101
|
Yang H, Zeng Y, Song X, Che L, Jiang ZT, Lu G, Xia Y. Rhodium-Catalyzed Enantio- and Regioselective Allylation of Indoles with gem-Difluorinated Cyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202403602. [PMID: 38515395 DOI: 10.1002/anie.202403602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
The use of gem-difluorinated cyclopropanes (gem-DFCPs) as fluoroallyl surrogates under transition-metal catalysis has drawn considerable attention recently but such reactions are restricted to producing achiral or racemic mono-fluoroalkenes. Herein, we report the first enantioselective allylation of indoles under rhodium catalysis with gem-DFCPs. This reaction shows exceptional branched regioselectivity towards rhodium catalysis with gem-DFCPs, which provides an efficient route to enantioenriched fluoroallylated indoles with wide substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Hui Yang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lin Che
- Linyi University, School of Chemistry and Chemical Engineering, Linyi, 276000, China
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
102
|
Chen Z, Chen S, Qiu Z, Lin B, Yao Y, Yang F, Weng Z. Synthesis of 2-(Trifluoromethyl)-[1,2,4]triazolo[5,1- a]isoquinoline via Cycloaddition of C, N-Cyclic Azomethine Imine with CF 3CN. J Org Chem 2024; 89:7163-7168. [PMID: 38721654 DOI: 10.1021/acs.joc.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A [3 + 2] cycloaddition of C,N-cyclic azomethine imine with in situ-generated CF3CN for the construction of 2-(trifluoromethyl)-[1,2,4]triazolo[5,1-a]isoquinoline is reported. Remarkably, this process shows a broad substrate scope with excellent functional group tolerance, which is scalable and enables a practical route to a library of 2-(trifluoromethyl)-[1,2,4]triazolo[5,1-a]isoquinoline derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Zhezuo Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese Lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shouxiong Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese Lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zhanyan Qiu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese Lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Bo Lin
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yunfei Yao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Fafu Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhiqiang Weng
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese Lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
103
|
Yang M, Meng YX, Mehfooz H, Zhao YL. Visible light-promoted [3+2] cyclization reaction of vinyl azides with perfluoroalkyl-substituted-imidoyl sulfoxonium ylides. Chem Commun (Camb) 2024; 60:5407-5410. [PMID: 38683050 DOI: 10.1039/d4cc00777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Visible-light-induced [3+2] cyclization of vinyl azides with perfluoroalkyl-substituted imidoyl sulfoxonium ylides has been developed for the first time. In this transformation, perfluoroalkyl-substituted imidoyl sulfoxonium ylides are firstly employed as a carbon radical precursor under visible light irradiation, providing a new and efficient method for the construction of perfluoroalkyl-substituted 1-pyrrolines.
Collapse
Affiliation(s)
- Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yu-Xuan Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Haroon Mehfooz
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
104
|
Xu P, Wang Z, Guo SM, Studer A. Introduction of the difluoromethyl group at the meta- or para-position of pyridines through regioselectivity switch. Nat Commun 2024; 15:4121. [PMID: 38750008 PMCID: PMC11096164 DOI: 10.1038/s41467-024-48383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Difluoromethyl pyridines have gained significant attention in medicinal and agricultural chemistry. The direct C-H-difluoromethylation of pyridines represents a highly efficient economic way to access these azines. However, the direct meta-difluoromethylation of pyridines has remained elusive and methods for site-switchable regioselective meta- and para-difluoromethylation are unknown. Here, we demonstrate the meta-C-H-difluoromethylation of pyridines through a radical process by using oxazino pyridine intermediates, which are easily accessed from pyridines. The selectivity can be readily switched to para by in situ transformation of the oxazino pyridines to pyridinium salts upon acid treatment. The preparation of various meta- and para-difluoromethylated pyridines through this approach is presented. The mild conditions used also allow for the late-stage meta- or para-difluoromethylation of pyridine containing drugs. Sequential double functionalization of pyridines is presented, which further underlines the value of this work.
Collapse
Affiliation(s)
- Pengwei Xu
- Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Zhe Wang
- Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Shu-Min Guo
- Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.
| |
Collapse
|
105
|
Zhang H, Ye Z, Tang J, Wu Y, Zhang X, Ma W, Zhan Z, Zhang F. Electrochemical Reductive Cross-Coupling of Alkyl or Alkenyl Halides with gem-Difluoroalkenes. J Org Chem 2024. [PMID: 38743653 DOI: 10.1021/acs.joc.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Herein, we describe an electroreductive cross-electrophile coupling protocol for the construction of valuable monofluoroalkenes from easily accessible alkyl or alkenyl halides with gem-difluoroalkenes. The reaction can be conducted under sustainable and mild conditions delivering valuable and functionalized monofluoroalkenes with excellent Z-selectivity. The protocol's most notable advantage is the in situ release of nickel catalyst from the inexpensive electrodes without the addition of extra hazardous metal catalyst and superstoichiometric reductant.
Collapse
Affiliation(s)
- Hong Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Zenghui Ye
- School of Pharmacy, Hangzhou Medical College, 311399, Hangzhou, P. R. China
| | - Jiyuan Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Yanqi Wu
- School of Pharmacy, Hangzhou Medical College, 311399, Hangzhou, P. R. China
| | - Xi Zhang
- School of Pharmacy, Hangzhou Medical College, 311399, Hangzhou, P. R. China
| | - Weiyuan Ma
- School of Pharmacy, Hangzhou Medical College, 311399, Hangzhou, P. R. China
| | - Zhajun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Fengzhi Zhang
- School of Pharmacy, Hangzhou Medical College, 311399, Hangzhou, P. R. China
| |
Collapse
|
106
|
Liu S, Luo Z, Zhao S, Luo M, Zeng X. Cr-catalyzed borylation of C(aryl)-F bonds using a terpyridine ligand. Chem Commun (Camb) 2024; 60:5201-5204. [PMID: 38651837 DOI: 10.1039/d4cc01330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The defluoroborylation of fluoroarenes by chromium-catalyzed cleavage of unactivated C-F bonds is described. The reaction uses HBpin as the boron source, low-cost and commercially available chromium salt as the precatalyst, and terpyridine as a crucial ligand, providing a protocol with atom-efficient benefits and a wide range of applicable substrates for the functionalization of aryl C-F bonds. Preliminary mechanistic studies indicate that an unprecedented Cr-catalyzed magnesiation of the unactivated C-F bond occurred. The generated arylmagnesium intermediates then participated in the subsequent borylation reaction. The application of the strategy in the preparation of valuable derivatives is demonstrated by the late-stage functionalization of boronate ester groups.
Collapse
Affiliation(s)
- Senlin Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zheng Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Shuaiyong Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Meiming Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
107
|
Beato A, Haudecoeur R, Boucherle B, Peuchmaur M. Expanding Chemical Frontiers: Approaches for Generating Diverse and Bioactive Natural Product-Like Compounds Libraries from Extracts. Chemistry 2024; 30:e202304166. [PMID: 38372433 DOI: 10.1002/chem.202304166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The realms of natural products and synthetic compounds exhibit distinct chemical spaces that not only differ but also complement each other. While the convergence of these two domains has been explored through semisynthesis and conventional pharmacomodulation endeavours applied to natural frameworks, a recent and innovative approach has emerged that involves the combinatorial generation of libraries of 'natural product-like compounds' (NPLCs) through the direct synthetic derivatization of natural extracts. This has led to the production of numerous NPLCs that incorporate structural elements from both their natural (multiple saturated rings, oxygen content, chiral centres) and synthetic (aromatic rings, nitrogen and halogen content, drug-like properties) precursors. Through careful selection of extracts and reagents, specific bioactivities have been achieved, and this strategy has been deployed in various ways, showing great promise without reaching its full potential to date. This review seeks to provide an overview of reported examples involving the chemical engineering of extracts, showcasing a spectrum of natural product alterations spanning from simple substitutions to complete scaffold remodelling. It also includes an analysis of the accomplishments, perspectives and technical challenges within this field.
