(I)‐Catalyzed [6+1] Reaction of Vinylspiropentanes and CO. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chen‐Long Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry Peking University Beijing 100871 P. R. China
| | - Yusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry Peking University Beijing 100871 P. R. China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry Peking University Beijing 100871 P. R. China
| | - Zhi‐Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry Peking University Beijing 100871 P. R. China
| |
Collapse
|
119
|
Mane BB, Waghmode SB. Iron-Catalyzed Ring Opening of Cyclopropanols and Their 1,6-Conjugate Addition to p-Quinone Methides. J Org Chem 2021; 86:17774-17781. [PMID: 34813312 DOI: 10.1021/acs.joc.1c02059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel iron-catalyzed ring opening of cyclopropanols and their 1,6-conjugate addition to p-quinone methides for accessing substituted phenols is disclosed. In this protocol, various cyclopropanols are converted to alkyl radicals and undergo 1,6-conjugate addition to p-quinone methides toward C-C bond formation. The salient features of this methodology include operationally simple and mild reaction conditions, environmentally benign protocol, high efficiency, inexpensive catalyst, good to excellent yield, and a wide range of substrate scope.
Collapse
Affiliation(s)
- Baliram B Mane
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Suresh B Waghmode
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| |
Collapse
|
120
|
Dupeux A, Michelet V. Gold-Catalyzed Domino Cycloisomerization/Alkoxylation: An Entry to 3,4-Dihydro-1 H-[1,4]oxazino[4,3- a]indole. J Org Chem 2021; 86:17738-17747. [PMID: 34633827 DOI: 10.1021/acs.joc.1c02030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel and mild synthetic route for the preparation of functionalized polycyclic indole skeletons via a gold-mediated cycloisomerization/alkoxylation of 1,6-aldehyde-yne has been developed. This atom-economical catalytic process that associates IPrAu(MeCN)BF4 and an alcohol demonstrated remarkable selectivity in accessing functionalized 3,4-dihydro-1H-[1,4]oxazino[4,3-a]indole derivatives of high synthetic utility (21 examples, yields of ≤96%) and could be optimized under asymmetric conditions with an enantiomeric excess of ≤86%.
Collapse
Affiliation(s)
- Aurélien Dupeux
- Côte d'Azur University, Institut de Chimie de Nice, Valrose Park, 06108 Nice Cedex 2, France
| | - Véronique Michelet
- Côte d'Azur University, Institut de Chimie de Nice, Valrose Park, 06108 Nice Cedex 2, France
| |
Collapse
|
121
|
Kadiyala V, Raju CE, Bania KK, Sridhar B, Karunakar GV. Gold (I)-Promoted Intermolecular Cascade Annulation to Access 2-Hydroxybenzocarbazoles via a Meyer-Schuster Rearrangement. Chem Asian J 2021; 17:e202101269. [PMID: 34874100 DOI: 10.1002/asia.202101269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Indexed: 02/03/2023]
Abstract
An efficient cascade annulation protocol was established to access substituted 2-hydroxybenzocarbazoles from alkynylcyclohexadienones and substituted 2-aminophenols under gold catalysis. In this transformation a new C-C, two C-N bonds were formed sequentially and moderate to excellent yields of 2-hydroxybenzocarbazole derivatives were obtained selectively via Meyer-Schuster rearrangement in one-pot.
Collapse
Affiliation(s)
- Veerabhushanam Kadiyala
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India.,Academy of Scientific and Innovative Research, 201002, Ghaziabad, India
| | - Chittala Emmaniel Raju
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India.,Academy of Scientific and Innovative Research, 201002, Ghaziabad, India
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, 784028, Assam, India
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India
| | - Galla V Karunakar
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, 500007, Hyderabad, India.,Academy of Scientific and Innovative Research, 201002, Ghaziabad, India
| |
Collapse
|
122
|
Baire B, Yadav B. TfOH catalysed domino-double annulation of arenes with propargylic alcohols: a unified approach to indene polycyclic systems. Chem Commun (Camb) 2021; 57:12796-12799. [PMID: 34782905 DOI: 10.1039/d1cc05253e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and development of a TfOH catalysed domino strategy for the double annulation of arenes with propargylic alcohols for the rapid generation of indene based polycyclic systems is reported. The dehydration, intramolecular 6-endo-dig hydroarylation, and cationic cyclization were consecutively promoted by TfOH. The key features of this strategy are the formation of two C-C bonds, unified access to indene polycyclic systems, excellent yields (up to 95%), high atom economy (>90%), an operationally simple procedure, and water being the only byproduct. By extending this strategy, a two-step synthesis of the pentacyclic systems of hypoxylonol A (43% overall yield from α-tetralone), daldinone A (63% overall yield from β-tetralone) and spiro-tetracyclic framework of incarviatone A has also been achieved.