Collapse
Affiliation(s)
- Aurélien Beato
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Romain Haudecoeur
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Benjamin Boucherle
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| |
Collapse
|
108
|
Niu ZX, Hu J, Sun JF, Wang YT. Fluorine in the pharmaceutical industry: Synthetic approaches and application of clinically approved fluorine-enriched anti-infectious medications. Eur J Med Chem 2024; 271:116446. [PMID: 38678824 DOI: 10.1016/j.ejmech.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The strategic integration of fluorine atoms into anti-infectious agents has become a cornerstone in the field of medicinal chemistry, owing to the unique influence of fluorine on the chemical and biological properties of pharmaceuticals. This review examines the synthetic methodologies that enable the incorporation of fluorine into anti-infectious drugs, and the resultant clinical applications of these fluorine-enriched compounds. With a focus on clinically approved medications, the discussion extends to the molecular mechanisms. It further outlines the specific effects of fluorination, which contribute to the heightened efficacy of anti-infective therapies. By presenting a comprehensive analysis of current drugs and their developmental pathways, this review underscores the continuing evolution and significance of fluorine in advancing anti-infectious treatment options. The insights offered extend valuable guidance for future drug design and the development of next-generation anti-infectious agents.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Jing Hu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin,133002, China.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
109
|
Lu XY, Huang R, Wang ZZ, Zhang X, Jiang F, Yang GX, Shui FY, Su MX, Sun YX, Sun HL. Photoinduced Decarboxylative Difluoroalkylation and Perfluoroalkylation of α-Fluoroacrylic Acids. J Org Chem 2024; 89:6494-6505. [PMID: 38634729 DOI: 10.1021/acs.joc.4c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Herein, a novel and practical methodology for the photoinduced decarboxylative difluoroalkylation and perfluoroalkylation of α-fluoroacrylic acids is reported. A wide range of α-fluoroacrylic acids can be used as applicable feedstocks, allowing for rapid access to structurally important difluoroalkylated and polyfluoroalkylated monofluoroalkenes with high Z-stereoselectivity under mild conditions. The protocol demonstrates excellent functional group compatibility and provides a platform for modifying complex biologically active molecules.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Rui Huang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Zi-Zhen Wang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Xiang Zhang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Fan Jiang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Gui-Xian Yang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Fu-Yi Shui
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Meng-Xue Su
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Yan-Xi Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Hai-Lun Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| |
Collapse
|
110
|
Zhang L, Hong C, Tang J, Wu W, Jiang H. Palladium-Catalyzed Carbohalogenation of Olefins with Alkynyl Oxime Ethers: Rapid Access to Chlorine-Containing Isoxazoles. J Org Chem 2024; 89:6615-6625. [PMID: 38652857 DOI: 10.1021/acs.joc.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A palladium-catalyzed carbohalogenation of olefins with alkynyl oxime ethers has been described, which provides efficient and practical access to various chlorine-containing isoxazoles. This method exhibits excellent regioselectivity, good functional group compatibility, and mild reaction conditions. The mechanistic studies suggest that the reaction proceeds via a stabilized π-benzyl palladium intermediate, which is essential for the formation of C(sp3)-Cl bonds.
Collapse
Affiliation(s)
- Liren Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chenjing Hong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junlong Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
111
|
Wu X, Song X, Xia Y. High-Valent Copper Catalysis Enables Regioselective Fluoroarylation of Gem-Difluorinated Cyclopropanes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401243. [PMID: 38460153 PMCID: PMC11095216 DOI: 10.1002/advs.202401243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/21/2024] [Indexed: 03/11/2024]
Abstract
Transition-metal (TM) catalyzed reaction of gem-difluorinated cyclopropanes (gem-DFCPs) has drawn much attention recently. The reaction generally occurs via the activation of the distal C─C bond in gem-DFCPs by a low-valent TM through oxidative addition, eventually producing mono-fluoro olefins as the coupling products. However, achieving regioselective activation of the proximal C─C bond in gem-DFCPs that overcomes the intrinsic reactivity via TM catalysis remains elusive. Here, a new reaction mode of gem-DFCPs enabled by high-valent copper catalysis, which allows exclusive activation of the congested proximal C─C bond is presented. The reaction that achieves fluoroarylation of gem-DFCPs uses NFSI (N-fluorobenzenesulfonimide) as electrophilic fluoro reagent and arenes as the C─H nucleophiles, enabling the synthesis of diverse CF3-containing scaffolds. It is proposed that a high-valent copper species plays an important role in the regioselective activation of the proximal C─C bond possibly via a σ-bond metathesis.
Collapse
Affiliation(s)
- Xiuli Wu
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| | - Ying Xia
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| |
Collapse
|
112
|
Ortalli S, Ford J, Trabanco AA, Tredwell M, Gouverneur V. Photoredox Nucleophilic (Radio)fluorination of Alkoxyamines. J Am Chem Soc 2024; 146:11599-11604. [PMID: 38651661 PMCID: PMC11066844 DOI: 10.1021/jacs.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Herein, we report a photoredox nucleophilic (radio)fluorination using TEMPO-derived alkoxyamines, a class of substrates accessible in a single step from a diversity of readily available carboxylic acids, halides, alkenes, alcohols, aldehydes, boron reagents, and C-H bonds. This mild and versatile one-electron pathway affords radiolabeled aliphatic fluorides that are typically inaccessible applying conventional nucleophilic substitution technologies due to insufficient reactivity and competitive elimination. Automation of this photoredox process is also demonstrated with a user-friendly and commercially available photoredox flow reactor and radiosynthetic platform, therefore expediting access to labeled aliphatic fluorides in high molar activity (Am) for (pre)clinical evaluation.
Collapse
Affiliation(s)
- Sebastiano Ortalli
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph Ford
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrés A. Trabanco
- Global
Discovery Chemistry, Therapeutics Discovery, Johnson & Johnson Innovative Medicine, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Matthew Tredwell
- Wales Research
and Diagnostic PET Imaging Centre, Cardiff
University, University
Hospital of Wales, Heath Park, Cardiff CF14 4XN, United
Kingdom
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Véronique Gouverneur
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
113
|
Lindič T, Paulus B. First-Principles Study of Adsorption of CH 4 on a Fluorinated Model NiF 2 Surface. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2062. [PMID: 38730870 PMCID: PMC11084772 DOI: 10.3390/ma17092062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Electrochemical fluorination on nickel anodes, also known as the Simons' process, is an important fluorination method used on an industrial scale. Despite its success, the mechanism is still under debate. One of the proposed mechanisms involves higher valent nickel species formed on an anode acting as effective fluorinating agents. Here we report the first attempt to study fluorination by means of first principles investigation. We have identified a possible surface model from the simplest binary nickel fluoride (NiF2). A twice oxidized NiF2(F2) (001) surface exhibits higher valent nickel centers and a fluorination source that can be best characterized as an [F2]- like unit, readily available to aid fluorination. We have studied the adsorption of CH4 and the co-adsorption of CH4 and HF on this surface by means of periodic density functional theory. By the adsorption of CH4, we found two main outcomes on the surface. Unreactive physisorption of CH4 and dissociative chemisorption resulting in the formation of CH3F and HF. The co-adsorption with the HF gave rise to four main outcomes, namely the formation of CH3F, CH2F2, CH3 radical, and also physisorbed CH4.
Collapse
Affiliation(s)
- Tilen Lindič
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Beate Paulus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
114
|
Budiman YP, Perutz RN, Steel PG, Radius U, Marder TB. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chem Rev 2024; 124:4822-4862. [PMID: 38564710 PMCID: PMC11046440 DOI: 10.1021/acs.chemrev.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York, YO10 5DD, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, University of Durham, Science
Laboratories, South Road, Durham, DH1 3LE, U.K.
| | - Udo Radius
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Todd B. Marder
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
- Institute
for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
115
|
Guo P, Pu G, Wang G, Zeng LY, Li WP, Li X, Zhou PP, He CY. Halogen-Bond-Promoted Direct Cross-Coupling of Trifluoromethylated Alkyl Bromides with Coumarins/Quinolinones: Unraveling Trifluoromethyl Effects. Org Lett 2024; 26:3097-3102. [PMID: 38574397 DOI: 10.1021/acs.orglett.4c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
This study introduces a novel approach involving XB-mediated cross-coupling of α-trifluoromethylated alkyl bromides with coumarins and quinolinones under visible light irradiation. Both density functional theory (DFT) calculations and experimental studies converge to suggest that the noncovalent interaction between alkyl bromides and DMAP, intensified by the α-trifluoromethyl group, plays a pivotal role in facilitating this chemoselective reaction.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563002 Guizhou, P. R. China
| | - Guoliang Pu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563002 Guizhou, P. R. China
| | - Gairong Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563002 Guizhou, P. R. China
| | - Lin-Yuan Zeng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563002 Guizhou, P. R. China
| | - Wei-Piao Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563002 Guizhou, P. R. China
| | - Xuefei Li
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, 563002 Zunyi, Guizhou, P. R. China
| | - Pan-Pan Zhou
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, P. R. China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563002 Guizhou, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education. School of Pharmacy, Zunyi Medical University, 563002 Zunyi, Guizhou, P. R. China
| |
Collapse
|
116
|
Li X, Majumder S, Tang X, Dolbier WR. Zinc 1,1,2,2-Tetrafluoroethanesulfinate: A Synthetically Useful Oxidative and Photoredox Source of the 1,1,2,2-Tetrafluoroethyl Radical. J Org Chem 2024; 89:5485-5490. [PMID: 38554099 DOI: 10.1021/acs.joc.3c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
1,1,2,2-Tetrafluoroethyl-containing molecules are of potential importance in drug discovery, but the efficient synthesis of such compounds is still relatively unexplored due to the lack of readily available reagents for the incorporation of the HCF2CF2 group. Herein, we introduce a new reagent, zinc 1,1,2,2-tetrafluoroethanesulfinate, which can be useful for the oxidative tetrafluoroethylation of arylboronic acids and heteroarenes as well as for a novel photoredox, three component hydro-tetrafluoroethylation of two alkenes of complementary reactivity.
Collapse
Affiliation(s)
- Xinjin Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Satyajit Majumder
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Xiaojun Tang
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - William R Dolbier
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
117
|
Budiman YP, Putra MH, Ramadhan MR, Hannifah R, Luz C, Ghafara IZ, Rustaman R, Ernawati EE, Mayanti T, Groß A, Radius U, Marder TB. Pd-Catalyzed Oxidative C-H Arylation of (Poly)fluoroarenes with Aryl Pinacol Boronates and Experimental and Theoretical Studies of its Reaction Mechanism. Chem Asian J 2024; 19:e202400094. [PMID: 38412058 DOI: 10.1002/asia.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
We report the synergistic combination of Pd(OAc)2 and Ag2O for the oxidative C-H arylation of (poly)fluoroarenes with aryl pinacol boronates (Ar-Bpin) in DMF as the solvent. This procedure can be conducted easily in air, and without using additional ligands, to afford the fluorinated unsymmetrical biaryl products in up to 98 % yield. Experimental studies suggest that the formation of [PdL2(C6F5)2] in DMF as coordinating solvent does not take place under the reaction conditions as it is stable to reductive elimination and thus would deactivate the catalyst. Thus, the intermediate [Pd(DMF)2(ArF)(Ar)] must be formed selectively to give desired arylation products. DFT calculations predict a low barrier (5.87 kcal/mol) for the concerted metalation deprotonation (CMD) process between C6F5H and the Pd(II) species formed after transmetalation between the Pd(II)X2 complex and aryl-Bpin which forms a Pd-Arrich species. Thus a Pd(Arrich)(Arpoor) complex is generated selectively which undergoes reductive elimination to generate the unsymmetrical biaryl product.
Collapse
Affiliation(s)
- Yudha P Budiman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | | | - Muhammad R Ramadhan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Raiza Hannifah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Christian Luz
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ilham Z Ghafara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Rustaman Rustaman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Engela E Ernawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, 89069, Ulm, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
118
|
Fernandes AJ, Giri R, Houk KN, Katayev D. Review and Theoretical Analysis of Fluorinated Radicals in Direct C Ar-H Functionalization of (Hetero)arenes. Angew Chem Int Ed Engl 2024; 63:e202318377. [PMID: 38282182 DOI: 10.1002/anie.202318377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Rahul Giri
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, 90095, Los Angeles, California, United States
| | - Dmitry Katayev
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
119
|
Chalyk BA, Zginnyk O, Khutorianskyi AV, Mykhailiuk PK. Functionalization of Alkenes with Difluoromethyl Nitrile Oxide to Access the Difluoromethylated Derivatives. Org Lett 2024; 26:2888-2892. [PMID: 38497552 DOI: 10.1021/acs.orglett.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Electron-rich, electron-deficient, and non-activated alkenes can be rapidly functionalized by in situ-generated difluoromethyl nitrile oxide. The (3+2) cycloaddition proceeds at room temperature, has broad functional group tolerance, and can be used for the late-stage modification of bioactive molecules (finasteride and carbamazepine). The obtained CF2H-isoxazolines can be easily transformed into CF2H-containing building blocks for medicinal chemistry: amines, amino acids, amino alcohols, and spirocyclic scaffolds.
Collapse
Affiliation(s)
- Bohdan A Chalyk
- Enamine Ltd., 78 Winston Churchill Street, Kyiv 02094, Ukraine
- Epiendo Pharmaceuticals, Sverige filial, Banvaktsvägen 22, 171 48 Solna, Stockholm, Sweden
- Institute of Organic Chemistry of the NAS of Ukraine, 5 Academician Kukharya Street, Kyiv 02094, Ukraine
| | | | | | | |
Collapse
|
120
|
Zhang J, Selmi-Higashi E, Zhang S, Jean A, Hilton ST, Cambeiro XC, Arseniyadis S. Synthesis of CHF 2-Containing Heterocycles through Oxy-difluoromethylation Using Low-Cost 3D Printed PhotoFlow Reactors. Org Lett 2024; 26:2877-2882. [PMID: 38190457 PMCID: PMC11020168 DOI: 10.1021/acs.orglett.3c03997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
We report here a highly straightforward access to a variety of CHF2-containing heterocycles, including lactones, tetrahydrofurans, tetrahydropyrans, benzolactones, phthalanes, and pyrrolidines, through a visible light-mediated intramolecular oxy-difluoromethylation under continuous flow. The method, which relies on the use of readily available starting materials, low-cost 3D printed photoflow reactors, and difluoromethyltriphenylphosphonium bromide used here as a CHF2 radical precursor, is practical and scalable and provides the desired products in moderate to excellent yields and excellent regio- and stereoselectivities.