Collapse
Affiliation(s)
- Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamilnadu, India.
| | - Bhavna Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamilnadu, India.
| |
Collapse
|
123
|
Tao L, Wei Y, Shi M. Gold‐Catalyzed Intramolecular Tandem Cyclization of Alkynol‐Tethered Alkylidenecyclopropanes to Construct Naphthalene‐Fused Eight‐ to Eleven‐Membered Cyclic Ethers. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Leyi Tao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
124
|
Maliszewska HK, Arnau Del Valle C, Xia Y, Marín MJ, Waller ZAE, Muñoz MP. Precious metal complexes of bis(pyridyl)allenes: synthesis and catalytic and medicinal applications. Dalton Trans 2021; 50:16739-16750. [PMID: 34761768 DOI: 10.1039/d1dt02929k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of donor-type substituents on the allene core opens up the possibility of coordination complexes in which the metal is bonded to the donor groups, with or without interaction with the double bond system. Despite the challenges in the synthesis of such allene-containing metal complexes, their unique 3D environments and dual functionality (allene and metal) could facilitate catalysis and interaction with chemical and biological systems. Bis(pyridyl)allenes are presented here as robust ligands for novel Pd(II), Pt(IV) and Au(III) complexes. Their synthesis, characterisation and first application as catalysts of benchmark reactions for Pd, Pt and Au are presented with interesting reactivity and selectivities. The complexes have also been probed as antimicrobial and anticancer agents with promising activities, and the first studies on their unusual interaction with several DNA structures will open new avenues for research in the area of metallodrugs with new mechanisms of action.
Collapse
Affiliation(s)
- Hanna K Maliszewska
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ying Xia
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - María Paz Muñoz
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
125
|
Michelet V. Gold-Catalyzed Reactions Towards Diversity: From Simple Substrates to Functionalized Carbo- and Heterocycles. CHEM REC 2021; 21:3884-3896. [PMID: 34747571 DOI: 10.1002/tcr.202100253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Indexed: 12/29/2022]
Abstract
The field of gold catalysis has been in constant expansion during the last twenty years. Based on the precept of π-activation of unsaturated simple substrates, several new rearrangements have been discovered, implying aryl, alkyne, alkene or keto derivatives as key partners. In this personal account, the main contributions in the field of gold catalysis from our group will be highlighted, emphasizing the recent reports, starting from 1,6- and 1,5-enynes and then moving to keto-ynes derivatives. The gold-catalyzed reactions will be presented starting from classical skeletal rearrangements (cycloisomerization) and then domino processes. In each part, the presentation of asymmetric versions will be highlighted.
Collapse
Affiliation(s)
- Véronique Michelet
- Côte d'Azur University, Institut de Chimie de Nice, UMR 7272 CNRS, Valrose Park, Faculty of Sciences, 06108, Nice Cedex 2, France
| |
Collapse
|
126
|
Serafino A, Camedda N, Lanzi M, Della Ca' N, Cera G, Maestri G. Inter/Intramolecular Cascade of 1,6-Enynes Catalyzed by All-Metal Aromatic Tripalladium Complexes and Carboxylic Acids. J Org Chem 2021; 86:15433-15452. [PMID: 34657418 DOI: 10.1021/acs.joc.1c01962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trinuclear all-metal aromatic clusters are an original class of molecules with a cyclic and planar metal core. Characterized by peculiar metal-metal delocalized bonds, they represent a new frontier in transition-metal catalysis. We report a study on C-C-forming reactions of polyunsaturated substrates catalyzed by trinuclear all-metal aromatic palladium clusters. The synthesis of two new families of tricyclic compounds was obtained with a broad functional group tolerance under mild reaction conditions. A peculiar regio- and diastereoselectivity characterized the method, demonstrating that trinuclear palladium complexes are complementary to their popular mononuclear peers. Furthermore, preliminary studies on the mechanism of these polycyclization reactions revealed unique features of the homogeneous catalytic system.