Collapse
Affiliation(s)
- Jinlei Zhang
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Elias Selmi-Higashi
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Shen Zhang
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
- School of Science, University of Greenwich, Central Avenue, Gillingham ME4 4TB, United Kingdom
| | - Alexandre Jean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, Bolbec 76210, France
| | - Stephen T Hilton
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Xacobe C Cambeiro
- School of Science, University of Greenwich, Central Avenue, Gillingham ME4 4TB, United Kingdom
| | - Stellios Arseniyadis
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
121
|
Hu DD, Nie TM, Xiao X, Li K, Li YB, Gao Q, Bi YX, Wang XS. Enantioselective Construction of C-SCF 3 Stereocenters via Nickel Catalyzed Asymmetric Negishi Coupling Reaction. Angew Chem Int Ed Engl 2024; 63:e202400308. [PMID: 38299744 DOI: 10.1002/anie.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The construction of the SCF3-containing 1,1-diaryl tertiary carbon stereocenters with high enantioselectivities is reported via a nickel-catalyzed asymmetric C-C coupling strategy. This method demonstrates simple operations, mild conditions and excellent functional group tolerance, with newly designed SCF3-containing synthon, which can be easily obtained from commercially available benzyl bromide and trifluoromethylthio anion in a two-step manner. Further substrate exploration indicated that the reaction system could be extended to diverse perfluoroalkyl sulfide (SC2F5, SC3F7, SC4F9, SCF2CO2Et)-substituted 1,1-diaryl compounds with excellent enantioselectivities. The synthetic utility of this transformation was further demonstrated by convenient derivatization to optical SCF3-containing analogues of bioactive compounds without an apparent decrease in enantioselectivity.
Collapse
Affiliation(s)
- Duo-Duo Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Tian-Mei Nie
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Kuiliang Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yuan-Bo Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qian Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yu-Xiang Bi
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
122
|
Cheng G, Zhao P, Su H, Wahab A, Gao Z, Gou J, Yu B. Furan Dearomatization: A Route to Diverse Fluoroalkyl/Aryl Triazoles. J Org Chem 2024; 89:4349-4365. [PMID: 38497642 DOI: 10.1021/acs.joc.3c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The 5-fluoroalkyl-1,2,3-triazoles, serving as a pivotal element in medicinal chemistry, hold substantial research significance. In this work, we developed a furan dearomatization reaction for the synthesis of various 5-fluoroalkyl-1,2,3-triazoles, which contains -CF3, -CF2H, -CF2CF3, -CF2CF2CF3, -CF2CO2Et, and -C6F5. This methodology relies on the intermolecular [3 + 2] cycloaddition/furan ring-opening triggered by α-fluoroalkyl furfuryl cation with azides to stereoselectively synthesize a series of (E)-fluoroalkyl enone triazoles. The reaction proceeds without metal participation, exhibits excellent substrate tolerance, and has excellent synthetic utility.
Collapse
Affiliation(s)
- Guanghai Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Penggang Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Hang Su
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Abdul Wahab
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Gou
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an 710062, China
| | - Binxun Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, China
| |
Collapse
|
123
|
Garg A, Haswell A, Hopkinson MN. C-F Bond Insertion: An Emerging Strategy for Constructing Fluorinated Molecules. Chemistry 2024; 30:e202304229. [PMID: 38270496 DOI: 10.1002/chem.202304229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
C-F Insertion reactions, where an organic fragment formally inserts into a carbon-fluorine bond in a substrate, are highly attractive, yet largely unexplored, methods to prepare valuable fluorinated molecules. The inherent strength of C-F bonds and the resulting need for a large thermodynamic driving force to initiate C-F cleavage often leads to sequestering of the released fluoride in an unreactive by-product. Recently, however, several groups have succeeded in overcoming this challenge, opening up the study of C-F insertion as an efficient and highly atom-economical approach to prepare fluorinated compounds. In this article, the recent breakthroughs are discussed focusing on the key conceptual advances that allowed for both C-F bond cleavage and subsequent incorporation of the released fluoride into the product.
Collapse
Affiliation(s)
- Arushi Garg
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| | - Alex Haswell
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| | - Matthew N Hopkinson
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| |
Collapse
|
124
|
Zhao M, Zhao Z, Wei Z, Cao J, Liang D, Lin Y, Duan H. Asymmetric Mannich Reaction of Isatin-Derived Ketimines with α-Fluoroindanones Catalyzed by a Chiral Phase-Transfer Catalyst. J Org Chem 2024; 89:4474-4483. [PMID: 38506434 DOI: 10.1021/acs.joc.3c02668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A highly enantioselective Mannich reaction of α-fluoroindanones with isatin-derived N-Boc-ketimines catalyzed by a quinine-derived phase-transfer catalyst was developed. A variety of 3-substituted 3-amino-2-oxindoles bearing fluorine-containing, vicinal, tetrasubstituted stereocenters were constructed using this protocol in high yields (83-95%), with moderate to excellent enantioselectivities (66-91%) and high diastereoselectivities (up to >99:1).
Collapse
Affiliation(s)
- Meiyan Zhao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhiqi Zhao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhonglin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jungang Cao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Dapeng Liang
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yingjie Lin
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Haifeng Duan
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
125
|
Clover A, Jones AP, Berger RF, Kaminsky W, O’Neil GW. Regioselective Fluorohydrin Synthesis from Allylsilanes and Evidence for a Silicon-Fluorine Gauche Effect. J Org Chem 2024; 89:4309-4318. [PMID: 38457664 PMCID: PMC11002936 DOI: 10.1021/acs.joc.3c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Allylsilanes can be regioselectively transformed into the corresponding 3-silylfluorohydrin in good yield using a sequence of epoxidation followed by treatment with HF·Et3N with or without isolation of the intermediate epoxide. Various silicon-substitutions are tolerated, resulting in a range of 2-fluoro-3-silylpropan-1-ol products from this method. Whereas other fluorohydrin syntheses by epoxide opening using HF·Et3N generally require more forcing conditions (e.g., higher reaction temperature), opening of allylsilane-derived epoxides with this reagent occurs at room temperature. We attribute this rate acceleration along with the observed regioselectivity to a β-silyl effect that stabilizes a proposed cationic intermediate. The use of enantioenriched epoxides indicates that both SN1- and SN2-type mechanisms may be operable depending on substitution at silicon. Conformational analysis by NMR and theory along with a crystal structure obtained by X-ray diffraction points to a preference for silicon and fluorine to be proximal to one another in the products, perhaps favored due to electrostatic interactions.
Collapse
Affiliation(s)
- Alexie
W. Clover
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98229, United States
| | - Adam P. Jones
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98229, United States
| | - Robert F. Berger
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98229, United States
| | - Werner Kaminsky
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gregory. W. O’Neil
- Department
of Chemistry, Western Washington University, Bellingham, Washington 98229, United States
| |
Collapse
|
126
|
Pan QJ, Miao YQ, Cao HJ, Liu Z, Chen X. Visible Light-Induced 1,2-Diphenyldisulfane-Mediated Defluoroborylation of Polyfluoroarenes. J Org Chem 2024; 89:5049-5059. [PMID: 38491018 DOI: 10.1021/acs.joc.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
A green and practical protocol of defluoroborylation of polyfluoroarenes with stable and readily accessible NHC-borane was developed, using 1,2-diphenyldisulfane as a hydrogen atom transfer (HAT) and single electron transfer (SET) reagent precursor under visible-light irradiation, leading to the concise formation of value-added fluorinated organoboron scaffolds. Mechanism studies revealed the method underwent a boryl radical addition reaction with polyfluoroarene, followed by successive single electron transfer pathways and defluorination of the C-F bond to offer the targeted product. This unprecedented platform relies on 1,2-diphenyldisulfane and base without using expensive photocatalysts, highlighting the methodology has promising application value to prepare borylated polyfluoroarene compounds.
Collapse
Affiliation(s)
- Qiao-Jing Pan
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yu-Qi Miao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hou-Ji Cao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhenxing Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
127
|
Xue Q, Pu Y, Zhao H, Xie X, Zhang H, Wang J, Yan L, Shang Y. Palladium-catalysed aryl/monofluoroalkylation of allenamides: access to fluoroalkyl indoles and isoquinolones. Chem Commun (Camb) 2024; 60:3794-3797. [PMID: 38482848 DOI: 10.1039/d4cc00657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A palladium catalysed construction of fluoroalkyl indoles and isoquinolones through aryl/monofluoroalkylation of allenamides has been developed. Monofluoromethyl-substituted heterocycles could be accessed under mild conditions with broad functional group tolerance. In addition, indole-oxindole bisheterocyclic scaffolds bearing a fluorine atom were successfully synthesized with 3-fluoro-oxindole as the nucleophile by applying this method.
Collapse
Affiliation(s)
- Qiaoli Xue
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yue Pu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiaotian Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Heng Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Liqin Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
128
|
Xie X, Dong S, Hong K, Huang J, Xu X. Catalytic Asymmetric Difluoroalkylation Using In Situ Generated Difluoroenol Species as the Privileged Synthon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307520. [PMID: 38318687 PMCID: PMC11005710 DOI: 10.1002/advs.202307520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Indexed: 02/07/2024]
Abstract
A robust and practical difluoroalkylation synthon, α,α-difluoroenol species, which generated in situ from trifluoromethyl diazo compounds and water in the presence of dirhodium complex, is disclosed. As compared to the presynthesized difluoroenoxysilane and in situ formed difluoroenolate under basic conditions, this difluoroenol intermediate displayed versatile reactivity, resulting in dramatically improved enantioselectivity under mild conditions. As demonstrated in catalytic asymmetric aldol reaction and Mannich reactions with ketones or imines in the presence of chiral organocatalysts, quinine-derived urea, and chiral phosphoric acid (CPA), respectively, this relay catalysis strategy provides an effective platform for applying asymmetric fluorination chemistry. Moreover, this method features a novel 1,2-difunctionalization process via installation of a carbonyl motif and an alkyl group on two vicinal carbons, which is a complementary protocol to the metal carbene gem-difunctionalization reaction.
Collapse
Affiliation(s)
- Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shanliang Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jingjing Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
129
|
Liu L, Wang Q, Li Y, Liu M, Liu B, Li Q, Feng K. Photodriven Radical Perfluoroalkylation-Thiolation of Unactivated Alkenes Enabled by Electron Donor-Acceptor Complex. Org Lett 2024; 26:2271-2275. [PMID: 38457924 DOI: 10.1021/acs.orglett.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
A clean and direct three-component radical 1,2-difunctionalization of various alkenes with perfluoroalkyl iodides and thiosulfonates enabled by the electron donor-acceptor complex has been developed under light illumination at room temperature. The approach offers a convenient and environmentally friendly route for the simultaneous incorporation of Csp3-Rf and Csp3-S bonds, affording valuable polyfunctionalized alkane derivatives containing fluorine and sulfur in satisfactory yields. Consequently, this methodology holds significant value and practicality in the field of organic synthesis.
Collapse
Affiliation(s)
- Lixin Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Qian Wang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Yuanhua Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Min Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Bifu Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Kejun Feng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, China
| |
Collapse
|
130
|
Zhao WW, Tian MY, Zhou YL, Liu LJ, Tian SF, He CY, Yang XZ, Chen YZ, Han WY. Trifluoromethyl Rhodium-Carbynoid in [2+1+2] Cycloadditions. Angew Chem Int Ed Engl 2024; 63:e202318887. [PMID: 38237082 DOI: 10.1002/anie.202318887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Indexed: 02/24/2024]
Abstract
Trifluoromethyl cationic carbyne (CF3 C+ :) possessing dual carbene-carbocation behavior emulated as trifluoromethyl metal-carbynoid (CF3 C+ =M) has not been explored yet, and its reaction characteristics are unknown. Herein, a novel α-diazotrifluoroethyl sulfonium salt was prepared and used in Rh-catalyzed three-component [2+1+2] cycloadditions for the first time with commercially available N-fused heteroarenes and nitriles, yielding a series of imidazo[1,5-a] N-heterocycles that are of interest in medicinal chemistry, in which the insertion of trifluoromethyl Rh-carbynoid (CF3 C+ =Rh) into C=N bonds of N-fused heteroarenes was involved. This strategy demonstrates synthetic applications in late-stage modification of pharmaceuticals, construction of CD3 -containing N-heterocycles, gram-scale experiments, and synthesis of phosphodiesterase 10A inhibitor analog. These highly valuable and modifiable imidazo[1,5-a] N-heterocycles exhibit good antitumor activity in vitro, thus demonstrating their potential applications in medicinal chemistry.
Collapse
Affiliation(s)
- Wen-Wen Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Meng-Yang Tian
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Yi-Lin Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Lu-Jie Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Shao-Fang Tian
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Xing-Zhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, 650201, Kunming, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| |
Collapse
|
131
|
Chan CL, Lee SC, Lin PS, Tapales RVPP, Li JS, Lai CA, Lee JT, Li CH, Liao HH. FluoroFusion: NHC-Catalyzed Nucleophilic Aromatic Substitution Reaction Unveils Functional Perfluorinated Diarylmethanones. Org Lett 2024; 26:2338-2342. [PMID: 38458971 DOI: 10.1021/acs.orglett.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
A mild, facile, and metal-free approach via the N-heterocyclic carbene-catalyzed SNAr reaction between aryl aldehydes with perfluoroarenes to obtain the coveted functional perfluorinated diarylmethanones is disclosed. This method accommodates a diverse substrate range and exhibits notable tolerance toward various functional groups. Our success in modifying biologically relevant molecules, crafting a fully fluorinated bioisosteric analogue of drug candidate D1, and highlighting the potential of these ketones as valuable electrolyte additives for lithium-ion batteries (LIBs) underscores the versatility of our methodology.
Collapse
Affiliation(s)
- Cheng-Lin Chan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804201, Taiwan (R.O.C.)
- Department of International Ph.D. Program for Science, National Sun Yat-sen University, Kaohsiung 804201, Taiwan (R.O.C.)
| | - Shao-Chi Lee
- Department of Chemistry, National Chung Hsing University, Taichung 402202, Taiwan (R.O.C.)
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Pei-Shan Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804201, Taiwan (R.O.C.)
| | - Radyn Vanessa Phaz P Tapales
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804201, Taiwan (R.O.C.)
- Department of International Ph.D. Program for Science, National Sun Yat-sen University, Kaohsiung 804201, Taiwan (R.O.C.)
| | - Jia-Syuan Li
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804201, Taiwan (R.O.C.)
| | - Chun-An Lai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804201, Taiwan (R.O.C.)
| | - Jyh-Tsung Lee
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804201, Taiwan (R.O.C.)
| | - Chien-Hung Li
- Department of Applied and Medicinal Chemistry, Kaohsiung Medical University, Kaohsiung 807378, Taiwan (R.O.C.)
| | - Hsuan-Hung Liao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804201, Taiwan (R.O.C.)
- Department of Applied and Medicinal Chemistry, Kaohsiung Medical University, Kaohsiung 807378, Taiwan (R.O.C.)
| |
Collapse
|
132
|
Guo Y, Liao H, Pan M, Zhao C, Qian Y, Liu X, Rong L. Visible-Light-Initiated Catalyst-Free Radical Annulation Reactions of 1,6-Enynes and Aryl Sulfonyl Bromide to Assemble Sulfonation/Bromination Succinimide Derivatives. J Org Chem 2024; 89:3857-3867. [PMID: 38386475 DOI: 10.1021/acs.joc.3c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
In the present study, the environment-friendly visible-light-promoted strategy is used to perform an efficient, simple, and straightforward photocatalytic succinimide derivative synthesis from the reaction of 1,6-enynes and aryl sulfonyl bromide at room temperature under air ambient conditions. This method features mild conditions, broad substrate scope, high yields, and excellent configurational selectivity. In addition, all the atoms of the substrates involved in the reaction converge in the product structures, showing a high atomic economy. Moreover, the most important characteristic of this study is that no photocatalyst and additives are used, while the key factor that triggers the reaction is visible light, indicating that this study has an important practical value.