Collapse
Affiliation(s)
- Andrea Serafino
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicola Camedda
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Matteo Lanzi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicola Della Ca'
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Giovanni Maestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
127
|
Hatzfeld J, Skowaisa S, Jäckel E, Kaufmann J, Haak E. Triaminocyclopentadienyl Ruthenium Complexes - New Catalysts for Cascade Conversions of Propargyl Alcohols. Chemistry 2021; 27:15545-15553. [PMID: 34469004 PMCID: PMC8597154 DOI: 10.1002/chem.202102959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 12/13/2022]
Abstract
Various triaminocyclopentadienyl ruthenium complexes have been synthesized from Ru3 (CO)12 . The new complexes were tested for their ability to catalyze cascade conversions of propargyl alcohols. Their associated catalytic activities complement the activities of known diaminocyclopentadienone ruthenium complexes. In particular, the substrate scope of catalytic cycloadditions with 3-ketolactones or phloroglucinol derivatives is extended to terpenoid-derived propargyl alcohols containing an internal alkyne moiety. A wide range of cyclic terpenoid and phloroglucinol adducts are obtained by complementary application of both types of catalysts.
Collapse
Affiliation(s)
- Jana Hatzfeld
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Steffen Skowaisa
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Elisabeth Jäckel
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Julia Kaufmann
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Edgar Haak
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
128
|
Wodrich MD, Corminboeuf C. Methoxycyclization of 1,5‐Enynes by Coinage Metal Catalysts: Is Gold Always Superior? Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Matthew D. Wodrich
- Laboratory for Computational Molecular Design Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
- National Center for Competence in Research – Catalysis (NCCR-Catalysis) Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
- National Center for Competence in Research – Catalysis (NCCR-Catalysis) Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
- National Center for Computational Design and Discovery of Novel Materials (MARVEL) Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
129
|
Akhmetov V, Feofanov M, Sharapa DI, Amsharov K. Alumina-Mediated π-Activation of Alkynes. J Am Chem Soc 2021; 143:15420-15426. [PMID: 34499504 DOI: 10.1021/jacs.1c07845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ability to induce powerful atom-economic transformation of alkynes is the key feature of carbophilic π-Lewis acids such as gold- and platinum-based catalysts. The unique catalytic activity of these compounds in electrophilic activations of alkynes is explained through relativistic effects, enabling efficient orbital overlapping with π-systems. For this reason, it is believed that noble metals are indispensable components in the catalysis of such reactions. In this study, we report that thermally activated γ-Al2O3 activates enynes, diynes, and arene-ynes in a manner enabling reactions that were typically assigned to the softest π-Lewis acids, while some were known to be triggered exclusively by gold catalysts. We demonstrate the scope of these transformations and suggest a qualitative explanation of this phenomenon based on the Dewar-Chatt-Duncanson model confirmed by density functional theory calculations.
Collapse
Affiliation(s)
- Vladimir Akhmetov
- Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.,Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander University Erlangen-Nuernberg, Nikolaus-Fiebiger Str. 10, 91058 Erlangen, Germany
| | - Mikhail Feofanov
- Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany.,Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander University Erlangen-Nuernberg, Nikolaus-Fiebiger Str. 10, 91058 Erlangen, Germany
| | - Dmitry I Sharapa
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Konstantin Amsharov
- Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany
| |
Collapse
|
130
|
Zhou S, Li Y, Liu X, Hu W, Ke Z, Xu X. Enantioselective Oxidative Multi-Functionalization of Terminal Alkynes with Nitrones and Alcohols for Expeditious Assembly of Chiral α-Alkoxy-β-amino-ketones. J Am Chem Soc 2021; 143:14703-14711. [PMID: 34463096 DOI: 10.1021/jacs.1c06178] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Catalytic oxidative functionalization of alkynes has emerged as an effective method in synthetic chemistry in recent decades. However, enantioselective transformations via metal carbene intermediates are quite rare due to the lack of robust chiral catalysts, especially in the intermolecular versions. Herein, we report the first asymmetric three-component reaction of commercially available alkynes with nitrones and alcohols, which affords α-alkoxy-β-amino-ketones in good yields with high to excellent enantioselectivity using combined catalysis by an achiral gold complex and a chiral spiro phosphoric acid (CPA). Mechanistically, this atom-economic reaction involves a catalytic alkyne oxidation/ylide formation/Mannich-type addition sequence that uses nitrone as the oxidant and the leaving fragment imine as the electrophile, providing a novel method for multi-functionalization of commercially available terminal alkynes.