Collapse
Affiliation(s)
- Yu Guo
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Hailin Liao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Mei Pan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Congcong Zhao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yuliang Qian
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Xiaoqin Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|
133
|
Inagaki T, Akita Y, Tobisu M. Palladium-Catalyzed Addition of Trifluoroacetylsilanes to Alkenes and Allenes via the Cleavage of C-Si Bonds. Org Lett 2024; 26:2141-2145. [PMID: 38442037 DOI: 10.1021/acs.orglett.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The palladium-catalyzed addition of trifluoroacetylsilanes to alkenes and allenes via the cleavage of the C-Si bonds is reported. When alkenes are used, cyclopropanation occurs to afford cyclopropane derivatives bearing CF3 and siloxy groups with a high degree of stereoselectivity. When allenes are used, silylacylation occurs to form alkenylsilane derivatives bearing a trifluoroacetyl group at the allylic position with complete regioselectivity. Both reactions allow for highly atom-economical access to densely functionalized fluorinated organosilane derivatives using simple building blocks.
Collapse
Affiliation(s)
- Tetsuya Inagaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Akita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
134
|
Li R, Yin S, Xie L, Li X, Jia J, Zhao L, He CY. Catalyst-free decarboxylative cross-coupling of N-hydroxyphthalimide esters with tert-butyl 2-(trifluoromethyl)acrylate and its application. Org Biomol Chem 2024; 22:2279-2283. [PMID: 38407278 DOI: 10.1039/d3ob02103c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Here, we demonstrate a practical method toward the facile synthesis of CF3-containing amino acids through visible light promoted decarboxylative cross-coupling of a redox-active ester with tert-butyl 2-(trifluoromethyl)acrylate. The reaction was driven by the photochemical activity of electron donor-acceptor (EDA) complexes that were formed by the non-covalent interaction between a Hantzsch ester and a redox-active ester. The advantages of this protocol are its synthetic simplicity, rich functional group tolerance, and a cost-effective reaction system.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Susu Yin
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Lang Xie
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xuefei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jia Jia
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| |
Collapse
|
135
|
Zhang W, Tian Y, Liu XD, Luan C, Liu JR, Gu QS, Li ZL, Liu XY. Copper-Catalyzed Enantioselective C(sp 3 )-SCF 3 Coupling of Carbon-Centered Benzyl Radicals with (Me 4 N)SCF 3. Angew Chem Int Ed Engl 2024; 63:e202319850. [PMID: 38273811 DOI: 10.1002/anie.202319850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
In contrast with the well-established C(sp2 )-SCF3 cross-coupling to forge the Ar-SCF3 bond, the corresponding enantioselective coupling of readily available alkyl electrophiles to forge chiral C(sp3 )-SCF3 bond has remained largely unexplored. We herein disclose a copper-catalyzed enantioselective radical C(sp3 )-SCF3 coupling of a range of secondary/tertiary benzyl radicals with the easily available (Me4 N)SCF3 reagent. The key to the success lies in the utilization of chiral phosphino-oxazoline-derived anionic N,N,P-ligands through tuning electronic and steric effects for the simultaneous control of the reaction initiation and enantioselectivity. This strategy can successfully realize two types of asymmetric radical reactions, including enantioconvergent C(sp3 )-SCF3 cross-coupling of racemic benzyl halides and three-component 1,2-carbotrifluoromethylthiolation of arylated alkenes under mild reaction conditions. It therefore provides a highly flexible platform for the rapid assembly of an array of enantioenriched SCF3 -containing molecules of interest in organic synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Wei Zhang
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Tian
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Dong Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cheng Luan
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji-Ren Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| | - Xin-Yuan Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
136
|
Liu G, Shen H, Wang Z. Access to All-Carbon Quaternary Centers by Photocatalytic Fluoroalkylation of α-Halo Carbonyl Compounds. Org Lett 2024; 26:1863-1867. [PMID: 38412234 DOI: 10.1021/acs.orglett.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Perfluoroalkyl groups have become significantly important in pharmaceutical and agrochemical applications. In this study, we present a visible light-mediated photoredox neutral strategy for the fluoroalkylation of tertiary alkyl chlorides under transition-metal-free conditions. This method allows for the facile synthesis of fluoroalkylated all-carbon quaternary centers, exhibiting excellent functional group compatibility. Mechanistic studies reveal the involvement of two reactive radical intermediates and the in situ formation of metal enolates in a radical-polar crossover manner. The versatility of this methodology is demonstrated through synthetic transformations based on the carbonyl group, showcasing its potential for the rapid assembly of diverse organic molecules bearing fluoroalkyl all-carbon quaternary centers.
Collapse
Affiliation(s)
- Gang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
| | - Haigen Shen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
137
|
Ling J, Zhou L. Picking Two out of Three: Defluorinative Annulation of Trifluoromethyl Alkenes for the Synthesis of Monofluorinated Carbo- and Heterocycles. CHEM REC 2024; 24:e202300332. [PMID: 38251926 DOI: 10.1002/tcr.202300332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/01/2024] [Indexed: 01/23/2024]
Abstract
The increasing demand of organofluorine compounds in medicine, agriculture, and materials sciences makes sophisticated methods for their synthesis ever more necessary. Nowadays, not only the C-F bond formation but also the selective C-F bond cleavage of readily available poly- or perfluorine-containing compounds have become powerful tools for the effective synthesis of organofluorine compounds. The defluorinative cross-coupling of trifluoromethyl alkenes with various nucleophiles or radical precursors in an SN 2' manner is a convergent route to access gem-difluoroalkenes, which in turn react with nucleophiles or radical precursors via an SN V-type reaction. If the SN V reactions occur intramolecularly, the dual C-F bond cleavage of trifluoromethyl alkenes allows facile assembly of monofluorinated cyclic skeletons with structural complexity and diversity. In this personal account, we summarized the advances in this field on the basis of coupling and cyclization partners, including binucleophiles, alkynes, diradical precursors and radical precursors bearing a nucleophilic site. Accordingly, the annulation reactions can be achieved by base-mediated sequential SN 2'/SN V reactions, transition metal catalyzed or mediated reactions, photoredox catalysis, and the combination of photocatalytic reactions with SN V reaction. In the context of seminal works of others in this field, a concise summary of the contributions of the authors is also offered.
Collapse
Affiliation(s)
- Jiahao Ling
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
138
|
Song XF, Zhang LJ, Zhang XG, Tu HY. Cu-Catalyzed Carbocyclization for General Synthesis of N-Containing Heterocyclics Enabled by BrCF 2COOEt as a C1 Source. J Org Chem 2024; 89:3403-3412. [PMID: 38331393 DOI: 10.1021/acs.joc.3c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A practical and efficient copper-catalyzed carbocyclization of 2-functionalized anilines with ethyl bromodifluoroacetate has been developed. Ethyl bromodifluoroacetate is employed as the C1 source via quadruple cleavage in this transformation. This reaction can afford a variety of N-containing heterocyclics with satisfactory yields and excellent functional group compatibility.