Collapse
Affiliation(s)
- Su Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinwu Li
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiangrong Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
131
|
Wu R, Lu J, Cao T, Ma J, Chen K, Zhu S. Enantioselective Rh(II)-Catalyzed Desymmetric Cycloisomerization of Diynes: Constructing Furan-Fused Dihydropiperidines with an Alkyne-Substituted Aza-Quaternary Stereocenter. J Am Chem Soc 2021; 143:14916-14925. [PMID: 34469135 DOI: 10.1021/jacs.1c07556] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Described herein is an enantioselective dirhodium(II)-catalyzed cycloisomerization of diynes achieved by the strategy of desymmetrization, which not only represents a new cycloisomerization reaction of diynes but also constitutes the first Rh(II)-catalyzed asymmetric intramolecular cycloisomerization of 1,6-diynes. This protocol provides a range of valuable furan-fused dihydropiperidine derivatives with an enantiomerically enriched alkynyl-substituted aza-quaternary stereocenter in high efficiency, complete atom economy, and excellent enantioselectivity (up to 98% ee). Besides, the highly functionalized products could be easily transformed into various synthetically useful building blocks and conjugated with a series of pharmaceutical molecules. The mechanism involving a concerted [3+2] cycloaddition/[1,2]-H shift of the Rh(II) carbenoid intermediate was elucidated by DFT calculations and mechanistic studies. More importantly, the first single crystal of alkyne-dirhodium(II) was obtained to show that a η2-coordinating activation of alkynal by dirhodium(II) was involved. Weak hydrogen bondings between the carboxylate ligands and alkynal were found, which probably made the well-defined paddlewheel-like dirhodium(II) distinctive from other metal complexes in catalyzing this transformation. Furthermore, the origin of the enantioselectivity was elucidated by a Rh2(R-PTAD)4-alkyne complex and additional calculational studies.
Collapse
Affiliation(s)
- Rui Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jiajun Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jun Ma
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China.,Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
132
|
Darmandeh H, Löffler J, Tzouras NV, Dereli B, Scherpf T, Feichtner K, Vanden Broeck S, Van Hecke K, Saab M, Cazin CSJ, Cavallo L, Nolan SP, Gessner VH. Au⋅⋅⋅H-C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angew Chem Int Ed Engl 2021; 60:21014-21024. [PMID: 34313367 PMCID: PMC8518757 DOI: 10.1002/anie.202108581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 01/15/2023]
Abstract
Secondary ligand-metal interactions are decisive in many catalytic transformations. While arene-gold interactions have repeatedly been reported as critical structural feature in many high-performance gold catalysts, we herein report that these interactions can also be replaced by Au⋅⋅⋅H-C hydrogen bonds without suffering any reduction in catalytic performance. Systematic experimental and computational studies on a series of ylide-substituted phosphines featuring either a PPh3 (Ph YPhos) or PCy3 (Cy YPhos) moiety showed that the arene-gold interaction in the aryl-substituted compounds is efficiently compensated by the formation of Au⋅⋅⋅H-C hydrogen bonds. The strongest interaction is found with the C-H moiety next to the onium center, which due to the polarization results in remarkably strong interactions with the shortest Au⋅⋅⋅H-C hydrogen bonds reported to date. Calorimetric studies on the formation of the gold complexes further confirmed that the Ph YPhos and Cy YPhos ligands form similarly stable complexes. Consequently, both ligands showed the same catalytic performance in the hydroamination, hydrophenoxylation and hydrocarboxylation of alkynes, thus demonstrating that Au⋅⋅⋅H-C hydrogen bonds are equally suited for the generation of highly effective gold catalysts than gold-arene interactions. The generality of this observation was confirmed by a comparative study between a biaryl phosphine ligand and its cyclohexyl-substituted derivative, which again showed identical catalytic performance. These observations clearly support Au⋅⋅⋅H-C hydrogen bonds as fundamental secondary interactions in gold catalysts, thus further increasing the number of design elements that can be used for future catalyst construction.
Collapse
Affiliation(s)
- Heidar Darmandeh
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Julian Löffler
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Busra Dereli
- Physical Sciences & Engineering Division (PSE)KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Sofie Vanden Broeck
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Luigi Cavallo
- Physical Sciences & Engineering Division (PSE)KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
133
|
Suárez‐Rodríguez T, Suárez‐Sobrino ÁL, Ballesteros A. Gold(I)-Catalyzed Intermolecular Formal [4+2] Cycloaddition of O-Aryl Ynol Ethers and Enol Ethers: Synthesis of Chromene Derivatives. Chemistry 2021; 27:13079-13084. [PMID: 34278626 PMCID: PMC8518403 DOI: 10.1002/chem.202102534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Gold(I)-catalyzed formal [4+2] cycloaddition of O-aryl ynol ethers 1 and enol ethers 2 is described. This intermolecular reaction between two electron-rich unsaturated systems takes place, under mild conditions, in the presence of 5 mol% [IPrAu(CH3 CN)]SbF6 as catalyst giving chromene derivatives with good yields. The cycloaddition is completely regio- and stereoselective, as well as versatile for both reactives. Silyl enol ethers can also react in the same way and under the same reaction conditions with quantitative yields. A plausible mechanism through a selective addition of the enol ether to the alkyne gold activated complex followed by an intramolecular aromatic electrophilic substitution is proposed. Several experimental results support the presence of a cationic oxonium intermediate prior to the aromatic substitution. The reaction represents a new entry to the chromene core.
Collapse
Affiliation(s)
- Tatiana Suárez‐Rodríguez
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| | - Ángel L. Suárez‐Sobrino
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| | - Alfredo Ballesteros
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| |
Collapse
|
134
|
Greiner LC, Matsuoka J, Inuki S, Ohno H. Azido-Alkynes in Gold(I)-Catalyzed Indole Syntheses. CHEM REC 2021; 21:3897-3910. [PMID: 34498385 DOI: 10.1002/tcr.202100202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Indexed: 12/20/2022]
Abstract
The exploitation of nitrogen-functionalized reactive intermediates plays an important role in the synthesis of biologically relevant scaffolds in the field of pharmaceutical sciences. Those based on gold carbenes carry a strong potential for the design of highly efficient cascade processes toward the synthesis of compounds containing a fused indole core structure. This personal account gives a detailed explanation of our contribution to this sector, and embraces the reaction development of efficient gold-catalyzed cascade processes based on diversely functionalized azido-alkynes. Challenging cyclizations and their subsequent application in the synthesis of pharmaceutically relevant scaffolds and natural products conducted in an intra- or intermolecular fashion are key features of our research.
Collapse
Affiliation(s)
- Luca C Greiner
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junpei Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan.,Current address: Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, 610-0395, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
135
|
Sreenivasulu G, Kadiyala V, Raju CE, Sridhar B, Karunakar GV. Gold‐Catalyzed Synthesis of Pyrazolo[1,5‐
a
]pyridines Regioselectively
via
6‐
endo‐dig
Cyclization. ChemistrySelect 2021. [DOI: 10.1002/slct.202102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gottam Sreenivasulu
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India)
| | - Veerabhushanam Kadiyala
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India)
| | - Chittala Emmaniel Raju
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India)
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India)
| | - Galla V. Karunakar
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India)
| |
Collapse
|
136
|
Zuccarello G, Escofet I, Caniparoli U, Echavarren AM. New-Generation Ligand Design for the Gold-Catalyzed Asymmetric Activation of Alkynes. Chempluschem 2021; 86:1283-1296. [PMID: 34472729 PMCID: PMC8457203 DOI: 10.1002/cplu.202100232] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Indexed: 01/01/2023]
Abstract
Gold(I) catalysts are ideal for the activation of alkynes under very mild conditions. However, unlike allenes or alkenes, the triple bond of alkynes cannot be prochiral. In addition, the linear coordination displayed by gold(I) complexes places the chiral ligand far away from the substrate resulting in an inefficient transfer of chiral information. This poses a significant challenge for the achievement of high enantiocontrol in gold(I)-catalyzed reactions of alkynes. Although considerable progress on enantioselective gold(I)-catalyzed transformations has recently been achieved, the asymmetric activation of non-prochiral alkyne-containing small molecules still represents a great challenge. Herein we summarize recent advances in intra- and intermolecular enantioselective gold(I)-catalyzed reactions involving alkynes, discussing new chiral ligand designs that lie at the basis of these developments. We also focus on the mode of action of these catalysts, their possible limitations towards a next-generation of more efficient ligand designs. Finally, square planar chiral gold(III) complexes, which offer an alternative to chiral gold(I) complexes, are also discussed.
Collapse
Affiliation(s)
- Giuseppe Zuccarello
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Imma Escofet
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Ulysse Caniparoli
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| |
Collapse
|
137
|
Shandilya S, Protim Gogoi M, Dutta S, Sahoo AK. Gold-Catalyzed Transformation of Ynamides. CHEM REC 2021; 21:4123-4149. [PMID: 34432929 DOI: 10.1002/tcr.202100159] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Indexed: 11/07/2022]
Abstract
Ynamide, a unique species with inherited polarization of nitrogen lone pair electron to triple bond, has been largely used for the developement of novel synthetic methods and the construction of unusual N-bearing heterocycles. The reaction versatility of ynamide on umpolung reactivity, radical reactions and asymmetric synthesis have been recently reviewed. This review provides an overall scenic view into the gold catalyzed transformation of ynamides. The ynamides reactivity towards nitrogen-transfer reagents, such as azides, nitrogen ylides, isoxazoles, and anthranils; oxygen atom-transfer reagents, like nitrones, sulfoxides, and pyridine N-oxides; and carbon nucleophiles under gold catalysis are herein uncovered. The scope as well the mechanistic insights of each reaction is also briefed.