Collapse
Affiliation(s)
- Xiao-Fang Song
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou 325035, China
| | - Li-Jing Zhang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hai-Yong Tu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
139
|
Wang JX, Fu MC, Yan LY, Lu X, Fu Y. Photoinduced Triphenylphosphine and Iodide Salt Promoted Reductive Decarboxylative Coupling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307241. [PMID: 38234213 DOI: 10.1002/advs.202307241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Indexed: 01/19/2024]
Abstract
The transient electron donor-acceptor (EDA) complex has been an emerging area in the photoinduced organic synthesis field, generating radicals without exogenous transition-metal or organic dye-based photoredox catalysts. The catalytic platform to form suitable photoactive EDA complexes for photochemical reduction reactions remains underdeveloped. Herein, a general photoinduced reductive alkylation via the EDA complex strategy is described. A simple yet multifunctional system, triphenylphosphine and iodide salt, promotes the photoinduced decarboxylative hydroalkylation, and reductive defluorinative decarboxylative alkylation of trifluoromethyl alkenes, to access trifluoromethyl alkanes and gem-difluoroalkenes. Moreover, decarboxylative hydroalkylation can be applied to more kinds of electron-deficient alkenes as a general Giese addition reaction.
Collapse
Affiliation(s)
- Jia-Xin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Chen Fu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lu-Yu Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xi Lu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
140
|
Ding CL, Xu Q, Wu S, Zhong Y, He X, Lin Y, Li Y, Ye KY. Current-Controlled Electrochemical Approach Toward Mono- and Trifluorinated Isoindolin-1-one Derivatives. Org Lett 2024; 26:1645-1651. [PMID: 38363882 DOI: 10.1021/acs.orglett.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
An electrochemical intramolecular 5-exo-dig aza-cyclization of 2-alkynylbenzamides and subsequent nucleophilic fluorination have been developed to afford the highly selective synthesis of mono- and trifluorinated isoindolin-1-one derivatives. This work demonstrates the unique capability of synthetic electrochemistry in controlling reaction selectivity through the applied electrolytic parameters. In addition, the obtained monofluorinated 3-methyleneisoindolin-1-one (19) displays interesting photophysical properties that are not observed in its nonfluorinated analog.
Collapse
Affiliation(s)
- Cheng-Lin Ding
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qiaohong Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shuai Wu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi Zhong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xinglei He
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuqi Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuanming Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
141
|
Lv W, Yang P, Yuan J, Li J, Liang M, Liu Y, Xing D, Yang L. Phototriggered Fluoroalkylation/Cyclization of Unactivated 1-Acryloyl-2-cyanoindoles: Synthesis of RCOCF 2-Substituted Pyrrolo[1,2- a]indolediones. J Org Chem 2024; 89:3525-3537. [PMID: 38362898 DOI: 10.1021/acs.joc.3c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A photochemical approach toward RCOCF2-substituted pyrrolo[1,2-a]indolediones was developed by the radical cascade difluoroalkylation/cyclization reaction of unactivated 1-acryloyl-2-cyanoindoles with ethyl iododifluoroacetate or iododifluoramides under visible-light irradiation. This transition-metal- and photosensitizer-free protocol afforded diverse difluoroalkylated pyrrolo[1,2-a]indolediones in moderate to good yields under mild reaction conditions. Most appealingly, the reaction can proceed smoothly under sunlight irradiation, which opens a new avenue toward difluoroalkylated pyrrolo[1,2-a]indolediones.
Collapse
Affiliation(s)
- Weixian Lv
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Pengyuan Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jiayi Li
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Mengran Liang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yitong Liu
- School of International Education, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Dongliang Xing
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| |
Collapse
|
142
|
Zhang J, Sun M, Gao K, Wu H, Li J, Wang Z, Yang J. Synthesis of Fluorine-Containing Multisubstituted Oxa-Spiro[4,5]cyclohexadienones via a Fluorinated Alcohol-Catalyzed One-Pot Sequential Cascade Strategy. J Org Chem 2024; 89:2847-2857. [PMID: 38364825 DOI: 10.1021/acs.joc.3c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
In recent years, the application of fluorinated alcohols as solvents, cosolvents, or additives has become important in modern organic synthesis. However, their potential as efficient catalysts in organic synthesis has not been well-explored. In this article, we report on the development of a one-pot sequential cascade reaction of p-quinone methides with difluoroenoxysilanes using hexafluoroisopropanol as catalyst. This reaction allows for the preparation of fluorinated multisubstituted oxa-spiro[4,5]cyclohexadienones. By using 50 mol % 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP), the reaction proceeds smoothly to yield 1,6-conjugated products, which are then subjected to oxidative dearomatization/hemiacetalization using PhI(OAc)2. The overall process affords moderate to high yields and excellent diastereoselectivities.
Collapse
Affiliation(s)
- Jing Zhang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Kai Gao
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Haijian Wu
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Jinshan Li
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| |
Collapse
|
143
|
Zhang J, Xiong D, Jiang Z, Chen S, Huang GB, Li J, Wang Z, Yang J. Synthesis of gem-Difluoro-3,4-dihydro-2 H-pyrans via a TfOH-Catalyzed [4 + 2] Annulation of Difluoroenoxysilanes with α-Cyano Chalcones. Org Lett 2024; 26:1447-1451. [PMID: 38353475 DOI: 10.1021/acs.orglett.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Difluoroenoxysilane, a commonly used difluoroallylating reagent, has attracted considerable attention in recent years. However, its application in the annulation reaction for the construction of fluorinated heterocyclic compounds remains relatively limited. Presented here is the Brønsted acid-catalyzed efficient formal [4 + 2] annulation of difluoroenoxysilanes with α-cyano chalcones. The developed protocol demonstrates tolerance to various substituents under mild reaction conditions, providing a reliable approach to construct gem-difluoro-3,4-dihydro-2H-pyrans in good to excellent yields with high diastereoselectivities.
Collapse
Affiliation(s)
- Jing Zhang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Daokai Xiong
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Zhiwei Jiang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Shuaiting Chen
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Guo-Bo Huang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jinshan Li
- Hainan Provincial Key Lab of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| |
Collapse
|
144
|
Zhou M, Ren JX, Feng XT, Zhao HY, Fu XP, Min QQ, Zhang X. Late-stage gem-difluoroallylation of phenol in bioactive molecules and peptides with 3,3-difluoroallyl sulfonium salts. Chem Sci 2024; 15:2937-2945. [PMID: 38404383 PMCID: PMC10882445 DOI: 10.1039/d3sc06302j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
An efficient method for the late-stage selective O-fluoroalkylation of tyrosine residues with a stable yet highly reactive fluoroalkylating reagent, 3,3-difluoroallyl sulfonium salts (DFASs), has been developed. The reaction proceeds in a mild basic aqueous buffer (pH = 11.6) with high efficiency, high biocompatibility, and excellent regio- and chemoselectivity. Various oligopeptides and phenol-containing bioactive molecules, including carbohydrates and nucleosides, could be selectively O-fluoroalkylated. The added vinyl and other functional groups from DFASs can be valuable linkers for successive modification, significantly expanding the chemical space for further bioconjugation. The synthetic utility of this protocol has been demonstrated by the fluorescently labeled anti-cancer drug and the synthesis of O-link type 1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid-tyrosine3-octreotate (DOTA-TATE), showing the prospect of the method in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Minqi Zhou
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
| | - Jin-Xiu Ren
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao-Tian Feng
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
| | - Hai-Yang Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xia-Ping Fu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qiao-Qiao Min
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xingang Zhang
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
145
|
Henary E, Casa S, Dost TL, Sloop JC, Henary M. The Role of Small Molecules Containing Fluorine Atoms in Medicine and Imaging Applications. Pharmaceuticals (Basel) 2024; 17:281. [PMID: 38543068 PMCID: PMC10975950 DOI: 10.3390/ph17030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 04/01/2024] Open
Abstract
The fluorine atom possesses many intrinsic properties that can be beneficial when incorporated into small molecules. These properties include the atom's size, electronegativity, and ability to block metabolic oxidation sites. Substituents that feature fluorine and fluorine-containing groups are currently prevalent in drugs that lower cholesterol, relieve asthma, and treat anxiety disorders, as well as improve the chemical properties of various medications and imaging agents. The dye scaffolds (fluorescein/rhodamine, coumarin, BODIPY, carbocyanine, and squaraine dyes) reported will address the incorporation of the fluorine atom in the scaffold and the contribution it provides to its application as an imaging agent. It is also important to recognize radiolabeled fluorine atoms used for PET imaging in the early detection of diseases. This review will discuss the many benefits of incorporating fluorine atoms into small molecules and give examples of fluorinated molecules used in the pharmaceutical industry and imaging techniques.