Collapse
Affiliation(s)
| | | | - Shubham Dutta
- School of Chemistry, University of Hyderabad, 500046, Hyderabad, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, 500046, Hyderabad, India
| |
Collapse
|
138
|
Darmandeh H, Löffler J, Tzouras NV, Dereli B, Scherpf T, Feichtner K, Vanden Broeck S, Van Hecke K, Saab M, Cazin CSJ, Cavallo L, Nolan SP, Gessner VH. Au⋅⋅⋅H−C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Heidar Darmandeh
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Julian Löffler
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Busra Dereli
- Physical Sciences & Engineering Division (PSE) KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Sofie Vanden Broeck
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Luigi Cavallo
- Physical Sciences & Engineering Division (PSE) KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
139
|
Murakami R, Tanishima H, Naito D, Kawamitsu H, Kamo R, Uchida A, Kawasaki K, Kiyohara C, Matsuo M, Maeda K, Inagaki F. Diastereoselective tricyclization/dimerization of yne-indoles catalyzed by a Au(III) complex featuring an L2/Z-type ligand. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
140
|
Bhoyare VW, Tathe AG, Das A, Chintawar CC, Patil NT. The interplay of carbophilic activation and Au(I)/Au(III) catalysis: an emerging technique for 1,2-difunctionalization of C-C multiple bonds. Chem Soc Rev 2021; 50:10422-10450. [PMID: 34323240 DOI: 10.1039/d0cs00700e] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold complexes have emerged as the catalysts of choice for various functionalization reactions of C-C multiple bonds due to their inherent carbophilic nature. In a parallel space, efforts to realize less accessible cross-coupling reactivity have led to the development of various strategies that facilitate the arduous Au(i)/Au(iii) redox cycle. The interplay of the two important reactivity modes encountered in gold catalysis, namely carbophilic activation and Au(i)/Au(iii) catalysis, has allowed the development of a novel mechanistic paradigm that sponsors 1,2-difunctionalization reactions of various C-C multiple bonds. Interestingly, the reactivity as well as selectivity obtained through this interplay could be complementary to that obtained by the use of various other transition metals that mainly involved the classical oxidative addition/migratory insertion pathways. The present review shall comprehensively cover all the 1,2-difunctionalization reactions of C-C multiple bonds that have been realized by the interplay of the two important reactivity modes and categorized on the basis of the method that has been employed to foster the Au(i)/Au(iii) redox cycle.
Collapse
Affiliation(s)
- Vivek W Bhoyare
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Akash G Tathe
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Avishek Das
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Chetan C Chintawar
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Nitin T Patil
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| |
Collapse
|
141
|
Cera G, Giovanardi G, Secchi A, Arduini A. Merging Molecular Recognition and Gold(I) Catalysis with Triphoscalix[6]arene Ligands. Chemistry 2021; 27:10261-10266. [PMID: 34002908 DOI: 10.1002/chem.202101323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/17/2022]
Abstract
We report the synthesis and characterization of novel triphosphine calix[6]arene ligands. These supramolecular wheels, with recognition features governed by the hydrogen-bonding domain, were employed to synthesize multitasking trinuclear gold(I) complexes as a new platform for the synthesis of interwoven (pseudo)rotaxane species. In parallel, the multivalent, metal-bonded upper rim displayed catalytic features promoting highly selective gold-catalyzed cycloisomerization reactions of 1,6-enynes.
Collapse
Affiliation(s)
- Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gabriele Giovanardi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Arturo Arduini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
142
|
Cascade Skeletal Rearrangement of Gold Carbene Intermediates: Synthesis of Medium‐Sized Pyrimidine‐Fused Benzolactones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
143
|
Bao M, Xie X, Hu W, Xu X. Gold‐Catalyzed Carbocyclization/C=N Bond Formation Cascade of Alkyne‐Tethered Diazo Compounds with Benzo[
c
]isoxazoles for the Assembly of 4‐Iminonaphthalenones and Indenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 China
| | - Xiongda Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 China
| |
Collapse
|
144
|
Pitsanuwong C, Boonwan J, Chomngam S, Wechakorn K, Kanjanasirirat P, Pewkliang Y, Borwornpinyo S, Kongsaeree P. A Rhodamine-based Fluorescent Chemodosimeter for Au 3+ in Aqueous Solution and Living Cells. J Fluoresc 2021; 31:1211-1218. [PMID: 34046770 DOI: 10.1007/s10895-021-02725-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/17/2021] [Indexed: 01/06/2023]
Abstract
A highly selective rhodamine hydrazide-based fluorescent chemosensor for Au3+ detection was developed. The aqueous solution of rhodamine N-hydroxysemicarbazide (RHS), in the presence of Au3+, exhibited a significant 55-fold turn-on fluorescence response at 591 nm and a colorimetric change from colorless to pink. Other interested ions including Li+, Na+, K+, Cs+, Mg2+, Ca2+, Ba2+, Pb2+, Mn2+, Co2+, Ni2+, Ag+, Cd2+, Cu2+, Hg2+, Zn2+, Sn2+, Fe2+, Fe3+, Cr3+, Ce3+ did not induce any distinct color/spectral changes. The irreversible detection mechanism occurred via Au3+-promoted 5-exo-trig ring closure to yield 1,3,4-oxadiazole-2-one product. The RHS probe is non-responsive to other biologically relevant metal ions and the limit of detection for Au3+ was calculated to be 0.5 µM with a linear range of 0 to 90 µM. Fluorescence bioimaging of Au3+ in HepG2 cells was also successfully demonstrated.
Collapse
Affiliation(s)
- Chariwat Pitsanuwong
- Department of Chemistry, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10400, Thailand.
| | - Juthamanee Boonwan
- Department of Chemistry, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10400, Thailand
| | - Sinchai Chomngam
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
| | - Kanokorn Wechakorn
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, 12110, Pathumthani, Thailand
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
| | - Yongyut Pewkliang
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
| | - Palangpon Kongsaeree
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand.
- Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand.
| |
Collapse
|
145
|
Jouhannet R, Dagorne S, Blanc A, de Frémont P. Chiral Gold(III) Complexes: Synthesis, Structure, and Potential Applications. Chemistry 2021; 27:9218-9240. [PMID: 33780060 DOI: 10.1002/chem.202100415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/10/2022]
Abstract
Since the beginning of the 2000's, homogeneous gold catalysis has emerged as a powerful tool to promote the cyclization of unsaturated substrates with excellent regioselectivity allowing the synthesis of elaborated organic scaffolds. An important goal to achieve in gold catalysis is the possibility to induce enantioselective transformations by the assistance of chiral complexes. Unfortunately, the linear geometry of coordination for gold usually encountered in complexes at the +1 oxidation states renders this goal very challenging. In consequence, the interest toward the synthesis of chiral gold(III) complexes is steadily growing. Indeed, the square planar geometry of the gold(III) cation appears more suitable to promote chiral induction. Beside catalysis, gold(III) complexes have also shown promising potential in the field of pharmacology. Herein, syntheses and applications of well-defined gold(III) complexes reported over the last fifteen years are summarized.
Collapse
Affiliation(s)
- Rémi Jouhannet
- Equipe de Synthèse, Réactivité et Catalyse Organométalliques, UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Samuel Dagorne
- Equipe de Synthèse, Réactivité et Catalyse Organométalliques, UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Aurélien Blanc
- Laboratoire de Synthèse, Réactivité Organique et Catalyse, UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Pierre de Frémont
- Equipe de Synthèse, Réactivité et Catalyse Organométalliques, UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| |
Collapse
|
146
|
Millán RE, Rodríguez J, Sarandeses LA, Gómez-Bengoa E, Sestelo JP. Indium(III)-Catalyzed Stereoselective Synthesis of Tricyclic Frameworks by Cascade Cycloisomerization Reactions of Aryl 1,5-Enynes. J Org Chem 2021; 86:9515-9529. [PMID: 34170696 DOI: 10.1021/acs.joc.1c00825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The indium(III)-catalyzed cascade cycloisomerization reaction of 1,5-enynes with pendant aryl nucleophiles is reported. The reaction proceeds in cascade under mild reaction conditions, using InI3 (5 mol %) as a catalyst with a range of 1,5-enynes furnished with aryl groups (phenyl and phenol) at alkene (E and Z isomers) and with terminal and internal alkynes. Using 1-bromo-1,5-enynes, a one-pot sequential indium-catalyzed cycloisomerization and palladium-catalyzed cross-coupling with triorganoindium reagents were developed. The double cyclization is stereospecific and operates via a biomimetic cascade cation-olefin through 1,5-enyne cyclization (6-endo-dig) and subsequent C-C hydroarylation or C-O phenoxycyclization. Density functional theory (DFT) computational studies on 1,5-enynyl aryl ethers support a two-step mechanism where the first stereoselective 1,5-enyne cyclization produces a nonclassical carbocation intermediate that evolves to the tricyclic reaction product through a SEAr mechanism. Using this approach, a variety of tricyclic heterocycles such as benzo[b]chromenes, phenanthridines, xanthenes, and spiroheterocyclic compounds are efficiently synthesized with high atom economy.