Collapse
Affiliation(s)
- Emily Henary
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA; (E.H.); (J.C.S.)
| | - Stefanie Casa
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA; (S.C.); (T.L.D.)
| | - Tyler L. Dost
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA; (S.C.); (T.L.D.)
| | - Joseph C. Sloop
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA; (E.H.); (J.C.S.)
| | - Maged Henary
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA; (S.C.); (T.L.D.)
- Center for Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| |
Collapse
|
146
|
Lye K, Young RD. A review of frustrated Lewis pair enabled monoselective C-F bond activation. Chem Sci 2024; 15:2712-2724. [PMID: 38404400 PMCID: PMC10882520 DOI: 10.1039/d3sc06485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
Frustrated Lewis pair (FLP) bond activation chemistry has greatly developed over the last two decades since the seminal report of metal-free reversible hydrogen activation. Recently, FLP systems have been utilized to allow monoselective C-F bond activation (at equivalent sites) in polyfluoroalkanes. The problem of 'over-defluorination' in the functionalization of polyfluoroalkanes (where multiple fluoro-positions are uncontrollably functionalized) has been a long-standing chemical problem in fluorocarbon chemistry for over 80 years. FLP mediated monoselective C-F bond activation is complementary to other solutions developed to address 'over-defluorination' and offers several advantages and unique opportunities. This perspective highlights some of these advantages and opportunities and places the development of FLP mediated C-F bond activation into the context of the wider effort to overcome 'over-defluorination'.
Collapse
Affiliation(s)
- Kenneth Lye
- Department of Chemistry, National University of Singapore 117543 Singapore
| | - Rowan D Young
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia 4072 Australia
| |
Collapse
|
147
|
Liu J, Rong J, Wood DP, Wang Y, Liang SH, Lin S. Co-Catalyzed Hydrofluorination of Alkenes: Photocatalytic Method Development and Electroanalytical Mechanistic Investigation. J Am Chem Soc 2024; 146:4380-4392. [PMID: 38300825 PMCID: PMC11219133 DOI: 10.1021/jacs.3c10989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The hydrofluorination of alkenes represents an attractive strategy for the synthesis of aliphatic fluorides. This approach provides a direct means to form C(sp3)-F bonds selectively from readily available alkenes. Nonetheless, conducting hydrofluorination using nucleophilic fluorine sources poses significant challenges due to the low acidity and high toxicity associated with HF and the poor nucleophilicity of fluoride. In this study, we present a new Co(salen)-catalyzed hydrofluorination of simple alkenes utilizing Et3N·3HF as the sole source of both hydrogen and fluorine. This process operates via a photoredox-mediated polar-radical-polar crossover mechanism. We also demonstrated the versatility of this method by effectively converting a diverse array of simple and activated alkenes with varying degrees of substitution into hydrofluorinated products. Furthermore, we successfully applied this methodology to 18F-hydrofluorination reactions, enabling the introduction of 18F into potential radiopharmaceuticals. Our mechanistic investigations, conducted using rotating disk electrode voltammetry and DFT calculations, unveiled the involvement of both carbocation and CoIV-alkyl species as viable intermediates during the fluorination step, and the contribution of each pathway depends on the structure of the starting alkene.
Collapse
Affiliation(s)
- Jinjian Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Devin P. Wood
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Steven H. Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
148
|
Sumran G, Jain N, Kumar P, Aggarwal R. Trifluoromethyl-β-dicarbonyls as Versatile Synthons in Synthesis of Heterocycles. Chemistry 2024; 30:e202303599. [PMID: 38055226 DOI: 10.1002/chem.202303599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Trifluoromethyl group relishes a privileged position in the realm of medicinal chemistry because its incorporation into organic molecules often enhances the bioactivity by altering pharmacological profile of molecule. Trifluoromethyl-β-dicarbonyls have emerged as pivotal building blocks in synthetic organic chemistry due to their facile accessibility, stability and remarkable versatility. Owing to presence of nucleophilic and electrophilic sites, they offer multifunctional sites for the reaction. This review covers a meticulous exploration of their multifaceted role, encompassing an in-depth analysis of mechanism, extensive scope, limitations and wide-ranging applications in diverse organic synthesis, covering the literature from the 21st century. This comprehensive review encapsulates the applications of trifluoromethyl-β-dicarbonyls and their synthetic equivalents as precursors of complex and diverse heterocyclic scaffolds, fused heterocycles and spirocyclic compounds having medicinal and material importance. Their potent synthetic utility in cyclocondensation reactions with binucleophiles, cycloaddition reactions, C-C bond formations, asymmetric multicomponent reactions using classical/solvent-free/catalytic synthesis have been presented. Influence of unsymmetrical trifluoromethyl-β-diketones on regioselectivity of transformation is also reviewed. This review will benefit the synthetic and pharmaceutical communities to explore trifluoromethyl-β-dicarbonyls as trifluoromethyl building blocks for fabrication of heterocyclic scaffolds having implementation into drug discovery programs in the imminent future.
Collapse
Affiliation(s)
- Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, 134 003, Haryana, India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
| | - Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, 110012, India
| |
Collapse
|
149
|
Lai D, Bhattacharjee S, Mandal S, Ghosh S, Sahoo P, Sinha S, Hajra A. Iodine(III)-promoted oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent. Chem Commun (Camb) 2024; 60:2232-2235. [PMID: 38315091 DOI: 10.1039/d3cc05889a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A metal-free protocol for oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent has been developed using (diacetoxyiodo)benzene (PIDA) as an oxidant. This three-component strategy enables one-step construction of 3,4-disubstituted maleimides in good yields with high functional group tolerance. Both experimental and theoretical studies support the proposed radical reaction mechanism.
Collapse
Affiliation(s)
- Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Saurodeep Mandal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Subrata Sinha
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
150
|
Kuai CS, Teng BH, Wu XF. Palladium-Catalyzed Carbonylative Multicomponent Fluoroalkylation of 1,3-Enynes: Concise Construction of Diverse Cyclic Compounds. Angew Chem Int Ed Engl 2024; 63:e202318257. [PMID: 38116921 DOI: 10.1002/anie.202318257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Multicomponent reactions, particularly those entailing four or more reagents, have presented a longstanding challenge due to the inherent complexities associated with balancing reactivity, selectivity, and compatibility. In this study, we describe a palladium-catalyzed multi-component fluoroalkylative carbonylation of 1,3-enynes. A series of products featuring three active functional groups-allene, fluoroalkyl, and carboxyl, were efficiently and selectively integrated in a single chemical operation. Furthermore, more intricate fluoroalkyl-substituted pyrimidinones can be constructed by simply altering the 1,3-bisnucleophilic reagent. This approach also provides a valuable strategy for the late-stage modification of naturally occurring molecules and concise construction of diverse cyclic compounds.
Collapse
Affiliation(s)
- Chang-Sheng Kuai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Hong Teng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian, 116029, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059, Rostock, Germany
| |
Collapse
|