Collapse
Affiliation(s)
- Ramón E Millán
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Jaime Rodríguez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Luis A Sarandeses
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Enrique Gómez-Bengoa
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, 20009 Donostia-San, Sebastián
| | - José Pérez Sestelo
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, E-15071 A Coruña, Spain
| |
Collapse
|
147
|
Iacobucci C, Massi L, Duñach E, Burk P, Gal JF. Energetics and Structures of Adducts of JohnPhos(Au +), PPh 3(Au +), and IPr(Au +) with Organic Substrates: A Mass Spectrometry and DFT Study. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudio Iacobucci
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Nice 06108, France
| | - Lionel Massi
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Nice 06108, France
| | - Elisabet Duñach
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Nice 06108, France
| | - Peeter Burk
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Jean-François Gal
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Nice 06108, France
| |
Collapse
|
148
|
Harris RJ, Nakafuku K, Duncan AN, Carden RG, Timmerman JC, Widenhoefer RA. Kinetics and Mechanism of the Gold-Catalyzed Hydroamination of 1,1-Dimethylallene with N-Methylaniline. Chemistry 2021; 27:10377-10386. [PMID: 33951230 DOI: 10.1002/chem.202100741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/17/2022]
Abstract
The mechanism of the intermolecular hydroamination of 3-methylbuta-1,2-diene (1) with N-methylaniline (2) catalyzed by (IPr)AuOTf has been studied by employing a combination of kinetic analysis, deuterium labelling studies, and in situ spectral analysis of catalytically active mixtures. The results of these and additional experiments are consistent with a mechanism for hydroamination involving reversible, endergonic displacement of N-methylaniline from [(IPr)Au(NHMePh)]+ (4) by allene to form the cationic gold π-C1,C2-allene complex [(IPr)Au(η2 -H2 C=C=CMe2 )]+ (I), which is in rapid, endergonic equilibrium with the regioisomeric π-C2,C3-allene complex [(IPr)Au(η2 -Me2 C=C=CH2 )]+ (I'). Rapid and reversible outer-sphere addition of 2 to the terminal allene carbon atom of I' to form gold vinyl complex (IPr)Au[C(=CH2 )CMe2 NMePh] (II) is superimposed on the slower addition of 2 to the terminal allene carbon atom of I to form gold vinyl complex (IPr)Au[C(=CMe2 )CH2 NMePh] (III). Selective protodeauration of III releases N-methyl-N-(3-methylbut-2-en-1-yl)aniline (3 a) with regeneration of 4. At high conversion, gold vinyl complex II is competitively trapped by an (IPr)Au+ fragment to form the cationic bis(gold) vinyl complex {[(IPr)Au]2 [C(=CH2 )CMe2 NMePh]}+ (6).
Collapse
Affiliation(s)
- Robert J Harris
- Department of Chemistry, Duke University, French Family Science Center, Durham, NC 27708-0346, USA
| | - Kohki Nakafuku
- Department of Chemistry, Duke University, French Family Science Center, Durham, NC 27708-0346, USA
| | - Alethea N Duncan
- Department of Chemistry, Duke University, French Family Science Center, Durham, NC 27708-0346, USA
| | - Robert G Carden
- Department of Chemistry, Duke University, French Family Science Center, Durham, NC 27708-0346, USA
| | - Jacob C Timmerman
- Department of Chemistry, Duke University, French Family Science Center, Durham, NC 27708-0346, USA
| | - Ross A Widenhoefer
- Department of Chemistry, Duke University, French Family Science Center, Durham, NC 27708-0346, USA
| |
Collapse
|
149
|
Copper carbene complexes. Synthesis and structural analysis of a chloro-bridged dicopper cation and the triosmium-copper carbene cluster complex HOs3(CO)11[µ-Cu(IPr)]. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
150
|
Ruch AA, Ellison MC, Nguyen JK, Kong F, Handa S, Nesterov VN, Slaughter LM. Highly Sterically Encumbered Gold Acyclic Diaminocarbene Complexes: Overriding Electronic Control in Regiodivergent Gold Catalysis. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Aaron A. Ruch
- Department of Chemistry, University of North Texas, Denton, Texas 76203,United States
| | - Matthew C. Ellison
- Department of Chemistry, University of North Texas, Denton, Texas 76203,United States
| | - John K. Nguyen
- Department of Chemistry, University of North Texas, Denton, Texas 76203,United States
| | - Fanji Kong
- Department of Chemistry, University of North Texas, Denton, Texas 76203,United States
| | - Sachin Handa
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078,United States
| | - Vladimir N. Nesterov
- Department of Chemistry, University of North Texas, Denton, Texas 76203,United States
| | - LeGrande M. Slaughter
- Department of Chemistry, University of North Texas, Denton, Texas 76203,United States
| |
Collapse
|